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A B S T R A C T

One of the most challenging problems in technological forecasting is to identify as early as possible those
technologies that have the potential to lead to radical changes in our society. In this paper, we use the US patent
citation network (1926–2010) to test our ability to early identify a list of expert-selected historically significant
patents through citation network analysis. We show that in order to effectively uncover these patents shortly
after they are issued, we need to go beyond raw citation counts and take into account both the citation network
topology and temporal information. In particular, an age-normalized measure of patent centrality, called re-
scaled PageRank, allows us to identify the significant patents earlier than citation count and PageRank score. In
addition, we find that while high-impact patents tend to rely on other high-impact patents in a similar way as
scientific papers, the patents' citation dynamics is significantly slower than that of papers, which makes the early
identification of significant patents more challenging than that of significant papers. In the context of technology
management, our rescaled metrics can be useful to early detect recent trends in technical improvement, which is
of fundamental interest for companies and investors.

1. Introduction

While many inventions are granted a patent, only a small fraction of
them represent “important” technological advances or will have a sig-
nificant impact on the market. As a result, a key problem in technolo-
gical forecasting is to detect which patents are important as early as
possible. The literature has designed various indicators of patent im-
portance based on patent data analysis, and it has been found quite
consistently (see Section 2) that at least on average, important patents
tend to receive more citations. However, this relationship is typically
noisy, which suggests that more sophisticated metrics could outperform
simple citation count in identifying important patents. Importantly, it
takes time for a patent to accumulate citations, which implies that
simply counting the number of citations received by a patent may be
effective to uncover old important patents, but not to detect important
patents shortly after they are granted.

In this paper, we propose a network-based metric that identifies
important patents better and earlier than citation count. Our metric,
time-rescaled PageRank, was introduced by Mariani et al. (2016) to

identify expert-selected important papers in physics. It is built on
Google's PageRank algorithm (Brin and Page, 1998) by requiring that
node score is not biased by node age. This metric is computationally
efficient and thus can be applied on very large datasets (Vaccario et al.,
2017). Here we validate this metric on the US patent citation network
(1926–2010), by evaluating its ability to detect the expert-selected
“important” patents from Strumsky and Lobo (2015).

We find that Google's PageRank outperforms raw citation count in
identifying the important patents, which supports the idea that im-
portant patents tend to be cited by other important patents. This idea is
further supported by the strong assortative degree-degree correlations
observed in the network (Fig. 1 below): highly-cited patents are typi-
cally cited by other highly-cited patents significantly more than what
we would expect by chance; at the same time, highly-cited patents tend
to cite other highly-cited patents. However, both PageRank and citation
count are biased towards old patents; removing this bias is crucial to
compare young and old patents on the same scale (Mariani et al., 2016).

To demonstrate the usefulness of removing the age bias in the
context of technological forecasting, we evaluate the metrics'
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performance in identifying the important patents shortly after they are
issued. By aiming to identify the expert-selected important patents
shortly after their issuing, we are performing, essentially, an out-of-
sample prediction: patents of undeniable significance can be recognized
by experts typically only long after their publication, yet we attempt to
identify them shortly after publication with the considered citation
network metrics. This is novel with respect to the existing literature that
mostly focuses on the overall correlation between patent citation count
and patent value (see Section 2). In this sense, our paper not only ranks
patents by their citation network centrality, but also carefully validates
different centrality metrics according to their ability to early identify
patents of doubtless significance.

We find that time-rescaled PageRank significantly outperforms ci-
tation count and original PageRank in the first 10 years after issuing,
approximately. We use a time-respecting network null model (Ren
et al., 2017) to generate randomized networks where the individual
patents' citation count dynamics is the same as in the original network.
We find that both the observed degree-degree correlations and the
performance advantage of PageRank-related metrics over citation count
cannot be found in the randomized networks, which indicates that these
properties emerge as a result of network effects that go beyond patents'
neighborhood.

Our findings demonstrate that in order to timely identify the
significant patents, both network topology and time information play
an essential role. In more general terms, the advantage of PageRank-
related metrics over citation counting metrics, together with the
strong degree-degree correlations of the patent citation network,
support the hypothesis that significant technological advances “lean
on the shoulders of giants” in a similar way as scientific advances
(Bornmann et al., 2010). Yet, we find that the citation dynamics of
scientific papers and patents are characterized by substantially dif-
ferent timescales. As a result, because patents (on average) take more
time than papers to accumulate citations, the early identification of
significant patents is more challenging than that of significant pa-
pers.

Identifying growing technological areas early on is critical for
businesses and it is thus a major activity in technology management.
However, the task is generally challenging because the available
methods are often intricate, and we often lack reliable ways of testing
their performance. Our work addresses both challenges by introducing
a metric, rescaled PageRank, that is relatively simple, and by validating
it through a carefully designed set of measurements on the patent ci-
tation network. As patents in emerging technological domains tend to
quickly attract many citations (Benson and Magee, 2015; Triulzi et al.,

2017), our age-rescaled metrics can be used as powerful tools to early
identify growing technological domains.

2. Related work

Broadly speaking, our work is related to those studying the relation
between popularity metrics and significance in creative works such as
scientific papers (Mariani et al., 2016; Comins and Leydesdorff, 2017),
movies (Spitz and Horvát, 2014; Wasserman et al., 2015; Ren et al.,
2017), or music albums (Monechi et al., 2017).

