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A B S T R A C T

In risk assessment of spatially distributed infrastructure, the probability of demand exceeding capacity is
evaluated across the system. We describe and compare two levee system reliability analysis frameworks for
seismic and high-water demands. The first approach is general, but computationally intensive, and uses Monte
Carlo simulations to model capacity and demand for “segments” (i.e., elemental levee lengths) as spatially
correlated random variables. We apply a capacity correlation model derived from seismic case histories in Japan.
The seismic demand correlation model is based on global ground motion data, whereas the high-water corre-
lation is taken as unity. The second approach achieves computational efficiency by grouping segments into
physics-based “reaches” (i.e., length of levee having uniform statistical distributions of capacity and demand).
Statistics and spatial correlation of the limit state function are computed using a procedure based on the first-
order reliability method. The probability of failure of the reach is then computed using level-crossing statistics.
The application of level crossing statistics required an adjustment, introduced here, to previously utilized ca-
pacity correlation functions. We apply both methods for a levee system subjected to realistic demand and ca-
pacity distributions and show that characteristic lengths (defined as lengths of levee that can be considered as
statistically independent) are comparable for high-water and seismic demands. This outcome is specific to the
considered failure mechanisms and is driven by use of similar capacity correlation models, whereas differences
in demand correlation models have limited impact.

1. Introduction

Levees are defined as man-made or natural embankments along
rivers or water bodies. Their primary purpose is to provide protection
against high-water events. The performance of levees when subjected to
high-water or earthquakes is essential for the resilience of surrounding
communities. Despite their critical function, many levees were not
engineered at the time of their construction and are often founded on
soft and weak soils. As a result, levees are frequently damaged during
high-water events (water level rise in the river channel; e.g., [1–3]) and
following major earthquakes (e.g., [4–8]).

For levees that continuously impound water, a single failure any-
where along their length will produce flooding, and hence comprises
system failure. For levees that intermittently impound water, the
seismic failure probability is related to the combination of seismic de-
formation potential and probability of high-water during or shortly
following the event, whereas the high-water failure probability is

simply the single-segment failure probability during a high-water event.
In either case (continuously or intermittently loaded), levees constitute
spatially distributed series systems, which present particular challenges
for reliability assessment. This paper describes two conceptually similar
approaches for analysis of levee reliability, with an emphasis on the
system probability of failure given knowledge of capacity and demand
on a more local level. We defer to other documents for recommended
analysis procedures for computing capacity at the segment, or cross-
section level (Zimmaro et al. [9] for seismic, URS Corporation, Jack R.
Benjamin & Associates Inc. [10] for high-water).

Demands imposed on levee systems (e.g. high-water related to
precipitation events, earthquake shaking) are spatially correlated in a
manner that reflects attributes of the event initiating the demand.
Moreover, the available capacities of a portion of the levee to resist
demands (e.g., erodibility, liquefaction susceptibility, etc.) are also
spatially correlated due to the geologic depositional processes and the
manner in which levee fills were constructed.
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Several approaches can be used to consider spatial correlation of
demands and capacities in levee systems. We take spatial demand
correlation for high-water events as unity [11]. For seismic demands,
models for spatial correlation of ground motions are applied [12]. The
correlation of capacity may be calculated based on spatial correlation of
the soil properties that give rise to the levee capacity (e.g., [11,13]), or
by back-calculation of the capacity distribution based on observed da-
mage and demand distributions [14]. We adopt the latter approach for
the present work.

We present here a levee system reliability analysis framework ap-
plied at two levels of resolution. The first (Monte Carlo simulation) is
computationally demanding, but more flexible. This approach gen-
erates random realizations of demand and capacity of levee segments
compatible with spatial correlation models, and then numerically cal-
culates the probability of failure. The second is less computationally
demanding, but relies upon division of the levee system into reaches for
which the limit state function is stationary. This approach is based on
the First Order Reliability Method (FORM) and level-crossing statistics.

We present both approaches using consistent terminology, which is
provided next. We describe the development of capacity distributions
and correlation functions, which are required elements of both the
Monte Carlo and FORM methods. For a hypothetical levee system
subject to specified scenario demands, we then compare results of re-
liability analysis for seismic and high-water events using the two
methods. This paper builds upon a previous paper [15] that used a less
developed version of the capacity correlation model, evaluated dif-
ferent levee configurations, and which considered only earthquake
demands. This paper is similar to a paper in the conference proceedings
[16], although the example problem has been updated.

