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ABSTRACT

In retail sector, product variety increases faster than shelf spaces of retail stores where goods are presented to consumers. Hence, assortment planning is an important
task for sustained financial success of a retailer in a competitive business environment. In this study, we consider the assortment planning problem of a retailer in
Turkey. Using empirical point-of-sale data, a demand model is developed and utilized in the optimization model. Due to nonlinear nature of the model and integrality
constraint, we find that it is difficult to obtain a solution even for moderately large product sets. We propose a greedy heuristic approach that generates better results
than the mixed integer nonlinear programming in a reasonably shorter period of time for medium and large problem sizes. We also proved that our method has a
worst-case time complexity of ¢(n?) while other two well-known heuristics’ complexities are ¢ (n?) and ¢ (n*). Also numerical experiments reveal that our method has

a better performance than the worst-case as it generates better results in a much shorter run-times compared to other methods.

1. Introduction

Retailing business and all its dimensions went through a drastic
change with the turn of the century due to increasingly personalized
consumer needs, growing number of products, and drastically changing
way the sales are conducted (Clay et al., 2002). Empirical evidence
indicates that increasing amount of customers seek products that are
suited to their individual needs (Ulu et al., 2012). Personalized con-
sumer demand lead manufacturers to design different products to stay
competitive as consumers rarely hesitate to switch to another brand (or
retail store) when they are dissatisfied with the actual one, a.k.a. low
consumer loyalty.

To keep up with this drift, supermarkets tend to increase the range
and variety of products that they offer to their customers. Highly di-
versified customer needs and increasing number of candidate products
force supermarkets to increase the variety of goods on their shelves for
serving to larger number of consumers and maintain their market
shares. However, shelf spaces of supermarkets usually stay the same as
it requires significant amount of investment to increase them. Quelch
and Kenny (1994) report that the number of goods in supermarkets
increased by 16% per year between 1985 and 1992, while shelf space
expanded by only 1.5% per year in the same period. In addition to
limited shelf space, increasing product variety stands for higher hand-
ling costs, more frequent markdowns, and possible loss of economies of
scale due to smaller order quantities. Therefore, finding the correct
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product assortment out of a large candidate set and offering them in a
limited shelf space is critical for financial success of supermarkets
(Cadeaux, 1999).

Assortment planning is defined by the set of products to be sold at a
store chosen out of a larger candidate product pool. Assortment plan-
ners aim to choose products that maximize retailers' revenue by con-
sidering customers’ needs and tends to stay competitive in the market.
Assortment decision can be more complicated by extra constraints such
as inventory level, shelf space, and minimum number of brands to be
stored for each product (Kok and Fisher, 2007). Among these compli-
cating factors, shelf space assignment to each product significantly in-
creases the importance of assortment optimization for a retailer espe-
cially in case of limited (or absent) storage facility. When products are
directly placed on to shelves, the shelf space assignment determines the
maximum inventory level that can be stored in whole supermarket
within a replenishment period. Assigning limited shelf space to a pro-
duct with high demand rate might lead to substantial profit loss due to
repeating stockouts.

From a practical perspective, assortment planning is a one-time
decision usually taken by managers at the beginning of a selling season.
In some cases, it might be necessary to update product assortments due
to shifting customer profile or introduction of new products. Hence it
might be important to have a solution that generates an output in a
reasonable amount of time while satisfying business requirements
(Hiibner et al., 2013).
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This study develops an assortment optimization scheme that max-
imizes revenue for a single grocery store that operates as branch of a
supermarket chain in Turkey. In the supermarket database, there are
more than ten thousand products, and hierarchically all the products
are divided into groups, categories and subcategories. This large set of
products are located on the shelves. Since placing a brand behind an
another is not acceptable, frontage of shelves are assigned to products
of certain brands. From another perspective, all available shelf space is
divided into facings, which is defined as the number of products that
are visible in front of a shelf.

In order to characterize the customer demand, we developed a re-
gression model using point-of-sale data from the supermarket database.
Demand is modeled in log-linear fashion, which is the first of its type in
the assortment planning literature to the best of our knowledge. After
proper validation tests, the regression model is used as a deterministic
choice model in the assortment optimization. The model has a mixed
integer nonlinear programming (MINLP) nature, aiming to determine
the facing levels for all products that maximizes the revenue.

Experiments with the assortment optimization solution reveals that
the MINLP model can only be solved for small problem sizes using a
standard solver (BARON). For medium and large product sets, the
solver generates a very large optimality gap and no feasible solution
respectively even after 10 hours of computation time. To remedy this,
we develop a greedy heuristic that assigns facings to products itera-
tively. Numerical experiments and comparison of our results to two
meta-heuristics, genetic algorithm and simulated annealing, indicate
that our solution method performs significantly better than BARON
solver with medium and large problem sizes. Furthermore, the pro-
posed greedy heuristic generates better results than the two meta-
heuristics in a much shorter runtimes for all parameter combinations of
our test bed. These results indicate the importance of utilization of the
mathematical structure of the problem for development of efficient
solution algorithms.

This paper is organized as follows: In the next section relevant lit-
erature is reviewed. In Section 3 data set and the empirical demand
model is presented. The assortment optimization model is presented in
Section 4. We conclude our work in Section 5.

2. Literature review

Assortment planning gained importance within the retail sector as a
result of fierce competition and emergent requirements in customer
satisfaction (Mantrala et al., 2009). Kok et al. (2008) provide an in
depth review of the literature from all extents such as inventory control,
demand estimation, and assortment optimization.

