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A B S T R A C T

A recently developed PDE-constrained stochastic inverse analysis algorithm for spatial and statistical char-
acterization of soil parameters from geophysical measurements, considering uncertainty due to limited mea-
surements and sensor noise, is exemplified and validated. A 60m × 60 m geotechnical site in Garner Valley, CA is
used as the validation testbed. Advanced geophysical test measurements – in terms of velocity waveforms at a
few locations on the surface due to surface excitations using a mobile shaker – are available for the site. The
algorithm inversely analyzes the available measurements to probabilistically estimate the elastic parameters of
the soil at the site up to a depth of 40 m. The algorithm relies on (1) hypothesizing the soil parameters to be
heterogeneous, anisotropic random fields, (2) making prior assumptions on them, (3) numerically simulating the
geophysical experiment using the finite element method in conjunction with a stochastic collocation approach,
and (4) fusing simulated measurements with experimental measurements using a minimum variance framework
to update the prior assumptions on the soil parameter random fields. The estimated elastic parameters of the soil
are presented in terms of marginal mean and marginal standard deviation profiles of the soil's P- and S-wave
velocities as well as their correlation structures in the x-, y-, and z-direction. In ascertaining the accuracy of the
inverse analysis algorithm, the geophysical experiment is numerically re-simulated with the estimated P- and S-
wave velocity profiles and the model predicted velocity waveforms are compared against the field observations
at all the measurement locations. Comments are made at appropriate places regarding several aspects of the
algorithm in highlighting the lessons learned through this validation effort towards accurate stochastic full
waveform inversion of geophysical measurements.

1. Introduction

Estimation of soil parameters at any geotechnical sites using geo-
physical measurements typically relies on some kind of inverse analysis.
Existing analysis techniques range from simplified but widely used
spectral analysis of surface waves (SASW; [1]) to high-fidelity partial
differential equation (PDE) constrained full waveform inversion (FWI;
[2]) technique. The SASW approach analyzes only the surface waves
and yields approximate, layered profiles of the S-wave velocity of soils.
The FWI technique, on the other hand, analyzes all types of waves that
result from a geophysical experiment. It is computationally more ex-
pensive, but yields more accurate estimates of the spatial variability of
S- as well as P-wave velocities of soils at any sites. All the existing
techniques, however, are deterministic in nature and can not account
for uncertainty due to limited measurements and any measurement
error, both of which are inevitable in characterizing any geotechnical

sites using geophysical measurements.
To overcome the drawbacks of the deterministic analysis techni-

ques, the authors, recently, developed a scalable computational ap-
proach to perform PDE-constrained FWIs of geophysical measurements
in the probability space by considering the main sources of un-
certainties in the soil parameter estimation process [3]. Hypothesizing
the soil properties to be three-dimensional, heterogeneous, anisotropic,
non-Gaussian random fields, the developed approach utilized a Gaus-
sian mixture model (GMM) in conjunction with the generalized poly-
nomial chaos (gPC) to approximate the random field soil properties
with a finite number of random variables. It, then, employed a
minimum variance framework to fuse sparse geophysical measurements
with predictions from a stochastic finite element model of the geo-
physical experiment in estimating probabilistic characteristics of the
soil properties. A non-product quadrature method known as the con-
jugate unscented transformation (CUT) technique was used to reduce

https://doi.org/10.1016/j.soildyn.2019.05.010
Received 21 March 2018; Received in revised form 12 March 2019; Accepted 6 May 2019

∗ Corresponding author.
E-mail addresses: sparida@buffalo.edu (S.S. Parida), kallolse@buffalo.edu (K. Sett), psingla@psu.edu (P. Singla).

Soil Dynamics and Earthquake Engineering 124 (2019) 35–57

Available online 28 May 2019
0267-7261/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02677261
https://www.elsevier.com/locate/soildyn
https://doi.org/10.1016/j.soildyn.2019.05.010
https://doi.org/10.1016/j.soildyn.2019.05.010
mailto:sparida@buffalo.edu
mailto:kallolse@buffalo.edu
mailto:psingla@psu.edu
https://doi.org/10.1016/j.soildyn.2019.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2019.05.010&domain=pdf


the computational burden associated with the stochastic finite element
simulation and with the minimum variance framework for model-data
fusion. The algorithm was verified using synthetic measurements from
a fictitious geophysical experiment.

While the approach developed in our prior work can be used to
efficiently compute the statistical information (such as the mean or
covariance) associated with the model output or a quantity of interest,
for a real-life model-data fusion one often needs to worry about proper
field alignment while computing the weighted average from a finite
number of samples. A simple average of many ensembles of a model
output at each spatial grid point may not preserve the physical char-
acteristics (e.g., periodicity) of the model output. This issue often arises
while conducting ensemble average in meteorological problems. For
example, the ensemble average may not show physical flow char-
acteristics (such as the vortex) although each ensemble member include
physical flow characteristics [4,5]. To motivate for this point, let us
consider the free vibration of a spring mass system. It is well-known
that the natural frequency of a spring mass system depends on the
spring constant and the mass of the system. For a given value of the
spring constant, the displacement of mass is a periodic function and the
trajectory of the system in phase plane (displacement vs. velocity) is an
ellipse. Fig. 1(a) shows the phase plane trajectories for a spring mass
system for different samples of spring constant assumed to be a uniform
random variable over prescribed bounds. The ensemble average of
these phase plane trajectories at each time is shown in Fig. 1(b) and
does not depict the periodic characteristic of each realization of spring-
mass system. Although the ensemble average is not required to depict
the physical characteristic of individual realization, it is desired to have
a mathematical representation in which the ensemble average preserves
the physical system behavior. For example, it is a common practice to
represent motion in a central force field by using conic section para-
meters (known as orbit parameters) rather than cartesian coordinates so
that ensemble average also leads to a conic section. Similarly, one can
preserve the physical characteristic of the spring-mass system output by
taking the ensemble average in the frequency domain: Fig. 1(c) shows
the phase plane trajectory for the spring-mass system corresponding to
the ensemble average in the frequency domain. In general, one needs to
take the average of special feature parameter in a model output to
preserve the physical characteristic of the model output.