2. Levee system taxonomy

We apply the following terms for use in the engineering evaluation
of levee reliability [15]:

• System: A length of levee that protects a particular region from
flooding. A breach anywhere within the system constitutes system
failure if the levee impounds water.

• Reach (Physics-Based): A length of levee that exhibits uniformity in
the statistical distributions of levee capacity (soil properties, geo-
metry), and demand (flood level, earthquake shaking, etc.).
Capacity and demand vary randomly within a reach, but their sta-
tistical distributions are uniform. A two-dimensional cross-section
analysis must be interpreted in a manner that considers the out-of-
plane variation in capacity and demand to draw meaningful con-
clusions about the probability of failure of a reach.

• Reach (Legal/Jurisdictional): Levee systems are sometimes divided
into "reaches" based on specific legal or jurisdictional boundaries, or
other considerations that are unrelated to the physics that drive
reliability analysis. It is important to distinguish this definition from
the physics-based definition, and to use the physics-based definition
in reliability analysis.

• Characteristic length: A characteristic length is a specific length of
levee for which the probability of system failure computed based on
the assumption of statistical independence of each characteristic
length is equal to the probability of system failure based on a more
robust reliability analysis that considers spatial correlation of ca-
pacities and demands within the system. The probability of system
failure using the characteristic length method is computed based on
a simple product sum. However, the characteristic length can
strictly only be defined by first computing the probability of system
failure using a robust reliability analysis framework, and subse-
quently calculating the characteristic length. The characteristic
length depends on the spatial variations of capacity and demand
within the system, and is generally different for different loading
conditions. In practice, a specific characteristic length has been as-
sumed from the outset to facilitate relatively simple analyses. Errors
in the selection of characteristic length directly affect the computed
probability of system failure.

• Segment: A segment is a length of levee with uniform capacity and
demand, and can be considered as an elemental length. A segment
may be represented as a two-dimensional cross-section in en-
gineering analysis. Soil properties may vary within a segment due to
stratigraphy and depositional variability, but the capacity of the
segment is constant because the size of the failure mass is large
enough to average out the spatial variations in soil properties.
Segments are shorter than reaches, and reaches may be analyzed as
a collection of segments. The capacity among various segments is
spatially correlated due to similarities in the depositional environ-
ment of the foundation soils and levee construction practices.

Note that different definitions may be found in literature for similar
concepts (e.g., ‘reach’ as ‘section’, [13]).

Fig. 1 shows a schematic of a levee system that is divided into
multiple reaches. Each reach can be subdivided into segments, and a
characteristic length may be computed from reliability analysis. In this
case, we assume that a reach> characteristic length> segment,
though reaches are not necessarily longer than characteristic lengths by
definition.

Fig. 1. Definition of (a) levee system and reach; (b) levee segment and characteristic length within a reach. Adapted from Kwak et al. [15].
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3. Levee system reliability assessment procedures

System reliability analysis consists of calculating the probability
that one or more segments within the system experience failure due to a
stressing event. In this paper, we focus on failure probabilities condi-
tioned on the stressing event (denoted E), not the failure probability
itself. Important aspects of this calculation are the distribution func-
tions of capacity and demand for the segments, and spatial correlation
of capacity and demand among segments. To illustrate the importance
of spatial correlation on system reliability analysis, consider two ex-
treme cases: the capacity and demand distributions of two different
segments are either perfectly correlated or statistically independent. For
the case of perfect correlation, the capacity of each segment is a uni-
form number of standard deviations above or below the mean value, as
is the demand. Hence, the conditional probability of system failure [i.e,
P(Fsys|E)] is equal to the maximum of the conditional probabilities of
failure of the individual segments in the system. In the case of statistical
independence, P(Fsys|E) is equal to the complement of system survival,
which in turn is the product of each individual segment surviving. The
conditional probability of failure associated with these scenarios lies
between the two extremes, which are known as uni-modal bounds for a
series system [17]:

∏≤ ≤ − −=
=

F F Fmax [P( |E)] P( |E) 1 (1 P( |E))Seg i i n sys
i

n

Seg i, 1:
1

,
(1)

where arguments Fsys and FSeg,i indicate failure of the system and seg-
ment i, respectively, and n is the total number of segments. When
segment capacity and/or demand are spatially correlated, the system
failure probability lies between these bounds.

