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A B S T R A C T

The increasingly uncertain dynamics of technological change pose special challenges to traditional technology
forecasting tools, which facilitates future-oriented technology analysis (FTA) tools to support the policy pro-
cesses in the fields of science, technology & innovation (ST&I) and the management of technology (MOT), rather
than merely forecasting incremental advances via analyses of continuous trends. Dye-sensitized solar cells are a
promising third-generation photovoltaic technology that can add functionality and lower costs to enhance the
value proposition of solar power generation in the early years of the 21st century. Through a series of tech-
nological forecasting studies analyzing the R&D patterns and trends in Dye-sensitized solar cells technology over
the past several years, we have come to realize that validating previous forecasts is useful for improving ST&I
policy processes. Yet, rarely do we revisit forecasts or projections to ascertain how well they fared. Moreover,
few studies pay much attention to assessing FTA techniques. In this paper, we compare recent technology ac-
tivities with previous forecasts to reveal the influencing factors that led to differences between past predictions
and actual performance. Beyond our main aim of checking accuracy, in this paper we also wish to gain some
sense of how valid those studies were and whether they proved useful to others in some ways.

1. Introduction

Newly emerging science and technologies (NESTs) are expected to
bring both considerable wealth and numerous opportunities and chal-
lenges. As NESTs can be radically novel, relatively fast-growing, and
characterized by a certain degree of coherence, these forms of tech-
nologies tend to be more dependent on intermittent advances (Rotolo
et al., 2017). The anticipated (disruptive) impacts on markets and on
society are more difficult to foresee than a steady and incremental in-
novation process, and the highly uncertain dynamics of NESTs pose
special challenges to traditional technology forecasting tools.

In an environment facing the complexity of a growing number of
NESTs, decision makers need to capture current and strategic in-
telligence on a range of technologies and make forward-looking as-
sessments. Over the years, future-oriented technology analysis (FTA)
tools have expanded beyond forecasting incremental advances. Two
papers made a case for methodological enrichment to address ex-
panding challenges, contributing to the FTA blend of “technology

forecasting” and “foresight” approaches (Coates et al., 2001;
Technology Futures Analysis Methods Working Group, 2004). Others
compile alternative FTA-related methods, distinguishing types and
study purposes (Porter, 2010; Rader and Porter, 2008).

Most FTA endeavors now purport to inform policy processes for
those addressing Science, Technology & Innovation (ST&I) and the
management of technology (MOT). Hence, the ability to explore mul-
tiple potential innovation pathways (Robinson and Propp, 2008) be-
comes essential. Under such a background, the forecasting innovation
pathways (FIP) framework including 4 stages and 10 steps has been
constructed to analyze NESTs (Robinson et al., 2013). This framework
incorporates “tech mining” (Porter and Cunningham, 2005) to ascertain
developmental patterns, key participants, and potential application
targets by analyzing large datasets drawn from ST&I publication and
patent databases, as well as contextual information resources (e.g., ABI
Inform). As a multi-step process for analyzing ST&I information re-
sources, tech mining provides empirical knowledge necessary to ad-
dress, and then help assess mature or emerging fields of science and
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technology (Porter et al., 2011). To complement the tech mining pro-
cess, expert-based inputs, derived from interactive workshops, help to
digest the empirical findings and lay out prospective developmental
pathways.

The FIP approach can be treated as a bridge methodology that
builds on a strong empirical base by incorporating informal expert
opinions. FIP aims to elucidate the forward pathways R&D activities
might take in translating ideas into applications and is a valuable tool
for exploring future development trajectories (Porter et al., 2015).
However, we need to accept that the activity of technology forecasting
is focused on changes in technology; it is not deterministic. That is,
technology forecasting does not seek to predict a single certain future
(Roper et al., 2011a). Therefore, validating past results is an important
step in adapting FTA-based methodologies to help analyze complex
technologies with significant infrastructure in place.

Photovoltaics is one emerging technology that has gathered much
attention over the past several years due to its potential for decreasing
costs and its broad applicability. Within this innovative technology, a
promising third-generation form of photovoltaics – Dye-sensitized solar
cells (DSSCs) – is gathering momentum as an economically and en-
vironmentally-viable alternative to traditional devices (Parisi et al.,
2014). DSSCs technology has witnessed increasing R&D activity since
1991 and is anticipated to continue toward rapid commercialization in
the future (Baxter, 2012). The program in Science, Technology, and
Innovation Policy (STIP) at the Georgia Institute of Technology is ac-
tively involved in characterizing the nanotechnology industry and its
dynamics through data mining techniques, such as bibliographic data-
base analysis (yielding bibliometric data) and patent database analysis
(yielding intellectual property data), as well as through text-mining,
interviews, and other research methods (Youtie et al., 2018). Ad-
ditionally, since 2008, the Innovation Co-Lab (STIP, Manchester In-
stitute of Innovation Research, University of Manchester (MIoIR), and
the School of Management and Economics, Beijing Institute of Tech-
nology) has been analyzing DSSCs R&D activity patterns through a
series of studies that include: (1) research profiles and technology op-
portunity analysis (Guo et al., 2010; Guo et al., 2016; Huang et al.,
2011; Ma et al., 2014; Wang et al., 2015); (2) collaboration networks
and patterns (Wang et al., 2014a, 2014b); and (3) the FIP approach,
which includes technology delivery systems (Guo et al., 2012a), esti-
mating innovation risks (Guo et al., 2012b), and technology road-
mapping of evolutionary pathways (Huang et al., 2014; Zhang et al.,
2014a, 2014b, 2016; Zhou et al., 2014).

With such objectives in mind, we revisit our earlier assessments and
projections with an updated DSSCs data collection to assess the accu-
racy of past forecasts and rethink how to improve the reliability of
technology forecasting. FTA purports to inform MOT and ST&I policy
processes. Yet, rarely do we revisit forecasts or projections to ascertain
how well they fared, nor does previous research pay much attention to
assessing the efficacy of the forecasting method used. One of our aims is
to check accuracy, to gain some sense of how valid those studies were
and whether they proved useful to others in some ways. Additionally,
we want to assess the degree to which these analyses did or did not
make good use of the information available at the time. Moreover, we
seek indications of which information is key, and how FTA processes
can better use that information.

The remainder of this paper consists of five sections. Following this
general introduction, the related reviews on technology forecasting are
provided in the “Related Literature” section. The “Framework and
Data” section describes the framework we used for assessing the tech-
nology forecasts along with the data we used in the analysis. The
“Results and Findings” section explores how the stage of a technology's
development was identified, the focal countries and regions, the pro-
minent technological actors, the distribution of sub-fields, and the past
and future potential of various sub-technologies through a comparative
analysis. The focus is on comparing recent technology activities with
previous forecasts to seek the influencing factors that led to differences

between past predictions and actual performance. The “Conclusions
and Discussions” section reviews the results in terms of the proposed
research questions and identifies the limitations and promising oppor-
tunities found in this research for the future.