In this work, we have exploited the spectral content of a geophysical
experiment output to define the feature vector while computing dif-
ferent statistical information (e.g., mean and variance) to conduct the
inverse analysis. We have tested the effectiveness of the developed al-
gorithm when applied to a real geotechnical site in order to qualify and
overcome the challenges that such a problem poses.

A 60 m × 60 m parcel of the NEES@UCSB site at Garner Valley, CA

is chosen as the validation site. For the site, measurements, in the form
of velocity waveforms, from an advanced geophysical experiment,
performed by Bielak et al. [6], are available. We have stochastically
inverted the geophysical measurements in probabilistically estimating
the P- and S-wave velocities of the soil at the site up to a depth of 40 m.
Fig. 2 outlines our basic approach for the soil properties estimation and
validation of the estimates at the testbed site. The soil parameter esti-
mation approach, in general, follows our previous work, but with a
major difference that the model-data fusion is performed in the fre-
quency domain to preserve the dynamical characteristics of the soil
continuum in the ensemble averages of the model output; we have
considered the spectral feature vector to be defined by the two domi-
nant frequencies of the velocity waveforms at the measurement loca-
tions and their corresponding Fourier amplitudes. Moreover, while
making the prior assumptions on the parameters of the GMM, which is
used to approximate the soil properties, we have tried two different
avenues. We have first tried with assumptions based purely on en-
gineering judgment following local geological information and bore-
hole wave velocity measurements available at a few locations close to
the site. We then have modified the prior assumptions following a set of
correlation information obtained from a probabilistic sensitivity ana-
lysis. It is observed that the judicious selection of prior values of the
GMM parameters, following the outcome of the sensitivity analysis,
yields more accurate estimates of the soil properties. The estimates are
validated by numerically simulating the geophysical experiment with
the soil properties and the comparing the model predicted velocity
waveforms with the experimental observations at all the measurement
locations.

2. Descriptions of the Geotechnical Site and Geophysical
Experiment

We have used a well-studied geotechnical site in Garner Valley,
California as the validation testbed. The site primarily consists of soft
alluvium – silty sand, sand, and clayey sand – up to a depth of ap-
proximately 15–25 m; the soft soil is underlain by gravely sand and
weathered granite [7]. The bedrock is located approximately 90 m
below the surface [8]. Due to the proximity of the site to Lake Hemet,
the ground water table is expected to be close to the surface with some
seasonal variation; a couple of PS suspension logging and cone pene-
tration tests, conducted at the site in January 1996, measured it to be
approximately 6 m below the ground surface [9].

This study analyzes measurements from an advanced geophysical
experiment, conducted by Bielak et al. [6], on a 60m × 60 m parcel
(latitude: 33°40.127 N, longitude: 116°40.427 W) of the site on March
13, 2012. Fig. 3 shows the plan view schematic of the geophysical

Fig. 1. Ensemble average in time domain vs. frequency domain.
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experiment. A NEES@UTexas mobile shaker, T-Rex [10], was used to
vertically excite the ground at each of the source locations, represented
by red squares in Fig. 3, using a chirp signal with dominant frequencies
between 1.5 Hz and 14 Hz for a duration of 2.25s. The force outputs of
the T-Rex were recorded using accelerometers installed at its base plate.
Fig. 4 shows the forcing time history recorded at Source Location 3 and
its Fourier spectrum. The source excitations didn't plastify the soil [11].

The soil responses due to excitations at the source locations were
recorded at 35 receiver locations, shown by black circles in Fig. 3, using
1 Hz vertical geophones. Per recommendation of the group that con-
ducted the experiment, the recorded receiver data were filtered using
an equiripple finite-impulse-response (FIR) bandpass filter with high
and low cuts of 1.5 Hz and 14 Hz, respectively, and high and low slopes
of 66.6 dB/Hz and 15 dB/Hz, respectively, to remove any ambient noise
[11]. Fig. 5 shows the soil responses, in terms of velocity time histories,
at Receiver Locations 10 and 2 due to the ground excitation at Source
Location 3; both unprocessed and processed velocity time histories are
shown. Note that due to a sensor malfunction, any reliable measure-
ments were not recorded at Receiver Location 29. Accordingly, any
measurements from Receiver Location 29 are not included in this study.

Fig. 3. Plan view schematic of the advanced geophysical experiment performed
by Bielak et al. [6] in Garner Valley, CA.

Fig. 4. Chirp signal used to excite the ground at Source Location 3 [6,11,12].

Fig. 2. Framework for soil properties estimation.

Fig. 5. Soil responses, in terms of velocity time histories, at two receiver locations due to ground excitation at Source Location 3 [6,11,12].
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3. Numerical model of the geophysical experiment

To allow for the model-data fusion, the geophysical experiment,
described in Section 2, needs to be numerically simulated. The time-
domain dynamic finite element method [13] is employed to this end. A
60m × 60m × 40 m soil domain is numerically modeled as this study
attempts to characterize the soil parameters up to a depth of 40 m. The
model is constructed using standard 8-noded brick elements. The effect
of radiation damping associated with the wave propagation through
soils is captured by utilizing the widely used Lysmer-Kuhlmeyer dash-
pots [14]. Note that the dashpots are placed 20 m away in each direc-
tion from the soil domain of interest to minimize any boundary effects.
Moreover, to optimize the dashpot performance, the size of the finite
elements (5m × 5m × 5m) is chosen as per the following equation [14]:

element size
minimum wavelength of propagating waves

1
12 (1)

