
Contents lists available at ScienceDirect

Technological Forecasting & Social Change

journal homepage: www.elsevier.com/locate/techfore

Emergence scoring to identify frontier R&D topics and key players

Alan L. Portera,b,⁎, Jon Garnerb, Stephen F. Carleyb, Nils C. Newmanb

aGeorgia Tech, 110 Lake Top Ct., Roswell, GA 30076, USA
b Search Technology, 6025 The Corners Pkwy., Norcross, GA 30092, USA

A R T I C L E I N F O

Keywords:
R&D assessment
R&D Indicators
Technology Emergence Indicators
Tech mining
Emerging technology

A B S T R A C T

Indicators of technological emergence promise valuable intelligence to those determining R&D priorities. We
present an implemented algorithm to calculate emergence scores for topical terms from abstract record sets. We
offer a family of emergence indicators deriving from those scores. Primary emergence indicators identify “hot
topic” terms. We then use those to generate secondary indicators that reflect organizations, countries, or authors
especially active at frontiers in a target R&D domain. We also flag abstract records (papers or patents) rich in
emergent technology content, and we score research fields on relative degree of emergence. This paper presents
illustrative results for example topics – Nano-Enabled Drug Delivery, Non-Linear Programming, Dye Sensitized
Solar Cells, and Big Data.

1. Introduction

Attention to emerging technologies is increasing. Such indicators
can address varied subjects, ranging from breakthrough science to
novel technology and on to commercial innovation. Foci can range from
‘micro’ (e.g., treating specific sub-topic activity patterns) through sys-
tematic ‘macro’ indications (e.g., disruptive technological system
emergence). We focus at the micro level, seeking practical measures to
distinguish “hot” R&D sub-topics. Such indicators of emergence can
contribute to R&D policy and portfolio management, technology op-
portunities analyses (Porter and Detampel, 1995), and management of
innovation.

The U.S. Intelligence Advanced Research Projects Activity (IARPA)
Foresight and Understanding from Scientific Exposition (FUSE)
Program drew attention to the value of technology emergence in-
dicators [http://www.iarpa.gov/index.php/research-programs/fuse].
FUSE supported four teams that explored ways to derive indicators via
text analyses of Science, Technology & Innovation (ST&I) data re-
sources. We have been involved in conceptualizing bases for emergence
and framing candidate indicators (Alexander et al., 2012). We continue
to work to generate viable indicators (Carley et al., 2018). This paper
carries that effort forward to offer “emergence scores” for terms ap-
pearing in R&D abstract records. It goes on to use those emergent terms
to distinguish cutting-edge “players” – research organizations, coun-
tries, or individuals based on their engagement of emerging technology
content.

We seek to distinguish topics drawing accelerating attention in re-
search publication or patenting within a target domain. Our aim is to

provide practical means to separate cutting-edge research from other re-
search ongoing in a target domain. We go a second step to tally R&D
activity on those cutting-edge topics by “players” – countries, organi-
zations, or individuals. This can provide vital intelligence on who are
leading the way to advance these frontiers.

We are “micro” in another way – we seek to identify emergent R&D
within particular topical domains – i.e., abstract record datasets re-
trieved by searching for a given topic, such as “Big Data,” in suitable
databases. Our approach is to treat and analyze topical terms extracted
from such datasets – i.e., text mining. We operationalize a conceptual
model of technical emergence using a combination of thresholds and
activity trend calculations to generate Emergence Scores. We extend
those to measure the players most active in pursuing such topics,
thereby providing a suite of emergence indicators. The paper presents
results from several case analyses and considers a range of potential
indicator developments.

Section 2 offers a brief introduction to various perspectives on
“technical emergence.” Section 3 describes the data and our analytical
approach. Section 4 generates our R&D emergent terms, with emer-
gence scoring, for the case analyses. It points toward validation in the
form of testing their predictive performance. Section 5 uses that term
emergence scoring to generate indicators of the extent to which players
are active at the cutting-edge in the target domain. Section 6 explores
use of these emergence indicators to spotlight cutting-edge papers,
countries or authors, and probe their features. It also investigates cross-
domain emergence comparison. Section 7 offers conclusions, and dis-
cusses limitations and future opportunities.
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2. Literature concerning emergence indicators

2.1. Emergence as a property

We start with a brief, broad consideration of “emergence” from
different perspectives (Porter et al., 2002), then point to our interest
within that. Many scholarly fields consider the notion of emergence in
various contexts. Rotolo, Hicks, and Martin (Rotolo et al., 2015) explore
conceptual foundations for “emergence” along multiple dimensions.
They note the sharp growth in research and popular press publications
addressing aspects of emergence. Rotolo et al. (Rotolo et al., 2015) and
Li et al. (Li et al., 2018) consider emergence in complex systems –
arising from a coming together of components to offer new “emergent”
properties not easily predicted as the sum of the parts. Li et al. (Li et al.,
2018) review various approaches in seeking to discern distinctions
between emergent and disruptive technologies.

“Emergence” can be associated with radical change in science, tra-
cing back to Kuhn (Kuhn, 1962), to differentiate from ordinary scien-
tific progression. “Emerging technologies” range from incremental to
radical innovations, covering a wide spectrum. These can well reflect
differences in emergence processes (e.g., in biomedicine (Boon and
Moors, 2008) vs. semiconductors or such). FUSE interests concern early
identification of novel advances portending scientific and technological
opportunities across a gamut of R&D areas.

Rotolo et al. (Rotolo et al., 2015) track the evolution of “emergent
technologies” in the social science literature. Three distinct facets in
thinking about emergence are sources, characteristics, and effects. We
see value in being able to distinguish various “emergent” entities, in-
cluding:

➢ converging research streams
➢ technology currently at an early stage of development, showing high

growth potential
➢ hot sub-technologies within a target domain
➢ radical or discontinuous innovation
➢ potential enhanced economic influence.

Emergence can be treated at numerous levels, emphasizing some or
all of these aspects (c.f., (van Merkerk and Robinson, 2006), con-
sidering “Lab on a Chip” with distinct developmental pathways as a
platform technology – or not). As we develop indicators of emergence,
it is cautionary to keep in mind that the concept is inherently complex.
Multiple approaches have been explored to measure emergence (de
Haan, 2006; Goldstein, 1999). We don't attempt to treat those com-
prehensively here (see Rotolo et al., 2015). But to set this work in
context, we note that the scope can range from measuring macro-level
players – e.g., national propensities [12, tracking longer term country R
&D activities] – to micro-level scientific topics (Small et al., 2014).
Temporal perspective can range from recent monthly analyses to dec-
ades-long time frames (Lacasa et al., 2003). Data and methods em-
ployed can range from expert opinion (Porter et al., 2002) to biblio-
metric analyses of R&D publications or patents (Glänzel and Thijs,
2012). The last noted article is highly salient as an exemplar of bib-
liometric analyses, such as this paper represents too. But, we especially
contrast Glanzel and Thijs' (Glänzel and Thijs, 2012) approach to
identify emergence based on citation patterns, whereas we pursue
lexical change measures (term activity patterns).

Technology (or science) growth can take place in many pertinent
dimensions:

➢ Within the technology space overall or of various components
➢ Into other technology spaces
➢ Within the R&D community

Our approach focuses within a particular scientific or technological
domain, not emergence cast at the level of the whole scientific

enterprise. This limits our window to that given domain (to be im-
plemented as a search set on a topic), so we won't see the spread of
initiatives from that domain to others. Conversely, we should detect
intrusion of novel concepts/findings/methods from other domains.
That said, our definition accepts that sharp intrusion as emergence.

Technical emergence is an important facet of foresight (Martin,
1995) and technology intelligence and forecasting [17 – that text treats
growth curves and predictive capabilities]. Interest can range from
technical emergence to innovation – i.e., breakthrough commercial or
military applications arising from new technical capabilities. Focus may
be general or domain oriented (Stahl, 2011); we fit the latter interest.
We focus on technical emergence indicators for R&D activity. Several
approaches contribute diverse formulations and approaches. Staudt and
colleagues (Staudt et al., 2016) target high-impact and transformative
science metrics. An et al. (An et al., 2015) compare national level
contributions to emerging themes.