2. Related literature

Technology forecasting offers means to help enterprises formulate
technology strategies and policies by identifying core and emerging
technologies (Cho and Shih, 2011). Much research has been undertaken
in the study of technology forecasting, and this section provides a re-
view of relevant technology forecasting methods in the literature.

2.1. Qualitative methods: represented by Delphi technology forecasting
approach

The Delphi method is viewed as an efficient procedure for obtaining
a reliable consensus opinion from a group of experts through a series of
intensive questionnaires interspersed with controlled opinion feedback
(Dalkey and Helmer, 1963). It is a qualitative decision-making method
and the accuracy of the decisions are mainly determined by the
knowledge level of the experts. Delphi is well suited to technology
forecasting, particularly because of its ability to produce long-range and
large-scale forecasts, and, with this method, core technologies can be
identified and forecasted relatively easily (Cho et al., 2004).

However, conventional Delphi methodologies have some drawbacks
and, therefore, several alternatives have been developed to overcome
these shortcomings. For example, Yun et al. (1991) developed a tech-
nology forecasting approach based on a semi-Markov model, which
primarily focuses on capturing the information that has been skipped in
conventional Delphi survey data. To enhance Delphi's analytical power,
Hussler et al. (2011) proposed increasing diversity within the panel
groups. Bloem da Silveira Junior et al. (2018) combined other techni-
ques, including morphological analysis, decision matrices, interviews,
and prioritization analysis, with the Delphi method to construct tech-
nology roadmaps. More recently, a real-time spatial Delphi technique
was introduced to provide an innovative way of eliciting expert opi-
nions using a simple and intuitive platform (Di Zio et al., 2017).
Wakefield and Watson's (2014) reappraisal of Delphi 2.0 perhaps pro-
vides one of the best showcases for how a qualitative approach such as
Delphi can be quite useful for exploring complex issues in a given do-
main by gathering selected experts on a particular topic.

2.2. Quantitative methods: represented by Science & Technology(S&T) data
analysis

Methods based on expert opinions, such as Delphi, provide a sub-
jective consideration of contextual changes through the implicit mental
models that each expert has internalized about the nature and like-
lihood of change. However, these methods tend to be both time-con-
suming and costly. To ameliorate these problems, many researchers in
the field of technology forecasting have turned to quantitative methods.
A combination of tools can be used to help properly forecast technology
trends (Daim et al., 2006). Quantitative methods are useful when there
is enough directly measurable data available (Rueda and Kocaoglu,
2008). Science & technology documents, such as patents and scholarly
papers, can provide such data to a certain degree (Harell and Daim,
2009).

Many interdisciplinary quantitative research methods have in-
tegrated bibliometric and patent analysis into technology forecasting.
Overall, these approaches can be divided into four types. (1) Multi-
indicator-based analyses, which introduce new metrics, like citations
per patent, information about patent families, patent share, increases in
the number of patents, and patent activity. For example, Choi et al.
(2014) analyzed next-generation mobile communication. (2) Text-
based analysis including machine learning approaches, such as
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clustering similar technologies based on the patent feature vector (PFV)
(Kyebambe et al. (2017), K-means clustering based on support vector
clustering (KM-SVC) (Jun et al., 2012), and Latent Dirichlet Allocation
(LDA) for topic identification (Kim et al., 2015). (3) Citation-based
analyses include You et al.'s (2017) forecast on the development trends
of coherent light generator technology. (4) Hybrid approaches, such as
enhancing the future-oriented performance of morphology analysis by
combining it with conjoint analysis and citation analysis (Yoon and
Park, 2007), applying co-classification analysis, co-word analysis and
main pathway analysis to reveal implicit or unknown patterns and
discover significant clues about technology prospects (Huang et al.,
2017).

2.3. The combination of qualitative and quantitative analysis

However, exclusively using either a qualitative or a quantitative
approach may result in an incomplete view of a technology develop-
ment process (Haegeman et al., 2013). Technology forecasting is
sometimes viewed as an effort to collect information to posit about the
future, the plausibility and limits of a technology, its internal con-
sistency and conformity with models and data, or its consistency with
expert judgment (Eerola and Miles, 2011). Expert knowledge might
give a reasonable explanation of qualitative data, but combining expert
knowledge with a qualitative appraisal can often improve forecast ac-
curacy (Chen and Kung, 1984). As some researchers point out, a
quantitative approach, such as text mining, can reveal invisible in-
formation in patent data, and citation analysis may provide insights
into the evolutionary pathways of a technology. But also, expert ana-
lysis can provide intelligence not readily discerned from data analyses,
or that a layperson cannot glean (Li et al., 2015).

This type of research has been conducted in several technology
fields. For example, Chen et al. (2010) combined bibliometric & patent
analysis with an expert survey to forecast the hydrogen energy and fuel
cell technology. Zhang et al. (2013) generated a global technology
roadmap for electric vehicles using a hybrid bibliometric and qualita-
tive methodology.

While much of the research above includes aspects of the design of
technology forecasting approaches, some studies focus on the selection
and comparisons of technology forecasting methods. Selecting a fore-
casting technique that considers the characteristics of the technology
and the resources needed, such as cost and time, is essential. Intepe
et al. (2013) proposed a solution for selecting a technological fore-
casting technique that includes seven selection criteria and twelve
forecasting alternatives. Cheng et al. (2008) adopted a fuzzy AHP
method to obtain selections for technology forecasting methods by
professionals. Wilmot (1971) published a brief critical analysis of how
various existing technological forecasting methods might influence the
resulting conclusions about the nature of future developments.

This limited reviews shows many attempts to analyze future-or-
iented activities or provide insights to assist technology forecasting.
However, research that revisits existing technology forecasts or its
methods seems relatively rare. By re-examining the analyses and con-
clusions produced with technology forecasting methods, adjustments
and suggestions can be made to enhance their accuracy and reliability.
To this end, this paper is an attempt to assess technology forecasting,
especially science & technology data-based forecasting, through an
empirical comparison of our past technological forecasts on DSSCs and
current, updated analyses based on actual information that includes a
further six years of evolution.

3. Framework and data

3.1. Conceptual framework

Technology forecasting focuses on changes in technology, such as its
functional capacity, timing, or significance. Within the scope of

technology forecasting, it is common to answer variants of the so-called
reporter's questions:

(1) “What?”–what technologies or parts of technologies are likely to
become the most promising sectors?

(2) “When?”–when will those technological trends reach certain levels?
(3) “Who?”–who will play a leading role in the R&D and potential

market for a given technology?
(4) “Where?” –which countries or regions will make outstanding con-

tributions to a technology's performance?
(5) “How?”–how will a technology evolve from one stage to the next?
(6) “Why?” – why will a technology evolve, and why will that change

happen during a certain period of time?