As the T-Rex excitations didn't plastify the soil, the soil material is
assumed to follow the linear elastic Hooke's law. The elastic parameters
of the soil are hypothesized to be heterogeneous, anisotropic random
fields to account for the several sources of uncertainty associated with
their estimation process, including measurement noise and uncertainty
due to limited data which indirectly captures, among others, micro-
structural randomness. Note, however, that direct treatment of micro-
structural randomness is beyond the scope of this paper. Further note
that the “anisotropy” designation does not refer to the soil behavior,
which is isotropic, but to the character of the random fields. The
random field soil parameters are discretized using a Gaussian mixture
model [3] that mimics typical soil formation process:
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where any random field soil parameter, Y, defined in xyz-space, is re-
presented in terms of L number of hat functions α that imitate soil
layering and NG number of Gaussian functions that imitate the mixing
of information between layers, making the layers non-uniform and al-
lowing for lenses to appear within the non-uniform layers. Each hat
function takes two parameters: Yk which is the value of the soil para-
meter at the center of the function and hz which controls the spread of
the function. The other arguments of the hat functions are zk which are
the z-coordinates of the centers of the hat functions. Each Gaussian
function takes three parameters, lx , , and lz which are the spread
parameters of the function in the three perpendicular directions. The
other arguments of the Gaussian functions are xi, yi, and zi which are
the coordinates of the centers of the functions. The numerical simula-
tion of the geophysical experiment considers all the parameters of the
hat and Gaussian functions to be uncertain. Note that symbol = { 1,

2} denotes uncertainty in the soil parameter with 1 = {h Y,z k} and
2 = {l l l, ,x y z} being the uncertain parameters of the hat and Gaussian

functions, respectively.
Assuming the statistics of the uncertain parameters of the hat and

Gaussian functions, the dynamic finite element simulation of the wave
propagation through the soil continuum due to the T-Rex excitations at
the source locations can be probabilistically performed to obtain sta-
tistical descriptions of simulated geophysical measurements. This study
employs a stochastic collocation approach [15] for probabilistic simu-
lation of the finite element model and computes the N th order (raw)

statistical moment of soil displacement u, at any finite element node, i,
at any time step, k as [3,16]:

E =[ ]u u p d( )k
N

k
N

i i (5)

where E [ ] denotes the expectation operation and p denotes the joint
probability density function (PDF) of the random variables that are
used to represent the uncertainty in the parameters of the Gaussian and
hat functions. The integral on the r.h.s. of Eq. (5) is evaluated using a
recently developed conjugate unscented transform (CUT) quadrature
rule [17,18] that efficiently computes multidimensional integrals in-
volving uniform and Gaussian PDFs by constraining the quadrature
points to lie on specially defined axes. To this end, the random vari-
ables, , are first represented in terms of uniform or Gaussian stan-
dardized random variables = [ , , , ]m

T m
1 2 defined by a joint

PDF, p ( ), following the theory of the generalized polynomial chaos
(gPC; [19]). Eq. (5) is then evaluated as [3,16]:
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where ×( )q m 1 represents the qth quadrature point, wq is the cor-
responding weight, and M is the total number of quadrature points. The
procedure for evaluating the CUT quadrature points and their corre-
sponding weights are described in Refs. [17,18].

The following are the main steps of the stochastic collocation ap-
proach based probabilistic simulation of a finite element model:

(a) Expansion of the random variables corresponding to the soil prop-
erties, , as a polynomial of uniform random variables.

(b) Generation of ensembles of soil properties by using CUT quadrature
points for uniform random variable in conjunction with the poly-
nomial expansion for .

(c) Generation of ensembles for quantities of interest (e.g., soil dis-
placement, velocity, acceleration, etc.) by running a deterministic
finite element code for each of these soil properties ensembles.

(d) Computation of the weighted ensemble averages (i.e, statistical
moments) of the quantities of interest while using Eq. (6).

4. Model-data fusion

In this section, the geophysical experiment is numerically simulated
using the procedure described in Section 3 after making prior as-
sumptions on the soil parameter random fields. The simulated mea-
surements are then fused with experimental measurements, described
in Section 2, using a minimum variance framework to update the prior
assumptions on the soil parameter random fields.

4.1. Prior assumptions on the soil parameters

In the field of solid mechanics, an elastic material is conventionally
characterized in terms of the Young's modulus (E) and Poisson's ratio
(ν). However, in the field of geotechnical engineering, an elastic soil is
typically characterized in terms of the soil's P-wave velocity (VP) and S-
wave velocity (VS). Accordingly, this study will characterize the elastic
parameters of soil at the site of advanced geophysical experiment in
terms of VP and VS. Note that these wave velocities are directly related
to the fundamental mechanical parameters through the soil's density, ρ,
as [20]:

=
+

V E (1 )
(1 )(1 2 )P

(7a)

=
+

V E
2 (1 )S

(7b)

There exist borehole VP and VS measurements, obtained through PS
suspension logging and seismic cone tests, at a few locations close to the
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site of the advanced geophysical experiment [9]. Fig. 6 shows one such
set of measurements. The VS measurements, when interpreted with the
information of the local geology, indicate that the site, up to a depth of
40 m, most likely consists of two distinct soil layers – a relatively loose
sand layer up to a depth of approximately 20 m, overlain by a denser
sand or weathered rock layer. Accordingly, to discretize the VS random
field at the site of the advanced geophysical experiment, we have used 3
hat centers – one at the surface, one at 20 m below the surface, and the
other at 40 m below the surface – and the spread parameter of the hat
functions, hz, to be equal to the distance between the hat centers, i.e.,
20 m. The values of VS at the centers of the hat functions are considered
to be random variables and are denoted as VS0, VS20, and VS40. Without
much prior information to rely on, the random variables are assumed to
follow uniform distributions with positive supports. Note that the as-
sumed distributions will be updated when the simulated measurements
will be fused with the experimental measurements. The prior mean

