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A B S T R A C T

This paper investigates the impact of green technology innovations on carbon dioxide (CO2) emissions based on
a data panel covering 71 economies from 1996 to 2012. Specifically, we examine whether the level of income
matters for the effect of green technology innovations. It is found that the impact of green technology in-
novations exists a single threshold effect regarding the income level. Specifically, green technology innovations
do not significantly contribute to reducing CO2 emissions for the economies whose income levels are below the
threshold while the mitigation effect becomes significant for those whose income levels surpass the threshold.
But the transition of regime occurs at an extremely high-income level. In addition, we find that the relationship
between per capita CO2 emissions and per capita GDP is inverted U-shaped, and urbanization level, industrial
structure, trade openness, and energy consumption structure also significantly affect CO2 emissions. Finally, this
paper suggests that mechanism innovations should be implemented to reduce the diffusion cost of green tech-
nology in undeveloped economies.

1. Introduction

It is widely acknowledged that human activity such as burning coal
and oil is one of the leading causes of global warming. Ever since the
Industrial Revolution, the global economy has been evolving at a fast
pace, and people's living conditions have been significantly improved,
but improved productivity also brought severe air pollution worldwide.
The World Energy Outlook 2017 cautions: “Despite their recent flat-
tening, global energy-related CO2 emissions increase slightly to 2040 in
the New Policies Scenario. This outcome is far from enough to avoid
severe impacts of climate change.” Therefore, human activity is the
genesis of global warming, and now humans are in urgent need of
taking effective measures to protect the earth from climate disasters.
Among various paths of climate change mitigation, the green tech-
nology (including renewable energy technology, energy efficiency
technology, etc.) is expected to be a dominant factor that theoretically
contributes to over 60% of targeted CO2 reduction in the International
Energy Agency's (IEA's) 450 Scenario (IEA, 2013). But in different
countries or regions, the research development and diffusion of green
technology are typically not at the same pace. Hence the actual impact
of green technology innovations might depend on specific social or

economic circumstances (IEA, 2015). Thus, understanding the detailed
relationship between human activity, green technology innovations,
and CO2 emissions helps to protect the environment that we depend on.

Since Grossman and Krueger (1991) first postulate the Environ-
mental Kuznets Curve (EKC) hypothesis (which suggests an inverted U-
shaped relationship between indicators of environmetal pollutions and
per capita income), a growing number of studies have devoted to in-
vestigating the factors affecting CO2 emissions (Gill et al., 2018; Lean
and Smyth, 2010; Liu et al., 2017; Perman and Stern, 2003; Stokey,
1998; Yang et al., 2015). Influencing factors such as prosperity, in-
dustrial structure, international trade, urbanization and energy struc-
ture have been discussed intensively. For instance, Yao et al. (2018)
find that urbanization contributes to declines in China's CO2 emissions.
Munir and Ameer (2018) show that trade openness increases SO2

emissions while urbanization reduces SO2 emissions in Asian emerging
economies. Sun et al. (2019) find that urbanization aggravates en-
vironmental pollution in China. Li et al. (2019b) reveal that the impact
of manufacturing structural rationalization on CO2 emission mitigation
is subjected to the level of resource dependence and industrialization.

Recently, green technology innovations have grown up to be an
important means of reducing CO2 emissions all around the globe
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(Weina et al., 2016; Nikzad and Sedigh, 2017). Although it is theore-
tically predicted that the higher the number of climate-related tech-
nologies the better for combating climate change, there are very few
empirical evidences to support this (Su and Moaniba, 2017). Some
previous studies suggest that the effect of green technology innovations
on CO2 emissions can be positive or negative under different conditions
(Acemoglu et al., 2012; Jaffe et al., 2002), and can also be influenced by
various factors, such as income and time. Braungardt et al. (2016) de-
monstrate that even though green innovations are generally considered
as an essential element towards a green growth strategy, the impact on
climate goals has been subjected to a long-running debate due to the
existence of the rebound effect. Wang et al. (2012) find that energy
technology patents do not play a significant role in reducing China's
CO2 emissions and energy patents with free‑carbon technologies con-
tribute to CO2 emission reduction only in the eastern area of China.
Weina et al. (2016) reveal that for Italia green innovations improve
environmental productivity but not play a significant role in CO2

emission reduction. Song et al. (2018) use the afforestation expanse
from the environmental technology input as the proxy of green tech-
nology and explore its role in R&D efficiency and profit in manu-
facturing.

Understanding the real effect of green innovations in minimizing
CO2 emission deserves further study. Based on the existing studies, we
pose two fundamental questions which need to be addressed. First, can
green technology innovations effectively reduce CO2 emissions?
Second, are there some regime transitions for the effect of green tech-
nology innovations on CO2 emissions under different income levels? As
noted by Popp (2012), the using of green technology often entails an
initial cost, which makes the poor economies unable to use advanced
abatement technology and to achieve environmental goals.