Compared to technology forecasting itself, assessing a technological
forecast or the method used to produce the forecast seeks to evaluate
the activity in technological development from the perspective of data
collection, technology life cycle analysis, basic technology profiling,
and enhanced technology detection. The time-lag between past and
present provides a window for revisiting previous forecasts and ana-
lyses. An overview of the framework we used for assessing data-driven
technology forecasting is shown in Fig. 1.

Technology forecasting is likely to be more successful when diverse
and effective sources of information are integrated to produce a con-
vincing and holistic portrait of possible futures. As data sources and
data quality become the foundational factors in most data-based tech-
nology forecasting systems, so it is necessary to reconsider whether the
search strategy is effective or acceptable in the new circumstance.
Through experience, we have come to realize that searching for data in
a domain with many commonly used terms can be particularly chal-
lenging. Hence, it is often easier to identify relevant research on a
technical topic like DSSCs, than one involving a lot of broader computer
science or managerial terminology, e.g., “Big Data” (Huang et al.,
2015). Selecting the right data source depends upon the specific tech-
nologies and topics being addressed. Further, the research question
often drives the search for a corresponding data source. However,
overall multiple sources of data are often beneficial for gathering a
greater amount of information and for making more accurate forecasts.
Patent data usually comprises a main source of information because it
not only provides actual clues about the most important discoveries
companies and inventors seek to protect, it also provides information
about technologies that are nearing the market.

Technology forecasting methods can be classified as either extra-
polative or normative – namely, by whether they extend present trends
or look backward from a desired future objective to track the devel-
opments needed to achieve those goals (Roper et al., 2011a). Given that
the main purpose of this assessment is to revisit previous analyses, we
try to compare results using the same or a similar approach as the
original study. However, one visible discrepancy that needs to be ac-
counted for is that technology forecasting based on real activity must
pay attention to both the functional capacity and relevant character-
istics of the technology, and also consider the structural interactions
between the technology and the elements of its context. Technology
often presents different development tracks; therefore, it is necessary to
consider the technology life cycle when creating a distinct R&D strategy
plan. The technology life cycle comprises a pattern of dynamic char-
acteristics pertaining to technology, in which its innovative and eco-
nomic outcomes change over time. Therefore, after obtaining the da-
taset of a target technology, it is important to judge which stage the
technology reaches at given times. In general, the life cycle can be di-
vided into four parts: seeding phase, growth phase, maturity phase and
decline phase. When we assess the technology stage, the main object is
to analyze whether the cycle is maintaining or has shifted to the next
developmental phase.

Similar to technology forecasting, the analytical scope of assessing
technology forecasts centers on the key questions of “who, what, where,
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when, how, and why.” In technology forecasting, one often wants to
identify the leading country, the main R&D institutions, and the most
prominent inventors, based on the assumption that they will perform
about as well going forward as they have in the past. However, the
process of technological evolution is dynamic, so the role of a techno-
logical actor may change through various stages of development.
Likewise, the best conceptual framework for representing an organi-
zation's beliefs, assumptions, and goals may also change. For such a
basic profiling respective, the main research questions addressed here
are 1) what role shifts do we see for countries (priority country and
family country) and regions, and 2) how do inventors and patent as-
signees shift among leading, emerging and declining status in various
stages? Further, a key purpose of much technology forecasting is to
oversee the larger technological picture under the conditions at the
time, so what technological fields transform and how technological foci
evolve, turn out to be essential issues. Further exploration on techno-
logical fields and technological foci are treated as enhanced technology
detection. Along with basic technology profiling, the primary task of
these “revisits” is to answer the following three questions:

• First, what are the differences between past predictions and
actual performance? These differences can be revealed by applying
the same or a similar approach as the past forecast to analyze the
current situation. Examining past performance to improve present
performance can also be used to strengthen future approaches to
technology forecasting. Therefore, examining the results of past
forecasts can be beneficial for determining whether they were suc-
cessful in limiting uncertainty (Roper et al., 2011b). Comparative
processes that involve either single or hybrid methods can be used to
conduct the analyses from multiple dimensions.

• Second, what causes differences between earlier forecasts and
actual developments? This question seeks to identify factors that
have influenced the results throughout the forecast phases. It is

necessary to distinguish whether these factors are internal (such as
data limitation) or external (such as misleading methods), con-
textual oversights (e.g. the growth of disruptive technology) or
faulty assumptions (e.g. unconscious biases).

• Third, how to narrow the differences and improve the validity
and reliability of technology forecasting? The narrow range of
probable futures presented in a forecast, augmented with continued
updates, provides a sound basis for moving forward to im-
plementation. Therefore, assessing a technology forecast means
tracking the differences, explaining the uncertainties, and bridging
the gap by improving the technological parameters, surveying the
environmental context, and converging diverse approaches based on
complementary strengths.

This paper attempts to identify the strengths and weaknesses of our
previous DSSCs analyses in terms of data characteristics, projection
accuracy, and the stability of the actors. The results should provide
insights for improving current FTA methodologies and validating other
FTA analyses. For this analysis, we mainly selected 2010 as the
boundary for comparison between our previous studies and this study.

3.2. Data retrieval

Obviously, in a data-driven analysis, the quality of the data is cri-
tical. Accurate data-based forecasting of emerging technologies is still
problematic due to data issues, as affected by the qualities of data
sources and the strategy of data retrieval. In the past few years, our
team has worked with multiple DSSCs search strategies. The search
strategy for DSSCs has been tuned several times. A prominent previous
search strategy and the current one are arrayed in Table 1. After re-
peated verification, the search query we favor is: ABD= ((Dye* or
Pigment*) and (Sensiti*) and (Solar* or Photovoltaic*) and (Cell* or
Batter*)).

Fig. 1. A framework for assessing data-driven technology forecasting.
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In this paper, we update DSSCs searches in Derwent World Patents
Index (DWPI) from Derwent Innovation (DI), a platform that provides a
comprehensive patent solution covering more than 50 patent-issuing
authorities. The comparative search results are shown in Fig. 2. We can
see that current retrieval results cover most of the previous records and
don't present a large difference compared with the previous search re-
sults. The dominant feature of Fig. 2 is that ~98% of the patents re-
trieved are common to both searches.