The range of failure probabilities provided by Eq. (1) is often wide.
For example, a system composed of 10 segments each with P(FSeg|E)
= 0.05 will have P(Fsys|E) = 0.05 for perfect correlation and P(Fsys|E)

= 0.40 for statistical independence. In general, P(FSeg|E) will vary
within the system, but is selected to be constant for this simple illus-
tration. Where the actual value of P(Fsys|E) falls between these uni-
modal bounds depends strongly on capacity and demand correlations
among segments. The following sections describe two approaches for
analysis of this probability. Both approaches fundamentally consider
segment fragility and correlations, but in different ways.

3.1. Monte Carlo simulation-based approach

The approach begins with the definition of limit state function, Z:

= −Z C D (2)

where C is capacity and D is demand. Note that C and D are spatially
correlated random variables assumed to be log-normally distributed,
hence Z is also log-normal. Moments of the log-normal distributions are
constant within a reach, but there are between-segment variations in
capacity and demand, which are driven by the respective correlation
functions. The system failure probability is evaluated as follows:

1. Populate two sets of uncorrelated normal random variables, which
will be used later for capacities and demands, with a sufficient
number of realizations (here: 50,000) for each segment.

2. Construct symmetric matrices of correlation coefficients for demand
(KD) and capacity (KC), as given in Kwak et al. [14].
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where ρ( )D ij and ρ( )C ij are correlation coefficients between segments i

Fig. 2. Illustration of procedure for system reliability analysis using Monte Carlo simulation. Adapted from Kwak et al. [15].
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and j for demand and capacity, respectively.
3. Use Cholesky decomposition (e.g., [18]) to modify the realizations

generated in (1) to exhibit the desired spatial correlation structure
developed in (2).

4. Transform the random variables from (3) to demands and capacities
with appropriate units. This can be expressed in terms of a generic
variable (Y) that both represents demands (e.g., ground shaking
level for earthquakes, water elevation for high-water events) and the
output of capacity functions.

5. Compute the limit state Z (Eq. (2)) for each segment for each rea-
lization.

6. The damage state of the system is taken as ‘failure’ if any segment
has capacity lower than demand (Z < 0) within the system.

7. Calculate the fraction of realizations for which Z < 0, which is an
estimate of the system probability of failure.

Fig. 2 illustrates the procedure for evaluating the system failure
probability using the Monte Carlo simulation-based approach.

3.2. Level-crossing statistics method

The Monte Carlo simulations presented in the previous section are
computationally demanding for large systems. A conceptually similar
alternative that is less computationally demanding is described here. It
involves computing the statistics of the limit state function (i.e., the
distribution function and spatial correlation function) for segments
within a reach using FORM [19] and then computing the reach failure
probability using level-crossing statistics. Reach failure probabilities
can then be extended to uni-modal bounds on system failure prob-
abilities. The steps involved in this method are outlined below (see
Vrouwenvelder, [11] or Jongejan and Maaskant, [13] for further de-
tails).

1. For each reach, define a representative segment having probability
density functions (PDFs) for capacity and demand. Limit state
function, Z, is the difference between capacity and demand (Eq. (2)),
and is generally taken as log-normal.

2. Given the demand and capacity PDFs from (1), calculate the con-
ditional failure probability [P(FSeg|E)], reliability index (βSeg), and
influence coefficients of the segment using FORM. Reliability index
and failure probability are related as:

= < = −F E Z βP( | ) P( 0) Φ( )Seg Seg (4)

where Φ is the standard normal cumulative distribution function.
The influence coefficients [20] describe the relative weight of the
demand (αD) and capacity (αC) distributions on the limit state
function. This can be expressed by a linearized version of the limit
state function at the design point (i.e., the point having the shortest
distance from the limit state function to the origin in the standard
normal space, [19]) as follows:

= + +Z β α ε α εSeg D D C C (5)

where εC and εD are independent, standard normal variables. The
squared sum of αC and αD is unity (i.e. + =α α 1D C