In the context of patent analysis, it is well known that patents are of
extremely different quality (Silverberg and Verspagen, 2007). While a
direct measure of patent value is unavailable, patent data are very rich
and there have been many attempts at providing indicators of patent
value or novelty based on data contained in patent documents, such as
the number of claims, the number and type of technology categories,
the size of the patent family, and renewal fees, to give just major ex-
amples. By far the most widely used patent impact indicator is the
number of citations received, and many studies have established a
correlation between patent citations and patent value. For instance,
Trajtenberg (1990) found that to understand the evolution of the social
value generated by the CT scan industry, it was better to count citations
received by patents rather than simply counting patents. Albert et al.
(1991) asked experts to rate the technical impact of patents in the area
of silver halide technology, and found that highly cited patents received
higher ratings. Harhoff et al. (1999), Jaffe et al. (2000a) and Harhoff
et al. (2003), using survey data, found that citations were correlated
with the value reported by the inventors. Lanjouw and Schankerman
(2004) collected several indicators of patent quality and concluded that
citations and the number of claims were the most important indicators
of quality. Recently, Zhang et al. (2017) proposed to weight 11 in-
dicators of patent value using Shannon entropy, and selected forward
citations as one of the most important indicators for technological
value. Hall et al. (2005) found that firm market value (Tobin's Q ratio)
was correlated to the citation-weighted patent portfolio of the firms.
Carpenter et al. (1981) and Fontana et al. (2013) compared patents
associated with inventions that received a prize and patents from a
control group, finding again evidence that “important” patents are
more cited (the mean number of citations received was found to be
about 50% higher for important patents).

But in spite of the repeated evidence of the positive relationship
between citations received and different indicators of value or quality,
it is often acknowledged that this relationship is very noisy (Harhoff
et al., 1999), thus leaving open the possibility that more elaborated

Fig. 1. Degree-degree correlations in the US patents' citation network. The gray circles represent the observed average neighbors' indegree for all the indegree values; the blue circles
represent the same information in a histogram with equal bin length on logarithmic scale; the green squares represent the mean behavior observed within ten realizations of the dynamic
configuration model (see Section 5.4 for a description of the model); the shadows around the line that connect the green squares represent one standard deviation around the mean.
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indicators could outperform simple citations count in predicting patent
value. Here we address two basic (and well-known) problems of eva-
luation by simply counting citations: when evaluating a given patent's
score, it fails to take into account the importance of the citing patents
(Narin et al., 1976); and it fails to correct for the fact that young but
potentially important patents did not have the time to accumulate a
high number of citations.

The basic motivation for using citations received as an indicator of
quality is that citations indicate some form of knowledge spillovers. As
argued by Jaffe et al. (2000b), citations reflect the fact that either a new
technology builds on an existing one, or that they serve a similar purpose.
As a result, chains of citations allow us to trace technological evolution,
and hence patent centrality in the citation network can be used to score
patents. But not all measures of centrality are appropriate. For instance, in
the case of patents, we want to value positively how many citations are
received, but not necessarily how many citations are made.

Whether the references made by a given patent can be used to infer
the patent's importance is a delicate issue. In principle, one could argue
that a patent with many references has high potential, because it draws
from many existing inventions. But an opposite argument could be
made as well, because a patent with many references makes it also
(legally) clear that its claims are somewhat limited by the claims of the
cited patents – in that sense, references indicate a limitation of novelty.
It is not yet well-understood which of these two arguments is the most
appropriate, and the empirical evidence so far is inconclusive (Jaffe and
de Rassenfosse, 2017); here, we will consider that citations received are
a weaker signal of importance when they come from patents with many
references.

Based upon the aforementioned considerations, Google's PageRank
centrality (Brin and Page, 1998) is especially suited for identifying
important patents for three reasons: (i) It takes into account how many
citations are received by a patent, (ii) it takes into account how many
citations are received by the citing patents, and (iii) it takes into ac-
count that citations from patents that have many references are less
indicative of the cited patent's quality.

We are not the first ones to suggest that PageRank (Lukach and
Lukach, 2007; Bedau et al., 2011; Shaffer, 2011; Dechezleprêtre et al.,
2014; Bruck et al., 2016) and similar eigenvector-based metrics
(Corredoira and Banerjee, 2015) can be computed on patent citation
networks to identify important patents. However, robust evidence that
PageRank is more effective than citation count in identifying the key
patents is still lacking. In addition, both citation counts and PageRank
fail to take into account the dynamic, evolving nature of the citation
network. Because the patent system grows with time, older patents tend
to have more citations simply because they have been there for a longer
time and, on top of that, the preferential attachment mechanism
(Valverde et al., 2007) further magnified their advantage. This problem
has been long acknowledged and the usual solution is either to limit
citation counts to a fixed citation “time span”, such as the first 5 years
after issuing (e.g., Lanjouw and Schankerman, 2004), or to control for
the grant year in regressions (e.g., Kogan et al., 2017).

Here, we propose an alternative approach, put forward recently by
Mariani et al. (2016) in the context of scientific publications, which can
be applied equally well to citation counts and other centrality metrics,
and produces a single score without (or with dramatically reduced) age
bias.

Our work complements other efforts to identify important items
using citation networks. For instance, Comins and Leydesdorff (2017)
report that Reference Publication Year Spectroscopy, a method that
looks at the temporal distribution of cited references, is able to identify
the biomedical research milestones listed by experts. In the patent lit-
erature, Castaldi et al. (2015) proposed to identify “superstar” patents
as those in the extreme right tail of the citation count distribution,
where a power law behavior was observed. Another popular approach,
main path analysis, was introduced in the bibliometric literature by
Hummon and Dereian (1989), and further developed and applied to

patents by Verspagen (2007). In the spirit of the betweenness centrality,
it seeks to extract important nodes and edges based on how often
geodesic paths pass through them, thus revealing continuity or dis-
ruption in technological trajectories. This aspect was exemplified by
Martinelli (2012) for the telecommunication switching industry, and by
Epicoco (2013) for the green chemistry sector. Triulzi et al. (2017)
measured patent centrality using a normalized version of centrality
metrics, and found that technological domains with central patents also
tend to have faster technological improvement rates (a separately
measured indicator of progress in technological performance). Finally,
as a last example of this rich literature, Martinelli and Nomaler (2014)
proposed to measure knowledge persistence by giving higher value to
patents that are cited by patents that do not cite many patents – an idea
that we will use here too, as PageRank normalizes the received citations
by the outdegree of the citing nodes.

In this work, we focus on comparing PageRank with citation counts,
and age-rescaled metrics with non-rescaled metrics. This allows us to
evaluate whether network-based metrics outperform raw citations
counts, and to determine over which range of time the rescaling pro-
cedure allows us to better identify the significant patents. In addition,
because our analysis follows closely the study of milestone physics
papers by Mariani et al. (2016), we are able to evaluate the similarities
and differences between the scholarly and patent citation data. We find
that patents take much longer than papers to receive citations, which
makes it harder to identify important patents early on.