Inventory control of the retailer is the key to its success from a
managerial point of view. Onal et al. (2016) propose an EOQ model for
perishable products under the guidance of assortment optimization.
They utilize a Tabu Search heuristic algorithm to overcome the com-
putational difficulties of this MINLP problem. Stockouts are a major
issue of inventory control. Assortment optimization helps the retailers
to quickly identify available shelf space in order to respond stockout
situations. Real time shelf space detection systems are readily available
to be used in such modeling for daily retailing operations (Frontoni
et al., 2017). On the other hand, typical response of the customer to
stockout instances arise as substitution behavior. Absentee product of
interest is substituted with a different product of the same category,
which makes the assortment planning activities even harder as the
demand might be random (Honhon et al., 2010; Gilland and Heese,
2013; Goyal et al., 2016). Return policies of the retailers also have
impact on assortment planning as an important dimension of inventory
control. A study by Alptekinoglu and Grasas (2014) conclude that the
optimal assortment generally implies strict return policies. This leads to
assortment that constitutes a balance of risk between consumer and
retailer.

Demand estimation and choice modeling have been the most
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attractive part of the assortment planning literature for researchers.
Since the decision on existence or nonexistence of a product within the
assortment is a binary decision variable and availability of product
varieties are categorical variable, logit functions are popularly em-
ployed to model these relationships. Rusmevichientong et al. (2010)
consider an assortment optimization problem under the multinomial
logit model. The parameters of the multinomial logit model are random
because every consumer has different taste for the products of their
interest. Similarly, Rusmevichientong et al. (2014) state that assort-
ments are composed of the products which provides the highest rev-
enue and this is called as revenue-ordered assortments. In the special case,
the nested logit model, products are grouped and organized in nests. A
customer coming to the store can decide to make a purchase from one
of the nest or leave without purchasing any product. If a nest is chosen,
the customer buys one of the product available in that specific nest
(Davis et al., 2014). Capacity of a nest plays an important role on the
optimal assortment as pointed out by Feldman and Topaloglu (2015).
Although we don't incorporate the product pricing to our models, lit-
erature consists many studies involving this crucial component of as-
sortment planning (Kok and Xu, 2011; Li et al., 2015).

According to Fisher and Vaidyanathan (2014), the assortment varies
based on the local tastes of each store. Their study provides improve-
ment of assortment localization, allowing a constraint on the number of
different assortments and quantifying the level of localization effects on
revenue. A ranking based consumer choice model is used in order to
show consumer tastes by Honhon et al. (2012). According to this choice
model, every consumer has their own rankings for the potential pro-
ducts and they intend to buy their highest ranked product offered
within the assortment. Golrezaei et al. (2014) handle the problem from
a personalization perspective. An intensive use of real time data col-
lection and utilization is required to perform this task on individual
customer base. For example; the product suggestions by Amazon.com
for each customer dynamically changes depending on factors such as
the previous purchases, recent reviews, purchases of other customer
who has similar tastes etc. Authors claim that increment in revenue is
possible by personalizing the assortment. These studies illustrate that
consumer choices and tastes directly affect and determine the assort-
ment structure.

Hwang et al. (2009) assume the demand rate of each product as a
function of the location and the displayed inventory level of the pro-
duct. They developed a mathematical model to maximize the profit of
the retailer. Proposed solution includes two segments; one as a slicing
structure by guillotine type cuts and other by slicing structure as hor-
izontal cuts only, which both are solved via Genetic Algorithm (GA).
Another solution to two-dimensional assortment problem by GA is
proposed by Lin (2006). A problem specific encoding scheme which
incorporates a novel packing process is used in the GA. Two-dimen-
sional assortment problem is a very difficult problem even when the
problem size is not too large. However, numerical results shows that the
GA is more effective and efficient than an integer programming opti-
mization scheme.

Such computational inefficiencies on exact solutions, especially in
medium to large scale problems, have made heuristic approaches very
attractive. Kok and Fisher (2007) determine a methodology in order to
forecast the input demand and substitution parameters for the assort-
ment planning problem and develop an assortment optimization algo-
rithm. An iterative heuristic which can solve a series of separable
nonlinear knapsack problem was proposed. Their methodology, applied
at a leading supermarket chain in the Netherlands, provided more than
a 50% increase in profits. Esoteric approaches based on Game Theory
principals are also applied successfully, especially in the presence of a
competitive market environment. Such studies generally handle the
problem in an aggregate manner of the whole market where price and
product variety are optimized simultaneously (Hopp and Xu, 2008;
Aydin and Heese, 2014; Federgruen and Hu, 2015).
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3. Data analysis and demand estimation

Every planning activity in operations management is initiated by
demand forecasting. Assortment planning is no exception and requires
substantial data analytics activities such as collection, storage, and
analysis. This section presents the basics of developing an empirical
demand model by regression analysis. Demand function will be utilized
as a hard constraint in the assortment optimization model. In depth
analysis of the demand model is going to be carried out for further
validation of the mathematical function.

3.1. Data set

The retailer under investigation is located in Ankara. Researchers
have been given access to company the database including inventory
levels, facing quantities, sales quantities and price for every product of
all product groups for each day of thirteen weeks.

In a typical supermarket branch, assortment is divided into different
groups such as grocery food, nonedibles, fruit and vegetable products,
household products, personal care products etc. These product groups
branch out categories, subcategories and products hierarchically. For an
example to this hierarchy, dairy products, milk, skim milk and A-Brand
skim milk can be sorted respectively (see Fig. 1). Sales data contains
40000 products under 677 product groups for this supermarket. The
dataset consists of 65050 rows of records. A data preprocessing on
stock, facing and sales values reveals some inconsistent records such as
negative stock values or extremely high remaining stock quantities.