This paper aims to empirically explore the above questions in depth
using a new data set. Contributions of this paper are mainly twofold.
First, the existing studies mainly focus on the impact of general tech-
nological advancement on CO2 emissions. But few studies investigate
the role of green technology innovations. This paper provides new
evidence on the effect of green technology innovations on CO2 emis-
sions. Second, previous studies generally treat green technology in-
novations and income as general explanatory variables of CO2 emis-
sions, thus neglecting the interaction effect of income and green
technology innovations on CO2 emissions. Intuitively, the impact of
green technology innovations might depend on the income level since
using green technologies usually entail high costs. This paper is among
the first to make income as a threshold to study the effects of green
technology innovations on CO2 emissions at different income levels.

The rest of the paper is organized as follows. In Section 2, we ex-
plain the econometric methodology. Section 3 details the data and re-
sults. Section 4 concludes the paper.

2. The model and econometric methodology

To investigate the effect of green technology innovations and in-
come on CO2 emissions, we consider the following reduced-form
econometric model:

= + ′ + +Per CO Patent β X γ u εLn( _ ) Ln( )it it it i it2 1 (1)

where Ln(Per_CO2)it is the dependent variable defined as the logarithm
per capita CO2 emissions of economy i in year t. Ln(Patent)it is the core
explanatory variable that denotes the logarithm of the number of green
technology patents applied by economy i in year t.1 Xit

′ represents a
vector of control variables including per capita GDP, industrial struc-
ture, urbanization level, energy consumption structure, and trade
openness, etc. ui is the individual effects of economy i, and εit is the

random error.
To further investigate whether the effects of green technology in-

novations depend on the level of income, we include a dummy variable
D which equals to 1 if the economy belongs to the high-income group.2

= + × + ′ + +Per CO Patent β Patent D β X γ u εLn( _ 2) Ln( ) [Ln( ) ]it it it it i it1 2

(2)

By the introduction of D, we can easily compare the effects of green
technology innovations between different income groups. However, Eq.
(2) still has some disadvantages. Firstly, the sample separation criteria
are exogenous. Secondly, economies are assigned to a specific group
that is not changed throughout the given years; but with the develop-
ment of economy, some less developed economies will enter the high-
income group. To solve these problems, we use Hansen (1999) panel
threshold model. The single threshold model is written as:

= ≤ + > + ′

+ +

Per CO

Patent I q β Patent I q β X

γ u ε

Ln( _ 2)
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it

it it it it it

i it

1 2

(3)

where qit is the threshold variable, γ is the threshold parameter that
divides Eq. (2) into two regimes with coefficients of β1 and β2. But
generally, there may be K thresholds; and the model is written as:

= + ′ + +Per CO Patent I β X γ u εLn( _ ) [Ln( ) (q )]it it it it i it2 (4)

where β is a K-dimensional vector, K is the number of thresholds,3 I(∙) is
a vector of indicator functions of which the kth component can be ex-
pressed as:

= ⎧
⎨⎩

< ≤−I
if c c

otherwise
(q )

1, q
0,k it

k it k1

(5)

where k∈ {1, … ,K+ 1}; c0=−∞ , cK+1=+∞ and c1,… , cK are K
threshold parameters for estimation. The panel threshold model has
been popularly applied to explore the nonlinear relationship between
independent and dependent variables (Li et al., 2019a).

3. Data description and results

In this paper, we compile a balanced data panel covering 71
economies from 1996 to 2012. The economy list is provided in Table
A1. The variables are constructed as follows.

3.1. Per capita CO2 emission (denoted as Per_CO2)

Following Ahmed et al. (2017) and Su and Moaniba (2017), we use
per capita CO2 emission as the proxy of CO2 emission performance. The
data of CO2 emissions are collected from the World Bank.

3.2. Green patent counts (denoted as Patent)

Green technology innovation is an effective tool to address the
conflict between economy and environment; it can effectively improve
the energy efficiency which is vital to reduce CO2 emissions
(Braungardt et al., 2016). In this paper, we follow Su and Moaniba
(2017) and Hasan and Tucci (2010) to utilize patent counts in en-
vironment-related technologies as the indicator of green technology
innovations.4 The data on green technology patent counts are collected

1 Note we actually use the logarithm transformation of (1+ patents) to avoid
generating missing values when patents= 0.

2We group the economies based on the World Bank's classification of
economies (http://data.worldbank.org/about/country-classifications/country-
and-lending-groups).

3 The number of thresholds can be determined through the procedure de-
veloped in Hansen (1999).

4 Another widely used indicators is expenditure on research and development
(R&D). Expenditure on R&D is the input of innovation activities. It might not be
in line with technology advancements which is generally taken as the out-come
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from OECD statistics database (Yan et al., 2017). Referring to the
methodology of OECD statistics, the patents labeled as “environment-
related technologies” are counted and assigned to different countries
according to bibliographic information on the inventor's residential
country.

3.3. Per capita GDP (denoted as Per_GDP)

The studies of Environmental Kuznets Curve (Esteve and Tamarit,
2012; Tucker, 1995) highlight the non-linear relationship between per
capita CO2 emissions and per capita GDP. To test the EKC (Environ-
mental Kuznets Curve) hypothesis, we include per capita GDP in our
models as Du et al. (2012) have done. The data on real GDP and po-
pulation are collected from PWT version 9.0 and the World Bank re-
spectively.

