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A B S T R A C T

In complex systems, decision makers encounter uncertainty from various sources. In this paper, a new hybrid
grey-based Multi-Criteria Decision Analysis (MCDA) approach is proposed to optimize the evaluation space in
decision problems that are subject to subjective and objective uncertainty over different types of interrelated
criteria. The four-phase methodology begins with the formulation of a decision problem through the analysis of
the system of concern, its functionality, and substantial connections among evaluation criteria. The second phase
involves the development of grey linguistic scales to handle the uncertainty of human judgements. The third
phase integrates the grey linguistic scale, concepts of grey systems theory, and principles of Analytical Network
Process to prioritize criteria. Finally, to evaluate and rank alternatives in such a complex setting, Preference
Ranking Organization METHod for Enrichment Evaluation II is extended using a grey linguistic scale to ar-
ticulate subjective uncertainty, grey numbers to account for objective uncertainty, grey operating rules to
normalize evaluation measures, and the proposed approach of prioritizing evaluation criteria to establish re-
lative preferences. To demonstrate the viability of the methodology, a case study is presented, in which a
strategic decision is made within the context of innovation. To validate the methodology, a comparative analysis
is provided.

1. Introduction

Decision makers usually encounter large amount of complex in-
formation. The complexity of decision problems increases when dif-
ferent evaluation criteria of different nature (e.g., qualitative and
quantitative), different scales, and different values (e.g., continuous,
discrete, and linguistic) are involved.

Multi-Criteria Decision Analysis (MCDA) is therefore considered one
of the most fruitful sub-disciplines of operations research. The main role
of MCDA is to aid Decision Makers (DMs) in establishing a coherent
picture about complex decision problems (Kurka and Blackwood,
2013). However, in many cases uncertainty-related aspects (i.e., un-
certainty associated with limited objective information and uncertainty
associated with subjective expert knowledge) are present. This adds to
the complexity of analyzing the decision problems as the conventional
MCDA approaches presume the availability of precise information
(Kuang et al., 2015; Li et al., 2007).

Various methods have been proposed to deal with different types of
uncertainty-related aspects. Grey systems theory is recommended for
decision problems with a relatively small amount of data (i.e., small

samples) and poor information, which cannot be described by a prob-
ability distribution (Li et al., 2012; Li and Yuan, 2017; Liu and Lin,
2006). Accordingly, different researchers, which are presented in the
next section, have considered the grey systems theory to address un-
certainty in decision problems. The existing approaches assumed that
DMs are able to assign the weights of the evaluation criteria precisely,
did not consider the interrelationships among evaluation criteria, or did
not consider the relations among evaluation criteria of different clus-
ters, hence a better method is needed to address the existing research
gaps.

The ultimate goal of this research is to enhance DMs abilities of
handling multi-criteria decision problems under uncertainty. To this
end, the main objective of this manuscript is to establish a structured
methodology, which are able to carry on MCDA under uncertainty, by
integrating the grey systems theory with a distinctive combination of
MCDA techniques (i.e., Analytical Network Process (ANP) (Saaty, 1996)
and Preference Ranking Organization METHod for Enrichment Eva-
luation II (PROMETHEE II) (Brans and De Smet, 2016a). The hybrid
methodology uses the grey systems theory as the key element for
tackling uncertainty aspects; the principles of ANP to handle the

https://doi.org/10.1016/j.techfore.2019.05.031
Received 22 October 2017; Received in revised form 21 February 2019; Accepted 28 May 2019

⁎ Corresponding author.
E-mail address: hesham.maghrabie@gmail.com (H.F. Maghrabie).

Technological Forecasting & Social Change 146 (2019) 366–379

Available online 26 June 2019
0040-1625/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00401625
https://www.elsevier.com/locate/techfore
https://doi.org/10.1016/j.techfore.2019.05.031
https://doi.org/10.1016/j.techfore.2019.05.031
mailto:hesham.maghrabie@gmail.com
https://doi.org/10.1016/j.techfore.2019.05.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.techfore.2019.05.031&domain=pdf


complexity of the decision structure; the extended PROMETHEE II ap-
proach to evaluate feasible alternatives.

The contributions of this paper are as follows: (1) Establishing
priorities among sub-criteria within a complex structure under un-
certain subjective judgments using the combination of linguistic ex-
pression, grey systems theory, and the principles of ANP; (2) Extending
PROMETHEE II, such that potential alternatives can be evaluated and
ranked in such a complicated decision structure by integrating the
linguistic expressions and grey systems theory to address subjective and
objective uncertainty related measures of potential alternatives over
different types of criteria; (3) Improving the evaluation space in a
complex decision problems under uncertainty by utilizing the emergent
strengths of the integrated approach, which would enhance the eva-
luation of a DM.

This paper is organized as follows: first, a brief background on re-
lated subject matters is provided to identify the research problems and
to establish the direction of the current research; next, the proposed
methodology is discussed and explained; afterwards, a case study is
presented to demonstrate the viability of the methodology; then, a
comparative analysis with an existing approach is performed for the
validation purpose; finally, the conclusion is put forward.

2. Research background

2.1. Multi-Criteria Decision Analysis

Despite the diversity of MCDA approaches, at the most primitive
level, MCDA can be demonstrated by a set of alternatives, at least two
evaluation criteria, and minimally one decision maker (Greco et al.,
2016). Accordingly, MCDA can be described as a systematic metho-
dology that helps in making decisions by evaluating a number of al-
ternatives over a set of criteria according to the preferences of the in-
volved decision maker(s).

There is no optimal MCDA's approach that would fit perfectly with
every decision problem. Therefore, understanding a decision problem's
nature is a critical step to identify the suitable approach for it (Jaini and
Utyuzhnikov, 2017; Wątróbski and Jankowski, 2016). The various ap-
proaches of MCDA can be classified into three main categories (Belton
and Stewart, 2002):

• Value measurement models: Approaches that belong to this ca-
tegory are value-focused, where the utility value of each alternative
is being recognized based on its overall performance over the eva-
luation criteria. Among the most common approaches within this
category are Analytic Hierarchy Process (AHP) (Saaty, 1988), Ana-
lytic Network Process (ANP) (Saaty, 1996), Multi-Attribute Value
Theory (MAVT) (Stefanopoulos et al., 2014), Multi-Attribute
Utility Theory (MAUT) (Dyer, 2005), and Weighted Sum Method
(Triantaphyllou, 2000).
• Goal, aspiration, or reference-level models: In this set of ap-
proaches, alternatives are evaluated with respect to a targeted level
of performance over a particular goal, aspiration, or reference le-
vels, e.g., goal programming and heuristic algorithms. An example
of this category is Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) (Behzadian et al., 2012).
• Outranking methods: A typical outranking approach performs
pairwise comparisons between alternatives across a specified set of
evaluation criteria. Subsequently, the resulting comparisons are
aggregated and analyzed in accordance with the designated ap-
proach to favor one alternative over another. Outranking methods
include ELimination and Choice Expressing REality (ELECTRE)
(Govindan and Jepsen, 2016), and Preference Ranking Organization
METHod for Enrichment Evaluations (PROMETHEE) family of
methods (Brans and De Smet, 2016a).

These conventional approaches of MCDA have an implicit

assumption, which presumes the availability and accuracy of informa-
tion that is required for analyzing decision problems. However, in real
world applications, DMs encounter uncertainty from various sources,
such as limited human cognition, lack of understanding for inter-
relationships among decision criteria, and limited input data (Belton
and Stewart, 2002; Durbach and Stewart, 2012).