2.2. Criteria for technical emergence indicators

On a conceptual level, we followed FUSE by focusing on criteria for
technical emergence indicators – namely, Novelty, Persistence, Growth
and Community. We also track with FUSE in that we are probably
tracking prominence rather than emergence of ideas. Where we depart
from FUSE is in how we operationalize these core concepts. The FUSE
program had access to several full databases (patent and publications).
We note two dimensions to this – enhancing abstract records to full text
(articles or patents) and ability to process entire global databases in
one's calculations. This unprecedented level of data access permitted
the creation and testing of models at a scale not seen before. But the
vast data access also pushed the FUSE program to solutions which re-
quired immense data access and powerful computing. Our approach
operates under the assumption of a different reality, a reality where an
end user would have limited access to data – namely, search results
usually drawn from one database of field-structured abstract records
and attendant metadata. Our approach is not better (full text offers
richer potential); it is just designed for different, practical operational
environments.1

Importantly for us, Rotolo et al. (Rotolo et al., 2015) consolidate
FUSE and other prior research to identify key attributes of technological
emergence. Our model keys on four attributes – novelty, persistence,
community, and growth. These attributes do not directly translate into
unambiguous indicators (measures). Some points of interest regarding
the four criteria:

➢ Novelty – newness; can pertain to technologies, to technical sub-
systems, functions, and/or uses

➢ Persistence – indicating some identity and momentum – e.g.,
shared use of acronyms, ongoing community interest [FUSE ex-
plorations treated “cold fusion” as a vivid counter-example]

➢ Community – as in “community of practice,” implying multiple
players, not all within some single unit, and connecting in some
manner – e.g., citation connections in R&D literature or patent
analyses;

➢ Growth – pertaining to increasing R&D outputs and/or to gains in
other facets (e.g., funding, players).

1 The Authors are familiar with FUSE as participants in the program but are not en-
gaged with the final implementation of SRI's Copernicus system by Meta. Nor do we have
knowledge of any changes to UI/UX and data access now that Meta is part of the Chan
Zuckerberg Initiative. Thus we cannot speak to how Meta's system would perform com-
pared to a “smaller data” approach. On a conceptual level, we are encouraged by the
advances in a large data approaches; however, as practitioners in this space, we are
curious as to how the META system will be able to provide end users access to information
that is covered by copyright from corporate publishers (Clarivate, Elsevier, Digital
Science, etc. …). In the absence of operational access to such full data systems, we offer
this generation of emergence indicators from “smaller” (but not so small – see Table 1)
sets of abstract records.
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We note potential clashes – e.g., growth reflecting in upward, re-
latively continuous trends vs. novelty embodied in discontinuous R&D
activity onset and spiking. Likewise, persistence and novelty pull
against each other – persistence implies ongoing multi-year activity,
whereas novelty watches for relatively short-period, abruptly in-
creasing activity. “Community” poses multiple dimensions (c.f., (Girvan
and Newman, 2002)).

“Growth,” in particular, points toward trend analyses of time series
data with an eye toward projecting likely future activity trajectories
(i.e., technology (Roper et al., 2011)). We confront tradeoffs such as
“novelty” favoring detection in short time series to stress recency and
disruptive change patterns vs. “persistence” seeking sustained growth
patterns. Growth can be modeled multiple ways as well – e.g., fitting
logistic or exponential curves to time series to project future trending
(Roper et al., 2011).

2.3. Methodological roots of our R&D emergence indicators

Focusing in, we look at R&D advances using “tech mining” (Porter
and Cunningham, 2005) to treat topical content compiled from ST&I
abstract records. Tech mining just combines bibliometric and text
analytic methods to track activity patterns. Important general tools
include routines to clean text fields – namely, fuzzy matching routines
and thesaurus application to consolidate name variations. Given that
text in ST&I discourse is messy – lots of ways to depict a closely related
thing – consolidation of variants is vital. This potentially calls upon a
range of clustering and topic modeling tools. Kontostathis et al.
(Kontostathis et al., 2004) overview roles for text mining algorithms to
assist in detecting and tracking topical emergence. The last section of
this paper returns to compare our approach to some others.

Small, Boyack, and Klavans (Small et al., 2014) present an intri-
guing approach to identify emerging S&T topics using literature data.
Drawing on the Scopus database, they identify topical clusters using
direct citation and co-citation, and track temporal patterns. Their re-
sults treat the four emergence criteria just noted nicely in distinguishing
emergent topics for all of science (a macro approach). In contrast, we
seek to distinguish emergent topics within target research fields (a
micro approach). For instance, one of Small et al.'s (Small et al., 2014)
71 emergent topics is “cloud computing”; we might search and down-
load S&T abstract records relating to that topic, then seek topics
meeting the four criteria within the resulting “cloud computing” dataset.

2.4. Summing up

To reiterate, our aim is to operationalize the four traits in analyzing
S&T literature and patent abstract datasets to devise practical emer-
gence indicators. Our strategy has two stages. First, we seek to identify
emergent terms – i.e., topical content that evidences the four attributes.
To do so we extract topical content from downloaded abstract record
sets to discern terms or phrases that show high growth, along with
evidence of novelty, persistence, and community. Second, we then
strive to get at “who” is most active in pursuing research that uses those
terms in the available text data (abstract records). For instance, which
research organizations most actively include the high emergence terms
in their publications? [Saying that, we recognize one of many

challenges – should one look for the greatest publication rate or the
highest concentration of publishing relating to those topics?] Term
emergence scoring also enables us to generate useful information re-
garding the degree of technical emergence of particular records and
research fields.

Our R&D emergence indicators should meet several objectives:

➢ Generalizability across S&T domains (i.e., not relying on domain-
specific thresholds)

➢ Database independence (i.e., trying to avoid reliance on fields or
data elements particular to one or a few databases; aiming to work
with both research publication and patent data)

➢ Ease of use so that an analyst can generate useful indicators of
cutting-edge R&D activity

➢ An algorithmic (reproducible) approach.

3. Data and Methods

3.1. Data

The process begins by retrieving a set of research publication or
patent abstract records from a suitable database. Section 3.2.1 ad-
dresses search queries for the topical datasets used here. The datasets
addressed would usually be topical (e.g., resulting from a search on,
say, “graphene”), but could be organizational (e.g., a search for Georgia
Tech authored papers), or universal for a given data source (e.g., all
European Patent Office patents over an extended period).

Select fields are used in these analyses: 1) topical information is
based on title and abstract Natural Language Processing (NLP) to ex-
tract terms and phrases; 2) player information is extracted as follows –
authors, from the Authors field; organizations, from Author Affiliations;
and countries, from Author Affiliations. Section 3.2 goes into the ex-
traction, cleaning, and consolidation processes further, especially for
terms.

We experimented with the generation of indicators using data on
four technologies in six datasets (Table 1). One potentially vital char-
acteristic of the dataset being analyzed is growth rate. Detecting
emerging topics in the context of rapidly growing record sets could
differ from doing so in relatively stable sets (i.e., low annual growth
rate). Our listed datasets give us a rapidly growing science/technology
(NEDD), two rapidly growing technologies (DSSCs and Big Data), and a
relatively slow-growing, applied mathematics research area (Non-
Linear Programming).

To treat these field-structured text records, we employ VantagePoint
(www.theVantagePoint.com) for text processing and emergence in-
dicator calculations, in conjunction with MS Excel. However, the al-
gorithm does not require particular software.

Herein, we analyze these topical time series datasets to illustrate the
R&D emergence indicators. We use a 10-year test period consisting of a
base period (3 years) plus an active period (7 years), and, for validation
purposes, a follow-on period (an additional 3 years). In arriving at these
periods, we tried many variations. Shorter time periods yield much
noisier results (overly sensitive to specific processing). Longer periods
run counter to the aim of seeking currently emerging topics. The 3+7
model offered a reasonable middle ground. In future research we will

Table 1
R&D emergence indicator test datasets.