3.4. Trade openness (denoted as Ratio_trade)

Grossman and Krueger (1991) argue that the effect of trade open-
ness on CO2 emissions can be decomposed into scale effect, structure
effect and technology effect respectively. Firstly, trade liberalization
decreases friction, which will further enhance the scale of production,
thus affecting the CO2 emissions. Secondly, trade openness can affect
industrial structure through specialization, which will further affect
CO2 emissions. Thirdly, technology can be transferred from technolo-
gically advanced economies to backward economies. It makes tech-
nology importer increases the efficiency of energy utilization, which
may reduce CO2 emissions. In this paper, we use the ratio of trade to
GDP as the proxy of trade openness. The data are collected from the
World Bank.

3.5. Urbanization level (denoted as Ratio_urban)

Du et al. (2012) point out that the relationship between urbaniza-
tion level and CO2 emissions might be uncertain. Firstly, urbanization
will inevitably facilitate the development of urban infrastructure, which
may facilitate energy consumption and CO2 emissions. Secondly, as the
center of regional development, the urban area has a strong agglom-
eration effect, and the urban area can benefit from the scale effect in
energy use, which may reduce CO2 emissions. We use the share of
urban population as the proxy of urbanization level. The data are di-
rectly collected from the World Bank.

3.6. Industrial structure (denoted as Ratio_ind)

Industrial structure influences CO2 emission mainly through two
channels. Firstly, the change of industrial structure may affect the in-
come growth of an economy, thus directly affecting the emission of
CO2. Secondly, since the second industry is more energy-intensive and
pollution-intensive, the industrial structural change may directly in-
fluence CO2 emissions. Considering this effect, we use the output share
of the industrial sector in the whole economy as the proxy of industrial
structure. The data are directly obtained from CSMAR database.

3.7. Energy consumption structure (denoted as Ratio_renew)

Different energy has different CO2 emission coefficient.5 Compared
to renewable energy, fossil fuels emit more CO2 given equivalent fuels

and cause more damage to the environment (Capellan-Perez et al.,
2014; Liu et al., 2017; Seow et al., 2016). Many economies are starting
to adjust their energy consumption structures to reduce per unit GDP
CO2 emission (Kahia et al., 2016). Considering this effect, we use the
share of renewable energy consumption in the total energy consump-
tion as the proxy of energy consumption structure. The data are col-
lected from World Bank.

3.8. Per capita output gap ratio (denoted as Ratio_gap)

In this paper we use per capita output gap ratio which is defined as
Ratio_gapit = Per_GDPit/max{Per_GDPit} as the threshold variable. It
reflects the income level of an economy relative to the observation with
the highest income during the sample period. In addition, it also sa-
tisfies the stationarity condition of the transition variable.

Table 1 reports the descriptive statistics of variables by groups. It
shows remarkable variations of economic development, CO2 emissions,
and green technology innovations and structural features between high-
income economies and middle-income economies. For instance, the
mean of GDP per capita in the high-income group is about four times as
that in the middle-income group; the mean of green technology patents
is five times more than that in the middle-income group; the mean of
CO2 emissions per capita is about two times as that in the middle-in-
come group.

4. Estimation results and explanations

4.1. Estimation results of exogenous sample segment

We use the panel fixed effect model to estimate the Eqs. (1) and (2).
The results are summarized in Table 2. According to Table 2, we can see
that in all the models the Hausman test significantly rejects the null
hypothesis, suggesting that there is correlation between regressors and
the unobserved individual effects. Thus, using the fixed effects esti-
mator to estimate the Eqs. (1) and (2) turns out to be reasonable. The
result in Model I shows that the coefficient of Ln(Patent) is estimated as
−0.0134, insignificant at the 10% level. It indicates that overall, we do
not find evidence supporting that green technology innovations can
effectively curb CO2 emissions. In Model II we consider the intersection
term of green technology innovations and the group classification (Ln
(Patent)×D). The result shows that the coefficient of Ln(Patent) is es-
timated as 0.0127, not significant even at the 10% level; but the coef-
ficient of Ln(Patent)×D is estimated as −0.0660 and significant at the
1% level. Considering that there may be bidirectional causality between
green technology innovations and CO2 emissions, we replace Ln(Patent)
by the first-order lag term Ln(Patent)−1 in Model III and Model IV. The
results show a similar picture. In Model III, the coefficient of Ln(Pa-
tent)−1 is estimated as −0.0129, insignificant at the 10% level. In
Model IV, this coefficient becomes 0.0156, not significant even at the
10% level while the coefficient of Ln(Patent)−1×D is estimated as
−0.0710, significant at the 1% level. It indicates that green technology
innovations have negative effect on CO2 emission only in the high-in-
come group in which a 1% increase in green technology innovations
would lead to a 0.0710% decrease in CO2 emissions.