2.2. Handling uncertainty in MCDA

While the presence of uncertainty would limit the utilization of the
MCDA approaches, differentiating among two types of uncertainty
would be useful to properly address the associated uncertainty in a
decision problem: (i) uncertainty associated with limited objective in-
formation, e.g., quantitative (interval scales) and stochastic (probability
distribution) data, and (ii) uncertainty associated with subjective expert
knowledge (i.e., ambiguous concepts and semantic meanings) (Ben
Amor et al., 2015; Moretti et al., 2016). Different approaches have been
proposed to handle different types of uncertainty in MCDA:

• Probabilistic models: A DM can assign probability distribution
based on relative experiences and beliefs to describe uncertainty
(i.e., imperfect information) of a decision parameter. Consequently,
comparisons can be established among feasible alternatives and
probabilistic statements can be made to describe the probability of
occurrence for each outcome, which can be achieved through dif-
ferent means (e.g., Stochastic multi-objective acceptability analysis
(SMAA)) (Durbach and Stewart, 2012; Lahdelma et al., 1998).
• Fuzzy set theory: Zadeh (1965) introduced this theory to handle
the associated vagueness and imprecision with human judgments
(i.e., ambiguous concepts and semantic meanings). Within the
context of MCDA, fuzzy numbers are utilized to map linguistic ex-
pressions that would express human opinions using the concept of
the membership function, such that by assigning a value between 0
and 1 the linguistic term can be stated more precisely, where 0 in-
dicates no membership and 1 indicates full membership to a given
set (Zadeh, 1965).
• Grey systems theory: Ju-long (1982) introduced the grey systems
theory as a methodology to handle data imprecision or insufficiency
in a system. It is intended for problems that involve a relatively
small amount of data and poor information, which cannot be de-
scribed by a probability distribution. Thus, a better understanding
for such a system can be achieved through partially known in-
formation using grey systems theory (Liu et al., 2015). Similar to
fuzzy set theory, grey systems theory can handle associated vague-
ness with verbal statements (linguistic expressions) using grey
numbers (Broekhuizen et al., 2015), which is denoted by ⊗ (Liu and
Lin, 2006). More on grey systems theory is given in the Appendix A.

Although probabilistic models and fuzzy set theory are intended to
investigate uncertain systems, grey systems theory is preferred when it
comes to problems with a relatively small amount of data and poor
information, which cannot be described by a probability distribution (Li
et al., 2012; Li and Yuan, 2017; Liu and Lin, 2006) due to its less re-
stricted procedure that neither requires any robust membership func-
tion, nor a probability distribution (Memon et al., 2015).

2.3. The use of grey systems theory in Multi-Criteria Decision Analysis

As mentioned earlier, conventional MCDA approaches do not mimic
the functional reality of the human cognitive system in decision pro-
blems. Therefore, several research papers have proposed grey systems
theory to supplement the deficiencies that exist in MCDA as a result of
poor information. The rest of this section deliberates on existing
methods to solve multi-criteria decision problems under uncertainty
using grey systems theory, and the reasoning behind the proposed
methodology.
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Grey systems theory has been integrated with PROMETHEE II to
evaluate performance of available alternatives on certain criteria where
uncertainty aspects are involved (Kuang et al., 2015). However, the
weights of evaluation criteria are assumed to be given by DMs precisely,
which is hardly the case in complex decision problems under un-
certainty. Some other works have tried to address this issue by in-
tegrating the grey systems theory with Analytic Hierarchy Process
(AHP) to prioritize evaluation criteria and to evaluate potential alter-
natives under uncertainty (Jianbo et al., 2016; Thakur and Ramesh,
2017). Also, Grey Relational Analysis (GRA), which is a branch of grey
systems theory, has been combined with the Technique for Order Pre-
ference by Similarity to Ideal Solution (TOPSIS) approach to better rank
feasible alternatives, using fuzzy analytic hierarchy process (FAHP) to
evaluate the criteria weights (Celik et al., 2016; Sakthivel et al., 2014).
Nevertheless, one of the underlying assumptions of AHP is the in-
dependency (Ishizaka and Labib, 2011), which implies that elements of
a hierarchal structure are independent but in reality a complex system
usually involves interactions and dependencies among the system's
elements.

To tackle the problem of dependencies in a complex system, grey
systems theory has been used with ANP. This combination has been
proposed in different areas such as, green supplier development pro-
grams (Dou et al., 2014), R&D system development for a home appli-
ances company (Tuzkaya and Yolver, 2015), and early evaluation
model for storm tide risk (Zhang et al., 2009). However, the relations
between sub-criteria of different clusters have not been considered.
Accordingly, a better method is needed to bridge the existing research
gaps.

In this paper, a new hybrid grey-based MCDA approach is proposed
to enhance DMs abilities of handling multi-criteria decision problems
under uncertainty. The proposed approach integrates the grey systems
theory with a distinctive combination of MCDA (i.e., ANP and PROM-
ETHEE II). The combination of the proposed methodology has been
considered for the following reasons:

When it comes to performance evaluation of feasible alternatives,
outranking approaches outperform other MCDA methodologies, as
other methodologies are designed to enrich the dominance graph by
reducing the incomparability cases and allocating an absolute utility to
each alternative. Consequently, the original structure of a multi-criteria
decision problem would be reduced to a single criterion problem for
which an optimal solution exists (Maity and Chakraborty, 2015). In
contrast, outranking methods preserve the structure of multi-criteria
decision problems by considering the deviation between the evalua-
tions of feasible alternatives over each criterion (Andreopoulou et al.,
2017; Maity and Chakraborty, 2015; Segura and Maroto, 2017).
Moreover, this category of MCDA can handle quantitative and quali-
tative criteria. Furthermore, it requires a relatively small amount of
information from DMs (Malczewski and Rinner, 2015). Among the
outranking methods, PROMETHEE is preferred due to its mathematical
properties and simplicity (Brans and De Smet, 2016b; Kilic et al., 2015;
Malczewski and Rinner, 2015). Among the PROMETHEE family of
methods, PROMETHEE II is preferred due to its ability of providing a
complete ranking for available alternatives based on outranking rela-
tions (Sen et al., 2015). However, PROMETHEE II requires the weights
of the evaluation criteria (Brans and De Smet, 2016b; Segura and
Maroto, 2017).

To estimate criteria weights, ANP is preferred over other MCDA
approaches due to its superiority in addressing different types of in-
terrelationships (e.g., interactions and interdependencies) within and
between different evaluation clusters of a complex system (Tuzkaya and
Yolver, 2015).

While the presence of uncertainty would limit the utilization of the
conventional approaches of MCDA, grey systems theory would per-
fectly bridge this limitation (Dou et al., 2014; Kuang et al., 2015). In
particular, when it comes to address decision problems with a rela-
tively small amount of data and poor information, which cannot be

described by a probability distribution (Li et al., 2012; Liu and Lin,
2006).

3. Grey-based MCDA methodology (G-ANP-PROMETHEE II)

The proposed decision analysis process (G-ANP-PROMETHEE II) is
consisted of four phases: (1) structure and model the decision problem,
(2) establish grey linguistic scales, (3) determine the weights of eva-
luation criteria, and (4) evaluate and rank feasible alternatives. The
framework of the proposed methodology is illustrated in Fig. 1. The
procedural steps of G-ANP-PROMETHEE II are explained in the fol-
lowing subsections.

3.1. Structure and model the decision problem

The first phase of the methodology is formulating the problem,
which requires analysis for the system of concern, its functionality, and
substantial connections (i.e., connections within and between the var-
ious elements of the system; or between the system, relevant factors,
and its environment). Accordingly, the network structure can be used to
model the decision problem. Fig. 2 depicts a general representation of
the network structure.

DM(S)CriteriaAlternatives

Phase 3: Determine criteria weights

Step 3.2
Interdependencies 

(Sub criteria)

Step 3.1
Inner-dependencies 

(Main criteria)

Step 3.3

Global weights

Phase 1

Structure & model 
decision problem

Phase 2

Establish Grey-
linguistic scale

Phase 4: Evaluate & rank alternatives

Step 4.1

Performance Matrix

Step 4.2
Normalized Grey 

Performance Matrix

Step 4.4
Relative Preference 

Matrix 

Step 4.3

Preference Matrix 

Alternatives Ranking

Negative Outranking 
Flows 

Positive Outranking 
Flows 

Net Outranking 
Flows 

Fig. 1. Analytic framework of G-ANP-PROMETHEE II.
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3.2. Establish grey linguistic scales

Multi-criteria decision problems involve some uncertainty because
they are unlikely to fully satisfy decision criteria. Also, it is difficult for
DMs to precisely express preferences due to information limitations and
the uncertainty of human judgment. Therefore, linguistic expressions
are more often used in MCDA to articulate DMs' preferences between
evaluation criteria, and to evaluate available alternatives over quali-
tative criteria (Kuang et al., 2015; Merigó et al., 2016).