2 2 ).
3. Calculate the failure probability of the reach on the basis of level-

crossing statistics. In this step an approximate version of the spatial
correlation of the limit state function, ρZ(x), is taken as the weighted
sum of the correlation functions for capacity and demand (ρC(x) and
ρD(x), respectively), as follows:

= +ρ x α ρ x α ρ x( ) ( ) ( )Z C C D D
2 2 (6)

where x is separation distance between two points. The failure
probability of a reach [P(FR|E)] can now be approximated by:

= − −
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where L is the reach length. Eq. (7) indicates a reach may be thought
of, approximately, as a series system of independent, characteristics
lengths, with a length (LChar) given by:

= ×
−

× ⎛
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⎟L F π β

P( ) 2 exp
2Char Seg

d ρ
dx

Seg

(0)

2

Z
2

2 (8)

4. Calculate the conditional failure probability of the system com-
bining reach conditional failure probabilities. Uni-modal bounds of
system failure probability can be computed from reach failure
probabilities using Eq. (1). When characteristic lengths are appre-
ciably shorter than reach lengths, we consider it acceptable to as-
sume zero correlation between reaches, as discussed further in
Section 5.4.

4. Input models

4.1. Capacity distributions

Fragility curves describe the probability of exceeding a specified
damage limit state conditioned only on a ground motion intensity
measure (in the case of earthquake demands) or other suitable demand
parameters for high-water hazards. As illustrated in Fig. 3, the capacity
distribution for a segment with deterministic demand can be taken as
the derivative of its fragility curve [21], which has intensity measure Y
on its abscissa. We take the seismic levee fragility (and hence capacity
distribution) from the empirical models of Kwak et al. [8], which use
the intensity measure of peak ground velocity, PGV in units of cm/s.
These empirical models inherently consider failure modes contributing
to observed levee deformations. For the considered data set, these
primarily involve freeboard loss and/or levee cracking caused by
slumping and shear deformations associated with liquefaction and
cyclic softening of foundation soils, along with seismic slope instability
and seismic compression. Fig. 3 shows two example capacity distribu-
tions derived from these models. The distributions shown in Fig. 3 are
applicable for stiff soil (GN =1 model; [8]) and for soft soil, shallow
groundwater, respectively.

For high-water conditions, possible failure mechanisms include
underseepage (internal erosion), slope instability, and overtopping. In
the application considered subsequently, we consider the internal ero-
sion mechanism. We use the fragility relation shown in Fig. 4 relating
failure probability to vertical exit flow gradient, i [10]. Seepage ana-
lyses are used to relate water level (which comprises demand parameter
Y in this case) to i, for the geometry and soil condition present in a

Fig. 3. Example capacity distributions derived from empirical model of Kwak
et al. [8]. μln1 and μln2 represent natural log mean capacities (the exponent is
taken to convert to arithmetic units) and σln1 and σln2 represent standard de-
viations of capacity distributions.
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particular levee reach. Hence, for the scenario high-water event (re-
sulting from a storm in the river watershed) the demand parameter and
the independent variable used in the fragility curve are both re-
presented by water level. Analyses of this sort are illustrated for an
example problem in Section 5.

4.2. Correlation models

Demand correlation for ground motion is taken from an empirical
Markov-type correlation model by Jayaram and Baker [12]:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

ρ x x
a

( ) exp 3
D

DD (9)

where aDD is a range parameter taken as 17.1 km for widely varying
geologic conditions and 33 km for similar geologic conditions, and x is
separation distance, as before. This form is referred to as a Markov
correlation function. Fig. 5 shows these two demand correlation
models.

Demand correlation for high-water hazard is taken as unity,
=ρ x( ) 1D . This is used because high-water events are considered to

raise the water level in a rather uniform manner in the water bodies
bounded by levees. This assumption is considered reasonable when the
levee system is bounding a common water body.

Capacity correlation, ρC, was estimated by Kwak et al. [14] using
observations of the spatial correlations of damage states combined with
correlations of seismic demand:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

ρ x x
a

( ) exp 3
C

CC (10)

where aCC is the range parameter, which is 8.1 km for level≥ 1 damage
(effectively any perceptible damage level) and 3.2 km for level> 2
damage (severe damage). Lacking empirically derived capacity corre-
lations for high-water events in the literature, for reasons of simplicity,
we apply the seismic correlation functions for levee capacities during
high-water events.