The results above are consistent with our intuition. We explain the
results from two aspects. (1) From the perspective of the market, the
application of green technology is on a cost-benefit basis that depends
on an economy's prosperity status to a certain degree. Due to the re-
latively poor productivity and low marketization level in the un-
developed economies, applying green technology in practice would
lead to high manufacturing cost. Consequently, there might be some
green technology innovations in the underdeveloped economies, but
the cost of diffusion is typically unaffordable for local firms or residents.
(2) From the perspective of government, available governmental re-
sources vary significantly across economies with different income le-
vels, which makes the motivation of developing green technology

(footnote continued)
of innovation activities.

5 Generally speaking, coal products have the highest coefficient of CO2

emissions in fossil energy followed by oil products and natural gas (Wang and
Feng, 2017). In contrast to fossil energy, renewable energy such as wind and
solar energy do not emit CO2 directly.
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inconsistent among groups. For the group of undeveloped economies,
governments concentrate more on developing the economy to improve
people's living standards. Due to lack of enough material foundation, it
is costly for them to promote green technology innovations into real
applications. Thus, the impacts of green technology innovations on CO2

emission are not significant in undeveloped economies. On the con-
trary, for developed economies, people's desire for a better living en-
vironment will be stronger, and governments are more capable of
promoting green technology innovations into real application in so-
ciety. Therefore, green technology innovations play a significant role in
mitigating CO2 emission in the high-income group.

4.2. Estimation results with endogenous thresholds

The above analysis is based on the exogenous sample segment. In
this subsection, we use panel threshold models to further investigates

the interaction effects of green technology innovations and income on
CO2 emissions. The results are presented in Table 3. In Model V and
Model VI, the results of the likelihood test show that the linearity hy-
pothesis is rejected at the 10% significant level, but the single threshold
hypothesis cannot be rejected. It means that there are regime transi-
tions for the effect of green technology innovations on CO2 emissions
which depends on the income level. In other words, when per capita
income reaches a certain level, the effects of green technology in-
novations on CO2 emissions would change. The threshold parameter is
estimated at 0.4117 (it is equivalent to 34,694.0782011 US dollars per

Table 1
Summary statistics of variables by groups.

Group Variable Unit Mean SD Min Median Max

M Patent – 101.764 472.292 0 5.29 5581.92
Per_CO2 Tons/person 3.861 2.873 0.294 3.63 12.811
Per_GDP 2011US$/person 8154.931 4702.145 1427.32 7394.929 24,065.33
Ratio_trade % 77.125 39.66 0.027 68.025 220.407
Ratio_urban % 57.115 18.854 18.297 56.778 91.295
Ratio_ind % 19.168 8.375 0.65 17.795 58.98
Ratio_renew % 9.975 13.316 0 4.424 64.817

H Patent – 626.07 1692.144 0 60.87 11,292.07
Per_CO2 Tons/person 9.227 4.12 2.678 8.508 25.221
Per_GDP 2011US$/person 31,078.91 12,271.3 8617.783 31,299.77 84,270.29
Ratio_trade % 103.255 76.912 18.756 80.845 449.993
Ratio_urban % 76.582 12.303 49.856 77.889 100
Ratio_ind % 16.729 5.691 1.52 16.91 31.37
Ratio_renew % 14.974 16.933 0 10.478 89.725

Note: M and H represent middle-income and high-income groups, respectively.

Table 2
Estimation results of panel data model with exogenous sample segment.

Model I Model II Model III Model IVs

Ln(Patent) −0.0134 0.0127
(0.0143) (0.0153)

Ln(Patent)×D −0.0660⁎⁎

(0.0275)
Ln(Patent)−1 −0.0129 0.0156

(0.0130) (0.0136)
Ln(Patent)−1×D −0.0710⁎⁎⁎

(0.0262)
Ln(Per_GDP) 1.6228⁎⁎⁎ 1.1502⁎⁎ 1.5959⁎⁎⁎ 1.1261⁎⁎

(0.5781) (0.5500) (0.5636) (0.5360)
[Ln(Per_GDP)]2 −0.0807⁎⁎ −0.0549⁎ −0.0791⁎⁎ −0.0536⁎

(0.0310) (0.0292) (0.0303) (0.0285)
Ratio_trade −0.0006 −0.0005 −0.0007 −0.0005

(0.0006) (0.0006) (0.0006) (0.0006)
Ratio_urban 0.0251⁎⁎⁎ 0.0235⁎⁎⁎ 0.0249⁎⁎⁎ 0.0233⁎⁎⁎

(0.0077) (0.0073) (0.0080) (0.0075)
Ratio_ind 0.0065⁎ 0.0049 0.0064⁎ 0.0046

(0.0037) (0.0039) (0.0035) (0.0037)
Ratio_renew −0.0114⁎⁎⁎ −0.0112⁎⁎⁎ −0.0112⁎⁎⁎ −0.0109⁎⁎⁎

(0.0042) (0.0041) (0.0041) (0.0039)
Constant −8.0190⁎⁎⁎ −5.6953⁎⁎ −7.9022⁎⁎⁎ −5.5749⁎⁎

(2.7561) (2.6807) (2.7164) (2.6261)
Hausman test 54.47⁎⁎⁎ 71.84⁎⁎⁎ 55.32⁎⁎⁎ 74.92⁎⁎⁎

{0.000} {0.000} {0.000} {0.000}
No. of observations 1207 1207 1136 1136
No. of id 71 71 71 71

Note: Robust standard errors in parentheses; P-value in brace.
⁎⁎⁎ p < 0.01.
⁎⁎ p < 0.05.
⁎ p < 0.1.