In this research, the concepts of grey systems theory and linguistic
expressions provide the basis for the proposed approach, in which lin-
guistic expressions (e.g., low, medium, and high) are used to express
DMs judgments and the grey systems theory is used to handle the as-
sociated vagueness with verbal statements through the operating rules
of grey numbers. To express preferences of DMs between evaluation
criteria with respect to the system of concern, a grey linguistic scale of
six levels is proposed, as illustrated in Table 1 (Ertay et al., 2005). When
it comes to the assessment of feasible alternatives over qualitative cri-
teria, it is also expressed in linguistic values using a five-level scale as
shown in Table 2.

3.3. Determine the weights of evaluation criteria

For a complex multi-criteria decision problem (i.e., decision pro-
blems that involve interrelationships between evaluation criteria), ANP
provides a structured procedure to analyze such complexity in decision
problems (Zaim et al., 2014). However, ANP cannot effectively address
uncertainty-related issues (Nguyen et al., 2014), which are usually
present in real world applications. To overcome this limitation, lin-
guistic expressions and concepts of grey systems theory are integrated
with ANP to establish the set of weights for evaluation criteria. The
procedural steps are as follows: (1) determine inner-dependencies

among main criteria, (2) examine interdependencies among sub-cri-
teria, and (3) Estimate global weights for sub-criteria using the outputs
of steps 1 and 2.

3.3.1. Determine inner-dependencies among main criteria
The purpose of inner-dependencies evaluation is to detect the re-

lative importance among various elements of the same level or cluster.
This could be achieved by analyzing the influence of an evaluation
criterion over other elements of the same level/cluster using linguistic
expressions and relative grey numbers, as in Table 1, to articulate DMs'
preferences between evaluation criteria.

3.3.1.1. Establish grey-based pairwise comparison matrices for main
criteria.
Definition 3.1. Let a set of criteria within a cluster be represented by
C= {C1,C2, … ,Cm}, where m is the number of criteria. Let aij indicate
the existence of an influence relation of criterion Ci over Cj, where

=
=

= …does nota
C C

C C i j m
1 influences (i j)

0 influence , , 1, 2,ij

i j

i j
_ (1)

Definition 3.2. Let Ik represent a set of evaluation criteria that
influence a criterion Ck, where Ik⊂ C and Ck∉ Ik. Let R[⊗] represent
the set of grey numbers and Tk⊗ denote a grey description function that
describes the grey-based pairwise comparisons between elements of Ik
with respect to Ck, such that

× = …T I I R k m: ( ) [ ], 1, 2,k k k (2)

Definition 3.3. Let ⊗kij∈ Tk⊗ denote a grey number that articulates
DMs' verbal preference of Ci over Cj with respect to a control criterion
Ck, where both Ci and Cj influence Ck and k≠ i, j. Thus,

=k a a T C C( , 1), ( , ),ij ik jk k i j (3)

where =k
k i j

( )
( )

[1, 1],otherwiseij
ji

1
, i, j, k=1, 2,…m.

3.3.1.2. Estimate inner-dependence weights. To estimate the inner-
dependence weights among evaluation criteria, the grey numbers at
the grey-based pairwise comparisons matrices need to be transformed
to white numbers (i.e., single values). To do this, the whitenization
process should be performed.

The weight function of the whitenization process is decided based
on the available information of the relative grey numbers (e.g., dis-
tribution information), knowledge, and experience of decision makers

GOAL

Cluster 1
X1, X2, …, Xm

Cluster 2
X1, X2, …, Xm

Cluster 3
X1, X2, …, Xm

Alternatives

Inner-dependence 

Outer-dependence 

Feedback 

Fig. 2. Network structure model (Görener, 2012).

Table 1
Pairwise preference scale (Ertay et al., 2005).

Pairwise linguistic scale Grey preference scale Reciprocal grey preference scale

Just equal (Kurka and Blackwood, 2013) (Kurka and Blackwood, 2013)
Equally important [1/2,3/2] [2/3,2]

Weakly more important (Kuang et al., 2015; Kurka and Blackwood, 2013) [1/2,1]
Moderately more important [3/2,5/2] [2/5,2/3]
Strongly more important (Kuang et al., 2015; Li et al., 2007) [1/3,1/2]
Extremely more important [5/2,7/2] [2/7,2/5]

Table 2
Performance evaluation scale over qualitative criteria.

Performance evaluation linguistic scale Grey evaluation scale

Low (L) [0,0.2]
Less than moderate (LM) [0.2,0.4]

Moderate (M) [0.4,0.6]
More than moderate (MM) [0.6,0.8]

High (H) [0.8,1.0]
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(Liu and Lin, 2006).

Definition 3.4. Assume that a whitenization function for a relative grey
number x(⨂) is f(xi), then the whitenization value x ( )i can be
defined as (Shi et al., 2013):

=x x f x( ) . ( ) (4)

In many practical applications, the weight function of the white-
nization process is unknown (Liu and Lin, 2006), which adds com-
plexity to decision problems. Therefore, Liu and Lin (2006) proposed
the equal weight mean whitenization function to establish the asso-
ciated white values of interval grey numbers.

In this research, the interval grey numbers is used and it is assumed
that the weight function of the whitenization process is unknown due to
the lack of information. Therefore, the equal weight mean white-
nization function is considered for the whitenization process as follows:

Definition 3.5. Let x(⨂)∈ [a,b] be a general interval grey number,
where a < b and the distribution information for the grey number is
unknown. Let α denote the weight coefficient. The whitenization value
x( ) can be obtained using the equal weight mean whitenization, such
that

= + =x a b( ) (1 ) , where 1
2

. (5)

Once the inner-dependence grey matrices have been transformed to
fixed number matrices through the whitenization process, the inner-
dependence weighs of the evaluation criteria can be estimated using the
computation of the eigenvector method (Saaty, 2013). However, the
resultant weights should be consistent relatively. In other words, if a
criterion Ca ≻ Cb, and Cb ≻ Cd, the following can be inferred Ca ≻ Cd; this
is called “transitive law”. To this end consistence test should be applied
as follows:

Definition 3.6. Suppose the number of compared elements is m. Let aij
denote the preference of Ci over Cj, i, j = (1,2,…m). Let sj denote the
sum of the corresponding column element aij. Let w= (w1,w2,…wm)
represent the eigenvector (priority vector). Let λmax represent the
largest eigenvalue. Let CI denote consistency index of a pairwise
comparison matrix and RI represent the consistency index of a
random-like matrix using the scale of Saaty (1996) (Table 3), in
which RI represents the average of consistency indices of 500
randomly filled matrices of a similar size (Mu and Pereyra-Rojas,
2017). Let CR reflect a consistency ratio that compare CI versus RI,
such that

=CR CI
RI (6)

where =CI m
m 1

max , = = =max j
m

i
m a w

s1 1
ij j

j
, i, j=(1,2,…m)

Using the values in Table 3, the estimated weight (priority) vector is
considered acceptable for a consistency ration of 0.10 or less (Mu and
Pereyra-Rojas, 2017).

3.3.2. Examine interdependencies among sub-criteria
Different types of interdependencies exist in complex decision pro-

blems, as depicted in Fig. 2. Therefore, these interdependencies should
be considered for making better decisions.

To identify the relative importance among sub-criteria with respect
to the system of concern, different types of interdependencies (i.e.,
inner-dependencies within each cluster and outer-dependencies

between different clusters) should be identified using the network
structure (Fig. 2) or the influence matrix (Table 4), which is explained
by Definition 3.7.

Definition 3.7. Let the set of sub-criteria for a criterion Ci be
represented by {sci1, sci2, … ,scir} and the set of sub-criteria for
criterion Cj denoted by {scj1, scj2, … ,scjz}, where i, j = 1, 2,… , m,
and m is the number of the evaluation criteria. Let r represent the
number of sub-criteria for Ci, such that f= 1, 2,… , r; and z denote the
number of sub-criteria for Cj, where h=1, 2,… , z. Let Ci×Cj denote
the Cartesian product of two sets of evaluation criteria; and let B
represent a collection of influence relations between the elements of the
two sets, where aif, jh∈ B represent the influence of scif ∈ Ci over
scjh ∈ Cj. Accordingly, an influence relation from Ci to Cj can be
represented by

= ×sc sc a C C BB( , ) , ( ) ,if jh if jh i j, (7)

such that

= = =does nota
sc sc

sc sc
1 influences

0 if influence [(i j) (f h)]if jh
if jh

if jh,
_

Once all interdependencies among the sub-criteria have been
identified, the grey-based pairwise comparisons should be utilized to
examine the influences among sub-criteria. To examine the inner-de-
pendence relations among sub-criteria of the same cluster, the same
procedures for determining the inner-dependence weights among the
main criteria (i.e., Definitions 3.2 and 3.3) are used. However, for the
outer-dependence weights estimation, the following subsection de-
scribes the associated procedures.