Markov correlation functions are not mean square differentiable
(e.g., [22]), which is undesirable because it leads to unstable level-
crossing statistics (the second derivative of the function at zero se-
paration distance does not exist). This issue is less relevant in a Monte
Carlo analysis because the separation distance between finite-length
segments is larger than zero. Generally the resolution in the random
field analysis (forward analysis) is consistent with the resolution that
was used when deriving the correlation function from observations of
damage.

The Gaussian correlation function provided in Eq. (11) is mean
square differentiable, therefore finding a Gaussian correlation function
that is "equivalent" to the Markov correlation function developed by
Kwak et al. [14] is desirable. Ultimately, it would be desirable to re-
derive demand and capacity correlation functions using the Gaussian
function. In the meantime, an "equivalent" function is obtained by
computing the probability of reach failure using the Markov function
with the Monte Carlo method, then selecting a value of bCC such that the
same probability of reach failure is obtained using level-crossing sta-
tistics with the Gaussian function.

⎜ ⎟= ⎡

⎣
⎢−⎛

⎝
⎞
⎠

⎤

⎦
⎥ρ x x

b
( ) exp 3

C
CC

2

(11)

As an example, consider Fig. 6, which shows two limit state func-
tions versus horizontal position along a 25 km linear levee system; one
with a Markov correlation function and the other with a Gaussian
function. The limit state function is selected to have a mean value of 0.5
and standard deviation of 0.2, and is assumed to be normally dis-
tributed. Failure is assumed to occur when the limit state function is
lower than zero. The Markov-type correlation function gives rise to high
frequency variations in the limit state function, whereas the Gaussian
limit state function is much smoother. The value of aCC for the Markov
function was set to 8.1 km following Kwak et al. [14], and the prob-
ability of failure was computed to be Pf =0.23 using 1000 Monte Carlo
simulations, using the same resolution (i.e., segment length) used to
derive the empirical correlation structure. The value of bCC was then
iteratively adjusted, and bCC =1.0 km was found to provide Pf =0.23.
These two correlation functions are therefore considered to be
"equivalent". This approach is used to define appropriate equivalent
Gaussian correlation structures for the capacity of each reach analyzed
in Section 5.4. Alternative correlation function types could be con-
sidered, as long as they are mean-square differentiable.

5. Example application

5.1. Problem description

We consider the levee system shown in Fig. 7, which protects the
town from flooding during high-water river flows. The river and levee
run adjacent to the town through ‘highland’ (relatively firm soil con-
ditions) and ‘lowland’ (soft soil) areas. The levee is 5m in height and
has a mean water level on the river side of 1m above the levee base
elevation – hence, the levee is assumed to be effectively continuously
loaded. Due to the different foundation conditions, the highland and
lowland levees have different side slopes of 1.5 H:1 V and 2 H:1 V, re-
spectively, as shown in Fig. 8. The time-averaged 30-m shear wave
velocities in the two regions are 450m/s and 200m/s, respectively.

The study region is in an active seismic area, 15 km from a strike-
slip fault having a scenario M6.5 earthquake. The area is also subject to
water level rise in the river channel during storm events.

5.2. Scenario demands

We consider log-normally distributed scenario-based high-water
level and seismic demands. Our failure probabilities are conditioned on
those demand levels. We recognize that a more complete reliability

Fig. 4. Fragility curve relating failure probability to vertical exit flow gradient, i
(adapted from URS Corporation, Jack R. Benjamin & Associates Inc. [10]).

Fig. 5. Demand correlation functions for both, seismic and high-water condi-
tions.
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analysis would convolve uncertain demands with levee fragilities to
evaluate return periods on levee failure, but our work has not evolved
to that point as of this writing.

The scenario high-water event is assumed to result from a severe
storm in the river watershed. The median water level rise (ΔDW) for
both reaches in the river near the subject town from this event is as-
sumed to be 1.2 m (Fig. 8a), with a natural log standard deviation of
0.2.

We take the scenario ground motion as the within-event PGV dis-
tribution along the levee alignment. There is some change with co-
ordinate x due to varying site-source distance (taken as distance to
surface projection of fault, RJB) and site condition. Fig. 9 shows the
variation of 16th, 50th, and 84th percentile demands (using the Boore
et al. [23] ground motion model) with location along the levee. The
origin of coordinate x is shown in Fig. 7.