Table 3
Estimation results of panel data model with endogenous thresholds.

Model V Model VI

Threshold estimates
c 0.4117 0.4117
95% confidence interval [0.4049,0.4139] [0.4045,0.4122]
Ln(Patent)× I(Ratio_gap≤ c) −0.0098

(0.0071)
Ln(Patent)× I(Ratio_gap> c) −0.0283⁎⁎⁎

(0.0074)
Ln(Patent)−1×I(Ratio_gap≤ c) −0.0099

(0.0072)
Ln(Patent)−1×I(Ratio_gap> c) −0.0277⁎⁎⁎

(0.0076)
Ln(Per_GDP) 1.2629⁎⁎⁎ 1.2800⁎⁎⁎

(0.1777) (0.1794)
[Ln(Per_GDP)]2 −0.0610⁎⁎⁎ −0.0618⁎⁎⁎

(0.0099) (0.0100)
Ratio_trade −0.0005⁎⁎ −0.0005⁎⁎

(0.0002) (0.0002)
Ratio_urban 0.0267⁎⁎⁎ 0.0270⁎⁎⁎

(0.0021) (0.0022)
Ratio_ind 0.0048⁎⁎⁎ 0.0048⁎⁎⁎

(0.0015) (0.0016)
Ratio_renew −0.0119⁎⁎⁎ −0.0118⁎⁎⁎

(0.0013) (0.0013)
Constant −6.4770⁎⁎⁎ −6.559⁎⁎⁎

(0.8108) (0.8167)
Likelihood ratio test
H0: Linearity 47.75⁎ 43.87⁎

{0.0760} {0.0680}
H0: One threshold 22.55 25.61

{0.4320} {0.2680}
No. of observations 1207 1136
No. of id 71 71

Note:
(1) Standard errors in parentheses; P-value in brace.
(2) The bootstrapping times for the likelihood ratio test is 500.

⁎⁎⁎ p < 0.01.
⁎⁎ p < 0.05.
⁎ p < 0.1.
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capita). Table 4 shows the sample grouping results based on the esti-
mated threshold parameter. We find that only four most developed
economies (Norway, Switzerland, Luxembourg and the United States)
lie in the upper regime; 49 developing economies such as China, India,
and Brazil lie in the lower regime; the other 18 economies such as
Britain and Japan successfully realized the transformation from the
lower regime to the upper regime during the research period. Fig. 1
shows the number of observations in upper and lower regimes over
times. It can be seen that before 1999 the number of economies in the
upper regime is staying at 4, and after that, the number increases
continuously and eventually becomes stable around 20. Fig. 2 presents
a comparison of CO2 emissions between different regimes. It shows that
CO2 emissions declined substantially in the upper-regime group while
the lower-regime group did not evidence a declining trend obviously.
Fig. 3 compares green technology innovations between the two groups.
We can find that there are large gaps of green technology innovations
between the lower and upper regimes; furthermore, the gaps are en-
larging over times.

For Model VI, when Ratio_gap is < 0.4117, the estimated coefficient
of Ln(Patent) is −0.0099, insignificant at the 1% level; When Ratio_gap
is> 0.4117, the coefficient of Ln(Patent) is estimated as −0.0277,
significant at the 1% level. The results reported in Model VI show a
similar picture. Thus it is a robust result that green technology in-
novations contribute to reducing CO2 emissions only when the income
level of the economy surpasses a certain level. In other words, green
technology innovations do not play a significant role in CO2 emission
reduction for underdeveloped economies.

With regard to the control variables, we obtain some conclusions
from Table 3. The coefficients of Ln(Per_GDP) are all significantly po-
sitive, and the coefficients of [Ln(Per_GDP)]2 are all significantly ne-
gative, indicating that the Environmental Kuznets Curve hypothesis is
documented. That is to say, the inverted U-shaped relationship between
per capita CO2 emissions and per capita GDP is supported. The coeffi-
cient of Ratio_renew is negative and significant at the 1% level, in-
dicating that the increasing share of renewable energy consumption
would lead decline in CO2 emissions. Similarly, the coefficients of Ra-
tio_trade are negative and significant even at the 5% level, suggesting
that there is a negative relationship between foreign trade and CO2

emissions. In other words, we find a contradictory evidence of “pollu-
tion haven hypothesis”. The coefficients of Ratio_urban and Ratio_ind are
all positive, indicating that the increases in the urbanization level and
the output share of the industrial sector have positive effects on CO2

Table 4
The group classification based on the estimated threshold parameter.