3.3.2.1. Estimate outer-dependence weights
Definition 3.8. Let fjh⊗ denote a grey description function that
describes grey preference relations between elements of a criterion Ci
over a sub-criterion scjh ∈ Cj, where i≠ j; and let ⊗jhif, if∗ ∈ fjh⊗

represent a relative grey number that articulates DMs' verbal
preference of scif ∈ Ciin comparison to scif∗ ∈ Ciwith respect to scjh.
Accordingly, the grey description function fjh⊗ can be defined as
follows:

×f C C R: ( ) [ ],jh i i (8)

such that

=jh a a f sc sc( ) ( , 1), ( , ),if if if jh if jh jh if if, , ,

where

=jh
jh f f

( )
( )

[1, 1],otherwiseif if
if if

,
,

1

Once the levels of outer-dependence influences over the identified
sub-criteria have been estimated using the grey-based pairwise com-
parisons approach, the outer-dependence weights over each sub-cri-
terion can be established by applying eigenvector computations on the
qualifying whitened values of the resultant grey numbers using Eq. (5).
However, the consistence test should be applied using Eq. (6) to assure

Table 3
Consistency indices for a randomly generated matrix (Saaty, 1996).

m 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table 4
Influence matrix.

Cj

scj1 scj2 … scjz

Ci
sci1 ai1, j1 ai1, j2 … ai1, jz
sci2 ai2, j1 ai2, j2 … ai2, jz
… … … … …
scir air, j1 ai1, j2 … air, jz
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the consistency among the resultant weights. Consequently, the re-
sultant interdependence matrices are the compositions of the un-
weighted supermatrix.

3.3.3. Estimate global weights of sub-criteria
The first step to estimate global weights of sub-criteria is to evaluate

the relative importance among sub-criteria with respect to a final de-
cision goal. To this end, the determined unweighted supermatrix is
weighted using the computed inner-dependence weights of the main
criteria.

Note: it is assumed that the self-influence of a main criterion is the
highest, which represents one half of the total weight.

Definition 3.9. Let Wc denote inner-dependence weights matrix for
main criteria, where Wij∈Wc indicate the influence of Ci over Cj; let wsc

represent the unweighted supermatrix, where [wi. , j.]⊂wsc represent
the interdependence unweighted matrix between the elements of Ci
over the elements of Cj; and let Qw denote weighted supermatrix, where
[Qi. , j.]⊂Qw represent the relevant interdependence weighted matrix
of [wi. , j.]. The function of the weighted supermatrix is

×f W w Q
Q Q f W W w w

: ( )
[ ] , ( , [ ] )

c sc w

i j w ij c i j sc., . ., . (9)

Once the weighted supermatrix has been calculated, it should be
normalized to obtain synthesized results for the elements of the
weighted supermatrix. To establish the normalized supermatrix, the
linear normalization approach is utilized: elements of each column are
divided by the column sum.

Subsequently, global weights of sub-criteria can be established by
obtaining the limited supermatrix. To this end, the normalized super-
matrix should be raised to powers (i.e., exponentiation) until it con-
verges into a stable matrix, where the elements of each row converge
(Hosseini et al., 2013). Thus, the overall priority across the identified
sub-criteria can be established using the proposed Grey-based ANP (G-
ANP) approach.

3.4. Evaluate and rank feasible alternatives

When it comes to performance evaluations and alternatives ranking
with respect to the system of concern, the following procedural steps
are used: (1) Assess alternatives performance over the evaluation cri-
teria and establish performance matrix; (2) Normalize relative perfor-
mance measures of feasible alternatives to establish a comparison
ground; (3) Evaluate preferences between alternatives over each cri-
terion by measuring the deviation between the evaluations of the al-
ternatives; (4) Calculate the relative preferences between alternatives
across the evaluation criteria; (5) Estimate the global preference of each
alternative using the net outranking flow computations, and rank
available alternatives accordingly.

3.4.1. Establish performance matrix
The system of concern involves different types of criteria (e.g.,

quantitative and qualitative), which require different assessment ap-
proaches. Moreover, the involvement of uncertainty adds to the com-
plexity of the system. Accordingly, to establish the performance matrix
for available alternatives within the context of the system at hand, each
alternative should be evaluated over the sets of criteria. While the
performance over quantitative criteria is represented in numerical va-
lues; the performance over qualitative criteria is articulated in linguistic
expressions, in accordance with the judgments of the involved DMs.

Definition 3.10. Let the set of alternatives be represented by
A= {A1,A2, … ,An}, where n is the number of the feasible
alternatives and t= 1, 2,… , n. Let SC= {sc1, sc2, … ,scim} denote

the set of evaluation criteria, where "im" is the number of evaluation
criteria, and g= 1, 2,… , im. Let A× SC be the Cartesian product of the
set of alternatives and the set of criteria and let R[⊗] denote the set of
grey numbers. Let ytg(⨂) represent the relative grey number that
reflect the performance of an alternative At over an evaluation criterion
scg; where scg is a qualitative criterion, or a quantitative criterion with
uncertain data. Thus, the grey description function for the performance
matrix, as defined by Kuang et al. (2015), is

×f A SC R thus
f A A sc SC y R

: [ ],

( , ): ( ) [ ]t g tg (10)

Note that for performance assessment over qualitative criteria,
ytg(⨂) articulates DMs' verbal statements (i.e., linguistic expression)
regarding the performance of At over the criterion scg; in this paper, the
maps between linguistic expressions and grey numbers are identified in
Table 2. However, to measure alternatives performance over quantita-
tive criteria where uncertainty exists (e.g., imperfect numerical in-
formation), ytg(⨂) would take its values from either a discrete set of
values or an interval.

3.4.2. Normalize performance matrix
Once the performance matrix has been determined, consistency

among performance measures should be established to draw proper
comparisons. To this end, a normalization process is applied to adjust
the performance matrix, wherein the following condition should be
valid (Bai et al., 2012)

y[0, 0] ( ) [1, 1]tg (11)

The normalization process is done in two steps: first, transform all
non-grey values in the performance matrix into general grey numbers;
second, normalize all the values.

Definition 3.11. Let ytg denote a white number that represents the
performance of alternative At on a quantitative criterion scg, the
relative grey number of the white number (ytg) is

= = =y y y where y y y( ) , ,tg
tg

tg
tg

tg tg
_ _ (12)

Note that although some evaluations would be expressed by interval
grey numbers, a normalized scale over the criteria is not guaranteed. To
establish a normalized scale for the evaluations of feasible alternatives
over different types of criteria, Algorithm 1, which is explained by
Definition 3.12, is proposed.

Algorithm 1. Normalize alternatives performance based on grey
systems theory.

Definition 3.12. Let ytg(⊗) represent a general grey number that
reflects the performance of alternative At over a criterion scg; let min
(ykg) and max(ykg) denote the lower and upper bounds of ytg(⊗),
respectively. Let yg∗ represent a given optimal performance value over a
targeted criterion scg. Let y~tg denote the relative normalized value of

the general grey number ytg(⊗), such that y ( )tg is determined based
on criteria type, i.e., increasing, decreasing, and targeted.

3.4.3. Establish preference matrix
The differences of performance measures explain the preferences

between feasible alternatives. Thus, the larger the difference, the larger
the preference is. In order to establish the preference matrix, the de-
viation between the evaluations of the feasible alternatives on each
criterion should be determined, based on the definition of Xu and Da
(2002).
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Definition 3.13. Let =y ( ) y~ , y~ag
_ ag

ag and =y ( ) y~ , y~bg
_ bg

bg

represent general grey numbers that reflect the normalized
performance values of alternatives Aa and Ab over scg, respectively.
Let lag and lbg denote the difference between the upper and lower limits
of y ( )ag and y ( )bg , respectively, such that

=

=

l y y

l y y

ag ag
ag

bg bg
bg

_

_ (13)

Definition 3.14. Let d A A( , )g a b denote the deviation between the
performance of alternative Aa with respect to the performance of
alternative Ab over sub-criterion scg, in which the function to obtain
the deviation can be defined as

=
+

d A A
y y

l l
( , )g a b

ag
bg

ag bg

_

(14)

Once the deviation between the evaluations of feasible alternatives
over each of the evaluation criteria have been determined, preference
degrees can be established as follows.