Dataset Source 10-year test period Full period available Total #

Nano-Enabled Drug Delivery (NEDD) MEDLINE 2001–2010 2000–2013 10,354
NEDD Web of Science (WoS) 2000–2009 2000–2012 50,745
Non-linear Programming (Non-Linear) WoS 2003–2012 2003–2015 3225
Dye-Sensitized Solar Cells (DSSCs) WoS 2000–09 2000–2012* 8053
DSSCs PatStat 2001–2010 1957–2013 (early years inappropriate) 4872
Big Data WoS 2004–2013 2003–2016 (partial year) 13,349
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investigate using other time periods. In particular, we see promise in a
7-period active period with a 5-period base using quarterly data.

The total record number varies over an order of magnitude in these
cases.

3.2. Methods

This paper reflects a bibliometric-based approach to measure
emergence – i.e., we tabulate and track patterns in R&D literature and/
or patents. “Tech Mining” is a term that we have adopted to describe
our use of text mining tools to extract useful intelligence from ST&I
information resources (Porter and Cunningham, 2005). Tech Mining
combines bibliometrics with text analyses to draw inferences from
sizable record sets. It favors searching for work on a topic of interest in
ST&I global databases, retrieving abstract record sets on a topic – e.g.,
Table 1. Those records provide convenient compilations of field-struc-
tured information. We note these attributes to distinguish this work
from text mining of unstructured text such as news feeds or social media
compilations.

Tech Mining furthers various analytical aims. A number of those
relate to our purpose of measuring R&D topical emergence. We note a
few exemplars here, not a comprehensive review. Much such work
seeks to generate Competitive Technical Intelligence (CTI) by tracking
“who's doing what?” (Choi and Park, 2009; Porter and Cunningham,
2005). Variants of such text analyses can associate actors and tech-
nologies, exploring related factors such as R&D funding (Hopkins and
Siepel, 2013).

Tracing technological trends is especially relevant; this is fostered
by text analyses of topical content to consolidate important terms and
phrases relating to a given concept or theme (Chang et al., 2010; Yoon
and Kim, 2011). That topical content can then be tracked over time to
get at evolution pathways (Huang et al., 2017).

We now turn to five specific methodological steps that comprise our
efforts in generating R&D emergence indicators. Fig. 1 shows these as a
basic flowchart.

3.2.1. Retrieve dataset
Step 1 has been introduced under “Data.” As per Table 1, one could

search in various databases for R&D on a target domain – and that
selection can greatly affect results. One's search algorithm also makes a
big difference in the resulting content and scope. Those sensitivities are
not of primary concern here, as we use the topics as case studies to
illustrate emergence scoring, rather than to advise on R&D priorities per
se. However, we note that search formulation warrants serious atten-
tion. Indeed, we have published articles on the search strategy devel-
opment for nanotechnology (Arora et al., 2013; Porter et al., 2008) that
undergirds the current DSSC and NEDD searches. We have also elabo-
rated the development of three of these topical search developments in
extensive detail (Guo et al., 2012; Huang et al., 2015; Zhou et al.,
2014), with consideration of all four searches as well (Carley et al.,
2018).

For readers interested in the distinct search strategies for the four
topics (NEDD, Non-Linear Programming; DSSCs; Big Data), the
Supplemental Materials2 to this article provide considerable detail in
Section A. Exact replication would be extremely challenging, but one
could use the search framework and queries to approximate them. For
example, Fig. 1-S there presents the Big Data 4-part search framework:
core lexical query, expanded lexical query, specialized journal search,
and cited reference analysis. Table 2-S lists the search terms comprising
the core and expanded lexical queries. The intricacies in applying these
are laid out elsewhere (Huang et al., 2017).

One should be wary of the likely incompleteness of the most recent
period(s) of data (e.g., the last year). Possible recourses are to delete the
most recent period data (but we seek to be as current as viable), col-
lapse incomplete recent periods together, or normalize for partial last
period data.

3.2.2. Process the terms of interest
Here, we seek to provide the essence of the treatment approach;

more complete details are available on request. The fundamental notion

Fig. 1. The basic process of generating R&D emergence indicators.

2 Supplemental Materials for this article are available at: http://hdl.handle.net/1853/
59335. These are too extensive to warrant appending to the article. They provide details
on search strategies; figures showing the additional topics not shown in the article
comparing total and normalized emergence scoring results for countries, organizations, or
authors; and other supporting details.
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is to extract informative topical content in a reproducible, efficient way.
Topical content in R&D abstract records varies by source database.

After comparing the effectiveness of alternative fields and manipula-
tions of them (e.g., merging fields), we have chosen to extract, and
combine, noun phrases (including single word terms) from titles and
abstracts. To devise topical emergence indicators, we elect NOT to use
various keyword fields (e.g., MEDLINE MeSH terms, WoS author key-
words or Keywords Plus, patent class codes, patent claim NLP phrases)
in favor of fields that are more generally available in various ST&I
database records. We have calculated emergence indicators and scores
using various combinations of topical content to compare. Results
generally track reasonably well.

Table 2 summarizes the steps we take in processing abstract and
title phrases to get at topical content.

As mentioned, and explored further in Supplemental Materials,
Section A, topical terms can be drawn from various abstract record
fields. Those include keywords, index terms, and class codes (especially
for patents). For generalizability, we work here with abstract and title
phrases, using VantagePoint's NLP routines to extract those from the
abstracts and titles. This NLP formulation is conceptually akin to
Princeton Word net, drawing on semantic and syntactic rule sets, for
English language. This NLP is further trained to identify blocks of text
that do not adhere to normal English rules – e.g., chemical formulas – to
better extract meaning from scientific discourse.

This routinized term consolidation process aims to facilitate re-
producibility and comparisons among different datasets. Our experi-
ence with identification of emergent terms is that users are put off to see
noisy terms included; hence, the extensive attention to data cleaning
(Table 2). While the resulting topical term sets are far from perfect, they
do appear valid to knowledgeable domain experts.3 Comparisons of
alternative term sets in generating emergent terms underpin Table 2.

3.2.3. Generate EScores
We have developed a custom “Emergence Indicator” (EI) script for

VantagePoint software (Fig. 2). The script first separates terms (gen-
erated via Steps A & B) that meet these thresholds:

a) Appear in records from at least 3 years
b) Appear in at least 7 records
c) The ratio of records containing the term in the active period to those

in the base period must be at least 2:1
d) The term cannot appear in 15% or more of the base period records
e) Terms are also required to have more than one author that doesn't

share the same record set

The thresholds aim to achieve the desired ET emergence criteria of
novelty (c & d), perseverance (a & b), and research community (e). The
particular values are based on our experience with test cases. The
EScoring script allows users to alter these values at will.

These thresholds target the four attributes of emergence that we
pursue: Novelty, Persistence, Community, and Growth. Thresholds a)
and b) aim to assure a level of Persistence (i.e., that the topic is not a
“one-hit wonder.” Thresholds c) and d) support Novelty and Growth;
the term is appearing increasingly often later in the data period.
Threshold e) assures that multiple authors not all within one research
group have engaged the topic. The specific levels chosen are based on
our experimentation with the test datasets described here and several
others. However, the script enables a user to vary the thresholds. E.g.,
for a small size dataset, one might reduce the requirement of at least 7
total records containing the term.

We initially developed a set of routines to tag “emergent terms”
from these candidate terms. Those were binary – either emergent or not
(Carley et al., 2018). This paper presents an advance to generate
“Emergence Scores” (EScores) that provide continuous, numerical scale
values for the candidate terms. We examined various EScore formula-
tions – e.g., differential weighting of title vs. abstract terms; different
combinations of trend components; multiplicative vs. additive compo-
nent weighting; tiered term levels; and so on. We selected an additive
model incorporating three of four available component trends4:

➢ Active Period Trend - comparing the change from the most recent
3 years to the first 3 years of the active period.

➢ Recent Trend – comparing the change from the most recent 2 years
to the 2 years prior.

➢ Slope from the mid-year of the active period to the most recent year.
(usually would be Year 7 to Year 10) [presuming a 3-year base
period followed by a 7-year active period]

➢ Slope from first point to mid-point (not included in “EScore5,” our
favored formulation)

We based this EScore on observed behavior, considering trend plots
and selectivity (how many terms score as ‘emergent’).