5.3. Monte Carlo approach

We apply the Monte Carlo approach (Section 3.1) using the fol-
lowing inputs:

• Seismic and high-water demand distributions are as described in
Section 5.2.

• Seismic capacity distributions for highland and lowland areas are
taken from the models of Kwak et al. [8] shown in Fig. 3 as the GN

= 1 model and the soft soil, shallow groundwater model, respec-
tively.

• High-water capacity distributions are described below.

• Spatial correlation models for demand and capacity are as described
in Section 4.2.

We develop fragility for high-water level by combining the hy-
draulic gradient-based fragility (Fig. 4) with reach-specific seepage
analyses performed for both reaches (in lowland and highland areas).
The steady-state seepage analyses were performed using the computer
program Slide 7.0 [24] using the section geometry and hydraulic con-
ductivities (k) shown in Fig. 10. These seepage analysis results may be
conservative for short-term high-water events, for which transient
analyses would be more appropriate. Fig. 10 also shows the resulting
flow velocities for the mean high-water level of 2.2m above levee base.
Fig. 11 shows the resulting internal erosion simulation-based data
points along with fragility curves as a function of high-water elevation
relative to levee base (DW+ΔDW). Both fragility curves are obtained
fitting the data with a log-normal functional form, using the maximum
likelihood estimation method [25].

Monte Carlo simulations (50,000 in total) applied to the seismic and
high-water scenario events produce system failure probabilities of P
(Fsys) = 0.098 and 0.11, respectively.

5.4. Level-crossing statistics approach and characteristic lengths

Recall that the level-crossing statistics approach is based on the
assumption of constant limit state distributions within reaches (i.e.
demands and capacities along the length of each reach are considered
stationary). In the example problem, capacity distributions are constant
within reaches, but demand distributions are variable with distance (x)
as shown by the trend of median demand in Fig. 9. Accordingly, we
assign constant (spatially invariant) distributions to the two reaches as
shown in Fig. 9.

Based on the demand and capacity distributions, results of FORM
analyses within the two reaches are given in Table 1. The higher failure
probability for the highland, high-water case results from the shorter

Fig. 6. (a) Capacity correlation functions, and (b) their effect on lateral distribution of limit state function Z.

Fig. 7. Schematic view of town protected by river-bounding levee passing over two geologic conditions and near an active fault.
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flow path and faster flow velocities (Fig. 10). Application of level-
crossing statistics to the segment-level FORM results produces the reach
conditional failure probabilities and characteristic lengths in Table 2.

Having established the probability of failure for a single reach, we
now turn our attention to computing the probability of failure of the
multi-reach system. For simplicity, we assume that the limit state
function for segments within one reach are uncorrelated with the limit
state function for segments within an adjacent reach. Based on this
assumption, the probability of system failure can be computed as:

∏= − −
=

P F P F( |E) 1 [1 ( |E)]sys
i

N

seg i
L L

1
,

/
R

i char

(12)

where NR is the number of reaches. NR is equal to two in the present
application (Fig. 9).

The assumption of statistical independence of the limit state func-
tion among reaches is justified when either of the following conditions
is met:

1. The levee system exhibits an abrupt transition between reaches that

occurs, for example, at the transition between two geologic units.
This condition provides a physical justification for assuming that the
limit state function is uncorrelated among reaches.

2. The characteristic lengths are significantly shorter than the reach
length. In this case, any spatial correlation that exists at the contact
between two reaches will not significantly influence the system
failure probability.

For cases in which neither of these conditions are met, P(Fsys|E) will
be lower than computed using Eq. (12), which therefore provides a
conservative estimate. Eq. (12) constitutes one of two unimodal bounds
given in Eq. (1). The other unimodal bound assumes that the limit state
function is perfectly correlated among reaches. We believe the solution
will generally lie closer to that provided by Eq. (12) for geotechnical
failure mechanisms because the limit state function is likely closer to
being statistically independent than perfectly correlated among reaches
for typical levee systems. This is especially so when demands exhibit
spatial correlation over larger distances than capacities, which we
consider to be a generally reasonable assumption.