Definition 3.15. Let P (A , A )g a b represent the preference degree of
alternative Aa over Ab with respect to scg. Let the degree of preference
vary between 0 and 1, where 0 indicates no preference and 1 indicates
full preference, such that (Kuang et al., 2015)

= < <P A A
d A A

d A A d A A

d A A

( , )
0, ( , ) 0

( , ), 0 ( , ) 1

1, ( , ) 1
g a b

g a b

g a b g a b

g a b (15)

3.4.4. Determine relative preference matrix
To determine the overall preferences between alternatives with re-

spect to the given system, the overall priority across the identified sets
of the evaluation criteria (i.e., global weights) should be considered.

Definition 3.16. Let (A , A )a b denote the relative preference of
alternative Aa over Ab across the set of evaluation criteria SC, where
SC= {sc1, sc2, … ,scim}. Let the global weight of each criterion be
represented by wg, where == w 1g 1

im
g , g= 1, 2,… , im, and im is the

number of evaluation criteria. Accordingly, the relative preference of Aa

over Ab can be calculated using the following function (Kuang et al.,
2015).

= = …
=

A A w P A A where g im( , ) ( , ), (1, 2, , )a b g

im
g g a b1 (16)

3.4.5. Estimate global preferences and rank available alternatives
Once the relative preferences have been determined for each pair of

alternatives, the global preference among feasible alternatives can be
estimated. To this end, the net outranking flow should be calculated
using the outranking flows measures, which determine the superiority
(i.e., positive outranking flow) and inferiority (i.e., negative outranking
flow) levels of a given alternative over others.

Definition 3.17. Let +(A )a denote the positive outranking flow of
alterative Aa, which indicates the preference of Aa over all other
alternatives. Let (A , A )a b represent the extent to which alternative
Aa is preferred over Ab. The positive outranking flow can be defined as
(Kuang et al., 2015)

=+
=

A
n

A A a b( ) 1
1

( , ),a b

n
a b1 (17)

Definition 3.18. Let (A )a represent the negative outranking flow of

alterative Aa, which indicates the preference of other alternatives over
Aa. Let (A , A )b a represent the extent to which alternative Aa is
outranked by Ab. The function to obtain (A )a can be written as
(Kuang et al., 2015)

=
=

A
n

A A a b( ) 1
1

( , ),a b

n
b a1 (18)

Definition 3.19. Let (A )a denote the global preference (i.e., net
outranking flow) of alternative Aa, which can be obtained by measuring
the difference between +(A )a and (A )a . Thus, (A )a can be
determined as follows (Kuang et al., 2015):

= +A A A( ) ( ) ( )a a a (19)

Once the net outranking flow has been estimated for all feasible
alternatives, a complete ranking index can be established based on the
values of global preferences, wherein the higher the value of A( )a , the
better is the alternative. Thus, the best alternative is the one with the
highest global preference value.

4. Case illustration of strategic decision making in FEI for a Small
to Medium-sized Enterprise (SME) within the Canadian quaternary
sector

The given company is suffering from a low level of formalization,
when it comes to making strategic decisions with respect to innovation
activities, which would jeopardize innovation success. Consequently,
the company is looking for a more systematic approach to identify,
characterize, evaluate, and respond better to potential opportunities for
innovation. The proposed methodology would be implemented on the
framework of the case to bridge deficiencies of the current process,
thereby enhancing DMs' abilities in making strategic decisions.

In this case study, three different innovation projects have been
reported for study. Abductive reasoning has been utilized to provide
reasonable explanations about the different components of the problem
at hand, and the existing interrelationships among evaluation criteria.

In order to establish a coherent understanding about the current
practice of FEI within the firm, a triangulation technique has been used,
which increases the validity of the data (Schweizer, 2015). The three
different techniques for data collection process were semi-structured
interviews (e.g., senior managers, systems engineers, and marketing
personnel); on site observations to gain first-hand knowledge on in-
novation activities for the company; and reviewing the available ar-
chival data, including internal norms and strategies relevant to the
innovation process.

4.1. Structure and model the decision problem

The first step of the proposed methodology is to formulate the de-
cision problem. To this end, the different components of the decision
problem (i.e., alternatives, criteria, and sub-criteria) should be identi-
fied. Afterwards, essential connections among the evaluation criteria
would be modeled.

4.1.1. Identify feasible alternatives
As mentioned earlier, three innovation projects have been reported

for the study, each of which aims to create a competitive advantage for
the company. However, each project has different set of characteristics,
which would make a difference in the evaluation process.

To differentiate between the potential alternatives, the type of the
relative innovation strategy would be considered. Thus, the potential
alternatives are alternative 1 (A1): Radical Diversification; alternative 2
(A2): Market Development; and alternative 3 (A3): Product/Service
Development.
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4.1.2. Establish evaluation criteria
In this study, the evaluation aspects for the decision problem at

hand have been established based on the knowledge acquired from the
case study and by building on the literature of the relevant subject
matter. Four main sets of criteria are proposed to evaluate feasible al-
ternatives from different perspectives. Table 5 shows the main criteria
and the associated sub-criteria with a brief description for each sub-
criterion.

4.1.3. Establish various types of links and model the problem
To illustrate the different types of connections within the system of

concern, a network structure model has been utilized to demonstrate
the general framework of the existing interrelationships within and
between the different evaluation clusters, as shown in Fig. 3. However,
the influence matrix has been used to give the detailed view of the
interdependencies between the sub-criteria, as shown in Table 6; where
1 indicates the presence of influence relation between the associated
pair of sub-criteria.

4.2. Establish grey linguistic scales

The system at hand is regarded as a complex system under

uncertainty. The complexity of the decision problem could be handled
by conventional MCDA approaches. However, the involved uncertainty,
due to the nature of FEI (e.g., limited input data), would limit the
outcomes of using MCDA solely. Therefore, the proposed methodology
integrates grey systems theory with ANP and PROMETHEE II to over-
come the uncertainty-related aspects as follows: firstly, grey systems
theory would be utilized along with the principles of ANP to establish
the set of weights for evaluation criteria with respect to the system of
concern; secondly, grey systems theory would be integrated with
PROMETHEE II to help measuring the performance of the alternatives
over the evaluation criteria that involve uncertain evaluations.

In this case study, the type of the decision problem is considered as
single participant-multiple criteria, which is the general case for MCDA.
To express preferences of the involved DMs regarding the evaluation
criteria, Table 1 has been utilized. When it comes to the performance
evaluation stage, Table 2 has been applied to assess the performance of
prospective projects over qualitative measures.

4.3. Establish the priority level across criteria

After identifying the different components of the system of concern
and modeling substantial connections within the FEI, the next step is to
establish the level of importance among the evaluation criteria by es-
timating the weights of each criterion. To this end, different types of
interdependencies among evaluation criteria would be considered and
analyzed using the proposed G-ANP approach.

4.3.1. Determine inner-dependence weights among main criteria
Interdependence weights among the main criteria (i.e., market,

technology, financial, and organizational) are estimated by analyzing

Table 5
Evaluation criteria.

Evaluation criteria Description Reference

Market (C1)
Market insight (M1) (sc11) Market related knowledge (e.g., ability to discover unfulfilled needs). (Reid and De Brentani, 2015)
Growth rate (M2) (sc12) Potential increases in a market size (i.e., demand growth). (Baker et al., 2016)
Competitive degree (M3) (sc13) Competition level indicator in a given market. (Mendi and Costamagna, 2017)

Technology (C2)
Sustainable competitive advantage (T1)

(sc21)
Ability to sustain advantage(s) over competitors. (Saeidi et al., 2015)

Specification fuzziness (T2) (sc22) Lack of clarity with respect to process functions, technical specifications, or technical
requirements.