Classification Economy

Upper regime Switzerland Luxembourg United States of America
(USA)

Norway
Transition

from
lower
regime to
upper
regime

Australia Austria Belgium Canada
Germany Denmark Finland France
Great Britain (United Kingdom) Hong Kong Ireland
Iceland Italy Japan Netherlands
Saudi Arabia Singapore Sweden

Lower regime Argentina Armenia Azerbaijan Bulgaria
Belarus Brazil Chile China
Colombia Cyprus Czech

Republic
Spain

Estonia Georgia Greece Croatia
Hungary Indonesia India Iran
Iraq Israel Kyrgyzstan South Korea
Lebanon Sri Lanka Lithuania Latvia
Morocco Moldova Mexico Malaysia
New Zealand Pakistan The

Philippines
Poland

Portugal Romania Russian
Federation

Slovakia

Slovenia Thailand Tajikistan Turkmenistan
Turkey Ukraine Uzbekistan Venezuela
South Africa
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Fig. 1. Number of economies by groups over times.
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Fig. 2. Carbon dioxide emissions by groups over times.
Note: Average values by group are presented (Unit: Tons/person).
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Fig. 3. Green technology patents by groups over times. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.).
Note: Average values by group are presented.
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emissions. The results are similar to the findings of Li and Lin (2015).

5. Conclusion and policy implications

This paper explores the heterogeneous impact of green technology
innovations on CO2 emissions by using the panel threshold model
proposed by Hansen (1999). Our empirical study provides ample evi-
dence that income levels drive the non-linear nexus between green
technology innovations and CO2 emissions. We find that the effect of
green technology innovations exists a single threshold effect with re-
gard to the income level. To be specific, the effect of green technology
innovations on reducing CO2 emissions is more significant for the
economies whose income level surpass 34,694.078 US dollars in the
2011 price level. It means that the transition of regime occurs at an
extremely high-income level.

The above results have some policy implications for climate change
mitigation. Firstly, the world is in urgent need of fostering developing
economies' green innovation capacities, given that combating climate
change is the mutual task for all economies, and that green technology
innovation can reduce CO2 emissions while stimulating economic
growth. Secondly, green technology innovations are still playing a vital
role in climate change mitigation (Zhang et al., 2016), although they
only take effect when the economy reaches a high-income level. Zhang
et al. (2018) document that scientific research funds play an important
role in stimulating technological progress. Thus, the government of the
developed economies should allocate more resources in R&D and en-
courage enterprises to make green technology innovations. Thirdly, it is
necessary to construct a new framework regarding worldwide diffusion
and application of green technology. Since the green technology is ty-
pically expensive for individuals in low-income economies, some me-
chanism innovations in intellectual property, green finance, and gov-
ernmental support should be initiated for accelerating diffusion and
application of green technology. Additionally, the low-income econo-
mies should promote the application of green management which can
improve resource utilization efficiency given the production technology
(Raharjo, 2019). Fourthly, while only three economies were on the
right side of the inverted U-shaped curve from 1995 to 2012, another
19 economies successfully reached the turning point for CO2 emissions;
thus, governments of the lower regime should vigorously seek paths of
green growth and raise the national income level to transform at an
earlier date.

Finally, it is worth pointing out that this paper attempts to provide
new evidence on the heterogeneous impact of green technology in-
novations on CO2 emissions whereas measuring green technology in-
novations is a challenging issue. Due to data availability, we employ the
patent counts in environment-related technology as the proxy of the
green technology innovations which has some potential limitations.
Although the patent-based indicator has been widely employed in the
existing literature, the potential limitations should be also duly noted.
First, it can reflect technological development, but cannot represent the
situation of technology adoption.6 Second, patent counts simply add up
the patents which might not neglect various values of different in-
novations.
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Table A1
List of economies and the group classification based on World Bank.

Classification Economy

High income Australia Austria Belgium Canada
D=1 Switzerland Chile Cyprus Czech Republic

Germany Denmark Spain Estonia
Finland France Great Britain (United Kingdom)
Greece Hong Kong Croatia Hungary
Ireland Iceland Israel Italy
Japan South Korea Lithuania Luxembourg
Latvia Netherlands Norway New Zealand
Poland Portugal Saudi Arabia Singapore
Slovakia Slovenia Sweden
United States of America
(USA)

Middle income Argentina Armenia Azerbaijan Bulgaria
Belarus Brazil China Colombia

D=0 Georgia Indonesia India Iran
Iraq Kyrgyzstan Lebanon Sri Lanka
Morocco Moldova Mexico Malaysia
Pakistan The Philippines Romania Russian

Federation
Thailand Tajikistan Turkmenistan Turkey
Ukraine Uzbekistan Venezuela South Africa

References

Acemoglu, D., Gancia, G., Zilibotti, F., 2012. Competing engines of growth: innovation
and standardization. J. Econ. Theory 147, 570–601.

Ahmed, M., Khan, A.M., Bibi, S., Zakaria, M.M., 2017. Convergence of per capita CO2

emissions across the globe: insights via wavelet analysis. Renew. Sustain. Energy Rev.
75, 86–97.