3. Data

3.1. The US patent citation network

We analyzed the US patents dataset collected by Kogan et al. (2017)
that spans the period between 01-01-1926 and 11-02-2010. As com-
pared to the well-known NBER patent data, this dataset has a vastly
improved coverage. We pre-processed the data to only keep the cita-
tions between patents that were issued within this temporal period,
removing thereby the citations to patents issued before 01-01-1926.
The resulting citation network analyzed in this paper is composed of
N=6,237,625 nodes (patents) and E=45,962,301 directed edges
(citations) between them.

In this dataset, the in- and out-degree distributions of the US patent
citation network are in agreement with previous findings (Valverde
et al., 2007; Csárdi et al., 2007; Silverberg and Verspagen, 2007): the
two distributions are relatively broad and span more than three orders
of magnitude.

In previous works, Mariani et al. (2016) found that PageRank-re-
lated metrics outperform citation-counting metrics in identifying sig-
nificant nodes in a scientific paper citation network, whereas the same
does not happen in a movie citation network (Ren et al., 2017). Ad-
ditionally, Ren et al. (2017) found remarkably different degree-degree
correlations for the two networks: the papers' citation network is
strongly assortative, whereas the movies' citation network is basically
uncorrelated. This observation led Ren et al. (2017) to suggest that the
relative performance of PageRank-related and citation-counting metrics
may be related to the network correlation patterns: when the network is
uncorrelated, PageRank and indegree bring basically the same in-
formation (Fortunato et al., 2008); when there are significant structural
correlations, PageRank brings additional information that may be va-
luable to improve ranking performance.

Fig. 1 shows that the US patent network exhibits strong degree-
degree correlations1: highly-cited patents tend to be cited by other

1 The assortativity plot used here is arguably the simplest method to visualize network
structural correlations, as it simply represents the average (in- or out-)degree of nodes'
neighbors as a function of node (in- or out-)degree. Since node centrality is related to
incoming connections, we focus here on the average indegree of citing and cited nodes as
a function of node indegree.
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highly-cited patents, and to cite other highly-cited patents. This assor-
tative pattern cannot be explained by a null model that preserves the
temporal evolution of node degree (Ren et al., 2017, see Section 5.4 for
details), which suggests that it is a genuine network effect.

In agreement with similar findings for scientific papers (Ren et al.,
2017; Bornmann et al., 2010), Fig. 1A suggests that high-impact patents
are able to inspire other high-impact patents more than expected by
chance, whereas low-impact patents tend to be cited by other low-im-
pact patents; at the same time (Fig. 1B), high-impact patents rely on
other high-impact patents more heavily than expected by chance. Fol-
lowing Ren et al. (2017), the strong degree-degree correlations in the
patent citation network open the door to the possibility that metrics
that take higher-order network effects into account outperform simple
citation counts.

3.2. Expert-selected historically significant patents

In a recent work, Strumsky and Lobo (2015) listed 175 patents
carefully selected “on the basis of consultation with engineers, sci-
entists, historians, textbooks, magazine articles, and internet sear-
ches”. The patents in the list “all started technological pathways which
affected society, individuals and the economy in a historically sig-
nificant manner” (Strumsky and Lobo, 2015). These significant pa-
tents thus provide a good “ground-truth” set of patents that can be
used to discern the ability of different metrics to uncover the sig-
nificant patents. The complete list of significant patents can be found
in Appendix C of Strumsky and Lobo (2015); the list is quite hetero-
geneous and comprises patents ranging from simple objects that are
part of our everyday life (like the toothbrush and the post-it note) to
more sophisticated inventions (like the Game Boy and the Desk Jet
printer).

Presence in the list of significant patents by Strumsky and Lobo is a
binary variable: a patent is either in the list or not; we can therefore
study the ability of the metrics to rank these outstanding patents as high
as possible, in agreement with the main goals of this paper. While there
are 175 significant patents in the Strumsky-Lobo list, we restrict our
analysis to those patents that were issued within our dataset's temporal
span, and remove the design patents which are absent in our dataset.
This leaves us with M0= 112 significant patents.

4. Methods

In this section, we define the metrics used to identify important
patents, and the indicators of performance that we use to evaluate
them. Many network centrality metrics (Lü et al., 2016; Liao et al.,
2017) and bibliometric indicators (Waltman, 2016) have been devised
in the literature. Here, we narrow our focus to four metrics (see Table 1
for a summary): citation count c, PageRank score p, (age-)rescaled ci-
tation count R(c) and (age-)rescaled PageRank R(p). Differently from
citation count, PageRank score takes the whole network structure into
account and weights citations differently according to the centrality of
the citing nodes. Rescaled citation count and rescaled PageRank score

are obtained from citation count and PageRank score, by explicitly
requiring that node score is not biased by node age (see details below).

4.1. Static patent-level metrics

4.1.1. Citation count, c
The citation count of a given patent is simply the total number of

citations the patent has received so far. In terms of the patent citation
network's adjacency matrix A (Aij is equal to one if patent j cites patent
i, zero otherwise), the citation count ci of patent i is defined as

= ∑c Ai j ij; ci is referred to as the node i’s indegree in the network
science language (Newman, 2010). Ranking the patents by citation
count assumes that a patent is important if it is cited by many other patents.

The ranking by citation count is strongly biased by node age in our
dataset. To visualize and quantify this bias, we divide the N patents into
40 equally-sized age-groups based on age. We then count how many
patents from each age group are in the top-f fraction of the patent
ranking by c. For an ideal unbiased ranking, for each age group, we
would expect =n f N/40f

(0) patents in the top-f fraction, with small
deviations. The result is strikingly different for citation count (see
Fig. 2) which underestimates both the oldest and the most recent pa-
tents in the dataset. While the bias against recent patents is expected
(they have had less time to accumulate citations), the bias against older
patents is more surprising, and it can be due to a variety of factors such
a higher propensity to cite patents available electronically, a prevalence
of patents in technological domains for which less citations tend to be
made, patent citation patterns changing with time – for a discussion of
these and other reasons for citation bias, see Jaffe and de Rassenfosse
(2017). To counteract this bias, we use a simple normalization proce-
dure, described in Section 4.2.