A detailed investigation into the data source indicates that these
inconsistencies stem from transactional errors in the company's data-
bases. After elimination of these false records, we obtained a dataset
consisting of 62271 rows. Descriptive statistics of the numeric columns
of the dataset are presented in Table 1.

Our demand model considers weekly sales, aggregated from the
original data set, for each product. In addition to sales, the dataset in-
cludes inventory and facing values for each product. During the ag-
gregation process, we consider weekly average of inventory levels and
facing to account for the effect of declining inventory (and lost sales)
and assortment updates that might take place in the middle of a week.
Our resulting (aggregated) data set consists of thirteen weeks of sale,
inventory and facing values for all products in the candidate set.

3.2. Demand estimation by regression

In order to estimate the customer demand a regression analysis is
conducted for all candidate products in the data set. The predictor
values are as follows: Product ID, product group IDs, stock level and the
facing quantity.

For modeling sales data, the log-linear regression is found to be
preferable than linear regression. Although more practitioner friendly,
linear regression has a certain shortcoming. It may produce negative
demand values and this causes numerical difficulties when solving an
optimization problem. Unlike the linear demand model, log-linear de-
mand model always yields nonnegative values. Moreover, it can easily
be recovered to linear form by taking the logarithm of demand (Talluri
and Van Ryzin, 2006).

Table 1
Descriptive statistics for sales data.

Stock Facing Sales Quantity
Average 34.39 17.11 1.47
Standard Dev 73.55 13.67 5.72
Min 0.00 3.00 0.00

Max 996 210 309
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Different regression models are conducted by using the predictor
variables diversely in order to reach the demand model that fits best.
Using the predictor variables diversely assures that different variables
are used as predictors in each regression analysis. Resulting regression
models are compared through the coefficient of determination strength,
R? values, as well as Akaike Information Criterion (AIC). Specifically, in
the literature AIC is found to be more appropriate than adjusted-R? for
model selection processes (Hand et al., 2001). In our application we
consider both criteria to ensure best accuracy while avoiding over-
fitting. In each mode, we provide statistics for AIC as well as R? value.

3.2.1. Demand model

Demand modeling phase of this study includes analysis and com-
parison of fifteen different regression models to find the best model. In
each model, the logarithm of weekly sales quantity is considered to be
the dependent variable whereas amount of facings, remaining stock,
prices of different products are taken to be the independent variable.
These variable selection is motivated by the fact that retail sales are
directly or indirectly effected by the amount of shelf-space allocated to
a product Kok et al. (2008). To model the functional relationship be-
tween dependent (logarithm of sales quantity) and independent vari-
ables, we consider a linear model of which residuals follow Normal
distribution.

Among 15 different regression models the one with the highest R?
value and the lowest Akaike Information Criterion (AIC) is selected as
the demand model of this study. In order to examine the regression
analyses extensively, readers may refer to Durmus (2017). A different
application of regression models with transformed independent vari-
ables can be found in Hekimoglu and Barlas (2016).

The usage of a dependent variable obtained from a log-linear re-
gression model requires retransformation, which creates retransforma-
tion bias (Duan, 1983). In our study, estimated demand of each product
are evaluated in an exponential function, e®. The retransformation bias
is treated using the smearing correction factor, %E?:l eti, suggested by
Duan (1983). In this correction formula n stands for the estimated de-
mand for product i, and n is the total number of products in the dataset.
Such a correction of transformed dependent variable is also employed
by Caro and Gallien (2012) in a different context.

An exemplary demand model is illustrated below. Regression ana-
lyses is conducted to estimate demand function by using
IDProductGroup, IDProduct, Stock and Facing parameters as predictors.
The result of this regression are shown in Table 2, Table 3 and Equation
(D).

The regression equation is

In Demand = —0.698 — (0.175 X IDProductGroup)

— (0.024 x IDProduct)
+ (0.009 x Stock) + (0.013 X Facing) + ¢, 1

where ¢ follows Normal distribution. In the regression model p-values of
all predictor variables are smaller than 0.05, so these predictors are
significant for demand estimation. The adjusted R? value is 0.7082, and
it shows that the regression model explains 70.82% of variability pre-
sent in the customer demand. Moreover, AIC of value of this model is

Table 2

Coefficients of the regression equation.
Term Coefficient P-value
Constant —0.698 0.123
IDProductGroup -0.175 0.145
IDProduct 0.024 0.005
Stock 0.009 0.000
Facing 0.013 0.001
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Table 3

Model summary of the regression equation.
R-sq R-sq(adj) R-sq(pred) AIC
71.06% 70.82% 69.36% 639.58

lower than the all candidate models discussed by Durmus (2017). Low
AIC value indicates a proper model fit in nonlinear regression metho-
dology.

The coefficients of independent parameters demonstrate that
IDProduct effects the demand negatively, and the demand increases
with the increment of Stock, Facing and IDProductGroup parameters.

Demand = ePo+BiIDProductGroup—g,IDProduct+ 3 RemainingStock+p, Facing+e 2

According to the Fig. 2, the residuals are scattered in an unbiased
manner with minimal outliers. As a result, we conclude that the re-
sidual plot justify regression assumptions and the usage of the model in
the optimization.

3.2.2. Validation of the regression model

Estimation of prediction accuracy is essential for measuring the
performance of regression models. Cross-validation is a common model
validation technique to estimate the prediction accuracy (Fushiki,
2011).

k-fold cross-validation divides the data set into k complementary
subsets. k — 1 subsets are used to estimate model parameters (training)
and one subset is used for testing. Running this iteratively (by using
different parts for testing) uncovers potential weakness of the model
that might be averaged out when the entire data set is used for training.
In this study, five-fold cross validation is used to validate the demand
model. Steps involved in k-fold cross validation are explained in details
below.