Braungardt, S., Elsland, R., Eichhammer, W., 2016. The environmental impact of eco-
innovations: the case of EU residential electricity use. Environmental Economics &
Policy Studies 18, 213–228.

Capellan-Perez, I., Mediavilla, M., de Castro, C., Carpintero, O., Miguel, L.J., 2014. Fossil
fuel depletion and socio-economic scenarios: an integrated approach. Energy 77,
641–666.

Du, L.M., Wei, C., Cai, S.H., 2012. Economic development and carbon dioxide emissions
in China: provincial panel data analysis. China Econ. Rev. 23, 371–384.

Esteve, V., Tamarit, C., 2012. Threshold cointegration and nonlinear adjustment between
CO2 and income: the Environmental Kuznets Curve in Spain, 1857-2007. Energy
Econ. 34, 2148–2156.

Gill, A.R., Viswanathan, K.K., Hassan, S., 2018. The Environmental Kuznets Curve (EKC)
and the environmental problem of the day. Renew. Sustain. Energy Rev. 81,
1636–1642.

Grossman, G.M., Krueger, A.B., 1991. Environmental Impacts of a North American Free
Trade Agreement. (NBER working paper, No. w 3914).

Hansen, B.E., 1999. Threshold effects in non-dynamic panels: estimation, testing, and
inference. J. Econ. 93, 345–368.

Hasan, I., Tucci, C.L., 2010. The innovation–economic growth nexus: global evidence.
Res. Policy 39, 1264–1276.

International Energy Agency (IEA), 2013. World Energy Outlook Special Report 2013:
Redrawing the Energy Climate Map. IEA Publications, Paris, France.

International Energy Agency (IEA), 2015. Energy Technology Perspectives 2015:
Mobilising Innovation to Accelerate Climate Action. IEA Publications, Paris, France.

Jaffe, A.B., Newell, R.G., Stavins, R.N., 2002. Environmental policy and technological
change. Environ. Resour. Econ. 22, 41–69.

Jin, P., Peng, C., Song, M., 2019. Macroeconomic uncertainty, high-level innovation, and
urban green development performance in China. China Econ. Rev. 55, 1–18.

Kahia, M., Ben Aissa, M.S., Charfeddine, L., 2016. Impact of renewable and non-renew-
able energy consumption on economic growth: new evidence from the MENA Net Oil
Exporting Countries (NOECs). Energy 116, 102–115.

Lean, H.H., Smyth, R., 2010. CO2 emissions, electricity consumption and output in
ASEAN. Appl. Energy 87, 1858–1864.

Li, K., Lin, B.Q., 2015. Impacts of urbanization and industrialization on energy con-
sumption/CO2 emissions: does the level of development matter? Renew. Sustain.
Energy Rev. 52, 1107–1122.

Li, J., Ji, J., Zhang, Y., 2019a. Non-linear effects of environmental regulations on eco-
nomic outcomes. Management of Environmental Quality: An International Journal 30
(2), 368–382.

Li, Z., Shao, S., Shi, X., Sun, Y., Zhang, X., 2019b. Structural transformation of

6 In view of this, some recent studies attempt to account for environmental
technology progress based on the production-theory framework. Examples of
such studies include Shao et al. (2016), Yu et al. (2017), Song and Wang (2018),
and Jin et al. (2019). However, in this context some particular assumptions are
required for estimation. Consequently, different methods generally lead to
greatly various estimates of environmental technology progress.

K. Du, et al. Technological Forecasting & Social Change 146 (2019) 297–303

302

http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0005
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0005
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0015
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0015
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0015
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0020
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0020
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0020
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0030
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0030
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0030
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0045
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0045
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0050
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0050
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0050
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0055
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0055
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0055
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0060
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0060
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0070
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0070
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0080
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0080
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0085
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0085
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0090
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0090
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0095
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0095
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0100
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0100
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0105
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0105
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0105
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0110
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0110
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0115
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0115
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0115
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0120
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0120
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0120
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0125


manufacturing, natural resource dependence, and carbon emissions reduction: evi-
dence of a threshold effect from China. J. Clean. Prod. 206, 920–927.

Liu, X., Zhang, S., Bae, J., 2017. The impact of renewable energy and agriculture on
carbon dioxide emissions: investigating the environmental Kuznets curve in four
selected ASEAN countries. J. Clean. Prod. 164, 1239–1247.

Munir, K., Ameer, A., 2018. Effect of economic growth, trade openness, urbanization, and
technology on environment of Asian emerging economies. Management of
Environmental Quality: An International Journal 29 (6), 1123–1134.

Nikzad, R., Sedigh, G., 2017. Greenhouse gas emissions and green technologies in
Canada. Environmental Development 24, 99–108.

Perman, R., Stern, D.I., 2003. Evidence from panel unit root and cointegration tests that
the Environmental Kuznets Curve does not exist. Aust. J. Agric. Resour. Econ. 47,
325–347.