EScore= 2 * Active Period Trend+ (Recent Trend+Mid-Year to
Last Year Slope).

For a given term with 7 periods of active data (the default), the
calculations would be:

Active Period Trend=Terms Record Count of period 5, 6, 7/
Summation (Square Root (Total Record Counts in period 5, 6, 7)) -
Terms Record Count of period 1, 2, 3/Summation (Square Root (Total
Record Counts in period 1, 2, 3)).

Recent Trend=10 ∗ (Terms Record Count of period 6, 7/Summation

Table 2
Standard term cleaning/consolidation process.

1. Import the Abstract Natural Language Processing (NLP) phrases and the Title NLP phrases fields into the analytical software (e.g., VantagePoint).
2. Merge those two fields; then remove terms appearing in just one instance to yield an “Abs+Ti≥2” field (e.g., for Big Data – 197,960 items reduced by eliminating terms

appearing in just one instance to give 31,348 terms).
3. Apply the five standard thesauri in ClusterSuitea; then separately run VantagePoint's List Cleanup (general fuzzy matching routine) (yielding 22,474 terms for the Big Data

test set).
4. Split that term set into unigrams (single words) and multi-word noun phrases, treating each subset as follows:

• Unigrams – run a WoS stopword thesaurus of 786 terms [for scientific data or use patents stopwords if patent data], thereby removing many general technical terms.

• Multiwords – run the ClusterSuite “Fold NLP Terms” algorithm (“Folding” counts occurrences of a shorter term appearing in longer phrases, and it augments record and
instance counts; it does not remove terms).

5. Merge the resulting unigram and multiword lists and manually screen out a few very frequent and consolidated noise terms to input the remaining terms to the EI script
(which offers further cleaning routine options as well) (for Big Data, 22,425 terms).

a We have consolidated these thesauri along with various fuzzy matching and other cleaning and text consolidation routines into a script called “ClusterSuite,”
developed by J.J. O'Brien (O'Brien et al., n.d.) and available at www.VPInstitute.org.

3 We thank Dr. Natalie Abrams (National Cancer Institute) and Jing Ma (Beijing
Institute of Technology), for in-depth exploration of the NEDD content. We thank Prof.
Gary Parker and Prof. Anton Kleywegt (Georgia Tech) for review of our Non Linear
Programming term sets.

4 Calculations are incorporated in VantagePoint's “Emergence Scoring” script as per
Figure 2.
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(Square Root (Total Record Counts in period 6, 7)) - Terms Record
Count of period 4, 5/Summation (Square Root (Total Record Counts in
period 4, 5))).

Mid-Year To Last Year Slope=10 ∗ (Terms Record Count of period
7/Square Root (Total Record Counts in period 7) - Terms Record Count
of period 4/Square Root (Total Record Counts in period 4)/Change in
Time (e.g. period 7 - period 4)).

We examined term sets, finding strong correspondence between the
binary emergent term (ET) sets for a given test dataset and the high
EScore terms. For instance, for DSSCs, of 90 ETs, 88 have EScores> 1;
45 have EScores> 2. After numerous comparisons for the several test
datasets, we settled on a threshold for EScores of 1.77 (square root of
Pi). These EScores provide the bases for secondary emergence in-
dicators – see “D.”

3.2.4. Generate “player” emergence indicators
Emergent terms point to cutting-edge R&D activity, but are quite

sensitive to term cleaning and consolidating. For instance, the “Big

Data” set includes many variations on data analysis terms – which
particular ones “make the cut” depends on nuances in the term con-
solidation. In essence, we use them as pointers, but place more stock in
the “player” emergence metrics.

The EScores offer many options to measure the degree of emergence
of individual records; record compilations (e.g., to compare domains of
interest) and “players” – i.e., organizations, individuals, and/or coun-
tries on their extent of incorporation of highly emergent terms in their R
&D activity data being considered.

We experimented with various ways to use the EScores to gauge
these secondary indicators. Some keyed on tallying emergent term use
(e.g., by an organization) vs. others that count records with substantial
emergent term content. We considered alternative modes to normalize
for different attributes (e.g., record length). We determined not to
normalize on the dataset so that one would get a set percentage of terms
above threshold in any target domain; instead we favored an absolute
mode that enables cross-dataset comparison (e.g., to gauge relative
domain emergence of NEDD vs. DSSCs).

Fig. 2. Emergence indicator script control panel.
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Table 3 presents results that led to our determining a threshold
value of 1.77 for high emergence EScores. After empirical comparisons,
we determined to set aside terms below that EScore. Put another way,
we do not factor in “less emergent or non-emergent” terms in calcu-
lating indicators of leading cutting-edge players (i.e., those most ac-
tively writing on emergent topics) in target R&D domains.

A vital option is whether to use those terms per se, or to use records,
as the basis of determining cutting-edge players. Our test analyses led
us to prefer to use terms to distinguish cutting-edge organizations (or
countries or individuals). However, we do see end-use value in tallying
EScores (> 1.77) to identify research publications or patents with high
emergence content.

We considered many alternative term counting approaches to
identify highly cutting-edge organizations. These varied counting,
summing up, or averaging of raw or transformed EScores. We compared
relative rankings of the top organizations by various measures. Outlier
terms (e.g., one Big Data term had an EScore of 46.7, far above the next
highest term at 8.6) posed concern. That led to trying logarithm and
square root transformations. We adopted the square root (SQRT) as
providing somewhat wider range without concern for ln (0).

Experimentation led us to adopt two measures to compare players
(organizations, countries, individuals):

1. Total=Summation of SQRT (EScores) above the chosen threshold
[SQRT (Pi)= 1.77], counting each time a term was used in a dis-
tinct record; but not crediting multiple occurrences within a record5

∑ SQRT(ESc)×# records for that ESc term.

2. Normalized=Summation (as in “1”) divided by the SQRT of the
number of records.
∑(SQRT(ESc)×# records for that ESc term)/SQRT (# of records
of that player)

The Total measure credits overall organizational use of the high
EScore terms, but in a way that does not unduly favor extremely high
scoring terms. The Normalized measure is an attractive option in dis-
cerning certain differences. Section 4 reports results for test cases.

3.2.5. Apply the emergence scores and indicators
This ‘section’ just completes the five process elements. EScores

provide a resource to enrich R&D management in various ways. Section

4 presents case analyses and the final section offers ideas on potential
uses.

4. Validation

How effective are these emergence indicators? To address this
question, we follow the IARPA lead and start with trying to assess how
well our emergence indicators predict sustained R&D emphases in fu-
ture periods. We selected a 3-year test period. Fewer than three years
would seem apt to reflect “more of the same” – terms appearing in
many papers (or patents) in the preceding few years would likely re-
main ‘hot’ for a year or so at least. More than three years would be
problematic to expect high continuity; by definition, “emergence” re-
flects rapid change.

We decided to focus on the research activity (publications) of the
last 3 years of the 10-year period analyzed and compare those to the
following 3 years (the test period). Using similar period durations holds
appeal and the most recent years are most determinant of the trends
constituting the Emergence score (ESc5 version6), as well as most re-
levant for the ETs.

To set the validation stage, recall that we calculate ETs and EScores
using 10 years of data, divided into a 3-year base period followed by a
7-year active period. Now we augment that with an additional 3-year
test period (recall Table 1), and we draw on the last 3 years of the active
period for comparison. Our core question is whether designation as
emergent foretells high R&D activity in the test period?

We considered various ways to measure high test period R&D ac-
tivity, focusing on the number of papers (or patents) in which the ETs or
high EScore terms appear. We did not formulate the validation as strict
hypothesis testing, but rather as an exploratory approach. So, we ex-
amined various metrics, such as: relative trending for those terms in the
test period vs. the prior 3 years, and various ratios of test period to prior
period. We noted that the overall domain growth rate pattern affected
such comparisons – e.g., contrast the relatively stable Non-Linear
Programming publication trend vs. super growth, tapering off, for Big
Data.