Firstly, the data set is divided into k-equal parts. In the literature, k
is generally chosen as 5 or 10 depending on the size of the data. In our
study, the sample data compose of thirteen weeks of data in the product
set, so there are 130 rows of complete data. Setting k to 5, yields subsets
consisting of 26 rows of data (for each product).

Secondly, the first subset is used for test set and the rest is kept for
training. Regression parameters are calculated with the training set and
the obtained model is used to generate demand estimations for the test
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set. Finally, the MAPE of the first part is calculated by using Equation
(3) (Hanke and Wichern, 2009).
n N
MAPE:lZ—'Y‘_ Y",
= ®3
where Y, is actual sales, Y, stands for the demand estimation.

This procedure is repeated five times by using a different test set at
each iteration. Results of the cross validation test, MAPE values of each
part, and the average of all parts, demonstrate predictive power of the
demand model. The MAPE values are shown in Table 4.

The mean absolute percentage error (MAPE) for cross-validation
tests is found to be 155.65%. This value is rather high but customary to
every demand prediction occurring in such a long time horizon.
Uncontrollable factors involving managerial decisions in daily activities
might trigger such large deviations. These may be the result of excess
inventory levels or promotions initiated by certain suppliers. To im-
prove the cross validation test accuracy, test data sets may be extended
both in size and time perspective.

The same procedure is also applied to development of demand
models for 500 and 5004 products. Results of these analyses are pre-
sented in Durmus (2017). Once these models are finalized, we proceed
to the assortment optimization phase of the study.

4. Assortment optimization problem

The assortment optimization problem aims to maximize a retailer's
profit by assigning a limited amount of shelf space to a subset of pro-
ducts in the candidate product set. In this assignment problem, facings
are used as the decision variables as products are lined up side by side
along the shelf length. Total shelf space capacity, width and length of
the products are significant factors affecting the facing decision. The
width of a product determines how much shelf length each product's
facing seize whereas the length of a product implies the maximum
number of products that can be stored on the shelf as products are
placed in tandem along the shelf depth. Total shelf capacity is the
multiplication of shelf depth and shelf length. Fig. 3 illustrates these
terms.

The limit of shelf length (LSL) is defined by taking into considera-
tion of all shelving in the store, and it consists of a lot of different
shelving which are located alongside or one on the top of the other. The
shelf depth (SD) is designated as 60 cm, and it is a reasonable number

TOTAL

ASSORTMENT GROUES

CATEGORIES

J
N
J
N
J

SUBCATEGORIES PRODUCTS

A-Brand Skim
] ( i / Milk
Milk skimMilk K
J \ B-Brand Skim
) Milk
, Parmesan
, Dairy Products ]’/ ——
|'/ = \ Cheese I\ Mozerella
Bakery C-Brand
[ASSORTMENTI\ Products \ p /
\ 3 T Yoghurt \ Cheddar K
N B \ D-Brand
everages Cheddar
. J . 4 . J (& J . J

Fig. 1. The hierarchical data structure in the assortment.
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Fig. 2. The plot of residuals versus fits (Response is In Demand).
Table 4 empirical data hence, it consists of a deterministic and a random part
The result of cross-validation test on a sample (D; = dje%). Then the expected sales becomes as follows:
data.
E [sales;] = E[min((SD/L)f;, Dj)lmin((SD/lj)]} < Dj]Pr{(SD/lj)f} < D}
MAPE
+ (SD/1)f; Pr{(SD/)f; = Dj}. (5)
First part 60.35%
Sec'ond part 302.9% Denoting the distribution of the error term with f (u) and some
Third part 87.75% algebraic manipulation lead us to
Fourth part 116.4%
Fifth part 210.9% (SD/1pf; /dj
Average 155.79% Efsales] = d; [ """ uf. (u)du + (SD/1)f, Pr{(SD/L)f, /d; < €},

according to shelf standards of supermarkets. For the upper limit of
facing (ULF), artificially large amounts, such as 50, are assigned.

4.1. Assortment optimization model

The mathematical model of the assortment problem is defined with
the set of candidate products J(see Table 5). The objective of the as-
sortment optimization model is to maximize total expected revenue
which is the multiplication of price of each product and its expected
sales. Therefore, the objective function is

z= Z ij[salesj],

jer )
where E [sales;] = E[min(IL;, d;)] and IL; is the random variable re-
presenting the inventory level of product j. As explained in Section
3.2.1, the demand model considered in this study is estimated from

Table 5
Notation of the model.

J the set of candidate products
j the index of candidate products in the set J

b the price of the product j € J

dj the demand of the product j € J

grj the group ID of the product j € J

prj the product ID of the product j € J

Sj the remaining stock of the product j € J
f the facing of the product j € J

wj the width of the product j € J

lj the length of the product j € J

sales; amount of sales of the product j € J

203

(SD/L)f; /dj

=(sp/fy + [
=(SD/lj)fj - E[sj],

[dju — (SD/L)f;1f, (w)du,

©

where

Elsl = [ (D, ~ dw (wydu

u=

@)

For the rest of the paper, we drop the expectation operator from
sales; and s; for notational simplicity. We use Equations (6) and (7) in
the mathematical model which can be expressed as follows:

maxz p;sales;

jeJ (8a)
subject to
dj =By + Bigrj + Bopry + Bsj + B, ViET, (8b)
D fyw < LSL,
jes (8¢c)
f; SULF, VjeJ, (8d)
(SD/lj)fj — salesj=s;, Vje€, (8e)

(SD/1jf; /d; .