Popp, D., 2012. The Role of Technological Change in Green Growth. (NBER Working
Paper No. w18506).

Raharjo, K., 2019. The role of green management in creating sustainability performance
on the small and medium enterprises. Management of Environmental Quality: An
International Journal 30 (3), 557–577.

Seow, Y., Goffin, N., Rahimifard, S., Woolley, E., 2016. A 'Design for energy Minimization'
approach to reduce energy consumption during the manufacturing phase. Energy
109, 894–905.

Shao, S., Luan, R., Yang, Z., Li, C., 2016. Does directed technological change get greener:
empirical evidence from Shanghai's industrial green development transformation.
Ecol. Indic. 69, 758–770.

Song, M., Wang, S., 2018. Measuring environment-biased technological progress con-
sidering energy saving and emission reduction. Process Saf. Environ. Prot. 116,
745–753.

Song, M., Wang, S., Sun, J., 2018. Environmental regulations, staff quality, green tech-
nology, R&D efficiency, and profit in manufacturing. Technol. Forecast. Soc. Chang.
133, 1–14.

Stokey, N.L., 1998. Are there limits to growth? Int. Econ. Rev. 39, 1998), 1–31.

Su, H.N., Moaniba, I.M., 2017. Does innovation respond to climate change? Empirical
evidence from patents and greenhouse gas emissions. Technological Forecasting &
Social Change 122, 49–62.

Sun, J., Wang, J., Wang, T., Zhang, T., 2019. Urbanization, economic growth, and en-
vironmental pollution: partial differential analysis based on the spatial Durbin model.
Management of Environmental Quality: An International Journal 30 (2), 483–494.

Tucker, M., 1995. Carbon dioxide emissions and global GDP. Ecol. Econ. 15, 215–223.
Wang, M., Feng, C., 2017. Analysis of energy-related CO2 emissions in China's mining

industry: evidence and policy implications. Resources Policy 53, 77–87.
Wang, Z., Yang, Z., Zhang, Y., Yin, J., 2012. Energy technology patents–CO2 emissions

nexus: an empirical analysis from China. Energy Policy 42, 248–260.
Weina, D., Gilli, M., Mazzanti, M., Nicolli, F., 2016. Green inventions and greenhouse gas

emission dynamics: a close examination of provincial Italian data. Environ. Econ.
Policy Stud. 18, 247–263.

Yan, Z.M., Du, K., Yang, Z.M., Deng, M., 2017. Convergence or divergence?
Understanding the global development trend of low-carbon technologies. Energy
Policy 109, 499–509.

Yang, G.F., Sun, T., Wang, J.L., Li, X.N., 2015. Modeling the nexus between carbon di-
oxide emissions and economic growth. Energy Policy 86, 104–117.

Yao, X., Kou, D., Shao, S., Li, X., Wang, W., Zhang, C., 2018. Can urbanization process and
carbon emission abatement be harmonious? New evidence from China. Environ.
Impact Assess. Rev. 71, 70–83.

Yu, Y., Qian, T., Du, L., 2017. Carbon productivity growth, technological innovation, and
technology gap change of coal-fired power plants in China. Energy Policy 109,
479–487.

Zhang, N., Wang, B., Liu, Z., 2016. Carbon emissions dynamics, efficiency gains, and
technological innovation in China's industrial sectors. Energy 99, 10–19.

Zhang, N., Choi, Y., Wang, Wei, 2018. Does energy research funding work? Evidence from
the Natural Science Foundation of China using TEI@I method. Technol. Forecast. Soc.
Chang. https://doi.org/10.1016/j.techfore.2018.02.001. forthcoming.

K. Du, et al. Technological Forecasting & Social Change 146 (2019) 297–303

303

http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0125
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0125
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0135
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0135
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0135
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0145
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0145
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0145
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0150
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0150
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0155
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0155
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0155
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0160
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0160
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0165
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0165
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0165
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0170
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0170
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0170
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0175
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0175
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0175
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0180
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0180
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0180
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0185
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0185
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0185
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0190
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0195
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0195
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0195
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0200
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0200
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0200
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0205
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0210
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0210
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0215
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0215
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0220
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0220
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0220
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0225
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0225
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0225
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0230
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0230
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0235
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0235
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0235
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0245
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0245
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0245
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0250
http://refhub.elsevier.com/S0040-1625(18)30617-6/rf0250
https://doi.org/10.1016/j.techfore.2018.02.001

	Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data
	Introduction
	The model and econometric methodology
	Data description and results
	Per capita CO2 emission (denoted as Per_CO2)
	Green patent counts (denoted as Patent)
	Per capita GDP (denoted as Per_GDP)
	Trade openness (denoted as Ratio_trade)
	Urbanization level (denoted as Ratio_urban)
	Industrial structure (denoted as Ratio_ind)
	Energy consumption structure (denoted as Ratio_renew)
	Per capita output gap ratio (denoted as Ratio_gap)

	Estimation results and explanations
	Estimation results of exogenous sample segment
	Estimation results with endogenous thresholds

	Conclusion and policy implications
	Acknowledgements
	References