Table 1
Metrics considered in this paper together and their main assumptions.

Static Age-rescaled

Citation-
counting

Citation count, c Rescaled citation count, R(c)

A patent is important if it is
cited by many other
patents

Built on citation count by
requiring that patent score is not
biased by node age

Network-based PageRank score, p Rescaled PageRank score, R(p)
A patent is important if it is
cited by other important
patents

Built on PageRank score by
requiring that patent score is not
biased by node age

Fig. 2. Bias by node age of the rankings by the metrics. Patents are divided by their age
into 40 equally-sized groups; the bias by patent age is represented by the number n0.005 of
patents from each age group in the top f=0.5% of the overall patent ranking. The black
horizontal line represents the expected unbiased value =n N0.005 /400.005

(0) . Results for

different (small) values of f are qualitatively similar.

Table 2
A comparison between the average properties of all nodes and the average properties of
the significant nodes in the APS paper and US patent citation network. The significant
nodes are the milestone letters and the Strumsky-Lobo significant patents in the two
datasets, respectively.

Dataset Group of nodes Citations τ3 τ5

US patents Significant patents 105.6 9.6 y 12.0 y
All patents 7.4 24.9 y 31.4 y

APS papers Significant papers 457.0 1.0 y 1.4 y
All papers 11.8 3.6 y 4.8 y

M.S. Mariani et al. Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

4



4.1.2. PageRank, p
Google's PageRank is a node ranking algorithm introduced by Brin

and Page (1998) with the original goal to rank websites in the World
Wide Web. Since then, the algorithm has found applications in a broad
range of real systems (Gleich, 2015; Liao et al., 2017). The PageRank
score pi of node i is defined through the equation (Berkhin, 2005)

∑ ∑= + +
−

> =

p α
A

k
p α

p
N

α
N

1
i

j k

ij

j
out j

j k

j

: 0 : 0out out (1)

where = ∑k Aj
out

l lj is the number of references made by patent j (ki
out

referred to as the node i’s outdegree in the network science language)
and the term (1− α)/N represents the so-called “teleportation term”
(Berkhin, 2005; Gleich, 2015). The algorithm is built on the thesis that
a node is important if it is cited by other important nodes (Franceschet,
2011): the score of a given patent i depends linearly on the scores of the
patents that cited patent i. We set α=0.5 which is the common choice
in citation networks (Chen et al., 2007; Walker et al., 2007; Bruck et al.,
2016).

In practice, the vector of PageRank scores can be obtained from Eq.
(1) by the power iteration method. Starting from a uniform score vector

= ∀p N i1/i
(0) , we iteratively update the scores according to the

equation (Berkhin, 2005)
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: 0

( )

: 0
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Note that the previous equation is the master equation of a twofold
stochastic process on the network where at each step n, a random
walker either performs a jump along the network edges (with prob-
ability α), or “teleports” to a randomly chosen node in the network
(with probability 1− α). The PageRank vector of scores p={pi} can
therefore be interpreted as the stationary state of this Markov process.
We halt the iterations when

∑ − <−p p| | ϵ,
i

i
n

i
n( ) ( 1)

(3)

where we set ϵ=10−9. This procedure guarantees convergence after a
number of iterations smaller than log α/log ϵ, independently of N
(Berkhin, 2005).

While PageRank's basic premise is plausible, the algorithm is static,
whereas real networks evolve in time. This causes the ranking by the
algorithm to be severely biased by node age in growing networks (Chen
et al., 2007; Mariani et al., 2015, 2016; Vaccario et al., 2017). The
ranking by PageRank is strongly biased by node age also in our dataset
(see Fig. 2). PageRank's bias in the patent citation network has different
features with respect to its bias in papers' citation network reported by
Mariani et al. (2016). While in both datasets recent nodes are strongly
disadvantaged by the algorithm, the oldest patents are not the most
overvalued by the PageRank algorithm as opposed to what has been
observed for papers (Mariani et al., 2016). This is a direct consequence
of the significantly smaller citation count of the oldest patents. The
peak of n0.005(p) is shifted to the left from the peak of n0.005(c), which
means that PageRank nevertheless tends to favor older nodes with re-
spect to citation count.

4.2. Time rescaled metrics R(p) and R(c)

The strong age bias of the rankings by citation count and PageRank
score implies that patents that appeared in some time periods are much
more likely to rank well than other patents, independently of their
properties such as novelty and significance. In bibliometrics (Radicchi
et al., 2008; Waltman, 2016) and patent analysis (Triulzi et al., 2017), it
is common to attempt to suppress this bias by age through various
normalization procedures.

Here, we apply the rescaling procedure proposed by Mariani et al.
(2016) to citation count and PageRank. The rescaling procedure

consists of comparing the score si of a given patent i with scores of the
patents that belong to a reference-set of patents of similar age2 as patent
i. By labeling the patents in order of decreasing age3, patent i's reference
set is the set of Δ patents j such that |i− j|< Δ/2.4 Constructing the set
of comparable patents based on a continuously moving window cen-
tered on a focal patent is advantageous with respect to grouping the
patents by year because the latter imposes a sharp distinction between
patents granted very closely in time but on either side of the January 1st
boundary.

Denoting with μi(s) and σi(s) the mean value and the standard de-
viation, respectively, of score s over the patent i’s reference set, the
rescaled score Ri(s) of patent i is given by

=
−

R s
s μ s

σ s
( )

( )
( )

.i
i i

i (4)

In this work, we set Δ=15,000, yet our results are robust with respect
to other choices of Δ (not shown here).

As shown in Fig. 2, the rescaled scores R(c) and R(p) are much less
biased by node age than the original scores c and p: n0.005(R(c)) and
n0.005(R(p)) are remarkably stable across different age groups, and their
value is always close to the expected unbiased value n0.005

(0) . In agreement
with Mariani et al. (2016), Vaccario et al. (2017), Liao et al. (2017), this
shows that the proposed rescaling procedure is effective in suppressing
the temporal biases of the static metrics. By giving to old and recent
patents the same chance of appearing to the top of the ranking, we
expect the rescaled metrics to bring a substantial advantage in identi-
fying valuable patents shortly after issuing. As the rankings by static
metrics are biased toward old patents, we also expect the rescaled
metrics' advantage in identifying significant patents to shrink (and
eventually vanish) as we consider older significant patents. These hy-
potheses are validated in the next Section.