values of the random variables are chosen to be the values measured at
the borehole location at those depths i.e., 200 m/s at the surface,
500 m/s at a depth of 20 m, and 700 m/s at a depth of 40 m. The sup-
ports of the uniform random variables are chosen assuming a coefficient
of variation (COV) of 10%. This choice of the prior COV is based on the
analysis of the borehole VS measurements available at a few locations
close to the site [9]. Next, to allow for mixing of information between
layers, the Gaussian functions are superimposed on the hat functions. In
making prior assumptions on the parameters of the Gaussian functions,
following typical formation of alluvial soil deposits, it is assumed that
the random field VS exhibits cross anisotropy with the soil parameter
correlated over a larger distance in the horizontal directions than in the
vertical direction. In other words, it is assumed that the mixing of in-
formation occurs over a longer distance in the horizontal directions
than that in the vertical direction. The spread parameters lx and of the
Gaussian functions that control the mixing of information in the hor-
izontal directions are assumed to be identical, but random variables
with a mean value of 9.5 m to mimic the typical horizontal correlation
lengths reported in the literature for alluvial soils [21]. Without much
prior information to rely on, the random variable, denoted as l, is,
again, considered to follow a uniform distribution with a COV of 10%.
The spread parameter lz of the Gaussian functions that determines the
mixing of information in the vertical direction is assumed to be con-
trolled by the spread parameter hz of the hat functions with a value of
h L/( 1)z to mimic the typical vertical correlation length reported in
the literature for alluvial soils [21]. Figs. 7 and 8 show the prior mean
and standard deviation profiles and correlation structures in the x-, y-,
and z-direction, respectively, of thus represented VS random field.

Next, the other elastic soil parameter, VP, is discretized using the
Gaussian mixture approach. The borehole VP measurements shown in
Fig. 6 for a nearby location indicate the presence of water table at a
depth of approximately 6 m as below that depth VP values have dras-
tically jumped to the range of the typical P-wave velocities of saturated
soils. Note that the P-wave velocity of water is 1500 m/s and that of
saturated soils typically range from 800 m/s to 2000 m/s depending
upon the soil type and degree of saturation. Accordingly, in re-
presenting the VP random field at the site of the advanced geophysical
experiment, we have regarded the depth of water table, Hw, to be a
discretization variable. To account for the uncertainty associated with
the seasonal variation of the water table, we have considered Hw to be a
uniform random variable with a mean value of 6 m and a COV of 20%.
Above the water table, VP is discretized in a similar fashion as VS, but
with 2 hat centers – one at the surface and the other at the depth of the
(uncertain) water table. The value of VP at the hat center on the surface,
denoted as VP0, is assumed to be a uniform random variable with a mean
value chosen to be the value at the borehole location at the surface, i.e.,
500 m/s, and a COV equal to 10%. The value of VP at the hat center at
the depth of the (uncertain) water table is chosen indirectly from the
Poisson's ratio as follows. Below the water table, the soil is expected to

Fig. 6. Borehole VP and VS measurements at a location close to the site of the
advanced geophysical experiment [9].

Fig. 7. Prior mean and standard deviation of the
soil's S-wave velocity, VS.
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be partially to fully saturated. Such a soil is typically almost in-
compressible and exhibits a Poisson's ratio close to 0.5 with a very small
variability. Accordingly, to represent VP at and below the water table,
we have assumed a (probabilistic) Poisson's ratio and computed VP as
per the following equation:

=V V2(1 )
1 2P S (8)

Note that the above equation may be obtained by combining Eqs.
(7a) and (7b). The Poisson's ratio, denoted as below Hw, is assumed to be
a uniform random variable with a mean value of 0.46 which is obtained
by analyzing the measured values of VS and VP at the borehole location,
shown in Fig. 6, using Eq. (8). Since, the Poisson's ratio of saturated soil
doesn't exhibit much variability, the COV of below Hw is assumed to be
1%. The Gaussian function parameters of VP above the water table are
assumed to be the same as the ones used to represent VS. This is a
reasonable assumption as the pattern of information mixing for all the
parameters of an alluvial soil deposit is expected to be very similar due
to the formation process of such soil deposits. Note that, below the
water table, we have not used any hat and Gaussian functions for VP and
have let the variation in VP to be governed by VS and below Hw, following
Eq. (8). Further note that the probabilistic nature of below Hw will ensure
the correlation structure of VP to be different from that of VS. It will

allow for capturing the effect of partially saturated zones below the
water table. Thus represented VP random field is shown in Figs. 9 and 10
in terms of mean and standard deviation profiles and correlation
structures, respectively.

Table 1 summarizes the prior assumptions on all the random vari-
ables that are used to represent uncertainty in the soil's S-wave ve-
locity, VS, and P-wave velocity, VP. The next subsection will probabil-
istically simulate the geophysical experiment using these prior
assumptions. Later, the simulated measurements will be fused with
experimental measurements to update the prior assumptions.

Fig. 8. Prior cross-anisotropic correlation structure of the soil's S-wave velocity, VS.

Fig. 9. Prior mean and standard deviation of the
soil's P-wave velocity, VP .

Fig. 10. Prior cross-anisotropic correlation structure of the soil's P-wave velocity, VP .

Table 1
Prior assumptions on the random variables that are used to represent un-
certainty in the soil's S-wave velocity, VS, and P-wave velocity, VP .

RV Type Mean COV (%) Supports

1 = VS0 Uniform 200 m/s 10 [166, 234]m/s
2 = VS20 Uniform 500 m/s 10 [413, 587]m/s
3 = VS40 Uniform 700 m/s 10 [578, 821]m/s
4 = VP0 Uniform 500 m/s 10 [413, 587]m/s
5 = Hw Uniform 6 m 20 [4,8]m
6 = below Hw Uniform 0.46 1 [0.452, 0.468]
7 = l Uniform 9.5 m 10 [7.885, 11.115]m
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4.2. Simulated geophysical measurements

This subsection numerically simulates the geophysical experiment,
described in Section 2, by hypothesizing the soil's VS and VP to be

random fields with the random field parameters given in Table 1. To
this end, the time-domain dynamic finite element method, in con-
junction with a CUT-based stochastic collocation approach, as de-
scribed in Section 3, is employed. Accordingly, following Ref. [3], the