We read the abstracts of the 333 records (187+146) not included
in both search sets. We conclude that the newly added 187 records
mostly belong in the scope of DSSCs [to illustrate – “manufacturing
method of dye sensitive solar panel for display substrate of cellular
phone, involves coating nano-sized crystalline titania powder on glass
substrate, and plasticizing titanium film at specific temperature”
(Patent NO. KR2013050322)]. And, the excluded 146 records fall
mostly outside the category of DSSCs [e.g., “electrochromic device,
useful e.g. as rearview mirror, comprises first substrate having trans-
parent conductor coated surface, second substrate having second con-
ductor coated surface, and electrochromic medium disposed between
substrates” (Patent NO. US2004257633)]. Above all, the current search
terms are much easier to understand. Therefore, we believe our current
search terms are effective to conduct this research. Ultimately, we re-
trieved the records from DWPI database on September 10. 2017, re-
sulting in 8155 DSSCs-related patent records published between 1991
and 2016.

4. Results and findings

4.1. Refine technology life cycle

Understanding long-term patterns of innovation is the most funda-
mental aspect of technology forecasting and public policy planning.
Technology forecasting calls for a dynamic perspective, so identifying
the current stage in a technology's life cycle is essential for estimating
its future development trends (Gao et al., 2013). Various growth curves
have been used to represent technology's life cycles, such as logistic,
gompertz, weibull curves and the generalized function (aka richards'
curve). Overall, the analytical results from past literature demonstrate
that models based on logistic growth curves (S-curves) are a highly
effective means of quantifying technology forecasting with cumulative
publications or patents activity (Chen et al., 2011).

Logistic analysis involves the decomposition of growth and diffusion
patterns into S-shaped logistic components. Most previous studies tend
to apply a logistic model without further consideration. However, the
technological development trends can sometimes resemble a succession
of several curves (i.e., so-called envelope curves), and the overall lo-
gistic behavior of a technology tends to be hard to discern and analyze
if the selection of growth form is inappropriate. Here, we introduce the
online analytics tool- Loglet Lab (http://www.logletlab.com) to assist
our analyses. The parameter statistics for the period 1991–2010 and
1991–2016 are shown in Table 2. In both stages, the results for most
parameters indicate that a 1-wave model performed better than a 2-

Table 1
Past and current DSSCs search strategies.

Type Search strategy

Past ABD= (((dye-sensiti*) or (dye* same sensiti*) or (pigment-sensiti*) or (pigment same sensiti*) or (dye* adj sense)) same ((solar or photovoltaic or photoelectr* or
(photo-electr*)) same (cell or cells or batter* or pool*))) OR ((ABD= (((dye- ADJ photosensiti*) or (dye same photosensiti*) or (pigment- ADJ photosensiti*) or
(pigment same photosensiti*)) same ((solar or photovoltaic or photoelectr* or (photo-electr*)) same (cell or cells or batter* or pool*))) OR ABD= (((dye- ADJ
optoelectri*) or (dye same optoelectri*) or (pigment- ADJ optoelectri*) or (pigment same optoelectri*) or (dye- ADJ opto-electri*) or (dye same opto-electri*) or
(pigment- ADJ opto-electri*) or (pigment same opto-electri*)) same ((solar or photovoltaic or photoelectr* or (photo-electr*)) same (cell or cells or batter* or pool*)))))
AND (ICR= (H01G* or H01M* or H01L* or G03C*)) OR ABD= ((((dye or pigment) and sensiti* and (conduct* or semiconduct*)) same electrode*) and electrolyte*)
AND (PY > = (1991) AND PY < =(2016));

Current ABD= ((Dye* or Pigment*) and (Sensiti*) and (Solar* or Photovoltaic*) and (Cell* or Batter*)) (PY > = (1991) AND PY <=(2016))

Note: ABD denotes Abstract; ICR represents the International Patent Classification (IPC); PY denotes the publication year.

Fig. 2. The comparative search results in literature and pa-
tents.

Table 2
Parameter of a logistic model for DSSCs patenting, 1991–2010 and 1991–2016.

1991–2010 1991–2016

Parameter 1-Wave 2-Wave 1-Wave 2-Wave

Phase 1 Phase 2 Whole fit Phase 1 Phase 2 Whole fit

SSE 26,489 597,313 100,600 597,313 123,916 2,606,835 401,407 2,697,728
RMS 47 173 120 173 85.4 361 200 322
MAD 43.7 131 98.8 131 70 278 171 234
MAPE 0.115 0.535 0.836 0.518 0.0637 0.473 0.646 0.443
SE 54.3 187 159 207 94.1 392 239 367
ln[MLE] −63.2 −132 −43.4 −132 −99.7 −148 −67.2 −188
AICc 135 272 101 283 207 304 144 393
R2 0.994 0.952 0.967 0.997 0.962 0.996

Note: SSE - sum of square errors; RMS - root mean square; MAD - mean absolute deviation; MAPE - mean absolute percent error; SE - standard error; MLE - maximum
likelihood estimation; AICc - Akaike information criterion for model selection.
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wave model. Thus, we chose the 1-wave logistic model.
Fig. 3 plots the composite fit by showing trends based on cumulative

activity. The patents drawn from the DWPI database exhibited a re-
markable increase after 2000. Both fits predict sustained growth after
2010, but the fit for 1991–2016 predicts a descending trend after 2012.
Even though the time lag is a common factor that cannot be ignored,
the trend for cumulative patents represents an inflection point for
slower growth.

To further judge the DSSCs' technology life cycle, we also model the
growth using S-shaped curves. The parameterization of the logistic
function, which is useful for time-series datasets, is also added to Fig. 3.
What is surprising is that the midpoints for the two logistic curves and
the carrying capacities are different. In general, a technology's life cycle
can always be divided into four stages: the seeding stage, the growth
stage, the maturity stage, and the saturation stage. The midpoint is
treated as the sign where a technology enters the maturation stage.
Based on this assumption, we can identify that DSSCs are currently
entering the maturation stage, where management decisions tend to be
about evolutionary improvements in features, quality, and costs.
Moreover, DSSCs are likely to enter the saturation stage around 2018,
when other new and emerging solar cell technologies might be gar-
nering more attention. Such a conclusion could not be drawn based on
the data up to 2010. Further, if the technology forecast was made in
2010, the results would probably show that DSSCs technology would

reach maturity in 2010, rather than 2012. However, it is important to
note that this problematic judgment is more likely due to inadequate
data rather than the forecasting method itself. Therefore, with frequent
forecasts, it is necessary to limit the time horizon to an appropriate
range.

4.2. Compare basic technology profiling

4.2.1. The changes in technical powers and technological markets
At the country level, the priority country and the patent family

country are the main dimensions of technology forecasting activities.
The first priority country generally serves as a proxy for the geo-
graphical origin of the patents (since most patents don't provide in-
ventor location). Considering the high cost of patent applications and
maintenance, patents pursued in multiple countries tend to have a
higher perceived commercial potential. In general, more patent appli-
cations in a certain country or region reflect a higher perception of a
commercial market for developing this technology. So, patent family
analysis is used to understand the layout of a country's potential mar-
kets.