4.3. Evaluation of the metrics' performance in identifying the significant
patents

To make quantitative statements on the ability of the metrics to
single out significant patents of different age, we introduce two eva-
luation metrics: the average ranking ratio and the identification rate.

4.3.1. Average ranking ratio
A straightforward way to assess the metrics' performance in iden-

tifying the significant patents would consist of calculating the average
ranking position of the significant patents t years after they are issued.
However, this simple measure is highly sensitive to the ranking position
of the lowest-ranked items (Mariani et al., 2016).

To prevent this shortcoming, it is preferable to measure the average
ranking ratio of the target items by the different metrics (Mariani et al.,
2016), which is defined as follows. Denoting the rank of patent i by
metric m as ri(m), the ranking ratio of metric m is defined as

̂ = ′
′r m r m r m( ) ( )/min { ( )}i i m i . The metric achieves the best-possible

ranking ratio of one if it ranks a given significant patent best of all
metrics; the lower the value, the better. The average ranking
ratio ̂< >r m( ) of metric m is the average of the ranking ratios ̂r m( )i of all

2 A potential limitation of this approach is that by comparing each patent's score with
only the scores of patents of similar age, it may underestimate the importance of patents
that happened to be issued in periods during which many breakthrough inventions took
place. However, despite the well-known theory of Kondratiev waves and innovation
clustering, robust empirical evidence for the existence of such periods is weak and de-
bated. For instance, Silverberg and Verspagen (2003) found no evidence for innovation
clustering in a list of basic inventions, whereas Korotayev et al. (2011) found an evidence
of Kondratiev cycles in the world-level patent output per inhabitant.

3 We order by increasing ID those patents that are issued on the same day.
4 The temporal window is defined in a slightly different way for patents close to the

beginning and the end of the dataset. For the Δ/2 patents closest to the beginning (end) of
the dataset, the temporal window is given by the Δ oldest (most recent) patents in the
dataset.
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significant patents, and it quantifies how much the metric underper-
forms, on average, with respect to the best-performing metric. A metric
that outperforms all the other metrics for all the target nodes achieves
an average ranking ratio ̂< > =r 1; larger values of ̂< >r indicate a
worse performance.

4.3.2. Identification rate
The identification rate fz(m) – commonly referred to as recall in the

information filtering community (Lü et al., 2012) – of a given metric m
is defined as the fraction of significant patents that are ranked among
the top z N patents by metric m. Hence, while the average ranking ratio
takes all significant patents and their ranking into account, the identi-
fication rate measure focuses on the top-items by each ranking.

4.4. Evaluating the evolution of the metrics' performance with patent age

To uncover the metrics' ability to early identify the significant pa-
tents, we evaluate the metrics' average ranking ratio and identification
rate as a function of patent age. In this way, we are able to untangle the
role of patent age in determining the metrics' performance; for example,
a metric that is biased toward old patents only performs well in de-
tecting old important patents, whereas we expect good early-identifi-
cation metrics to perform well in detecting recent important patents.

To untangle the role of patent age in determining the metrics' per-
formance, we dissect the network evolution by computing the rankings
by the metrics every 6months. At each ranking computation time t(c),
only the patents issued before t(c) are included in the analysis. For
significant patent i (issued at time ti), we measure its age Δt= t(c)− ti at
the ranking computation time t(c). Then, we determine its ranking ratio
values ̂r m t( ; Δ )i for all considered metrics m. Patent i’s ranking ratio

̂r m t( ; Δ )i contributes to metric m’s average ranking ratio ̂< >r m t( ; Δ )
for Δt year-old patents. After having analyzed the whole network his-
tory, we can thus determine the average ranking ratio ̂< >r m t( ; Δ )i of
metric m for Δt years old patents as the average of ̂r m t( ; Δ )i over all the
significant patents included in the analysis.

In the same way, we define the identification rate fz(m;Δt) of metric
m for Δt years old patents as the fraction of significant patents that were
ranked among the top z N patents by metric m when they were Δt years
old.

5. Results

5.1. Metrics' performance on the time-aggregate network

We start by assessing the average ranking ratio (Fig. 3A) and the
identification rate (Fig. 3B) of the metrics on the whole dataset. The
results show a clear advantage of the network-based metrics, p and R
(p), over the citation-counting metrics. According to the average

ranking ratio (Fig. 3A), rescaled PageRank is the best-performing metric
with a small margin over PageRank and a large margin over raw and
rescaled citation count. Rescaled PageRank and PageRank also achieve
the highest identification rates (Fig. 3B).

To understand where the gaps between the metrics stem from, we
inspect the patents that give the largest contribution to c and R(c)’s
ranking ratio – i.e., the patents that are ranked much better by p and R
(p) than by c and R(c). We find a significant contribution coming from
patent 4237224(“Process for producing biologically functional mole-
cular chimeras”, c=285), which is ranked 2nd by ̂ =R p r( ) ( 1), 3rd by

̂ =p r( 1.5), 1079th by R(c) ( ̂ =r 539.5), and 1181st by c ( ̂ =r 590.5).
Importantly, this patent gives the same contribution (equal to one) to
all metrics' identification rate as all the metrics rank it among the top-
0.5% patents. This example shows well that patents that are ranked at
the top of the ranking by all metrics can have very different ranking
ratio values. The second largest contribution to c’s and R(c)’s average
ranking ratio comes from patent 4438032 (“Unique T-lymphocyte line
and products derived therefrom”, c=73), which is ranked 253rd by p
( ̂ =r 1), 562nd by R(p) ( ̂ =r 2.2), 48,742nd by c ( ̂ =r 192.7), 66,014th by
R(c) ( ̂ =r 260.9). To check that the advantage of network-based metrics
was not entirely due to these two patents, we have excluded them from
the analysis and recalculated the metrics' average ranking ratio.
PageRank and rescaled PageRank remain the two best-performing
metrics ( ̂< > =r p( ) 4.2, ̂< > =r R p( ( )) 6.1), yet their edge over the
link-counting metrics ( ̂< > =r c( ) 8.1, ̂< > =r R c( ( )) 10.0) significantly
decreased.