All said, we decided that term prominence in the test period was a
suitable measure of emergence [in this, we are following the FUSE
project that had adopted prominence three years later as a key cri-
terion]. That is, the primary comparison would be between candidate
emergent terms' publication activity in the test period vs. that of other
terms (i.e., other candidate emergent term formulations and non-
emergent term benchmarks). Table 3 consolidates key results.

Table 3 is excerpted from a working table that includes relative

Table 3
Predictive utility of candidate emergence terms in three test datasets.

Dataset ESc5 < 0 ESc5 < 1 & > 0 ESc5 < 2 & > 1 ESc5 > 2

a) BD # 505 486 50 29
b) Test period Ave. 2014–16 16.0 17.1 52.2 208.7
c) Prior period Ave. 2011–13 10.7 13.1 38.1 120.9
d) Non-linear # 129 79 35 25
e) Test period Ave. 2013–15 4.65 5.28 8.23 15.8
f) Prior period Ave. 2010–12 3.48 5.05 7.43 13.8
g) DSSCs # 683 – – 70
h) Test period Ave. 2010–12 37.1 149.7
i) Prior period Ave. 2007–09 14.5 48.2

Notes: Table 3 summarizes results in terms of our favored Emergence Scoring algorithm (shorthand is “Esc5” for the fifth one investigated). ESc scores are partitioned
by size in the 3rd—6th columns; higher values indicate greater emergent attributes. Results are presented for three of the four datasets investigated – BD=Big Data;
Non-Linear=Non-Linear Programming; DSSCs=Dye-Sensitized Solar Cells. The “#” indicates the number of terms scoring in the Escore range indicated. For
example, 29 BD terms score > 2. The Test Period results indicate the mean number of records containing each of the terms in the given EScore range in that period.
The text discusses implications.

5 The use of “square root of pi” here is incidental – we chose it in that we were inclined
toward taking the square root of EScores as a suitable transformation. More critically, we
decided that a threshold between 1.5 and 2 was desirable. Importantly, note that the 1.77
threshold is set for the EScores (not for the SQRT of those EScores). In other words, we
first screen out EScores< 1.77; then we take the square root of those above-threshold
EScores.

6 This version is used throughout the paper; we retain the “ESc5” designation to keep
our records in order.
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values for ETs and various combinations of EScores and ETs [e.g.,
counts of occurrences for terms with EScore> 2 & also an ET (the
binary measure)]. Our comparisons led to the conclusion that the high
EScore terms were distinctly superior in performance to the binary
“ETs.” So, to simplify, we focus on EScores here.

Consider Table 3. Rows present counts for each of three datasets:
Big Data (BD), Non-Linear Programming (Non-Linear), and Dye-Sensi-
tized Solar Cells (DSSCs). For each of those, the first row shows the
number of terms fitting the criteria designated by the columns. For
example, for BD, 505 terms had an EScore< 0, whereas 29 terms
achieved EScore> 2. The following row tallies the average number of
records containing each of those terms in the test period. Our prime
emergence characteristic of note is the relative level of activity in the
test period (i.e., prominence). For BD, compare the 208.7 average # of
records for ESc5 > 2 terms to the average of 16 records for EScore< 0
records. The high EScore terms also tend to be more active in the prior
3-year period, suitably reflecting their “emergent” characteristics. E.g.,
for BD, row c) shows the EScore< 0 terms averaging 10.7 records vs.
120.9 for the EScore> 2 terms for 2011–13. [Note that the prominence
in the test period is understated in that it represents a shorter period
than the prior comparison period because our 2016 data are incomplete
(due to lag in database indexing).]

Likewise, one can compare prominence for Non-Linear terms as
somewhat higher in the test period than in the prior period (15.8 vs.
13.8), but notably higher than EScore< 0 terms in the corresponding
periods. The intermediate EScore value terms are notably less promi-
nent. Results for DSSCs also support high EScore terms tending to be
prominent R&D interests in the following test period (149.7 vs. 37.1 for
EScore< 0 terms).

Table 3 also shows that the emergence scoring algorithm is selective
– only 29 BD terms, 25 Non-Linear, and 70 DSSC terms make the cut
at> 2. In selecting a threshold for EScores, we weighed the appeal of a
higher degree of emergence for the highest scoring terms (here, con-
sider EScores> 2) vs. appeal in having a larger number of terms. These
terms were drawn from, respectively, 26,093 BD, 10,768 Non-Linear,
and 29,121 DSSC terms (abstract & title phrases, treated as described
previously). Our compromise was to select the square root of pi (1.77 –
i.e., a value between 1.5 and 2). Counts for that level rise modestly to
36, 29, and 81, respectively, for BD, Non-Linear, and DSSCs. Ergo, our
process is very selective in what it identifies as high emergence terms.
We considered relaxing thresholds (e.g., to a shorter period of 2 base
years and 6 active years, thereby enabling less long-lived terms to
qualify), but decided not to do so in favor of better persistence in
considering the lengthier time series.

5. Emergence indicator results for case analyses

5.1. Emergent topics (terms)

Note our caveat that term formulation is quite sensitive, so that
some term variants (e.g., of “Big Data”) make the threshold whereas
other associated terms do not. So, the particular emergent term sets are
somewhat fragile and should be considered with caution. Nonetheless,
we feel they provide topics showing accelerating R&D attention re-
cently.

Table 4 indicates the number of terms with EScores> 2. Using our
threshold of 1.77 increases that number modestly (last paragraph of
prior section). To give the flavor of these high EScoring terms, Table 4
shows the top 10 for each dataset, giving the term's EScore and the # of
records in the 10-year dataset in which it appears. [The Supplemental
materials for this article list all terms with EScores> 1.77.]

5.2. Cutting-edge “players”

“Secondary” indicators, in the sense that they build from the pri-
mary indicators – the high EScoring terms – offer considerable appeal.

The calculations are parallel in generating cutting-edge R&D organi-
zations, authors/inventors, and/or countries – i.e., those prolifically
using ETs. Here, we focus attention on such organizations. The aim is to
identify organizations whose cutting-edge R&D in a target domain
stands out, using an algorithmic process that is easy to apply.

The secondary indicators lend themselves to visualization varia-
tions. Here, we plot various pairs of Total EScores, Normalized EScores,
and Number of publications. For some purposes, plotting transformed
values enhances one's ability to discern contrasts of interest. The
Supplemental Materials present a large family of these for Big Data,
DSSCs, and Non-Linear Programming, in turn, showing organizations,
authors, or countries positioning based on EScores of their publications.
Here, Figs. 3–5 present logarithmic transformations, as seem most
suitable, for organizations publishing on DSSCs.

Fig. 3 compares the log (Total) against Normalized EScore measures
for DSSC organizations. We first apply the Total (measure “1” from
above; displayed along the horizontal axis) as a signal of research or-
ganizations most actively publishing (or if using patent data, patenting)
on “hot” topics in the domain. So, were one seeking a collaborating
organization, or a target university program to which to apply, this
could be especially helpful. The top organization here is the Chinese
Academy of Sciences (CAS) with a total EScore approaching 1000. [No
absolute meaning is attached to this sum of square roots of EScores;
higher is more.]

As displayed in Figs. 4 and 5, the leading DSSC publishers for
2003–2009, as indexed in WoS, are CAS, the Swiss Federal Institute of
Technology (we consolidate with its French name, Ecole Polytechnique
Federale Lausanne, to get 207 publication records), and the National
Institute of Advanced Industrial Science & Technology (105). Fig. 4
presents log (Total EScores) (here on the vertical axis) vs. log (number
of publications). Fig. 5 presents Normalized EScores vs. log (number of
publications). The Normalized EScores counterbalance high publication
rate as a major contributor to Total EScores. In Fig. 5, note that Na-
tional Taiwan University, with its 50 publications, scores slightly higher
than CAS and the Swiss Federal Institute of Technology, with over 200

Table 4
Top 10 high emergence score terms in three test datasets.