5 = /M‘:o T SDIf; - dwf(wydu, Ve, 8
fjezt, Vvjel, (8g)
sales; >0 Vjel. (8h)

The expected total revenue of the supermarket is maximized by the
objective function (8a). The price of product j € J is stated by the
parameter p;, and the decision variable d; indicates the expected de-
mand of product j € J.

The first constraint (8b) is the demand function in Equation (1)
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Shelf Length

» Facing

Fig. 3. An examplary shelf arrangement in a grocery store.

where a;, i > 0 are greater than zero. Parameters gr; and pr; state the
group and product codes (identity numbers) of the product j. The de-
cision variable s; is defined as the expected remaining stock of product j,
and the decision variable f; is defined as the facing quantities of product
j. The shelf length, denoted by LSL, limits the facings assigned to each
product. In constraint (8c), each product's width is denoted with w;. A
complete list of notation is given in Table 5.

In many supermarkets, products are located depending on the
product group which they belong to such as detergents, personal care
etc. Usually an additional constraint on facing is necessary in the op-
timization problem. Such an upper bound (8d) is denoted by ULF in the
model.

Constraints 8e and 8f calculate expected sales and remaining stock
by considering the maximum available shelf area assigned to product j.
We assume that there is no backroom in the store, and all inventory is
kept on the shelf. This assumption is consistent with the industry
practice as supermarket chains try to avoid having inventory in back-
rooms to minimize inventory holding cost. In these constraints, SD is
the shelf depth, and [; is the length of product j. Nonnegativity of f; and
s; are stated in the last two constraints.

4.2. A nonlinear programming model for the problem

4.2.1. Model analysis

Assuming sales is equal to demand and considering the mathema-
tical model presented in (8a)-(8e), we obtain a nonlinear optimization
problem for which some analysis on the objective function and the
feasible set is required. The objective function (8a) is together with the
constraint (8b) implies a convex increasing function of f; given that
B3, B, are positive constants. The rest of the constraints (8c-8e) are
linear functions of f; and s; which imply a convex feasible set.
Therefore, our optimization problem is a convex maximization problem
on a convex set. The following theorem presents the nature of the so-
lution for the assortment problem.

Theorem 1. The following statements hold.

a) The solution of the assortment optimization problem presented in
(4a-4g) has no interior solution, i.e. the optimum solution is in the
extremes of the feasible set.

b) Constraint (4e) is a binding constraint for all solutions of the model.

c) f] > 0 for all feasible solutions of the problem.

204

Proof. Define a set I including constraints (4c-4g), where the first
element of this is the constraint (4c). Also by combining (4a) and (4b)
we write the objective function

Ff 3) — —ao+angrji—apprj+azsj+a4f;
h(f.5) =D, pe jcaprtassitaaf)
jer
where x: =(xi, X, ...,X;,), where m is the number of products in the
product set J.

Statement a: Take an interior solution x € R?™, which is g;(x) < b;,
Vi € I. Then there exist an ¢ neighborhood whose elements are also
interior solutions of the problem, ie.
N.(x): =y e R?™: d(y, x) <¢, g() < b, Viel} where d(y,x) is the
Euclidean distance between points y and x. As h(.) is a convex in-
creasing function, h(%) > h(x) for any % = x + e\Vh(x), where V is
gradient vector generator. This means for any interior solution of the
problem, there is always another solution which makes the objective
function bigger, i.e. there is no optimum interior solution of the pro-
blem.

Statement b: We write Karush-Kuhn-Tucker conditions for the pro-
blem with two products. Following results can easily be extended for m
products.

B PrePotBihitEast — ywy + Az, — 4B, efotBitEast — o +y =0 9
B, PyePotBifatBoss — yw, 4 Jom, — A, ePotBihithost — g 4y, = 0 (10)
ByPrefotPlifast — 2y — 21 B, efotPilitast 4y = 0, an
ByPyePotPilatbasz — ) — 2B ePotPia+Eas2 4y, = 0, 12)
u(fwr + f,w, — LSL) = 0, 13)
/11(_81 +,f, — efothih +ﬁzsl) =0, a4
Ba(=s2 + mof, — et =, as)
@ (ULF — f) = 0, (16)
& (ULF - f,) = 0, a7
Wh =0, 18
Wh, = 0, 19)
us; =0, (20)
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U Sy = 0, (21)

Wy A1y Ay, 0, Gy Wy Vo U, Uy 2 0, 22)

where 7, = SD/I; for i =1, 2. It is easy to see that 4, = 0 contradicts
with the positivity of u; due to Equation (11). This also holds for 4, = 0
with Equation (12).

Statement c: Suppose ¥ > 0. Given that statement b holds, s, < 0
which is contradiction to primal feasibility due to Equation (11).[]

The first statement of Theorem 1 implies that at least one of the
constraints should be binding in the optimal solution of the problem.
This result together with the convexity of the objective function implies
that the problem can also be solved with gradient search modified with
constraints.

The second result of the theorem shows the criticality of the con-
straint (8e) which can be used to calculate remaining inventory (s;)
when a product is assigned to its upper bound (ULF) in the optimal
solution as in the following corollary given without Proof.

Corollary 1. If optimal facing of a product is in [0, ULF], fl € [0, ULF],
then s; satisfies the following equation, which has a unique solution.

In((SD/W)f; = ) = By = Buf; — Bysi = 0.

The last statement of the Theorem shows that the problem size can
be relatively reduced by dropping the constraint (8f).