Fig. 11. Time histories of the vertical component of the simulated prior mean velocity at the receiver locations. The x axis represents time (in s) and the y axis
represents velocity (in m/s).
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Fig. 12. Fourier spectra of the vertical component of the simulated prior mean velocity at the receiver locations. The x axis represents frequency (in Hz) and the y axis
represents Fourier amplitude (in m/s-s).
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CUT realizations of the random field soil parameters are first generated,
using a 6th order CUT quadrature scheme. For this 7-dimensional sto-
chastic problem, a 6th order CUT quadrature scheme has resulted in
551 CUT realizations. The finite element model of the geophysical ex-
periment – constructed using an open source finite element code
OpenSees [22] – is then simulated for each of the 551 CUT realizations
to obtain 551 sets of velocity waveforms at the receiver locations. As
the soil medium is lossy, damping is introduced while solving the finite
element system of equations. The damping is approximated through the
Rayleigh formulation [23]. As the soil is expected to remain elastic
throughout the finite element simulation process, only a small amount
of damping is used: the Rayleigh damping parameters are assumed to be
given by 2% critical damping for the first two natural modes of vibra-
tion. Again, owing to the linearity of the problem, all the 12 loads are
applied together. The simulated responses are appropriately integrated
using the CUT quadrature scheme to obtain the statistics – in terms of
marginal mean, marginal standard deviation and spatio-temporal cor-
relation structures – of the velocity waveforms at the receiver locations.
Figs. 11 and 12 show the vertical component of the simulated mean
velocity at all the 34 receiver locations in terms of the time histories
and their Fourier spectra, respectively. The experimentally measured
time histories and their Fourier spectra are also shown for comparison.
As can be observed that they do not match well. There exist significant
phase differences between the experimental measurements and the
mean of simulated measurements. The simulated measurements also
have failed to capture the dominant frequencies at most of the receiver
locations. Such mismatches mean that the prior assumptions on the VS
and VP random fields are off. The next subsection will fuse the simulated
measurements with the experimental measurements in updating the
prior assumptions on the soil parameter random fields.

4.3. Posterior estimates of the soil parameters

This subsection employs a minimum variance framework [3,24] to
update the prior assumptions on the random variables through fusion
of the statistics of the simulated measurements with experimental
measurements. Following Ref. [3], let's consider that the experimental
geophysical measurements, Z , are given by:

Z = +h u( ( )) (9)

where κ is the sensor noise and h ( ) represents the mapping from the
output, u ( ), of the numerical model of the geophysical experiment to
the measurement variable. The best linear unbiased estimates of the
posterior statistics of the random variables may, then, be obtained as
[3,24]:

E E Z E= ++ h uK[ ] [ ] [ [ ( ( ))]] (10a)

=+ K h (10b)

where

= +K R( )h
T

hh
1 (10c)

The matrix K is the Kalman gain matrix and the superscripts, + and
, represent posterior and prior, respectively. The matrices , R, hh,

and h are the variance-covariance matrices of the random variables
, sensor noise κ, simulated measurements h, and between h and the

random variables , respectively. The matrix is given by the prior
assumptions on the random field soil properties, while the matrix R,

which is related to the noise to signal ratio, may be obtained from
sensor calibration. On the other hand, the matrix hh given by the
probabilistic solution of the numerical model of the geophysical ex-
periment and the matrix h may be computed by integrating the si-
mulated measurement variables h ( ) with the soil parameter random
variables using the CUT quadrature scheme as:

E E E= h u h u[( [ ])( ( ( )) [ ( ( ))]) ]h
T

E E=
=

M
w h u h u( [ ])( ( ( )) [ ( ( ))])

q
q q q

T

1 (11)

where M denotes the total number of CUT quadrature points and wq
corresponds to the weight allotted to the qth CUT quadrature realiza-
tion, q, of the random variables .

We have first attempted to solve Eqs. (10a)–(10c) in the time do-
main, assuming a noise to signal ratio of 1%. Note that since the
measurements are already processed through a bandpass filter, fol-
lowing recommendation of the group that conducted the geophysical
experiment, the noise to signal ratio is kept low. The resulting posterior
estimates are shown in Table 2. As can be observed that the time-do-
main model-data fusion has yielded poor posterior estimates – im-
permissible value of the Poisson's ratio and an unrealistic depth of the
water table. These poor estimates are attributed to the failure of the
ensemble averages of the model output – that define the vector
E h u[ ( ( ))] and matrices hh and h – to preserve the dynamical
characteristics of the soil continuum.

In order to overcome the above-mentioned limitation of a time-
domain analysis, we have resorted to the frequency domain. We have
considered the measurement variables to be the two dominant fre-
quencies of the soil velocities at the receiver locations and their

Table 2
Time domain model-data fusion results.

RV Mean Standard deviation

1 = VS0 274.9 m/s 0.013 m/s
2 = VS20 488.2 m/s 0.047 m/s
3 = VS40 1664.2 m/s 0.241 m/s
4 = VP0 514.6 m/s 0.118 m/s
5 = Hw 27.8 m 0.014 m
6 = below Hw 0.56 0.0001
7 = l 10.5 m 0.0004 m

Table 3
Posterior marginal statistics of the random variables that are used to re-
present uncertainty in the soil's S-wave velocity, VS , and P-wave velocity, VP .

RV Mean Standard deviation COV (%) Supports

1 = VS0 182.6 m/s 3.9 m/s 2.1 [160.5,192.2]m/s
2 = VS20 308.3 m/s 7.8 m/s 2.5 [274,348.5]m/s
3 = VS40 854.2 m/s 58.7 m/s 6.8 [760.9,1031]m/s
4 = VP0 728.4 m/s 29.3 m/s 4.0 [676.8,855]m/s
5 = Hw 6.9 m 0.8 m 12.51 [4.4,9.6]m
6 = below Hw 0.454 0.002 0.5 [0.44,0.46]
7 = l 8.3 m 0.2 m 2.1 [7.8,9.2]m
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corresponding Fourier amplitudes. The reason behind selecting only
two frequencies stems from the observation that the measured velocity
at majority of the receiver locations showed two distinct dominant
frequencies (Fig. 12). With such a choice of the feature vector, our goal
is to capture the predominant dynamic characteristics of the measure-
ments (i.e., soil velocities) at the receiver locations. Of course, one
could go with a feature vector comprised of the entire Fourier spectrum
of soil velocities at all the receiver locations. However, such treatment
will require much larger computational effort as it will necessitate a
higher fidelity finite element model along with finer discretizations of
the soil parameter random fields with additional random variables to
accurately capture the scattering complexity.