5.2. Age-rescaling matters most for young patents

While the analysis of the previous Section reveals important dif-
ferences among the metrics, the main goal of this manuscript is to
reveal the dependence of the metrics' performance as a function of
patent age, and to assess the metrics' ability to early-identify the sig-
nificant patents. To this end, by following the procedure described in
Section 4.4, we consider the ranking positions5 of the group of expert-
selected significant patent by Strumsky and Lobo (2015) one (Fig. 4
A,D), five (Fig. 4 B,E) and ten (Fig. 4 C,F) years after issuing. Due to
their lack of time bias, the rescaled metrics rank the significant patents
much better than the corresponding static metrics 1 year after issuing
(see Fig. 4 A,D). On the other hand, the ranking positions by rescaled
and static metrics are comparable 10 years after issuing (see Fig. 4
C,F).

The evolution of the ranking position of the significant patents as
evaluated by p and R(p) is shown in Supplementary Movie M1; the same

Fig. 3. Performance of the metrics in identifying the significant patents from the list by Strumsky and Lobo, as measured by the metrics' average ranking ratio (panel A, the lower the
better) and their identification rate (panels B, the higher the better) evaluated on the complete patent citation dataset.

5 The ranking positions considered in this paper are always normalized by the size of
the system at the time when the ranking is computed.
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for c and R(p) is shown in Supplementary Movie M2. The moving dots
in these movies represent the significant patents, and the displacements
of the dots represent the change in the significant patents' ranking
position as they get older6. Movies M1 and M2 show that short after
issuing, all significant patents are ranked higher by rescaled PageRank
than by PageRank and citation count, respectively, consistently with
Fig. 4 A,D. In movie M1 that compares the rankings by p and R(p), as
the significant patents get older, the extent of their displacements in the
ranking plane diminish, and they gradually drift toward the diagonal of
the plane, which means that the gap between their ranking position by
p and R(p) shrinks. After 10 years, most of the significant patents lie
close to the diagonal, which indicates that the rankings of the sig-
nificant patents by p and R(p) are comparable.

5.3. Comparison of the four metrics' performance for different patents' age

The above-discussed Fig. 4 and Supplementary Movies M1–M2
show that the age of the significant patents has a large impact on the
ability of the metrics to identify them. The goal of this section is to
quantify the magnitude and the duration of the advantage of rescaled
metrics in early identifying the significant patents, and to compare the
obtained results with known results for scientific papers (Mariani et al.,
2016).

To quantify how well the different metrics recognize the significant
patents shortly after their issuing, we focus on the M20= 77 patents
that are at least 20 years old at the end of the dataset. By performing the
evaluation procedure described in Section 4.4, we study how their
average ranking ratio and identification rate depend on their age up to
20 years after issuing. We focus thus on a fixed group of target patents,

which allows us to gauge the impact of time on the metrics' perfor-
mance7.

5.3.1. Average ranking ratio
In qualitative agreement with Fig. 4, Fig. 5A shows striking differ-

ences between the metrics' performance. Shortly after issuing, the re-
scaled metrics achieve an average ranking ratio much lower than that of
the non-rescaled metrics. For example, 1 year after publication, Pa-
geRank's and rescaled PageRank's average ranking ratio are equal to
20.8 and 1.6, respectively, which indicates a performance advantage of
one order of magnitude in favor of R(p). The gap between rescaled
PageRank and PageRank (rescaled citation count and citation count)
closes 12 (7) years after issuing. There is therefore a medium-term
temporal window over which the rescaled metrics rank the significant
patents remarkably better than the non-rescaled metrics.

Importantly, once we have suppressed the age bias of c and p, we are
able to reveal the advantage of using (higher-order) network informa-
tion to rank the significant patents instead of simply counting citations,
which manifests itself in the performance advantage of R(p) over R(c).

5.3.2. Identification rate
Fig. 5B shows the dependence of the metrics' identification rate

f0.005(Δt) as a function of patent age. This evaluation measure quantifies
the fraction of significant patents ranked in the top 0.5% by the metrics
when they were Δt years old. The rescaled metrics outperform the non-
rescaled metrics shortly after publication; the gap between rescaled and
non-rescaled metrics closes eventually: p’s performance reaches R(p)’s
performance 12 years after issuing, and c’s performance reaches R(c)’s

Fig. 4. A comparison of the relative rankings (the lower, the better) of the significant patents by c and R(c) one (panel A), five (panel B) and ten (panel C) years after issuing. Only the
patents that received at least one citation at a given age are included. The same comparison between p and R(p) is shown in panels D–F.

6 We only represent the significant patents after they have received their first citation.
This is the reason why during the dynamics, some dots appear on the plane out of no-
where.

7 Patents less than are 10 years old, for example, could not contribute to the age bins
from 10 to 20 years after issuing. Were we including also them in the control group of
significant patents, we would have ended up with a control group with different com-
position for different age bins, which would have confounded the temporal effects that we
focus on here.
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performance 6 years after issuing. These two timescales are consistent
with those observed for the average ranking ratio, and they define a
temporal window over which the rescaled metrics achieve an improved
identification of the significant patents.

5.4. The role of the network structure

In this Section, we address the following question: to which extent
can the improved performance of PageRank-related metrics be ex-
plained by citation count dynamics alone? In other words, once we
control for the effect of citation count dynamics and randomize the rest,
can we reproduce the results in Fig. 5?