Due to convexity of the objective function and the complex structure
of the optimization problem, further analysis on optimality conditions
only leads intricate conditions. Therefore, we proceed to the application
phase in which the empirical model is run with the mathematical model
described above.

(23)

4.2.2. Discretization scheme based on NLP relaxation

The mathematical model in (8a-8e) is a nonlinear programming
model. As described above, its optimal solution consists of facings being
equal to ULF for n products, facing equal to a float number in [0, ULF]
and facings being equal to values near zero for m — n — 1 products due
to the statement c of Theorem 1. From practical point of view, it seems
straightforward to round facings of m — n — 1 products down to zero.
However, that would leave some unassigned shelf space.

To remedy this, we suggest a discretization scheme which empty
some of the previously assigned shelf space (by NLP) and reassign it
iteratively in a greedy fashion. Define Jyz C J as the subset of products
of which facings are assigned to ULF in the NLP model. Also define
remaining shelf space, Ispc: =LSL — > _, w;f;, after facings are as-
signed.

The algorithm starts with the facings of the NLP solution, denoted
with f]@, V j € J. At the beginning of the algorithm facings, which are
equal to ULF, are set to |ULF/2] in order to empty some shelf space.

ie] "W j

fO = \ULF/2], ¥ j € Ius,
Ispc® = LSL — Zj o W, fj(o).

At the beginning of each iteration, the algorithm rounds up all fa-
cings fi =I[f{""], Vj€J and calculates df using Equation (23).
Then, additional demand per unit shelf space for all products

(z: =(d — d}i_l))/M)j, V j e J) is calculated and the facing of the pro-
duct with maximum z; is rounded up.

=1

for k = argmax;e;fz;} and f}” :f;i’1>, j €J, j# k. This process con-

tinues until all shelf space is assigned to all products (Ispc® < 0). The
heuristic algorithm is formally articulated in Algorithm 1 whereas its
performance against the MINLP solution of the problem is presented in
the next section.
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Algorithm 1
Greedy Heuristic for Discretization of Facings

L: f;O) = |ULF/2],Vj € Jus.

2 Ispel® = LSL — Y,y w; £

3: Calculate dgo) for all j € J using Equation 23.

4: Set i = 1.

5: while Ispcl'~!) > 0 do

6 fF=[f""VforalljeJ.

7. Calculate d;‘ for all j € J using Equation 23.

8: = arg max;je s {(d} — d;z_.l))prj/wj}

o0 f7 =[], and £ = £ for all j € J,j # k.
10: d) =df, and d) =d\"" for all j € J,j # k.
11: Ilspe® = LSL — ZjeJ wjf;i)

122 =141

13: end while

4.2.3. Computational complexity of the greedy heuristic
The worst-case time complexity of the greedy algorithm is presented
in the following theorem.

Theorem 2. Let n be the number products in the candidate set J. Then the
worst case time complexity of Greedy Heuristic (GH) is ¢/(n?).

Proof. Define ULF to be the upperlimit of facing. The algorithm starts with
an initial solution. It has to solve Equation (23) to calculate the objective
function value of this solution. Bisecton Search (BS) algorithm is used for
this purpose. BS needs at worst log (ULF /) steps to terminate, where ¢ is the
tolerance. Then, the initilazation of GH takes log (ULF /<) steps. In the main
loop, GH adds a new item to the facings or increase the facing of a particular
item at each iteration to create a new facings. After creating a new facings,
GH calls BS to calculate the objective function value. Assume that Jyp = @,
and n maxjey l; < LSL i.e. the shelf length is wide enough to store all items at
their upper limit at the same time. Then the main loop needs at worst nU
steps to terminate. At each iteration, step 7 requires c;log(ULF/¢) steps
whereas others (step 6, 8, 9, 10, 11) take cn steps. Step 12 takes c, amount
of time. The total amount of steps to reach the final step is

c1log(ULF/g) + nULF (cn + c;).

Hence the wost-case time complexity of the GH is ¢ (n?).[]

In this study, our greedy heuristic is compared with two well-known
method from the literature: Genetic Algorithm (GA) and Simulated
Annealing (SA). In the following theorems we present worst-case per-
formance results for our implementation of these methods to the as-
sortment planning problem. The proofs of theorems are presented in the
appendix of this paper.

Theorem 3. Let n be the number of items. If the population size, p, and the
maximum number of iterations, N, are linearly proportional to the number of
items, i.e. p=¢n, N ={,n, then the worst case time complexity of GA
implementation is ¢ (n*).

Theorem 4. Let n be the number of items. If the maximum number of
iterations is propotional to the number of items, i.e. NIter = {n, then the
worst case time complexity of Simulated Annealing (SA) implementation is
o).

As can be seen from these results, our heuristic has much better
performance than general optimization heuristics from the literature.
The main difference stems from the fact that our heuristic utilizes
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Table 6
Test bed for the numerical experiment.
Scenarios
Number of Products LSL ULF
50 250 3
500 4
750 5
500 2500 6
5000 7
7500
5004 12500
25000
37500

Equation (23) for reaching a better solution set whereas other methods
random perturbations (SA) and various crossovers between solutions
(GA) in previous iterations.

Importantly, the result in Theorem 2 is the worst-case performance
of GH and it is derived from a (worst-case) scenario where the NLP
solution given above yields a solution in which f; =0, VjnJ. In
practice, on the other hand NLP solution gives a warm start to the al-
gorithm which converges much faster than the worst-case performance.
Practical performances of our heuristic and other two methods from the
literature are presented in the next section.