To better figure out any gap between what we indicated before and
the current situation, we select the leading 5 priority/family countries/
regions and plot the related value in different stages. The arrows show
the value changed from certain stages to next stages, shown as Fig. 4.

(a) 1991-2010 (b) 1991-2016

Fig. 3. Composite fit of the DSSCs patents for 1991–2010 and 1991–2016.
Note: ‘K' means the “carrying capacity” of the model (the saturation value of the S-shaped logistic); ‘a’ is the “growth rate”, which is related to the time for the logistic
curve to rise from 10% of k to 90% of ‘k'; ‘T' is the midpoint of the logistic curve (the time when p(t) reaches 50% of ‘k'.

(a) The role shift in period 1991-2010 and 2011-2016 (b) The role shift in period 2008-2010, 2011-2013 and 
2014-2016

Fig. 4. Leading countries/regions in DSSCs in different periods.
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The work conducted by Zhou et al. (2014) and published in 2014 by
using the data from 1991 to 2012 (the data are incomplete for 2011 and
2012, while the data in 2010 are almost complete) figured out the
following points: 1) the leading countries/regions were different for
each period; 2) the DSSCs patenting concentration spread from Europe
to Japan, to the US, and then on to the whole world; 3) Japan and the
US were major countries with a lot of DSSCs patents; South Korea also
had heavily engaged DSSCs in recent years.

In Fig. 4(a) and (b), the x- axis represents patent family country/
regions and the y- axis represents priority country/regions. Both from
the perspective of priority country/regions and patent family country/
regions, the findings partly accord with previous conclusions that Japan
gains the advantage in the past period, and South Korea plays a more
and more important role in recent years. Japan holds an absolute
technical advantage in the DSSCs field with outstanding performance in
the application of inventions throughout the period and has held the
greatest potential market share for the past 20 years. South Korea has
also been very active in the field since 2008, holding a favorable po-
sition until the most recent period. But the emerging role of China was
missed by our previous analyses. This may be due to rapid growth being
hard to predict in the early stage with limited information. In fact,
China has played a notable role after 2011 when China's share of patent
applications increases significantly. In addition, the number of patents
that obtain priority in the US keep relatively stable, in every stage.

Compared with taking the whole stage as a time window, the trend
in the recent 3 years can better profile the situation looking forward,
both in 1991–2010 and 2011–2016, see Fig. 4(b). Looking at the ob-
servations for 2008, we can sense that both China and South Korea have
the potential for growth into a promising product market. And, in fact,
this prediction is verified by the data for 2011–2016. Based on the
trends for 2014–2016, China is likely to attain the greatest proportion
of market share in the near future, and China, Japan, and South Korea
will continue to be the key players in the technological field of DSSCs.
On one hand, patenting concentration is spreading from regions to the
whole world; on the other hand, Asia is becoming the most desired
patenting target, which goes beyond expectations of our previous re-
search.

For the kind of omissions and discrepancies in market expansion
and application activity, the role shift patterns are mainly affected by
national policy, because government plays a more and more important
role in introducing and promoting the development of emerging in-
dustries. The government's supports stimulate vigorous development,
but when the external environment and internal policy change, the
industry in question is apt to slump.

4.2.2. The alternation of highlighted technological actors
We now turn to the most prominent organizations in technological

exploration and patent applications. In our previous two papers pub-
lished in 2012 (Guo et al., 2012a; Guo et al., 2012c), the main patent
assignees are indicated. But as the time period used in these papers is
inconsistent, so the leading actors and their roles are different. The
comparative results of leading patent assignees in DSSCs fields can be
seen in Table 3.

Internal actor analyses for informing a technology delivery system
model for DSSCs conducted by Guo et al. (2012a) indicated Samsung
SDI Co. Ltd., Konarka Technologies Inc., Fuji Film Corp., Nanosolar
Inc., Nanosys Inc. and Sony Corp. stand in the leading positions. But one
year later, the situation changed, as viewed from the other research
(Guo et al., 2012c). Except for Samsung SDI Co. Ltd., Konarka Tech-
nologies Inc. and Sony Corp., who still stand in leading positions, Na-
nosolar Inc. and Nanosys Inc. are replaced by Fujikura Ltd., Sharp Kk.
and Dong Jin Semichem Co. Ltd. After tracing the message offered by
official introduction and commercial reports, we find some clues related
to their backgrounds and development history. Nanosolar Inc., a de-
veloper of solar power technology, used thin film technology to man-
ufacture CIGS solar cells since 2002, but ultimately failed commercially

in 2013. Nanosys Inc. maintained its role in designing products for
displays based on quantum dots by developing one of the largest
quantum dot patent portfolios with over 200 issued and pending pa-
tents worldwide.1 The use of inorganic semiconductors as effective light
sensitizers in a DSSCs configuration has awakened great interest in the
past few years, in opposition to the conventional DSSCs, inorganic
quantum dots play a direct role in the recombination process (Hod
et al., 2011). For Nanosys, quantum dot enhancement film become its
development foci, and that might be the most important clue of the role
change.

When we looked for the leading technological actors in the current
stage, Fujikura Ltd., Fuji Film Corp., Sony Corp., Samsung SDI Co. Ltd.,
Sharp Kk. and Dong Jin Semichem Co. Ltd. still keep their competitive
advantage in the technology battles and commercial competition.
Konarka Technologies Inc. and Nippon Oil Corp. no longer stand out in
this recent stage. Konarka Technologies Inc., was a solar energy com-
pany founded in 2001; it obtained the licensee rights to DSSCs tech-
nology from the Swiss Federal Institute of Technology (EPFL), a pioneer
in DSSCs research. However, this promising company filed for Chapter
7 bankruptcy protection and laid off its approximately 80-member staff
in late May 2012.2 For the Nippon Oil & Energy Corporation, a Japa-
nese petroleum company, its main businesses include crude oil, petro-
leum products and other energy-related activities. In 2008, Japan's
Sanyo Electric Co. Ltd. has agreed to start talks with Nippon Oil Corp.
over a thin-film solar cell joint venture, and to launch a joint company
named Sanyo ENEOS Solar Co. Ltd. for the production and sale of thin-
film solar panels in 2009. However, Sanyo ENEOS Solar has not brought
great success for Nippon Oil Corp, and the role of Nippon Oil Corp. is
replaced by other newcomers in DSSCs.

In addition, we not only highlight the leading patent assignees
across the whole period of study, but also on the emerging actors in
relatively recent years. The active technology assignees in 1991–2010
and 2011–2016 are plotted in Fig. 5. These 13 assignees were selected
according to their top-5 ranked performance in the 1991–2010,
2008–2010, 2011–2016, and 2014–2016 periods. The lines in the
scatter plots indicate the median values of the assignees. The detailed
patent activity information is provided in Table 4.