(Moos et al., 2013)

Financial (C3)
Revenue stream (F1) (sc31) Potential earning from a given investment. (Gebauer et al., 2012)
Cost structure (F2) (sc32) Delivery cost estimation. (Onetti et al., 2012)
Potential sources of funding (F3) (sc33) Potential sources of funding (e.g., R&D subsidy). (Bronzini and Piselli, 2016)

Organizational (C4)
Familiarity with targeted market (O1) (sc41) Level of familiarity with a targeted market: new market, adjacent, or existing market. (Tzokas et al., 2015)
Current development capability (O2) (sc42) E.g., technological capability, whether the targeted innovation project is fully applicable,

require significant adaptation, or not applicable.
(Martín-de Castro, 2015)

Fig. 3. Network structure of the evaluation criteria within the context of FEI.

Table 6
Interdependencies between sub-criteria.

Sub criteria M1 M2 M3 T1 T2 F1 F2 F3 O1 O2

M1 0 1 1 1 1 1 1 1 1 1
M2 1 0 1 1 1 1 1 1 1 1
M3 1 1 0 1 1 1 1 1 1 1
T1 0 1 1 0 1 1 1 1 1 1
T2 1 1 1 1 0 1 1 1 1 1
F1 1 1 1 1 1 0 1 1 1 1
F2 1 1 1 1 1 1 0 1 1 1
F3 1 1 1 1 1 1 1 0 1 1
O1 1 1 1 1 1 1 1 1 0 1
O2 1 1 1 1 1 1 1 1 1 0
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the influence of each criterion on other criteria, using the linguistic
expressions and the relative grey numbers in Table 1 in accordance with
Eq. (3) of the proposed methodology. Table 7 shows the grey-based
pairwise comparison matrix between the main criteria with respect to
Market factor, which represents the control criterion of this matrix.

Once all the inner-dependence relations among criteria have been
established, the grey values would be transformed into fixed numbers
(Table 8), using the whitenization process, Eq. (5), to estimate relative
inner-dependencies through eigenvector computations.

4.3.2. Examine interdependence weights among sub-criteria
The complex interdependencies (i.e., inner-dependencies and outer-

dependencies) among the identified sub-criteria have been examined
according to section 3.3.2 of the proposed methodology. Note that
Table 1 has been used to articulate DMs' preferences between the sub-
criteria.

As mentioned in section 3.3.2, the estimated priority matrices,
which demonstrate the level of influence among the identified sub-
criteria, are the compositions of the unweighted supermatrix (Table 9).
Note that the shaded areas of Table 9 represent the inner-dependence
weights among sub-criteria of the same cluster.

4.3.3. Estimate global weights of sub-criteria
To estimate the relative importance of each sub-criterion with re-

spect to the decision problem at hand, the constructed unweighted
supermatrix has been weighted, as shown in Table 10, in accordance
with Eq. (9) using the computed inner-dependence weights matrix of
the main criteria (Table 8). Accordingly, each element of the un-
weighted supermatrix (Table 9) is multiplied with the associated ele-
ment in Table 8. For example, the influence of “competitive degree”
(M3), which is a sub-criterion of “Market” (C1) cluster; on “sustainable
competitive advantage” (F1), which is a sub-criterion of “Technology”
(C2) cluster, is 0.2268. However, the associated inner-dependence
weight in Table 8 is 0.4833. Consequently, the relevant value within the

weighted supermatrix would be 0.1096.
In order to determine the global weights, the elements of the

weighted supermatrix results (Table 10) have been normalized to ob-
tain synthesized results. Subsequently, the global weights of the sub-
criteria can be obtained by raising the normalized supermatrix to
powers until it converges into a stable matrix (i.e., the limited super-
matrix). In this study, the limited supermatrix has been achieved
at Q[ ]w

15. As a result, the global weights of the sub-criteria are: M1

(0.0842), M2 (0.1095), M3 (0.0714), T1 (0.1282), T2 (0.1551), F1
(0.11), F2 (0.0745), F3 (0.0776), O1 (0.0865), and O2 (0.103).

4.4. Evaluate and rank feasible alternatives

Once the evaluation criteria have been analyzed, feasible alter-
natives can be ranked. The detailed procedure is explained in the fol-
lowing subsections.

4.4.1. Establish performance matrix
To evaluate feasible alternatives, the performance of each alter-

native should be assessed across the evaluation criteria. Different types
of criteria are involved in the decision problem at hand, i.e., quanti-
tative and qualitative criteria, in which the sub-elements of the fi-
nancial cluster (i.e., revenue stream, cost, structure, and potential
sources of funding) are quantitative, while all others are qualitative.

Due to the presence of uncertainty within the context of FEI, grey
numbers have been used to express the performance of feasible alter-
natives in which the performance over the quantitative sub-criteria has
been estimated using intervals, while the performance over the quali-
tative sub-criteria has been evaluated based on DMs' verbal judgments
using the linguistic expressions and the grey numbers in Table 2. Al-
ternatives' performances over the qualitative and quantitative criteria
are presented in Tables 11 and 12, respectively. Note that the perfor-
mance estimations over the quantitative criteria are in thousands.

4.4.2. Normalized performance matrix
To assure consistency over the preference evaluation process, the

resultant performance matrices have been normalized using Algorithm
1. The normalized performance matrix is shown in Table 13.

4.4.3. Establish preference matrix
To establish the preference degree between the prospective projects,

the deviation between the evaluations of potential alternatives over
each criterion has been evaluated using Eq. (14). Afterwards, the

Table 7
Inner-dependencies among main criteria with respect to Market.

Market Technical Financial Organizational

Technical (Kurka and Blackwood, 2013) (Kuang et al., 2015; Kurka and Blackwood, 2013) [3/2, 5/2]
Financial [1/2, 1] (Kurka and Blackwood, 2013) (Kuang et al., 2015; Kurka and Blackwood, 2013)

Organizational [2/5, 2/3] [1/2, 1] (Kurka and Blackwood, 2013)

Table 8
Inner-dependence weights matrix of the main criteria.

Main criteria Market Technical Financial Organizational

Market 1 0.2268 0.5111 0.3527
Technical 0.4480 1 0.3067 0.4442
Financial 0.3232 0.4872 1 0.2031

Organizational 0.2289 0.2860 0.1821 1

Table 9
Supermatrix.

Sub criteria M1 M2 M3 T1 T2 F1 F2 F3 O1 O2

M1 0 0.5857 0.3406 0.2289 0.2289 0.4442 0.2289 0.2860 0.3232 0.2860
M2 0.6594 0 0.6594 0.4480 0.4480 0.3527 0.4480 0.4872 0.4480 0.4872
M3 0.3406 0.4143 0 0.3232 0.3232 0.2031 0.3232 0.2268 0.2289 0.2268
T1 0 0.4143 0.3406 0 1 0.5857 0.3406 0.5857 0.3406 0.3406
T2 1 0.5857 0.6594 1 0 0.4143 0.6594 0.4143 0.6594 0.6594
F1 0.4442 0.4480 0.4872 0.4872 0.4872 0 0.5857 0.6594 0.4872 0.4872
F2 0.3527 0.3232 0.2860 0.2860 0.2860 0.4143 0 0.3406 0.2268 0.2860
F3 0.2031 0.2289 0.2268 0.2268 0.2268 0.5857 0.4143 0 0.2860 0.2268
O1 0.4143 0.4143 0.3810 0.4143 0.2899 0.3406 0.3406 0.4143 0 1
O2 0.5857 0.5857 0.6190 0.5857 0.7101 0.6594 0.6594 0.5857 1 0
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preference degree between the projects over each criterion has been
estimated in accordance with Eq. (15). Accordingly, the resultant pre-
ferences of A1 over other alternatives are shown in Table 14.

4.4.4. Determine relative preference matrix
To determine the overall preferences between the prospective pro-

jects, the relative preferences between the projects should be de-
termined by weighting the resultant preference measures (Table 14)
using the global weights of the evaluation criteria in accordance with
Eq. (16). Accordingly, the relative preference measures between alter-
natives are depicted in Table 15.

4.4.5. Estimate global preferences and rank feasible alternatives
To prioritize the prospective projects, the global preference mea-

sures should be established in accordance with Eqs. (17), (18), and (19).
Table 16 presents: outflows (positive outranking flow), inflows (nega-
tive outranking flow), and the net-flows (global preferences). Conse-
quently, the three projects have been ranked based on the resultant net
outranking flows, wherein the higher the value of the net-flow, the
better is the alternative. Thus, A2 is the most preferred project and the
ranking order of the prospective innovation projects according to the
proposed methodology is A2 ≻ A1 ≻A3.