The outcome of the above-described frequency domain model-data
fusion – again, assuming a noise to signal ratio of 1% – is shown in
Table 3. As can be observed that realistic values of the posterior sta-
tistics of the random variables are obtained through the frequency-
domain analysis. The posterior marginal PDFs of the random variables

are also estimated (Fig. 13). The marginal PDFs are approximately
estimated using the theory of gPC. To this end, the random variables
are first represented in terms of the Legendre basis functions of stan-
dardized uniform random variables = [ , , , ]m

T
1 2 and the gPC

coefficients are estimated from the posterior statistics, E+ [ ] and + ,
of the random variables by solving an underdetermined system of
equations as below [3]:

= =
=

c j m( ) ( ), 1,2, ,j
k

N

jk k
0 (12a)

with the gPC coefficients, cjk , are given by:

E= =+c j m[ ], 1,2, ,j j0 (12b)

E = =
=

+c c i j m[ ( ) ( )] , , 1,2, ,
k

Q

ik jk k k
1

ij (12c)

where Q = + += = m r1 ( )s
q

s r
s

1
1
! 0

1 with m being the length of the
vector , and q being the order of the basis functions. This study uses
a 6th order gPC basis functions. Normalized histograms are then
generated through the Monte Carlo simulation of thus obtained or-
thogonal polynomial representations of the random variables . As
can be observed that the frequency-domain model-data fusion
through the minimum variance framework has updated both the
statistics and distribution characteristics of the random variables .
Compared to the prior assumptions, the marginal mean values have
moved and the marginal COVs have reduced for all the constituent
random variables of . However, since the true values of the soil
parameters at the site of the geophysical experiment are not known,
the accuracy of the posterior estimates may not be ascertained from
these comparisons.

To check the accuracy of the posterior estimates of , we have re-
simulated the geophysical experiment, probabilistically with the
posterior estimates and have compared the simulated posterior
measurements with the experimental measurements. Figs. 14 and 15
compare the vertical component of the simulated posterior mean soil
velocity time histories at all the 34 receiver locations and their
Fourier spectra, respectively, with the experimentally measured soil
velocity time histories and their Fourier spectra. As can be observed
that the simulated posterior mean velocities match reasonably well,
in both the time and frequency domains, with the experimentally
measured velocities at all the 34 receiver locations. The large phase
differences, that were observed in Fig. 11 between the simulated prior
mean and experimentally measured velocity time histories at all the
receiver locations, are reduced. Also, the dominant frequencies are
well captured. However, there still exist some differences, in parti-
cular, in the magnitude of velocities in the time domain at a few re-
ceiver locations. The rest of the paper will focus on understanding the
reason(s) behind such differences and on improving the posterior
estimates.

Fig. 13. Posterior marginal probability densities of the random variables that are used to represent uncertainty in the soil's S-wave velocity, VS , and P-wave
velocity, VP .
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Fig. 14. Time histories of the vertical component of the simulated posterior mean velocity at the receiver locations. The x axis represents time (in s) and the y axis
represents velocity (in m/s).
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4.4. Sensitivity of the simulated measurements on the prior assumptions

It's a well known fact that the success of any inversion process de-
pends on how good the prior assumptions are. The prior assumptions

restrict the space in which the inversion algorithm searches for possible
solutions to the problem. In the previous subsection, the inverse algo-
rithm has tried to minimize the error between the two dominant
frequency–Fourier amplitude pairs measured experimentally and

Fig. 15. Fourier spectra of the vertical component of the simulated posterior mean velocity at the receiver locations. The x axis represents frequency (in Hz) and the y
axis represents Fourier amplitude (in m/s-s).
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simulated with the prior assumptions on the random variables at each
receiver location. So, it is logical to assume that if the simulated
dominant frequency–Fourier amplitude pairs are not too far from the

experimentally measured dominant frequency–Fourier amplitude pairs,
then the inverse algorithm will be less “stressed” to find a solution.
Accordingly, in Figs. 16 and 17, we have plotted the dominant

Fig. 16. Dominant frequency of velocity simulated with each of the 551 prior CUT realizations of in comparison to the experimentally measured dominant
frequency of velocity. The x axis represents the CUT realization number and the y axis represents frequency (in Hz).
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Fig. 17. Fourier amplitude corresponding to the dominant frequency of velocity simulated with each of the 551 prior CUT realizations of in comparison to the
Fourier amplitude of experimentally measured dominant frequency of velocity. The x axis represents the CUT realization number and the y axis represents Fourier
amplitude (in m/s-s).
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frequency and its Fourier amplitude, respectively, simulated with each
of the 551 prior CUT realizations of at each of the receiver locations.
We have compared them with the experimentally measured dominant
frequency and its Fourier amplitude. As can be observed that at most of
the receiver locations, the prior assumptions on the random variables
have failed to yield the dominant frequency and its Fourier amplitude
in the range of the experimental measurement. Ideally, the prior as-
sumptions on the random variables should be such that the (CUT)
realizations of the quantities of interest of the simulated measurements
center around that of the experimental measurements.