4.3. Numerical experiments

In this section, we present results of the numerical experiments
depicting the performance of the heuristic solution for different number
of products and in various parameter settings. To this end we developed
three scenarios with 50, 500 and 5004 products. For each product set, a
respective empirical model for demand is developed. A detailed de-
scription (and summary statistics) of these empirical demand model can
be found in Durmus (2017). In each scenario three different LSL values,
representing small, medium and large store spaces for a supermarket,
are considered. For every product-LSL combination, we consider 5
different ULF levels. Therefore, our test bed consists of 45 different
parameter combinations given in Table 6.

In each parameter combination we calculate the NLP solution using
BARON solver, and then this solution is utilized in the heuristic algo-
rithm. As a benchmark, we run BARON solver for MINLP. For the so-
lution with 50, 500 and 5004 products, we set the solution time to
30000, 100000 and 200000 s respectively. MINLP solution performance
of BARON is found to be highly sensitive to the number of products.
Average optimality gaps are 21.6% and % for 50 and 500 products
respectively. For 5004 products BARON failed to provide a feasible
solution within 200000s. Therefore, NLP solution of the problem is
used as a benchmark for 5004 products.

To measure the performance of the heuristic solution, we compared
the results of our heuristic with two different types of heuristic
methods, genetic algorithm and simulated annealing, from the litera-
ture (Borin et al., 1994; Lin, 2006; Rajaram, 2001). Genetic Algorithm
(GA) is a common population-based heuristic method for solutions of
complex, nonlinear integer programming problems. In this study, we
modified the generic GA scheme by Talbi (2009). A two-dimensional
chromosome representation with 1-point crossover reproduction
scheme is utilized (Anderson et al., 1991). Please refer to Appendix B
for further technical details of the GA. Simulated Annealing (SA) is a
simulation-based heuristic algorithm commonly used for global opti-
mization problems. In this study we directly adapted the chromosome
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Table 7
Percent average deviation of all heuristic methods from the MINLP solution
with Baron.

Average Std.Dev Max Min
Greedy vs. Up.Bound MINLP 22.7% 25.7% 60.5% —11.4%
GA vs. Up.Bound MINLP 51.45% 13.97% 76.01% 16.03%
SA vs. Up.Bound MINLP 31.57% 11.59% 54.40% 13.05%
MINLP Opt. Gap 35.7 20.1 65.9 0.0
Table 8
Detailed optimality gap of all heuristics.
Num. of Product IP_Opt Gap GA Gap SA Gap Greedy Gap
50 21.6% 41.29% 29.97% 22.7%
500 49.9% 52.34 29.19% 27.9%
5004 - 60.72 35.57% 30.7%

representation of our GA implementation for the solution representa-
tion of SA. Technical details of the SA algorithm are presented in
Appendix C. In addition to those metaheuristic methods, we also con-
sider MINLP and the upper bound of the MINLP obtained from the
BARON solver.

Our results indicate that the greedy heuristic yields 22.7% optim-
ality gap whereas GA and SA solutions creates optimality gaps of
51.45% and 31.57%. Furthermore, the BARON solver's optimality gap
is 35.7% on average (Table 7 and Table 8). The standard deviation of
the greedy heuristic's performance is close to the other solutions of the
problem.

A detailed look into the results indicates that the relative perfor-
mance of the heuristic algorithm, seems insensitive to the number of
products in the problem set whereas MINLP solution's optimality gap is
increasing (Fig. 4). The performances of GA and SA are found to be
quite sensitive to the number of products and upper limit for facing
(ULF) (Fig. 4). Specifically, the heuristic solution is overperformed by
MINLP for 50 products, whereas its performance is significantly better
than MINLP for 500 products. Note that BARON couldn't yield a feasible
solution after 200000 s of running. Compared to other methods, our
greedy algorithm significantly leads to lower optimality gap for all
product number and ULF combination. Simulated annealing is the
closest rival of our greedy heuristic it is overperformed in all parameter
combinations of our test bed.

We also compare our method with other heuristics from the per-
spective of CPU times in Table 9. Those results indicate that our
heuristic method converges in a much shorter run-times, 31 s, whereas
the other two heuristics’ average run-times are 12.296 and 11.317 min.
Similar to the previous statistics, our heuristic method most beneficial
for large number of products. Specifically, our methods yields a solution
approximately 1 min whereas other methods take more than 30 min to
reach their solutions.

5. Conclusion

In retail sector, product variety is increasing significantly, while the
shelf space stays almost the same. Hence, assortment planning, which is
the selection of goods (out of a large candidate set) and assignment of
shelf space to each product to maximize profit, gets important for re-
tailers' financial performance. In the assortment planning problem,
utilization of past point-of-sale data is important to take customers’
preferences into consideration in the assortment planning problem.



M. Hekimoglu, et al.

70%

60%

50%

40%

30%

20%

% Gap from MINLP Upper Bound

[N
Q
x

Journal of Retailing and Consumer Services 50 (2019) 199-214

o MR ,, — AR AR R R
> b
& &€ <€ & &€ &€ Q‘°b Q‘°b € Q‘°b Q‘°b Q‘°6 Q‘&
§ S & S & & & & & & & &
, ; . & & & S § & & o
* 4 . . , \%) o) ) h)
¢ & & F L XL D
L » ¥ Y Y Y W W W ¥
WP Opt. Gap HEGAGap SAGap M Greedy Gap

Fig. 4. Deviations for different ULF values.