From our observations of the scatterplots and Table 4, we classified
these assignees into three types:

• Leading actors, who are active in every interval, including recent
years. Fuji Film Corp. (FUJF) is the leading patentee in every period,
indicating its strong and persistent ability for technological in-
novation. Other leading patent assignees, such as Konica Corp.
(KONS) and Fuji Film Corp. (FUJF) also performed well in patent
activity in the past two decades.

• Declining actors, who performed well in the initial stage but have
become relatively inactive in the recent stage. Some have not even
applied for patents. Sony Corp. (SONY) was rather active in the early
stage, but has gradually lost their advantage, especially over the past
three years. The same is true for some other assignees, including
Samsung SDI Co. Ltd. (SMSU), Dainippon Printing Co. Ltd. (NIPQ),
Dong Jin Semichem Co. Ltd. (DOSE), Dokuritsu Gyosei Hojin Sangyo
Gijutsu So. (NIIT), and Irico Group Co. Ltd. (CCEC).

• Emerging actors, who were in the shade at the beginning of devel-
opment but have performed noticeably better in recent stages. These
actors may not have played a core role in establishing the techno-
logical market, but they have the potential to impact their particular
area in the near future. These assignees include Sekisui Chem. Ind.
Co. Ltd. (SEKI), followed by Merck Patent Gmbh. (MERE) and
Shanghai Inst. Ceramics Chinese Acad. Sci. (CAGU).

1 http://www.nanosysinc.com/who-we-are/
2 https://www.bostonglobe.com/business/2012/07/07/why-did-solar-cell-

company-konarka-fail/tDEdGzmMQO6nNF55RfjvNJ/story.html
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Looking back over the discrepant role changes of leading DSSCs
patent assignees, we see the notable role in previous R&D has changed a
lot: Samsung SDI Co. Ltd. and Sony Corp. presented a declining trend in
recent years; Konarka Technologies Inc. and Nanosolar Inc. came upon
bankruptcy when facing various troubles in terms of technological
bottlenecks, slow development cycle, complex production problems and
external competitors; Nanosys Inc. turned its efforts to quantum dot
sensitized solar cells rather than DSSCs. The super-companies, such as
Samsung SDI Co. Ltd., Sony Corp. and Fuji Film Corp., have enough
capacity to develop and update technologies, and it is relatively easy for
them to obtain competitive advantage. But for the domain's emerging
actors, such as Konarka Technologies Inc. and Nanosolar Inc., their
developments heavily depend on funding from venture capital firms.
Therefore, when we monitor such players, we cannot fully focus solely
on empirical patent information, but also need to consider the company

background to further check and enrich this ‘competitive technical in-
telligence’ through human expertise.

4.3. Validate enhanced technology detection

4.3.1. The transformation in distributed technology fields
Another essential aspect of technology forecasting is understanding

a technical domain at the right level of aggregation. The systematic
properties of a patent classification system, such as International Patent
Classification (IPC), are used to identify the specific detailed techno-
logical areas that make up different technologies and industries.

Previous work by Zhou et al. published in 2014 (Zhou et al., 2014)
used 8-digit IPCs to trace the evolutionary path for DSSCs by dividing
patent records into several time intervals, and identified key sub-
ordinate research areas for different time intervals. Based on the

Table 3
Comparative results of leading patent assignees in DSSCs fields.

Source Guo et al. (2012a) Guo et al. (2012c) Current research

Time span 1991–2009 1991–2010 1991–2016
Patent databases DWPI DWPI DWPI
Leading assignees Samsung SDI Co. Ltd. (16)

Konarka Technologies Inc. (8)
Sony Corp. (6)
Fuji Film Corp. (6)
Nanosolar Inc. (6)
Nanosys Inc. (6)

Samsung SDI Co. Ltd. (65)
Nippon Oil Corp. (27)
Fujikura Ltd. (17)
Sony Corp. (17)
Sharp Kk. (17)
Dong Jin Semichem Co. Ltd. (16)
Konarka Technologies Inc. (11)

Fujikura Ltd. (218)
Konica Corp. (158)
Fuji Film Corp. (157)
Sony Corp. (157)
Samsung SDI Co. Ltd. (151)
Sharp Kk. (144)
Dainippon Printing Co. Ltd. (133)
Dong Jin Semichem Co. Ltd. (112)

(a) The active technology assignees in 1991-2010 (b) The active technology assignees in 2011-2016

Fig. 5. Scatterplots of the active technology assignees for (a) 1991–2010, and (b) 2011–2016.

Table 4
Top patent assignees in different periods, 1991–2016.

Patents assignees Records 1991–2010 2008–2010 2011–2016 2014–2016 Role

Fujikura Ltd. (FUJD) 218 99 41 119 44 Leading
Konica Corp. (KONS) 158 77 68 81 24 Leading
Fuji Film Corp. (FUJF) 157 60 13 97 56 Leading
Sony Corp. (SONY) 157 77 27 80 3 Declining
Samsung SDI Co. Ltd. (SMSU) 151 65 30 86 13 Declining
Sharp Kk. (SHAF) 144 93 31 51 21 Leading
Dainippon Printing Co. Ltd. (NIPQ) 133 64 34 69 6 Declining
Dong Jin Semichem Co. Ltd. (DOSE) 112 39 39 73 19 Declining
Sekisui Chem. Ind. Co. Ltd. (SEKI) 110 11 8 99 54 Emerging
Dokuritsu Gyosei Hojin Sangyo Gijutsu So. (NIIT) 101 77 31 24 5 Declining
Merck Patent Gmbh. (MERE) 91 15 6 76 37 Emerging
Irico Group Co. Ltd. (CCEC) 85 41 41 44 0 Declining
Shanghai Inst. Ceramics Chinese Acad. Sci. (CAGU) 46 4 4 42 32 Emerging
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revealed linkages between these key sub-technologies, they linked the
same IPC numbers to different time intervals and demonstrated the
gradual evolutionary pathways for DSSCs sub-technologies over time.
The main opinions and predictions are summarized in Table 5.

In Table 5, seven IPCs are listed as heighted sub-technology fields.
As the H01M-10/40 is transferred to H01M 10/05-H01M 10/0587 and
no longer existed in the 2010 edition IPC scheme, so the other 6 IPCs
are selected to compare the real situation and previous opinions, as
shown in Fig. 6(a). H01L-31/04 (semiconductor devices adapted as
photovoltaics conversion devices) and H01M-14/00 (electrochemical
current or voltage generators) share similar trends. They keep leading
positions until 2012 and then decrease to a very low amount in 2016.
There is no doubt they are the core research area within the DSSCs
industry, but they cannot hold the leading position in the several years
to come. H01G-09/20 (light-sensitive devices), as previously judged,
advances at a relatively continuous growth rate to become the most
prominent IPC in recent years. H01L-31/042 (PV modules or arrays of
single PV cells) stands out for its impressive increase in 2013 and 2014,
but comes across a sharp drop subsequently. H01L-51/42 (employs
organic materials as the active part for solid state devices) has not at-
tained rapid development. C09B-23/00 (methine or polymethine dyes,
e.g. cyanine dyes) has not yet shown strongly in patent activity.