5. Comparative analysis

To validate the proposed methodology, an existing case study (Kuo
et al., 2015) in the literature is used, where a framework has been
developed, by integrating fuzzy ANP and fuzzy TOPSIS approaches, to
evaluate carbon performance of suppliers. Table 17 shows the grey
paired comparison matrix between criteria (dimensions), and the esti-
mated weights.

The main criteria are: Organizational management (C1); Process
management (C2); Procurement management (C3); R&D management
(C4). Table 18 illustrates the estimated criteria weights using both
methodologies, by looking at the results, the proposed methodology
reflects similar priority order among the criteria.

Table 10
Weighted supermatrix.

Sub criteria M1 M2 M3 T1 T2 F1 F2 F3 O1 O2 
M1 0 0.5857 0.3406 0.0519 0.0519 0.2270 0.1170 0.1462 0.1140 0.1009 
M2 0.6594 0 0.6594 0.1016 0.1016 0.1803 0.2290 0.2490 0.1580 0.1718 
M3 0.3406 0.4143 0 0.0733 0.0733 0.1038 0.1652 0.1159 0.0807 0.0800 
T1 0 0.1856 0.1526 0 1 0.1797 0.1045 0.1797 0.1513 0.1513 
T2 0.4480 0.2624 0.2954 1 0 0.1271 0.2023 0.1271 0.2929 0.2929 
F1 0.1435 0.1448 0.1575 0.2374 0.2374 0 0.5857 0.6594 0.0990 0.0990 
F2 0.1140 0.1044 0.0924 0.1394 0.1394 0.4143 0 0.3406 0.0461 0.0581 
F3 0.0656 0.0740 0.0733 0.1105 0.1105 0.5857 0.4143 0 0.0581 0.0461 
O1 0.0948 0.0948 0.0872 0.1185 0.0829 0.0620 0.0620 0.0755 0 1 
O2 0.1340 0.1340 0.1417 0.1675 0.2031 0.1201 0.1201 0.1067 1 0 

Table 11
Evaluation of potential innovation projects on qualitative criteria.

Performance matrix Alternatives

Qualitative criteria A1 A2 A3

Market insight (M1) L MM M
Growth rate (M2) H LM MM

Competitive degree (M3) L LM M
Sustainable competitive advantage (T1) H M MM

Specification fuzziness (T2) MM LM M
Familiarity with targeted market (O1) L MM LM
Current development capability (O2) L H LM

Table 12
Evaluation of potential innovation projects on quantitative criteria.

Performance matrix Alternatives

Quantitative criteria A1 A2 A3

Revenue stream (F1) [150, 350] [70, 200] [85, 250]
Cost structure (F2) (Ertay et al., 2005; Gebauer et al., 2012) (Dyer, 2005; Liu et al., 2015) (Mu and Pereyra-Rojas, 2017; Zhang et al.,

2009)
Potential sources of funding (F3) (Brans and De Smet, 2016b; Moretti et al.,

2016)
(Li et al., 2012; Wątróbski and Jankowski,

2016)
(Liu et al., 2015; Wątróbski and Jankowski,

2016)

Table 13
Normalized performance matrix.

Performance matrix Alternatives

Qualitative criteria A1 A2 A3

Market insight (M1) [0, 0.25] [0.75, 1] [0.5, 0.75]
Growth rate (M2) [0.75, 1] [0, 0.25] [0.5, 0.75]

Competitive degree (M3) [0.67, 1] [0.33, 0.67] [0, 0.33]
Sustainable competitive advantage (T1) [0.67, 1] [0, 0.33] [0.33, 0.67]

Specification fuzziness (T2) [0, 0.33] [0.67, 1] [0.33, 0.67]
Familiarity with targeted market (O1) [0, 25] [0.75, 1] [0.25, 0.5]
Current development capability (O2) [0, 2] [0.8, 1] [0.2, 0.4]

Revenue stream (F1) [0.286, 1] [0, 0.464] [0.054, 0.643]
Cost structure (F2) [0, 0.333] [0.778, 1] [0.222, 0.556]

Potential sources of funding (F3) [0.429, 1] [0, 0.143] [0.143, 0.571]
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Due to the shortage of provided data with respect to sub-criteria in
the case study, the final weights of the sub-criteria, which is provided in
the existing research, will be considered for evaluating the performance
of potential suppliers (Sn, where n=1, 2, ...7) using the extended grey
PROMETHEE II methodology. Table 19 demonstrates the sub-criteria
and the associated weights. The grey decision matrix for suppliers'
performance evaluations over the sub-criteria is demonstrated in
Table 20.

By utilizing alternatives evaluation procedures of the proposed
methodology and the sub-criteria weights in Table 19, the overall

preferences between alternatives are reflected in Table 21. Accordingly,
the global preferences among alternatives are demonstrated in
Table 22, in which S1 is the most preferred supplier, and the ranking
order of the potential suppliers is S1 ≻ S4 ≻ S2 ≻ S3 ≻ S7 ≻ S6 ≻ S5,
which is similar to the ranking order of the exiting methodology.

Although both methodologies provide the same conclusion in this
example, yet grey systems theory is considered more suitable for de-
cision problems with a relatively small amount of data and poor in-
formation, which cannot be described by a probability distribution; as it
offers simpler procedure, which does not require a robust membership
function as in fuzzy theory (Memon et al., 2015).

6. Conclusion

Although different methods are used to handle uncertainty-related
aspects (i.e., subjective and objective uncertainty), grey systems theory
is preferred when it comes to decision problems with a relatively small
amount of data and poor information, which cannot be described by a
probability distribution. Different researchers proposed grey systems
theory to deal with uncertainty in decision problems. However, a
number of shortcomings has been observed in the existing approaches
with respect to the influence of the interdependencies among the eva-
luation criteria of different clusters on the evaluation process. As a re-
sult, a new hybrid grey-based MCDA approach is developed to better
handle complex decision problems that are subject to different types of
interrelated criteria (i.e., evaluation criteria with different nature, dif-
ferent scales, and different values) and different types of uncertainty-
related aspects. The intended purpose of integrating the grey systems
theory with a distinctive combinations of MCDA approaches (i.e., ANP

Table 14
Multi-criteria preference matrix of A1.

Multi-criteria preference matrix Alternatives

Alternative Criteria A1 A2 A3

A1

Market insight (M1) 0.5 0 0
Growth rate (M2) 0.5 1 1

Competitive degree (M3) 0.5 1 1
Sustainable competitive advantage (T1) 0.5 1 1

Specification fuzziness (T2) 0.5 0 0
Familiarity with targeted market (O1) 0.5 0 0
Current development capability (O2) 0.5 0 0

Revenue stream (F1) 0.5 0.8485 0.726
Cost structure (F2) 0.5 0 0.1667

Potential sources of funding (F3) 0.5 1 0.8571

Table 15
Relative preference matrix.

Alternatives A1 A2 A3

A1 0.5 0.48 0.4679
A2 0.52 0.5 0.6176
A3 0.5321 0.3824 0.5

Table 16
Global preference matrix - outranking flows computations.

Outranking flows Alternatives

A1 A2 A3

Outflow 0.7240 0.8188 0.7073
Inflow 0.7760 0.6812 0.7927
Net flow −0.0521 0.1375 −0.0855

Table 17
Grey paired comparison matrix between dimensions.

Main criteria C1 C2 C3 C4

C1 (Kurka and Blackwood, 2013) (Kurka and Blackwood, 2013; Li et al.,
2007)

(Li et al., 2007; Li et al., 2012) (Brans and De Smet, 2016a; Li and Yuan,
2017)

C2 (Li and Yuan, 2017; Liu and Lin,
2006)

(Kurka and Blackwood, 2013) (Kurka and Blackwood, 2013; Li et al.,
2007)

(Li and Yuan, 2017; Liu and Lin, 2006)

C3 [0.2,0.333] [0.333,1] (Kurka and Blackwood, 2013) (Kuang et al., 2015; Liu and Lin, 2006)
C4 [0.125,0.167] [0.167,0.25] [0.25,0.5] (Kurka and Blackwood, 2013)

Table 18
Criteria weights of the proposed methodology and the existing methodology.