Accordingly, with the goal of making better prior assumptions on the
random variables , we have conducted a sensitivity analysis to determine
the relative sensitiveness of the dominant frequency-Fourier amplitude pair
on the constituent random variables of . To this end, we have looked at
the Pearson's [25] and distance [26] correlation coefficients between the
random variables and simulated dominant frequency and between the
random variables and Fourier amplitude corresponding to the simulated
dominant frequency. Note that while the Pearson's correlation coefficient is

a measure of linear dependence between two random variables, the dis-
tance correlation coefficient can also capture nonlinear dependence be-
tween two random variables. The approach described in Ref. [27] is used to
compute both Pearson's and distance correlation metrics from CUT en-
sembles. Figs. 18 and 19 show the Pearson's and distance correlation
coefficients, respectively, between the random variables and the simu-
lated dominant frequency, while Figs. 20 and 21 show the Pearson's and
distance correlation coefficients, respectively, between the random vari-
ables and the Fourier amplitude corresponding to the simulated dominant
frequency. Note that the theoretical range of the Pearson's correlation
coefficient is between −1 and 1. A value of zero signifies no linear de-
pendence between the random variables, while the larger is the absolute
magnitude, the more linearly dependent are the random variables. On the
other hand, the theoretical range of the distance correlation coefficient is
between 0 and 1. A value of zero signifies no dependence (linear or non-
linear) between the random variables, while the larger is the magnitude, the
more dependent are the random variables, either linearly or nonlinearly.
Accordingly, it can be interpreted from Figs. 18–21 that the dominant

Fig. 18. Pearson's correlation coefficient (PCC) between prior random variables and simulated dominant frequency of velocity.

Fig. 19. Distance correlation coefficient (DCC) between prior random variables and simulated dominant frequency of velocity.
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frequency and its Fourier amplitude are more sensitive to VS0, VS20, and Hw
when compared to the other constituent random variables of . With this
information, in the next subsection, we have modified the prior assumptions
on the random variables to bring the simulated dominant frequency and
its Fourier amplitude at each receiver location closer to the experimentally
measured dominant frequency and its Fourier amplitude.

4.5. New prior assumptions on the soil parameters

The simulated dominant frequency of velocity and its Fourier am-
plitude are positively correlated to the random variable VS20 at all the
receiver locations. The random variable Hw is also positively correlated
to both the dominant frequency of velocity and its Fourier amplitude at
most of the receiver locations. On the contrary, the random variable VS0,
while slightly positively correlated with the dominant frequency, is
highly negatively correlated with the Fourier amplitude corresponding
to the dominant frequency of velocity at most of the receiver locations.
Accordingly, to bring down the simulated realizations of the dominant

frequency of the velocity and its Fourier amplitude closer to their ex-
perimentally measured values, we have decreased the mean values of
VS20 and Hw and have increased the mean value of VS0. The COVs and
distribution types of those random variables are kept the same as be-
fore. Table 4 lists the new prior assumptions on the random variables .

Fig. 20. Pearson's correlation coefficient (PCC) between prior random variables and Fourier amplitude corresponding to the simulated dominant frequency of velocity.

Fig. 21. Distance correlation coefficient (DCC) between prior random variables and Fourier amplitude corresponding to the simulated dominant frequency of velocity.

Table 4
New prior assumptions on the random variables that are used to represent
uncertainty in the soil's S-wave velocity, VS , and P-wave velocity, VP .

RV Type Mean COV (%) Supports

1 = VS0 Uniform 230 m/s 10 [190.9, 269.1]m/s
2 = VS20 Uniform 400 m/s 10 [332, 468]m/s
3 = VS40 Uniform 700 m/s 10 [581, 819]m/s
4 = VP0 Uniform 500 m/s 10 [406.7, 573.3]m/s
5 = Hw Uniform 5 m 20 [3.36, 8.04]m
6 = below Hw Uniform 0.46 1 [0.452, 0.468]
7 = l Uniform 9.5 m 10 [7.885, 11.115]m
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4.6. Re-simulated geophysical measurements

To check the effects of such adjustments to the prior assumptions on
the random variables , we have re-simulated the geophysical

experiment using the new prior assumptions on the random variables
following the same procedure described in Section 4.2. The simulation
results are presented in Figs. 22 and 23 in terms of the dominant fre-
quency of velocity and its Fourier amplitude, respectively, obtained for

Fig. 22. Dominant frequency of velocity simulated with each of the 551 new prior CUT realizations of in comparison to the experimentally measured dominant
frequency of velocity. The x axis represents the CUT realization number and the y axis represents frequency (in Hz).
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Fig. 23. Fourier amplitude corresponding to the dominant frequency of velocity simulated with each of the 551 new prior CUT realizations of in comparison to the
Fourier amplitude of experimentally measured dominant frequency of velocity. The x axis represents the CUT realization number and the y axis represents Fourier
amplitude (in m/s-s).
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each of the 551 new prior CUT realizations of at each of the receiver
locations. We have compared them with the same obtained for the old
prior realizations of and with experimentally measured dominant
frequency of velocity and its Fourier amplitude. As can be observed that
the new prior assumptions on the random variables have faired much
better than the old assumptions on the same in terms of capturing the
experimentally measured dominant frequency of velocity and its
Fourier amplitude.

4.7. Improved posterior estimates of the soil parameters

The simulated measurements obtained through the new prior as-
sumptions on the random variables are fused with the experimental
measurements, following the same procedure described in Section 4.3,
for new estimates of the posterior statistics of the random variables .
Table 5 lists the new posterior statistics, while Fig. 24 shows the new
posterior distributions of the random variables . As before, the mar-
ginal mean values have moved and marginal COVs have reduced for all
random variables as compared to the prior assumptions.

To check the accuracy of the new posterior estimates of , we have
re-simulated the geophysical experiment probabilistically with the new
posterior estimates. The simulated new posterior measurements are
presented in Figs. 25 and 26 in terms of the vertical component of the
mean soil velocity time histories at all the 34 receiver locations and
their frequency spectra, respectively. They are compared with the same
of the simulated old posterior measurements and with measured soil
velocity time histories and their Fourier spectra. Indeed, the new pos-
terior estimates of the random variables are more accurate than their
previous posterior estimates. The difference between the magnitudes of
the mean of the simulated velocities and experimentally measured ve-

locities are reduced at most of the receiver locations. In the frequency
domain, too, the new posterior simulations have compared better with
the experimental measurements than the previous posterior simula-
tions. The improvement in inversion results can be attributed to the
improved prior assumptions on parameters for the Gaussian mixture
model representing soil properties. The minimum variance estimator
updates the prior mean of random variables proportion to the mean
error between measurement data and model predicted measurements.
Furthermore, the minimum variance estimator performs better when
actual measurement data corresponds to one of the realization of pre-
dicted measurement ensembles. The updated prior for soil parameters
leads to the stochastic FEM ensembles, which better capture measure-
ment data as their subset (cf. Figs. 22 and 23) and hence leads to more
accurate soil parameter estimates.