To address these questions, we use the the Dynamic Configuration
Model (DCM) introduced by Ren et al. (2017) to generate random
networks that preserve the individual nodes' citation count time-series
observed in the original network. Differently from the widely-used
configuration model (Molloy and Reed, 1995), the DCM preserves the
original network's temporal linking patterns (Ren et al., 2017). In the
DCM, the total system time span T is divided into L layers of equal
duration Δt= T/L. The randomized networks are thus generated by
rewiring the existing connections, within each layer, by preserving each
node's indegree and outdegree variation in that layer (see Ren et al.
(2017) for the details). The expected number of edges Eij(n) from node j
to node i at layer n is given by

=E n
k n k n

E n
( )

Δ ( ) Δ ( )
( )

,ij
i
in

j
out

(5)

where kΔ i
in ( k nΔ ( )j

out ) denotes the indegree (outdegree) increase of
node i (j) in layer n, and E(n) denotes the total number of edges in layer
n. In our work, we set L=100 which results in Δt=310 days.

We compare the metrics' performance in the thus-generated random
networks with the performance observed in the real data. By con-
struction, the model preserves the indegree time-series of the original
network; as a consequence, the performance of the citation count and
rescaled citation count is the same as in the real data (Fig. 6). The
model allows us to assess whether the advantage of network-based
metrics (Fig. 6) is a genuine network effect or if it can be explained by
random fluctuations.

In the randomized networks, the network-based metrics have no
advantage with respect to citation-counting metrics in identifying the
significant patents (Fig. 6A). In fact, R(p) falls slightly below R(c) for
almost every patent age. Fig. 6B shows that the performance difference
between the performance of PageRank-related metrics in real and
randomized networks is significantly positive. We conclude that con-
trolling for the individual nodes' citation count dynamics is not suffi-
cient to explain our findings. Therefore, (higher-order) network struc-
ture plays a significant role for the advantage of network-based metrics
with respect to citation-counting metrics in identifying the significant
patents.

Fig. 5. Performance of the metrics in identifying the significant patents from the list by Strumsky and Lobo over a 20-year time window after their issuing, as explained in the main text.
(A) Average ranking ratio as a function of patent age. (B) Identification rate as a function of patent age.

Fig. 6. (A) Metrics' performance in identifying the significant patents in a random network generated with the Dynamic Configuration Model. The lines and the shaded areas around the
lines represent the mean and the standard error, respectively, measured over 12 realizations of the randomization process. (B) Difference between the performance observed in the real
data and that observed in the randomized networks generated with the Dynamic Configuration Model.
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5.5. Top patents

In this section we inspect the top-ranked patents. For simplicity, we
focus on the top-15 patents as ranked by PageRank (Table 3) and re-
scaled PageRank score (Table 4).

Table 3 shows that also patents with relatively few citations can
reach the top of the ranking by PageRank score, which confirms the
idea that in citation networks, the PageRank algorithm can identify
“hidden gems” (Chen et al., 2007) that are underestimated by citation
count. A paradigmatic example in this sense is patent 3813316 (“Mi-
croorganisms having multiple compatible degradative energy-gen-
erating plasmids and preparation thereof”). The patent is ranked 6th by
PageRank despite having been cited only 16 times. By inspecting the
patent's neighborhood, it emerges that the reason for this is that the
patent has been cited by patents with relatively large citation count
and, additionally, small outdegree. For example, patent 3813316 is the
only patent cited by patent 4237224 (“Process for producing biologi-
cally functional molecular chimeras”, c=285, included in the
Strumsky-Lobo list of significant patents) which is ranked 3rd by Pa-
geRank. Highly scoring patent 3813316 refers only to patent 3723248
(“Method for producing ketoglucaric acid”) which is consequently
ranked 38th by PageRank despite having received only one citation.
Small outdegree of the citing patents is crucial because it implies that a
large portion of the citing patents' score will contribute to the cited
patent's score in the score redistribution process defined by Eq. (1).

Table 4 shows that the top-15 patents by rescaled PageRank span a
wider temporal range (1934–2010) than the top-15 by PageRank

(1942–1996), which is a direct consequence of the age-bias removal.
On the other hand, Table 4 also points out a potential limitation of the
rescaling procedure. Among the 15 top-ranked patents, four are from
2010 (the last year in the dataset) and received only one citation. This
happens because only a few among the most recent patents received
citations, which results in temporal windows with a large fraction of
patents with zero citations. Within such a temporal window, a patent
can achieve large rescaled score thanks to one single citation. A possible
solution for this issue is to only include the patents whose temporal
windows contain a certain minimal number of incoming citations.
However, we prefer to show the scores of all the patents in order to
highlight the subtleties associated with the evaluation of very recent
patents.

6. A comparison of the APS papers' and the US patents' citation
network dynamics

Section 5 validates the rescaled metrics as better indicators of sig-
nificance of recent patents than the non-rescaled metrics. Yet, there is a
remarkable difference between the behavior of the identification rate
observed in our analysis of the US patent dataset (Fig. 5B) and that
reported by Mariani et al. (2016) in their analysis of the American
Physical Society (APS) paper citation network: Mariani et al. (2016)
found that R(p) ranks more than 30% of the Physical Review Letters
milestone letters in the top 0.5% already 1 year after publication,
whereas it only ranks 1% of the Strumsky-Lobo significant patents in
the top 1% 1 year after issuing.

Table 3
Top-15 patents as ranked by PageRank score p (asterisks mark the Strumsky-Lobo significant patents).

Rank Patent ID Patent title Issuing date c p ⋅ 105

1 4683195 Process for amplifying, detecting, and/or-cloning nucleic acid sequences 28-7-1987 1956 2.824
2 4683202 Process for amplifying nucleic acid sequences 28-7-1987 2169 2.691
3 4237224 (*) Process for producing biologically functional molecular chimeras 2-12-1980 285 2.687
4 4395486 Method for the direct analysis of sickle cell anemia 26-7-1983 71 1.731
5 4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project

droplets
2-2-1988 1962 1.416

6 3813316 Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof 28-5-1974 16 1.399
7 5536637 Method of screening for cDNA encoding novel secreted mammalian proteins in yeast 16-6-1996 422 1.344
8 4558413 Software version management system 10-12-1985 1956 1.326
9 4358535 Specific DNA probes in diagnostic microbiology 9-11-1982 436 1.324
10 2297691 Electrophotography 6-10-1942 588 1.312
11 4463359 Droplet generating method and apparatus thereof 31-7-1984 1694 1.263
12 5523520 Mutant dwarfism gene of petunia 4-6-1996 1139 1.221
13 4812599 Inbred corn line PHV78 14-3-1989 179 1.187
14 4740796 Bubble jet recording method and apparatus in which a heating element generates bubbles in multiple liquid flow paths to

project droplets
26-4-1988 1663 1.093

15 5103459 System and method for generating signal waveforms in a CDMA cellular telephone system 7-4-1992 1208 1.034

Table 4
Top-15 patents as ranked by rescaled PageRank score R(p) (with Δp=15,000). Asterisks mark the Strumsky-Lobo significant patents.