Criteria Proposed methodology Fuzzy ANP and fuzzy TOPSIS (Kuo et al., 2015)

Organizational management (c1) 0.413 0.494
Process management (c2) 0.405 0.272

Procurement management (c3) 0.134 0.141
R&D management (c4) 0.047 0.099

Table 19
Sub-criteria weights.

Sub-criteria Weights

Carbon governance (sc1) 0.229
Carbon policy (sc2) 0.188

Carbon reduction targets (sc3) 0.174
GHG verification (ISO 14064) (sc4) 0.003

Risk assessment for low carbon requirement (sc5) 0.125
Training-related carbon management (sc6) 0.073

Availability and use of low carbon technologies (sc7) 0.015
Energy efficiency (sc8) 0.014

Measures of carbon reduction (sc9) 0.018
Availability of a carbon supplier selection system (sc10) 0.070

Requirement of low carbon purchasing (sc11) 0.052
Capability of low carbon design of product (sc12) 0.029
Inventory of carbon footprint of product (sc13) 0.009
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and PROMETHEE II) is to optimize the evaluation space in such a
complex system under uncertainty by utilizing the emergent strengths
of the integrated approach: the mathematical ability and the associated
simplicity of PROMETHEE II in providing a complete ranking of feasible
alternatives over different types of criteria (i.e., quantitative and qua-
litative); the superiority of ANP in establishing priorities among eva-
luation criteria within complex systems; and the distinctive ability of
the grey systems theory in handling problems with a relatively small
amount of data and poor information, which cannot be described by a
probability distribution.

The proposed methodology is capable of establishing priorities
among complex interrelated criteria and account for the uncertainty of
subjective judgments by combining linguistic expressions, grey systems
theory, and principles of ANP. Furthermore, it extends the PROMET-
HEE II methodology to define optimal ranking among potential alter-
natives in such a complicated decision problem using a combination of
linguistic expressions to articulate human judgments over subjective
evaluations; grey systems theory to map linguistic expressions, to deal
with subjective and objective uncertainty, and to normalize perfor-
mance measures over different types of criteria; and the proposed G-
ANP approach to establish relative preferences among alternatives over
interrelated criteria. Future work is needed to extend the applicability
of the proposed methodology for more complicated cases of MCDA. In
particular, MCDA with multi-participants where consensus cannot be
reached.

The viability and the effectiveness of the proposed methodology
have been proven through an illustrative case study, in which the
process of strategic decision making with respect to innovation activ-
ities was the target to improve.

Finally, to validate the proposed methodology, an existing case
study has been used, and a comparative analysis with an existing hybrid
approach (i.e., fuzzy ANP and fuzzy TOPSIS) has been established.
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Appendix A

A.1. Grey systems theory

In grey systems theory, systems are distinguished based on the
availability of information, in which a system with fully known in-
formation is called a white system, a system with partially known in-
formation is called a grey system, and a system with unknown in-
formation is called a black system. The term “system” in the given
theory indicates the importance of seeing the whole picture (i.e., the
structure and functions of the object of concern), in which substantial
connections should be analyzed. The connections would be found
within and between the various elements of the object of concern; and
between the given system, relevant factors, and its environment. Grey
numbers are the primitive element for grey systems (Liu et al., 2012;Liu
et al., 2015; Liu and Lin, 2006).

A grey number is employed to indicate a number that its exact value
is unknown; yet a range (e.g., interval or a general set of numbers) in
which the value lies is known. A grey number is denoted by the symbol
⊗. However, there are several classes of grey numbers, which can be
differentiated as follows (Liu et al., 2015; Liu and Lin, 2006).

Definition A.1. If a grey number has a clear lower bound (a
_
, then the

grey number is denoted by

⊗ ∈ [a,
_

or ⊗ (a
_

Definition A.2. If a grey number has a clear upper bound (a), then the
grey number is written as

⊗ ∈ ( a, ] or ⊗ (a)

Definition A.3. If a grey number has both bounds clear (i.e., a lower

bound is (a
_
and an upper bound (a)), then it is called interval grey

Table 20
Grey decision matrix of supplier selection.

Sub criteria S1 S2 S3 S4 S5 S6 S7

sc1 [6.35, 8.36] [4.98, 7.03] [4.70, 6.87] [6.20, 8.25] [3.56, 5.72] [4.09, 6.35] [3.56, 8.36]
sc2 [6.73, 8.74] [5.72, 7.79] [5.10, 7.13] [5.86, 7.89] [3.56, 5.72] [3.77, 5.86] [4.44, 6.57]
sc3 [5.10, 7.28] [4.70, 6.87] [4.98, 7.03] [5.86, 7.89] [3.56, 5.72] [3.77, 5.86] [5.72, 7.79]
sc4 [6.20, 8.25] [6.20, 8.25] [5.86, 7.89] [6.73, 8.74] [4.98, 7.03] [4.7, 6.73] [5.27, 7.36]
sc5 [6.00, 8.00] [4.33, 6.35] [4.09, 6.20] [5.10, 7.13] [3.28, 5.40] [2.49, 4.59] [3.10, 5.27]
sc6 [4.09, 6.20] [4.33, 6.49] [3.28, 5.40] [4.70, 6.87] [3.28, 5.40] [2.49, 4.59] [3.10, 5.27]
sc7 [6.00, 8.00] [5.40, 7.45] [4.44, 6.57] [5.53, 7.55] [3.56, 5.72] [4.09, 6.20] [4.70, 6.73]
sc8 [6.20, 8.25] [4.70, 6.73] [6.00, 8.00] [5.40, 7.45] [3.28, 5.40] [3.28, 4.44] [4.33, 6.49]
sc9 [6.20, 8.25] [5.10, 7.13] [5.53, 7.55] [5.86, 7.89] [4.33, 6.35] [4.09, 6.20] [5.53, 7.55]
sc10 [4.09, 6.20] [3.48, 5.53] [3.10, 5.27] [3.56, 5.72] [2.00, 3.28] [2.29, 3.56] [2.63, 4.70]
sc11 [4.33, 6.35] [4.98, 7.03] [3.48, 5.53] [4.70, 6.73] [3.03, 5.10] [3.48, 5.53] [4.00, 4.00]
sc12 [5.10, 7.13] [4.70, 6.87] [5.53, 7.55] [5.56, 7.89] [3.56, 5.72] [3.03, 5.10] [5.53, 7.55]
sc13 [6.57, 8.63] [4.98, 7.18] [5.53, 7.55] [6.35, 8.36] [3.56, 5.72] [4.09, 6.20] [5.10, 7.13]

Table 21
Relative preference matrix.

Alternatives S1 S2 S3 S4 S5 S6 S7

S1 0.500 0.704 0.774 0.541 0.936 0.943 0.808
S2 0.295 0.500 0.571 0.337 0.876 0.840 0.614
S3 0.225 0.428 0.500 0.265 0.802 0.760 0.540
S4 0.458 0.662 0.734 0.500 0.978 0.985 0.777
S5 0.063 0.123 0.197 0.021 0.500 0.470 0.240
S6 0.056 0.159 0.239 0.014 0.529 0.500 0.278
S7 0.191 0.385 0.459 0.222 0.759 0.721 0.500

Table 22
Global preference matrix - outranking flows computations.

Outranking flows Alternatives

S1 S2 S3 S4 S5 S6 S7

Outflow 0.868 0.672 0.587 0.849 0.269 0.296 0.540
Inflow 0.298 0.494 0.579 0.317 0.897 0.870 0.626
Net flow 0.569 0.179 0.008 0.532 −0.628 −0.574 −0.086
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number, and it is written as

⊗ ∈ [a a,
_

Definition A.4. If a grey number takes its value from a finite set or a
countable number of potential values, then it is known as a discrete
grey number.

Definition A.5. If a grey number can take any value that covers an
interval, then it is known as a continuous grey number.

Definition A.6. If a grey number has neither a lower bound nor an
upper bound clear, then it is a black number, which is denoted by

⊗ ∈ (−∞ ,∞ )

Definition A.7. If a grey number has both bounds equal, then it
becomes a white number, where

⊗ ∈ [a a,
_

, and a
_
= a

Definition A.8. If a grey number can be represented by a white
number; which can be obtained either by known information,
experience, or other means; then it is called a non-essential grey
number. In contrast, the essential grey number is impossible or
temporarily not possible to be represented by a white number (e.g.,
the total energy in the universe).
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