Topic Term EScore #

DSSCs power conversion 13.1 179
power conversion efficiency 12.0 174
organic dye 9.3 94
electrochemical impedance 8.5 121
photovoltaic performance 8.2 197
electron microscopy 7.1 128
TiO(2) 7.1 68
extinction coefficient 6.7 51
TiO(2) film 6.4 46
density functional theory 6.2 71

Non-linear mixed integer 5.3 106
operating cost 4.3 25
Mixed Integer Non-Linear Program MINLP 4.1 18
linear behavior 4.0 17
novel approach 3.3 22
model results 3.2 12
non-linear function 3.1 16
mixed integer linear program MILP 2.9 7
non-linear behavior 2.8 15
scheduling problem 2.7 16

BD big data 46.7 622
data analytics 8.6 119
MapReduce 7.9 600
big data analytics 6.6 80
Hadoop 6.5 436
social media 5.5 73
Big Data process 4.9 61
framework MapReduce 4.4 151
social network 4.3 130
Hadoop cluster 4.2 66
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each. So if you are looking for a group keying on DSSC emergent topics,
this would point to them. These data don't speak to the networking
within organizations (likewise, for countries), so DSSC R&D within an
organization could be well-connected or quite dispersed. Consider CAS
as an exemplar with over 100 institutes; we can't tell from the present
data treatment to what degree those are co-located. However, one can
readily list the players with their EScores and record counts to facilitate
perusal within organizations.

We generally recommend discarding low record counts. The EI
Script (Fig. 2) default settings are 10 records for countries, 8 for orga-
nizations, and 3 for authors. Consider two high scorers on the Nor-
malized EScore measure – Bannari Amman Institute of Technology on
Big Data (Figs. 6, 2 records) and Ocean University of China on Non-
Linear Programming (Figs. 7, 2 records). For most purposes, these
would not be of interest. Again, we nominate the Total EScore measure
(“1”) as dominant for most purposes. However, the EI script offers

Fig. 3. Normalized vs log (total EScores) for DSSC organizations.

Fig. 4. Log (total EScores) vs log (publication counts) for DSSC organizations.
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flexibility so that one could explore such very low record count orga-
nizations to pursue particular interests.

As mentioned, Figures analogous to Figs. 4 and 5 are available
(Supplemental materials) for Big Data and Non-Linear Programming
(raw data, not log transformed). Those complement the plots of Nor-
malized vs. Total EScores by explicitly showing the numbers of pub-
lications in the target domain by particular organizations. Furthermore,

tables can provide full details for further probing of particular cutting-
edge organizations (those most actively addressing ETs).

6. Further analyses: toward applications of the R&D emergence
indicators

R&D emergence scoring can serve multiple purposes. To provide

Fig. 5. Normalized EScores vs log (publication counts) for DSSC organizations.

Fig. 6. Normalized vs. total EScores for organizations publishing on big data.

A.L. Porter et al. Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

10



focus, consider an analyst addressing issues concerning R&D manage-
ment; mergers & acquisitions; product development, or ST&I policy.
Technical Emergence Indicators, derived from searches in global data-
bases, could support such an analyst by identifying:

1) Component technologies within a domain that warrant attention as
“emerging” [based on the set of emergent terms generated]

2) High priority research papers or patents within that domain de-
serving special attention [based on emergent records]

3) Key organizations active at the frontier of R&D in the domain – to
monitor as high priority (potential collaborators or competitors)
[based on calculations of organizations with high Total (and/or
Normalized) EScores]

4) Countries to track [based on high Total (and/or Normalized)
EScores, analogous to the treatment of organizations just illustrated]

5) Cutting-edge authors [likewise based on high Total (and/or
Normalized) EScores]

6) Relative emergent R&D activity level of different technical do-
mains [based on field level calculations, to be described below]

Given these six targets for EScore application, there are many op-
tions possible. Section 5 just illustrated #3 – “cutting-edge organiza-
tion” calculations. We presently offer observations on targeting the
other five, with further exploratory notions offered in the final Section.

6.1. Emerging technologies within a domain

The base measure here is to generate high EScore terms, as de-
scribed previously. Those high EScore terms are not, however, neat sets
of “the” hot topics of note. At this juncture we support a process of:

➢ Calculating EScores (the ESc5 measure) for the “qualifying terms”
(using the EI Script)

➢ Applying a threshold of 1.77 to distinguish high EScore terms
➢ Presenting those high EScore terms for a target domain dataset to

knowledgeable colleagues to stimulate selection of emerging

technologies for further analyses tailored to one's driving research
questions.
5.1. Priority papers (or patents)

What papers should researchers, analysts, or managers concerned
with the cutting-edge in a technical domain scrutinize? The type of
papers most suited to those needs – perhaps, foresight studies, tech-
nology roadmaps, and/or technology assessments of the technology;
and/or heavily cited, recent review papers; and/or heavily cited, classic
research studies, first determines the answer? For WoS records, one
could use document type and “times cited” to screen for high priority
publications.

To that, we add an indication of the high EScore papers. Those
address cutting-edge topics, potentially providing novel concepts,
methods, or applications. Our proposed measure to identify high EScore
papers is.

** Total=Summation of SQRT (EScores) above 1.77 – for the
qualifying papers.

Given that EScores reflect a combined measure based on trends and
thresholds, they are absolute in nature. So, one would expect more
papers above a given EScore (based on the high EScore terms appearing
in a paper's title and abstract) in a hot area (e.g., BD) than in a relatively
staid one (e.g., Non-Linear Programming). Accordingly, depending on
the purpose in mind, one might point to the “Top N” emergent papers
for the domain under study to scan for content of special importance.

To illustrate the possibilities, take the Big Data case. In
VantagePoint, we first make a field of the 36 terms with an
EScore> 1.77. We then tally the sum of the square roots of those
EScores for each record. Next, set a threshold either on how many re-
cords we want (e.g., Top 10) or what score value to use. [In the BD case,
the term “Big Data” is an outlier with a huge EScore, so we consider
setting that aside as both overly general and overloading.] The result is
a collection of research papers whose abstracts contain a relatively high
amount of emergent terms. [Here also we have not investigated all
options – e.g., instead of basing the selection on sum of the square root
of high EScore terms appearing in each record, one might, instead,

Fig. 7. Normalized vs. total EScores for organizations publishing on non-linear programming.
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select records containing the most high EScore terms.]
One then has a rich analytical resource in the tabulation of high

EScore papers to use in distinguishing cutting-edge authors (or in-
ventors), organizations, or countries to explore those entities further. As
noted in Section 5, in identifying “cutting-edge organizations,” we
measured their emergent term content, instead of emergent records.
That does not preclude examining the set of “emergent records” of, say,
a BD R&D organization. For instance, imagine a Chrysler Competitive
Technical Intelligence (CTI) study of Toyota's high EScore papers on
Electric Vehicles to help gain a sense of its frontier R&D interests in that
domain.

Conversely, one could use information on authors, organizations, or
countries that are most actively addressing ETs to screen for their
emergent papers. For example, recall the DSSC data that showed CAS
and the Swiss Federal Institute of Technology as most cutting-edge
organizations in this domain. One might therefore key on papers au-
thored by their researchers.

To illustrate this process, we explored the Big Data research using
Total EScores to identify:

➢ Top 12 Organizations (chosen as the Total EScores had a large jump
between #12 and #13)

➢ Top 11 Authors
➢ Top 11 Countries

Results are interesting:

• 6 of the 12 high EScoring organizations matched with 7 of the high
EScoring papers

• No matches of any of those top 11 authors with the 36 high Total
EScoring papers

• 5 Top 11 countries associate with some of the 36 papers: France (1),
Germany (1), India (5), China (10), and the US (12) – with none of
these papers showing co-authors from multiple Top 11 countries

Multiple measures are vital in analyzing R&D data. Again, to illus-
trate the potential of combining emergence scoring with other mea-
sures, we form a matrix of the 36 high Total EScoring BD papers by
Times Cited for each paper (as provided in the WoS records). Given that
more than half of the 13,349 BD papers in our dataset were published in
2014 or later, citation data are constrained. Nonetheless, we note that
only 5 of the 36 high Total EScore papers have received multiple ci-
tations – 2 with 2 cites; 1 with 3; 1 with 16; and 1 with 18. So, were the
analyst seeking influential, cutting-edge papers (s)he might point to
those two that have high EScore and are highly cited:

➢ Bian et al. (2012), Toward Large-scale Twitter Mining for Drug-re-
lated Adverse Events, Proceedings of the 2012 International Workshop
on Smart Health and Wellbeing, Maui

➢ Lee et al. (2011), YSmart: Yet Another SQL-to-MapReduce
Translator, IEEE International Conference on Distributed Computing
Systems, Minneapolis

5.2. Cutting-Edge Countries

Our first focus in comparing countries is on propensity to publish
papers (or patents) within a target technical domain. We don't believe
that calculating EScores for countries on all topics offers much value. So
focusing on a target domain (e.g., DSSCs), we tally high EScore terms to
benchmark countries (e.g., the leading countries in the domain in terms
of articles or patents treating ETs).