Finally, the new posterior estimates of the random variables are
post-processed using Eqs. (2)–(4) to generate different statistics of the
soil parameter random fields, VS and VP. Figs. 27 and 28 shows the
estimated three-dimensional marginal mean and marginal standard
deviation profiles of VS and VP, respectively. The estimated correlation
structures of VS and VP are shown in Figs. 29 and 30, respectively. The
estimated mean profile of VS indicates that both the soft alluvium and
gravely sand/weathered granite layers at the site of the geophysical
experiment are very nonuniform with presence of many lenses of dif-
ferent shapes and sizes. Note that the layer non-uniformity and lenses
are due to intra- and inter-layer mixing of information of varying de-
grees. The fluctuating horizontal correlations of VS from highly positive
to highly negative over a long distance suggests intra-layer mixing of at
least two different materials over the entire domain in the horizontal
directions. The estimated vertical correlations of VS, however, are al-
ways positive; the estimated correlation structure is approximately
exponential (close to surface) to square exponential (at larger depth)
with “equivalent correlation lengths” varying between 10 and 15 m.
Note that the correlation length is a measure of the extent of correlation
and is quantified as the distance at which the value of exponential or
square exponential correlation curve drops to 1/e [28]. These char-
acteristics of the vertical correlation structure indicate only limited
inter-layer mixing of information in the vertical direction. Also, com-
paring the marginal mean and standard deviation values of estimated VS
throughout the soil domain, it can be interpreted that its marginal COVs
are larger (around 20%) at and close to the surface and they become
smaller with depth. It signifies that the confidence in the VS estimate is
smaller close to the surface but it increases with depth. The marginal
mean profile of VP indicates pockets of larger values, consistent with
that of partially saturated soils, at and just below the surface. Presence

Table 5
New posterior marginal statistics of the random variables that are used to
represent uncertainty in the soil's S-wave velocity, VS , and P-wave velocity, VP .

RV Mean Standard deviation COV (%) Supports

1 = VS0 226.6 m/s 10.9 m/s 4.8 [186,274]m/s
2 = VS20 265.5 m/s 14 m/s 5.3 [208,322]m/s
3 = VS40 749.8 m/s 55.5 m/s 7.4 [610.5,882]m/s
4 = VP0 511.5 m/s 40.7 m/s 8.0 [442,713]m/s
5 = Hw 5.9 m 1.1 m 13.8 [3.1,8.9]m
6 = below Hw 0.455 0.0026 0.8 [0.444,0.461]
7 = l 7.9 m 0.4 m 4.9 [6.8,9.7]m

Fig. 24. New posterior marginal probability densities of the random variables that are used to represent uncertainty in the soil's S-wave velocity, VS, and P-wave
velocity, VP .
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Fig. 25. Time histories of the vertical component of the simulated new posterior mean velocity at the receiver locations. The x axis represents time (in s) and the y
axis represents velocity (in m/s).
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Fig. 26. Fourier spectra of the vertical component of the simulated new posterior mean velocity at the receiver locations. The x axis represents frequency (in Hz) and
the y axis represents Fourier amplitude (in m/s-s).
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of such pockets signifies that the soil above the water table is probably
saturated to some degree due to capillarity. The estimated correlation
structure of VP is similar to that of VS, but there exist some differences
due to more uniform (more correlated) nature of P-wave velocities of
saturated soils; the degree of fluctuations of the correlation structure is
less in the horizontal directions and also the “equivalent correlation
length” in the vertical direction is larger below the water table.

5. Conclusions

A numerical algorithm for high-fidelity probabilistic imaging of
soil's P- and S-wave velocities through stochastic full waveform inver-
sion of geophysical measurements is validated using data available
from a well-studied geotechnical site in Garner Valley, CA. The algo-
rithm relies on fusing geophysical measurements with predictions from
a high-fidelity numerical model of the geophysical experiment using a

Fig. 27. Estimated mean and standard deviation
of the soil's S-wave velocity, VS.

Fig. 28. Estimated mean and standard deviation
of the soil's P-wave velocity, VP .

Fig. 29. Estimated correlation structure of the soil's S-wave velocity, VS .

Fig. 30. Estimated correlation structure of the soil's P-wave velocity, VP .
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minimum variance framework within the concept of Bayesian belief.
The validation effort starts by setting up a numerical model of the field
geophysical experiment using the finite element method. We, then,
have hypothesized the soil properties at the site to be random fields,
made prior assumptions on them based on local geological information,
and probabilistically predicted the quantities of interest using a sto-
chastic collocation technique. The collocation technique utilizes a
Gaussian mixture approach in conjunction with a polynomial surrogate
model to represent the random fields in terms of finite dimensional
random variables and a non-product CUT quadrature rule to efficiently
estimate the ensemble averages of the model predicted quantities of
interest. Finally, we have fused the statistics of the model output with
the field geophysical measurements using a best linear unbiased esti-
mator to obtain the posterior estimates of the random field soil prop-
erties.

The key lessons learned through the validation effort towards ac-
curate stochastic full waveform inversion of geophysical measurements
are (a) model-data fusion in the time domain suffers due to failure of
the ensemble averages of the model output to preserve the physical
characteristics of dynamical systems; a frequency domain fusion,
however, can overcome this drawback, and (b) fine-tuning the prior
values of the random field soil properties – which are typically assumed
using engineering judgment following local geological information –
based on a probabilistic sensitivity analysis yields superior posterior
estimates.

In closing, due to the use of the Gaussian mixture approach for the
parameterization of the random field soil properties and of the non-
product CUT technique for the model-data fusion, the stochastic full
waveform inversion algorithm, validated herein, is highly scalable and
would allow for very high-resolution imaging of soil properties without
prohibitive computational cost.
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