Based on the use of Eq. (12), the conditional system failure prob-
abilities for the two demand scenarios are:

• Seismic, P(Fsys|E) = 0.096

• High-water, P(Fsys|E) = 0.10

These failure probabilities compare favorably to results of Monte
Carlo analysis (0.098 and 0.11 for seismic and high-water, respec-
tively).

6. Conclusions

We describe two methods for reliability analysis of spatially dis-
tributed systems subjected to spatially variable and uncertain demands.
The intended application is levee systems used for flood protection, and
the reliability analyses are for high-water events (storm surge) and

Fig. 8. Cross sections of levees in: (a) highland area with mean water level plus mean water level rise, and (b) lowland area with mean water level.

Fig. 9. Variation of demand along the levee system. ϕ is within-event standard
deviation [23].
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ground failure from earthquake shaking. The two methods are con-
ceptually similar in that both utilize a limit state function defined as the
difference between capacity and demand, which is described by its
distribution and spatial correlation models.

One method randomly samples demands and capacities according to
their respective distribution and correlation functions, computes limit
states for levee segments, and computes failure probabilities on the

basis of the number of realizations in which at least one segment fails
divided by the total number of realizations (typically thousands). This
method can consider spatially varying demands and capacities, but is
computationally intensive.

The other method (referred to as the level-crossing statistics
method) discretizes a system into multiple reaches, calculates the
probability of failure for each reach, and combines reach probabilities
of failure to evaluate system probability of failure. The reach failure
probability is calculated by estimating the limit state function for a
representative segment (using the First Order Reliability Method), and
then extending that result to the reach level using level-crossing sta-
tistics. We postulate that reach failure probabilities can be combined to
evaluate system probability of failure by assuming statistical in-
dependence between reaches, provided reach lengths exceed char-
acteristic lengths. The FORM method is efficient and effective when the
limit state function may reasonably be approximated as constant over
fairly long reach lengths. However, the Monte Carlo method may be
needed when demand and/or capacity varies significantly along the
system length and the limit state function is non-stationary over short
lengths.

Application of the two methods is illustrated using a two-reach
levee system providing continuous flood protection to a town, and
subject to high-water and earthquake hazards. The high-water hazard is
assumed to result from internal erosion from underseepage. The seismic
hazard pertains to freeboard loss and/or cracking caused by slumping
and shear deformations driven by liquefaction and/or cyclic softening
of levee and foundation soils.

Our example calculations show several attributes that reflect the
characteristics of the input demand, capacity models, and correlation
models:

1. The spatial correlation of the limit state function is much more
strongly influenced by the capacity spatial distribution than the
demand distribution. This reflects shorter correlation lengths for
capacity.

Fig. 10. Computed fields of flow velocity for high-water events. Analyses are for flow beneath (a) highland and (b) lowland levees. Vector lengths are scaled relative
to the maximum flow velocity (vmax).

Fig. 11. Internal erosion fragilities as a function of high-water elevation re-
lative to levee base. Dots represent data points obtained from seepage analyses,
solid lines represent fitting curves obtained with a log-normal functional form,
using the maximum likelihood estimation method.

Table 1
FORM analysis results for segment-level performance in conditioned scenario
events E.

Reach & Demand P(Fseg|E) βseg αD αC

Highland, seismic 0.002 2.81 0.36 -0.93
Highland, high-water 0.011 2.28 0.52 -0.85
Lowland, seismic 0.008 2.40 0.53 − 0.85
Lowland, high-water 0.002 2.80 0.52 − 0.85
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2. Despite much stronger spatial demand correlations applied for the
high-water scenario vs that for the seismic scenario, characteristic
lengths for the two hazards are comparable. This outcome was
caused in part by broadly similar influence coefficients of capacity
and demand, together with the assumption of a common capacity
correlation model for both failure modes, which may not be gen-
erally applicable. Field performance data has not yet been analyzed
to develop capacity correlation models for high-water hazards.

3. For the example considered, results of the Monte Carlo and level-
crossing statistics methods are generally comparable. It is unknown
at this time how general this finding may be.

Two important aspects of the level crossing statistics method in-
troduced in this paper are: (1) the conversion of Markov-type spatial
correlation models for demand to Gaussian functions, and (2) con-
siderations in the analysis of system reliability given failure prob-
abilities for individual reaches.
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