Our emergence scoring for countries mirrors that for organizations
or authors, using:

• “Total EScores”=Summation of SQRT (EScores) above 1.77

• “Normalized EScores”=Summation (as in “1”) divided by the

SQRT of the number of records [an alternative measure]

Visualizations of the Total and Normalized EScores, along with
Number of publications, for countries appear in the Supplemental ma-
terials. Those include plots for countries analogous to those for orga-
nizations illustrated by Figs. 3–5. We offer observations to suggest po-
tential utility of analyzing data in this way.

DSSC research spans 25 years. It is a well-connected community
with extensive cross-citation of research papers. Leading authors have
produced enormous numbers of research publications. At the country
level, one could well begin investigation by tallying the number of
publications and the extent to which those are cited. Our contribution is
to offer additional metrics that focus on R&D emergence within the
domain.

DSSC research was initiated in Switzerland, and Swiss authors and,
especially, one organization (Swiss Federal Institute of Technology,
Lausanne) continue to publish much highly emergent research.
However, on the national level, Fig. 21 (Supplementary Materials)
shows China, Japan, and South Korea out in front. Taiwan, Switzerland,
and the USA stand forth as a second tier. Fig. 22 points out high Total
EScores with high publication counts. EScoring here presents an in-
teresting comparison between the USA and South Korea – the USA
publishes more on DSSCs, but South Korea shows higher emergence
scoring.

Big Data research publication shows dominance by the USA and
China (Figs. 24-A and 25-A). Somewhat surprising, the emergence
scoring does not find the next most prolific countries (Germany and the
UK) quite as strong. On total EScoring, India appears next [followed by
Japan, Germany, Taiwan, Australia, South Korea, Canada, and then the
UK (not shown)].

Non-Linear Programming – our “less emergent” domain presents a
surprise. Fig. 27-A shows the USA leading on Total EScore, followed by
Iran. On Normalized EScore, Iran leads, with the USA second. As
mentioned, emergence scoring here seems to be flagging a potentially
interesting intelligence finding. In other analyses of nanotechnology
data focusing on a national level, Iran also shows strongly (#5 for
2006–2015).7

The next tier of Non-Linear Programming countries is led by China,
followed by India, Canada, and Brazil – the ‘BRIC's’ without Russia, plus
Canada. This interesting research emergence pattern may reflect an
applied math field that is highly respected for sophisticated contribu-
tions, but not demanding heavy technical infrastructure.

An additional, distinct option would be to identify emergent tech-
nologies, papers, organizations, and/or authors within a country,
within a domain. This entails different indicators using component data
provided by the EI Script – a future research target to build on emer-
gence scoring. To help gauge the resourcefulness of the target country
we could investigate whether many or few distinct research groups are
actively investigating emergent topics.

For instance, in the Non-Linear test case, Iran's activity is notable.
We separate the Iranian Non-Linear records; then examine the EScores
of the terms used. Whatever the extent of those reaching our general
thresholds, we could characterize the leading foci within Iranian R&D
on Non-Linear Programming. Here, we want to identify concentrations
of relatively emergent R&D and the authors and organizations per-
forming that R&D. Of interest, would be the degree of R&D con-
centration in certain organizations within Iran.

6.2. Cutting-edge authors

Our approach here parallels that for cutting-edge organizations
previously detailed. Our primary measure is the same “Total”
Summation of SQRT (EScores)> 1.77, augmented by “Normalized”

7 Paper under review.
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Summation (as in “Total”) divided by the SQRT of the number of re-
cords. Figures like Figs. 3–5 are included as Figs. 11-A through 19-A in
the Supplemental materials for this article.

We label a few leading authors in Fig. 11-A. The top three in terms
of Total EScore are all affiliated with the Swiss Federal Institute of
Technology, Lausanne. Ho and Lee are associated with the National
Taiwan University. In terms of number of publications, Graetzel and
Nazeeruddin lead, with one other (Hagfeldt at Uppsala University, 227
papers, for a Total EScore summation of 265 and a Normalized EScore
of 26.2) preceding Zakeeruddin and Ho. Lee trails with 44 (in 73d
place), so emergence scoring differs from basic publication quantity.
This analysis points to the Swiss group as leaders in the field.

Publications per author for Big Data are far fewer than for DSSCs.
BD is far newer and far more dispersed across authors (a much less
cohesive research community). That pattern can be discerned, for in-
stance, in Supplement Fig. 15– where the striation by number of papers
published is pronounced.

Jinjun Chen and Xuyun Zhang, of the University of Technology,
Sydney (UTS) are interesting. All 7 of their Big Data papers included in
this high EScoring set are jointly authored by them. Indeed, 18 of 20
Zhang papers are co-authored by Chen; likewise, 18 of 20 Chen papers,
by Zhang. [This identifies the potential utility in applying
VantagePoint's “Combine Author Networks” script to consolidate mul-
tiple authors who are heavily collaborating, to treat the group as a
single entity.]

The top emergence scoring author, Chang Liu, is also affiliated with
UTS. Two other authors have more papers in the Big Data document set,
but do not achieve high emergence (Lizhe Wang with CAS and Wei
Wang with Tianjin Normal University).

Big Data is an explosive dataset – growing rapidly with wide par-
ticipation over a short lifespan (given our search criteria). Our 13,349
BD papers have 34,779 authors (2.6 authors/paper). Collaboration
among the most prolific authors (≥ 12 papers or in the group of 11 high
Total EScores) are shown in Supplement Fig. 20. The Figure shows a
pattern of limited networking. It also shows some strong teaming,
especially at UTS. Fig. 8 shows a portion of that figure to give the flavor
of a sparse overall network, with some tight local collaborative net-
works.

Publications per author for Non-Linear Programming are even
fewer. More interesting, Normalized EScores for authors differ notably
– peaking at 63 for DSSCs, 47 for Big Data, and only 14 for Non-Linear.
The fields differ on degree of emergence. Based on Normalized
EScoring, the top Non-Linear Programming author would reflect a
single paper – reinforcing our preference for Total EScoring as a pri-
mary indicator of author emergence.

6.3. Comparing research domains based on degree of emergence

How do we propose to assess domain (or field) emergence? We view
this as an open research question that we would approach by devising
metrics based on EScores.

Here are ideas on composing a model to compare technical do-
mains. For each technical domain being addressed, gather suitable 10-
year datasets. For each of those – e.g., the current examples: Big Data,
DSSCs, Non-Linear Programming – calculate measures such as:

➢ # of high EScoring terms
➢ # of records above a Total EScoring threshold; here we demonstrate

Fig. 8. Collaboration among prolific big data authors [partial].
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a threshold of “10”; two of the three case examples in Table 5 show
marked activity

➢ # of cutting-edge organizations (rationale is to have more than a
couple of organizations actively pressing a frontier); here two of the
three domains show activity above the “100” threshold posed

➢ # of cutting-edge authors – here the threshold is sensitive (key ra-
tionale is to have enough individuals to constitute a community); as
with organizations, Non-Linear shows none.

➢ # of countries above threshold – here the differences among the
three test domains are muted.

This formulation suggests that experimentation is warranted to
identify suitable thresholds to use – given the purpose of comparing the
degree of emergence of technical domains. The variations between the
young, hot field (BD) and the 25-year-old one (DSSCs) are notable.
DSSCs show more emergent terms and organizations and significantly
more authors. That would seem to reflect the building of a substantial
research community more than frantic activity at the frontier. By all
five component measures, Non-Linear Programming is not an emergent
technology.