In addition to the IPCs identified by our previous research, some
emerging IPCs warrant attention – see Fig. 6(b). The criteria for
choosing target IPCs is based on the number of patents for the chosen
IPCs reaching 160 or more, which corresponds to the minimum IPC
activity presented in Fig. 6(a). It indicates that most of these chosen
IPCs emerge after 2005, except for H01L-51/00 (Solid state devices
using organic materials as the active part). H01L, which relates to
semiconductor devices, is the biggest subordinate emerging research

area in the field of DSSCs, and 6 IPCs belongs to this subclass, including
H01L-31/18 (Processes or apparatus specially adapted for the manu-
facture or treatment of these devices or of parts thereof semiconductor
devices), H01L-31/0224 (Electrodes of semiconductor devices), H01L-
51/48 (Processes or apparatus specially adapted for the manufacture or
treatment of such devices or of parts thereof solid state devices), H01L-
51/44 (Details of solid state devices), H01L-51/46 (Selection of organic
materials), and H01L-51/00. Besides, H01G, relating to basic electric
elements such as capacitors, rectifiers, switching, light-sensitive or
temperature-sensitive devices of the electrolytic type, is another note-
worthy subclass. It includes H01G-09/04 (Electrodes of electrolytic
capacitors) and H01G-09/042 (characterized by the material of elec-
trodes). Specially, H01G-09/042 is the unique IPC that shows a strong
growth trend in patents in 2015 and 2016.

In general, most evolutionary trends for sub-technology DSSCs fields
heavily depend on the technology life cycle. In the early exploring
stage, the foci are scattered and it is hard to pinpoint the potential
components. When the technology enters the growth stages, the core
devices, processes and apparatus get increased attention to promote the
whole technology forward. When it comes to the maturity phase, the
overall growth trends may suffer an obvious decrease but the material-
related fields remain promising prospects for R&D and subsequent pa-
tenting. Therefore, when we make a prediction, the development stages
should be carefully observed and the main technology functions should
be identified and distinguished. Moreover, the new combinations of
technologies (existing and/or emerging) and many socio-economic
forces (e.g., fluctuations in demand, regulations, ethical or environ-
mental concerns) may also change a developmental trajectory and
technology filing evolutionary trends.

Table 5
Main analyses and predictions of sub-technology fields using 8-digit IPCs.

IPC Main technology content Analyses and predictions

H01L-31/04 Semiconductor devices adapted as photovoltaic [PV]
conversion devices.

It is a core research area within the DSSCs industry and has maintained a rapid growth rate. There is
a high possibility that it will stay in the leading position in this industry for several years to come.

H01M-14/00 Electrochemical current or voltage generators (in energy
conversion processes).

Same with H01L-31/04.

H01G-09/20 Light-sensitive devices. It changes steadily and advances to a different level with each stage. The research attention has
increased at a relatively constant rate.

H01L-31/042 PV modules or arrays of single PV cells. It has become a popular research area.
H01L-51/42 The technology that employs organic materials as the

active part for solid state devices.
It is an emerging sub-technology that is rapidly developing.

C09B-23/00 Methine or polymethine dyes, e.g. cyanine dyes. It increases slowly but steadily. Nevertheless, this is an important area for DSSCs, so more attention
should be paid to this subfield.

H01M-10/40 Organic electrolyte (transferred to H01M 10/05-H01M
10/0587).

It emerges during the period of 2000–2003, but this technology nearly disappears after 2008.

Note: Based on the paper indicated, the data for the time period from 1991 to 2009 are accurate, but for the years 2010 and 2011, data values are estimated. The
original evolutionary trend map for DSSCs technology includes these estimated values.

(a) The heighted IPCs in previous research (b) The other emerging IPCs from current view

Fig. 6. Publication trends of leading DSSCs IPCs, 1991–2016.
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4.3.2. The evolution of potential technology foci
One of our previous analyses on DSSCs using the FIP approach

provided a framework for shaping the potential innovation pathways
over a timeframe (Guo et al., 2012c). This framework helped to locate
the obstacles and opportunities that are likely to facilitate or inhibit
progress along a particular pathway. This framework sets out a pre-
scribed procedure for analysis: the literature is reviewed first, followed
by an initial database search. The database search results are text mined
to identify local expertise. Face-to-face interviews with some of those
experts provide input for the first evaluation of the analyses. Then, a
workshop is conducted to focus on mapping likely innovation avenues
following the process described and demonstrated by Robinson and
Propp (2008). These expert workshops involve a wider spectrum of
experts and stakeholders for more extended interactions (e.g., a full
day). A key element of many future-oriented technology analyses is the
expert forecasting workshop. These workshops provide a means of
combining codified and tacit knowledge to explore the plausibility of
various technology options. They also provide key intelligence for as-
sessing the potential innovations that may stem from each option
(Huang et al., 2012). In tandem, a multi-path map of the technology's
future course is developed – in our case DSSCs. Such visualizations
stimulate workshop interactions and create a framework for drawing
out the intelligence held by the experts in the workshop–a scaffold upon
which to locate their knowledge. The main ideas of the results from the
analysis in (Guo et al., 2012c) are presented in Table 6.

In this paper, we attempt to validate the results previously derived
based on the updated dataset. Usually, the “what” question is especially
challenging. Some fielded records contain helpful content, such as
keywords in paper abstracts and classification codes for patents
(Newman et al., 2014). Hence, we first applied natural language pro-
cessing (NLP) to extract terms and words in the merged titles and ab-
stract fields of patents. We then followed “term clumping” steps to clean
and consolidate topical content, mainly using a combination of thesauri
and fuzzy matching routines (Zhang et al., 2014c). After selecting the
main technology foci in four DSSCs sub-technologies, we made a matrix
of these terms by publication year. Here, we only care about the ma-
terials and products in DSSCs for comparisons and updates.

In terms of the advances in materials R&D, the main technology foci
of DSSCs materials in four sub-technologies for the period of
2001–2016 are presented in detail in Fig. 7. The color in the corre-
sponding grid indicates the relative degree of boom for the whole
period. From red to green, the degree is in descending order. We es-
tablished that among the various nano-structured materials that are
used as a semiconductor layer in DSSCs photoanodes, titanium dioxide
(TiO2), zinc oxide (ZnO), and tin dioxide (SnO2) are still the most
important materials, continuing from the early stage to now. But the
developmental level of cadmium sulfide (Cds), copper indium dis-
elenide (CIS), and cadmium telluride (CdTe) fell behind our previous
predictions. In addition, we developed a sense that previous forecasts

appeared rough, with few detailed messages, and were hard to trace.
Thus, the time-series-based examination of sub-technologies offers an
inspiring perspective to enhance forecasting for potential technology
foci.