Rank Patent ID Patent title Issuing date c R(p)

1 7764447 Optical element holding device, lens barrel, exposing device, and device producing method 27-7-2010 1 104.9
2 4237224 (*) Process for producing biologically functional molecular chimeras 2-12-1980 285 99.1
3 2297691 Electrophotography 6-10-1942 588 91.8
4 7749477 Carbon nanotube arrays 6-7-2010 1 84.8
5 7784029 Network service for modularly constructing a software defined radio 24-8-2010 1 78.9
6 5536637 Method of screening for cDNA encoding novel secreted mammalian proteins in yeast 16-7-1996 422 78.9
7 4683195 Process for amplifying, detecting, and/or-cloning nucleic acid sequences 28-7-1987 1956 78.2
8 5523520 Mutant dwarfism gene of petunia 4-6-1996 1139 76.9
9 4395486 Method for the direct analysis of sickle cell anemia 26-7-1983 71 75.0
10 4683202 Process for amplifying nucleic acid sequences 28-7-1987 2169 74.6
11 7779788 Animal training system with multiple configurable correction settings 24-8-2010 1 73.3
12 1970578 Assistants for the textile and related industries 21-8-1934 241 73.3
13 3813316 Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof 28-5-1974 16 72.7
14 5572643 Web browser with dynamic display of information objects during linking 5-11-1996 1120 71.8
15 4723129 Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets 2-2-1988 1962 68.9
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The qualitative difference between Figs. 5B and 3B in Mariani et al.
(2016) for significant papers motivated us to explore the differences
between the dynamics of (significant) patents and that of (significant)
papers. To this end, we analyzed an extension of the dataset8 used by
Mariani et al. (2016), and compared the obtained results with those
obtained for the US patent citation network. The results of our analysis
are summarized in Table 2. The table shows that both the significant
papers and the significant patents: (1) tend to be cited more than or-
dinary papers and ordinary patents, respectively, in the respective da-
tasets; (2) tend to accrue citations faster than ordinary papers and or-
dinary patents, respectively. Like patents of high economic value (Lee
and Sohn, 2017), the Strumsky-Lobo significant patents tend to receive
the first few citations quicker than ordinary patents.

However, there is a striking difference between the dynamics of the
two datasets: the APS papers tend to accrue citations much quicker than
US patents. For example, the time needed for papers that received at
least three total citations to receive their first three citations is much
smaller for papers (3.6 years on average) than for patents (24.9 years).
The same is true if we restrict the analysis to the significant papers
(1.0 years) and patents (9.6 years), respectively. These results point out
that the smaller identification rate for patents shortly after issuing is
partly a manifestation of the slower citation dynamics of patents with
respect to the citation dynamics of papers.9

7. Conclusions

Our paper has two main messages.
First, we find that using the whole network topology instead of only

counting citations brings a substantial advantage in identifying the
significant patents. Both the observed degree-degree correlations
(Fig. 1) and the performance edge of PageRank-related metrics over
citation-counting metrics (Fig. 5) suggest that important patents build
on other other important patents. This supports the hypothesis that
high-impact patents “stand on the shoulders of giants”, in a similar way
as scientific papers (Bornmann et al., 2010), although the high pre-
valence of examiner-added citations in patents makes the analogy im-
perfect.

Second, we show that removing the time bias of static centrality
metrics allows one to identify significant patents much earlier than it is
possible with conventional static metrics. The rescaling procedure
which we use to remove the time bias is efficient and thus applicable
even to large-scale datasets (Vaccario et al., 2017).

There are some limitations to our work that deserve to be discussed.
First of all, we have pointed out that the early-identification of sig-
nificant patents is more difficult than that of significant papers, because
patents take more time to accumulate citations (Section 6). Second, the
time-rescaled metrics are based on the assumption that a good ranking
of the patents should give the patents from different age periods the
same chance to get to the top of the ranking. While this assumption is
customary in paper citation analysis (Waltman, 2016), it creates a bias
against patents that appear in periods of intensive breakthrough in-
ventive activity, if they exist. Third, the rescaled metrics evaluate the
most recent patents on the basis of citations received in a relatively
short time period. While this may be justified by the finding that pa-
tents in rapidly growing domains are highly cited shortly after issuing
(Benson and Magee, 2015), it potentially misses out “sleeping-beauty”
(Ke et al., 2015) patents that received a substantial amount of citations
only many years after issuing.

We see three major directions for extending this research. The most

obvious is to acknowledge that there are different citation practices
across technological fields, just as different scientific fields exhibit
different citation patterns (Waltman, 2016). Based on the results by
Vaccario et al. (2017), we know that the rescaling procedure can in
principle be extended to suppress the bias by technological field as well.
However, while it is natural to suppress biases by scientific field of
paper-level metrics due to their use in research evaluation, it remains
unclear whether a similar approach would be the most effective
strategy to rank patents. Besides, using patent classification information
is problematic when the goal is to rigorously test predictive ability,
because the classification system is changing often and many patents
are reclassified (Lafond and Kim, 2017). Second, while there exist
theoretical explanations for how the broad citation count distribution
and the bias of citation-based metric by node age emerge as a result of
the dynamics of the system (Valverde et al., 2007; Newman, 2009;
Medo et al., 2011; Mariani et al., 2015), a model-based explanation of
the strong degree-degree correlations and the improved PageRank
performance observed in our dataset is still lacking. Third, while we
studied PageRank as a paradigmatic network-based metric because of
its plausible assumption (“a node is important if it is cited by other
important nodes”), other network-based metrics (Liao et al., 2017) can
be analyzed in a similar way to improve our understanding of which
metrics best identify important patents.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.techfore.2018.01.036.
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