7. Conclusions and discussion

To sum up, this paper offers a viable R&D emergence indicator set
based on four criteria: novelty, persistence, growth, and community.
The paper introduces “Emergence Scoring” – providing a quantified
metric to distinguish terms evidencing sharp, recent R&D activity,
within a dataset under study. We provide a script to calculate EScores,
as well as options regarding term manipulations, weights placed on
components, thresholds (e.g., term appearance in how many records
spanning how many years; high EScores being>1.77), etc. We de-
monstrate the process for three different topics – Big Data, Non-Linear
Programming, and Dye-Sensitized Solar Cells. The process described
yields viable indicators of 1) emergent terms and of 2) cutting-edge
players, plus ways to measure degree of record and technical domain
emergence.

Section 6 explores ways that researchers and research program
managers could gain value from application of these within-domain R&
D emergence indicators. EScoring can point attention to papers that
address cutting-edge topics. It can be used to aggregate such research
activity to focus on countries, organizations, or authors that are espe-
cially actively engaging these hot topics. At the end of this section, we
note further uses that could be pursued – for one, to compare research
domains to see which may warrant special attention or funding.
“Zooming in” to use the R&D emergence indicators to identify cutting-
edge players, and then pursue further analyses of their research can
inform competitive technical intelligence ends.

As noted in the Literature section, a number of approaches to
measure “emergence” are being explored these days. Our approach
focuses on R&D, with emergence based on four criteria (novelty, per-
sistence, growth, and community) taken into consideration. This con-
trasts to approaches that measure change on a single dimension – e.g.,
burst analysis. Burst analysis is viable with scientific literature – our
target (along with patents) (Chen, 2006). Chen notes that a burst de-
tection algorithm (Kleinberg, 2002) can detect sharp increases in a
specialty of interest. While Kleinberg's algorithm (Kleinberg, 2002) was

devised to detect activity bursting of single terms, it can be applied to
multiword phrases as well. It uses a probability density function to
distinguish terms that present more rapidly than expected. Chen's Ci-
teSpace II (2006) identifies research fronts based on bursts of terms
extracted from titles, abstractors, and keywords in bibliographic re-
cords. The key distinction here is our positing of novelty, persistence,
and community criteria. It would be interesting to compare results on
given abstract record topical sets.

A new paper by Qi Wang (Wang, 2017) offers a multi-criteria ap-
proach to identify emerging research topics. That differs from our own
in scope. Wang analyzes an encompassing swath of research literature –
10 years of WoS. “Research topics” are relatively “macro” in compar-
ison to our terms, using Waltman and Van Eck's (Waltman and Eck,
2012) direct citation based identification of some 4000 topics. Those
are gauged on Novelty, Growth, Coherence, and Scientific Impact.
Sample topics measured include “graphene” and “solar cell.” Contrast
this to our “micro” exploration of ETs within domains such as DSSCs – a
subset of solar cells. Again, comparison of approaches in detail would
be intriguing.

We note limitations of our EScoring. Our approach relies on search
and retrieval of abstract records, with their metadata, from R&D da-
tabases. Excepting very few (notably, MEDLINE), most ST&I databases
require licensing. Search queries of a given domain by independent,
experienced searchers tend to vary considerably, so resulting emer-
gence indicators may differ accordingly. Indexing by those databases
adds delay to the lags from discovery to publication or patenting. And,
the content is inherently limited, as compared to full text resources.
Further, patent abstracts' topical content is not inherently presented to
communicate fully (Derwent second level data do strive to improve
this).

How best to extract topical content? This can be done at a very
discrete level, as we do with ETs, or at more aggregated levels. “ETs”
provide great specificity, but at the cost of noisiness – i.e., many related
term variations are distinct. As a consequence, in our present for-
mulation, we don't emphasize exact terms highly. Many aggregation
options can be explored, including topic modeling (Ranaei et al., 2018),
clustering approaches, and factor analyses [e.g., we see promise in
using VantagePoint's Principal Components Analysis (PCA) to con-
solidate ETs after they are generated, or prior to running the EScoring
script]. Inherent in any of these is term processing. Here, we present an
explicit approach to extract, clean, and consolidate terms. The aim is
replicability, but there are many dimensions to consider in how best to
treat terms. For instance, Table 2 incorporates “term folding up” to
consolidate phrase variations, but one might thereby mask emergent
variations.

We offer promise of predictive validity in two cases presented (BD,
DSSCs) in the form of checking that ETs tend to increase in research
activity in the following 3-year period. Non-Linear Programming ETs
also remained active (Table 3). However, this needs to be extended to
other topics and situations. In current studies we are pursuing on
FLASH memory and Light-Emitting Diodes (LEDs), preliminary results
of these commercialized technologies don't show strong future research
activity for ETs.

Further research is in order to consider indicator behavior and al-
ternative formulations. It would be interesting to compare, and possibly
combine, lexical, term-based analyses with citation pattern analyses
(Glänzel and Thijs, 2012) to identify R&D topical emergence. We apply
thresholds to meet novelty, persistence, and community criteria, but
our EScores just reflect growth patterns – see Wang (Wang, 2017) for
exploration of measures of multiple criteria, also drawing on Rotolo
et al. (Rotolo et al., 2015). We have tracked emergent topics and cut-
ting-edge players over rolling increments. That is, for a target tech-
nology, we calculate the emergence indicators for, say, 1991–2000;
then calculate them for 1992–2001; and so on. We find reasonable
“staying power” as time advances (Carley et al., 2017).

Systematic examination of EScoring behavior for topics in different

Table 5
Illustrative domain emergence measures.

Measure\tech domain Big data DSSCs Non-linear programming

ESc terms > 1.77 36 80 29
# of ESc records > 10 257 293 7
Organizations total EScore > 100 7 39 0
Authors total EScore > 40 22 246 0
Country total EScore > 40 30 26 10
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arenas is needed – i.e., to compare physical sciences, engineering,
natural and biomedical sciences, and social sciences.

Among the options that warrant further assessment, we mention:

➢ Systematic comparison of a given topic based on searches in mul-
tiple databases, possibly combining such results as input to the EI
script

➢ Exploration of shorter time periods – can we devise reliable emer-
gence indicators from fewer than 10 years of data?

➢ Combining with other data for enriched technology and/or organi-
zation profiling. As touched upon here, publication activity and ci-
tation activity metrics complement the emergence indicators. One
potential application might be inclusion of emergence indicators in
the “research landscaping” service provided by the Chinese
Academy of Sciences to help program managers judge the merits of
research proposals.

We also are excited about new applications of these emergence in-
dicators, such as:

➢ Comparing sets of related technologies using EScoring – e.g., various
types of solar cells – to help gauge relative growth trajectories and
innovation potential.

➢ Studying technology growth for a target technological domain by
scoring various sub-systems and component technologies.

➢ Developing technological emergence workbooks – following the
Clarivate Analytics offering of semi-automated Derwent patent
profiling provided from a search set by the software as an MS Excel
workbook.

➢ CTI use, as in profiling a target organization's patents with multiple
measures, including EScoring on its various technologies with sub-
stantial R&D activity, to spotlight strengths and future potentials.
Organizational emergence profiles could also be scripted akin to
technological profiles noted in the previous bullet item. [Note that
this implies analyzing search sets based on the organization instead
of topical search.]

➢ Contributing to Technology Readiness Assessment (TRA), a metrics-
based process used particularly in U.S. Defense Acquisitions to
gauge the maturity of, and the risk associated with, a target tech-
nology [www.acq.osd.mil/chieftechnologist/publications/docs/
TRA2011.pdf]. We see potential in emergence indicators con-
tributing to Technology Readiness Levels to help benchmark the
target technology's status and prospects.

➢ We envision diverse users of such technical emergence indicators. In
addition to several suggested throughout the paper, one could see
private equity decision processes benefiting from such empirical
indicators to help sift through more vs. less attractive investment
opportunities.

➢ We see opportunity in developing empirical indicators. However, we
recognize irreplaceable value in engaging domain technical and
market experts to help focus and scope such emergence profiling,
check results (i.e., review high emergence term sets), and interpret
findings.
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