At the level of DSSCs products, previous analyses (Table 6) in-
dicated that 3D solar cells and nanoparticle-based solar cells would
likely emerge over the short-to-medium term, and that organic solar
cells and quantum dot solar cells would blossom over the longer term.
[Keep in mind that these data and their patterns are based on our DSSCs
patent searches; that is, they concern these as sub-topics within DSSCs.]
Fig. 8 presents the annual trends for nano-enhanced solar cell-related
products. As shown, organic solar cells grew rapidly from 2008 but
began to decrease from 2013, rather than continuing to develop. In fact,
organic solar cell research began 30 years ago but has attracted sig-
nificantly more scientific and economic interests over the last decade,
triggered by a rapid increase in power conversion efficiency (Hoppe
and Sariciftci, 2004). However, as many other new types of solar cells
have emerged in recent years, its growth has turned into decline. Na-
noparticle-based solar cells indeed saw remarkable gains over the past
several years. In addition, the predicted trend for silicon thin-film solar
cells and quantum dot solar cells were well informed and projected at
the right levels. Nanoparticle cells have since seen a decline, but
quantum dot solar cells have maintained a stable growth rate with a
high possibility that they will continue to develop and maintain an
important position in the future. The development of 3D solar cells has
not met expectations and has not been widely explored, even though it
shows promise for improvements in conversion efficiency by absorbing
virtually all of the light.

Tracing the innovation pathways of potential technology foci offers
an important tool set to approach real improvements in forecasting
emerging topics and their potential applications. However, the com-
parative results show there is still a gap that cannot meet full ex-
pectations. On one hand, previous work like (Guo et al., 2012c) lacks
the effective method to provide appropriate level content when facing
the abstract record results that pertain to a particular technology. On
the other hand, combining empirical with expert analyses seems pro-
mising to address “what” issues, but intelligibly clumped phrases are
needed to appropriately provided for expert review to point out key
topics and technologies for further scrutiny. Therefore, an effective
method to extract technical content for technological intelligence turns
out to be an alternative solution. For example, topic modeling appears
to have utility to reduce the cycle time, the complexity, and analyst
input required for a technology analysis (Newman et al., 2014). Such an
approach presents an attractive scalability, suggesting the possibility to
move beyond abstracts into full text analysis. However, such a method
based on analytical software can offer help in most reducing time-
consuming steps, but it still requires effective assessment by human
efforts and domain knowledge.

Table 6
Ingredients of multipath exploration for DSSCs.

Goals Presenta Short/medium term Long term

Envisioned application areas Grid-connected Off-grid Personal product
Anticipated potential product platforms Conventional solar cells;

Sillicon thin-film solar cells
3D solar cells;
Nanoparticle-based solar cells

Organic solar cells;
Quantum dot solar cells

Functionalities expected to made available A large surface area could increase light
absorption;
Provide new film deposition methods to
reduce cost

Large surface area could help charge
separation;
Multiple excition generation (MEG)

Tailor optical properties through
its size

Nanostructures that are expected to be applied to
solar cells

Nanoparticle;
Quantum dot

Nanowise; Carbon nanotubes

Advances in material R&D Titanium dioxide (TiO2);
Zinc oxide (ZnO);
Tin dioxide (SnO2)

Cadmium sulphide (Cds);
Copper indium diselenide (CIS);
Cadmium Telluride (CdTe)

Note: Here, “present” means that time is around 2010.
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(a) Main Technology Foci of DSSCs Photoanodes, 2001-2016

(b) Main Technology Foci of DSSCs Sensitizers, 2001-2016

(c) Main Technology Foci of DSSCs Electrolytes, 2001-2016

(d) Main Technology Foci of DSSCs Counter-electrodes, 2001-2016

Fig. 7. (a). Main technology foci of DSSCs photoanodes, 2001–2016, (b). Main technology foci of DSSCs sensitizers, 2001–2016, (c). Main technology foci of DSSCs
electrolytes, 2001–2016, (d). Main technology foci of DSSCs counter-electrodes, 2001–2016.
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5. Conclusions and discussions

The paper proposes a framework for assessing data-driven tech-
nology forecasting and uses that framework to revisit our previous re-
search on DSSCs using an updated patent dataset. After addressing the
technology life cycle to locate whether the technology has progressed
through developmental phases as previous indicated, we compared the
basic technology profiling and validated enhanced technology detec-
tion. We conducted a comparative empirical study to contrast the re-
sults in terms of the technology's stage in its country/regional focus and
the prominent actors. We then attempted to identify role changes
among leading, emerging and declining status as DSSCs progress
through various stages. In addition, we further explored evolution of
technological sub-fields and technological foci to figure out what are
the differences. We seeked for what factors may cause the differences
when the results shows that some preceding predictions correspond to
actual performance; but others do not.

We conclude that a number of factors account for these differences:
First, data quality is the foundation of data-based technology fore-
casting, including its veracity and completeness. Veracity can be en-
hanced by using an appropriate search strategy on a reliable data
source. But insufficient data is an innate problem that cannot be totally
avoided. For example, inaccuracies in our forecasts on DSSCs's stage in
its lifecycle in a previous study were in part because we could not al-
ways obtain the most recent data. Therefore, frequent monitoring (data
updating) is a recommended way to deal with this imperfection.
Second, technology forecasting methods are empirical indicators of
sociotechnical changes, and no approach is perfect. We cannot rely
heavily on a single method, but rather aggregate diverse approaches
with complementary strengths need to mitigate the limitations of any
method alone. Third, future-oriented analyses are characterized by
complexity and dynamism, so less emphasis needs to be placed on the
leading actors or trends in the current stage, in favor of the emergent
actors and trends, which are more likely to influence the near future.

Although the development of technology follows a certain path
dependence, the evolutionary trend sometimes “jumps,” rather than
tracking neatly, due to various uncertain external factors and somewhat
random mutations along the evolutionary path. In the “Managing the
present from the future” section of Forecasting and Management of
Technology, the authors give a dozen recommendations for technology
forecasting. We agree with their thesis that, “The future is very much an
open system with fuzzy, impenetrable boundaries in both space and
time. Images of the future must accommodate uncertainty and be
adaptable, yet provide focal points to guide present actions” (Roper
et al., 2011b). Technology forecasting offers a relevant opportunity in
this direction and is currently an up-and-coming area of research.
Forecasters can learn much from re-analyzing past predictions, and

there is value in paying more attention to the retrospective by assessing
what we have done as a means to improving what we should and will
do going forward.
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