Table 9

CPU time of heuristic algorithms (minutes).
Products LSL GA SA Greedy
50 250 1.880 0.368 0.001
50 500 1.535 0.395 0.002
50 750 0.811 0.291 0.002
500 2500 1.014 1.833 0.076
500 5000 1.246 1.330 0.129
500 7500 1.232 0.705 0.190
5004 12500 34.432 40.953 1.036
5004 25000 34.695 30.796 1.435
5004 37500 33.822 25.186 1.896
Averages 12.296 11.317 0.530

In this paper, we consider an assortment planning problem of a
supermarket in Turkey. To this end, we built a log-linear regression
model representing the relation between facing and demand using

Appendices

A. Business Case of a Turkish Supermarket Chain

historical point-of-sale data. This model is utilized in a mixed integer
nonlinear programming (MINLP) model that aims to maximize total
profit under shelf-space constraints.

MINLP is a difficult-to-solve problem type even for moderately large
number of products. Numerical experiments with different problem
sizes reveal that the extant (state-of-the-art) solvers can only solve
small-size problems. For moderately large problem size, current solvers
yield very large optimality gaps even with long run-times. For the real
problem size, current solvers failed to generate a feasible solution.

For the solution we develop a greedy heuristic that utilizes mathe-
matical properties derived from relaxed version of the problem.
Numerical experiments indicate that our solution is overperformed by
BARON solver for only small problem size. For moderately large pro-
blem size, our heuristic is better than the MINLP solution. In order to
benchmark its performance, we consider two metaheuristics that are
common for solution of complex nonlinear problems. Our numerical
experiments indicate that our method generates better solutions in a
much shorter time periods.

In one of stores of a supermarket chain in Istanbul, an international brand of probiotic yoghurt and a local brand of buttermilk are being sold next
to each other on a refrigerated shelf. Each product has the same package width, which we call facing. The probiotic yoghurt is sold for 4.5 TL whereas
the buttermilk's price is 0.5 TL and this price (profit margin) difference leads assortment planner of the company to assign fifteen facings to the
former product and four facings to the latter. On the other hand the yoghurt generates 2.3 TL daily revenue (0.5 item/day demand rate) whereas the

buttermilk's revenue is 18.1 TL per day (36 item/day demand rate).

Furthermore, facings determine the amount of space assigned to each product in the refrigerator. Due to the improper shelving, the shelf space for
buttermilks is much less than the shelf space of the probiotic yoghurt although demand rate of the former is 70 times higher than the latter's demand.
This suboptimal shelving potentially leads lost sales for the buttermilk and high disposal rates of the yoghurt. For more details of the business case,

refer Durmus (2017).
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B. A Genetic Algorithm for the Assortment Optimization Problem

We modified the generic GA scheme in (Talbi, 2009). A two-dimensional chromosome representation from (Anderson et al., 1991) is used. Each
column of the chromosome refers to an item. There are two rows in the chromosome: (1) Percentage of facings in terms of UFL, hence f; is obtained
when corresponding gene value is multiplied by UFL and rounded to nearest integer less than or equal to this value, (2) Percentage of stock in terms
of actual facings, hence when f; is multiplied by a gene value from this row the corresponding s; is obtained. Once a chromosome is on hand we can
calculate sales values (s;) as high as possible such that the constraints (8e) and (8h) are not violated. Also, we ensure that constraint (8d) is satisfied
by using percentages. Constraints (8f) and (8g) are satisfied by definition. Since, random generation of the chromosomes and random crossover
operations may lead to facings such that constraint (8¢c) is exceeded, we inherited a drop heuristic to repair such violations Li et al. (2003). The
heuristic is based on discarding non-promising items from the facings one-by-one until the constraint is satisfied.

B.1. Mutation Operation (Algorithm 2)

Reproduction scheme of the population is based on 1-Point crossover and perturbation of percentages as mutation. The mutation operator
changes the value of a single gene, i.e. percentage of f; or s;, by adding aU [—1,1] to the gene value where a is a constant and a real number from
[0,1], and U [¢] follows the uniform distribution. If the gene value stays out of the closed interval [0,1], the value is adjusted to O if the value is less
than 0, and 1 otherwise. The pseudocode of the mutation operation is given in Algorithm 2. The time complexity of the mutation operation is given in
Lemma 1.

Lemma 1. If the population size of the genetic algorithm is linearly propotional to the number of items, denoted by n, then the worst-case time complexity of the
mutation operation is ¢/ (n?).

Proof. In the pseudocode of the mutation operation in Algorithm 2 all steps between 4 to 21 take ¢’(1) amount of time. The for loop in step 3 runs forn + 1.
Assuming the population size is linearly propotional to the the number of items n. Then the worst-case time complexity of the mutation operation is
n(n+1)=(n* + Q) = ).

B.2. CalculateSales Routine (Algorithm 5)
This algorithm takes ¢’ (n) amount of time as the for loop in Algorithm 5 runs for n amount of iterations with /(1) operations. This result is given
in the following lemma without Proof.

Lemma 2. The worst-case time complexity of CalculateSales routine is ¢ (n).

B.3. Next Population Routine (Algorithm 3)

This routine takes, the number of products (n), population size, which is assumed to be proportional to the number of items (PopSize = ¢n),
population matrix for facings, denoted by F, population matrix for remaining inventory, denoted by S, width, price and fv vectors (W, p and
t: =(fodien)- 5

At the beginning of the procedure, we calculate each product's selection probability Pr: =¥ for all i € I. Then we calculate the cumulative
iel/tt

probabilities cPr;, V i € I. Using these cumulative probabilities, we create two candidate vector a and 3. Then we crossover them in Steps 13,14 and
19 and correct these new candidate solutions with the feasibility condition 8c in Steps 15-18 and 20-23 in Algorithm 3. In these corrections, we call
Drop Heuristic in Algorithm 6 with worst-case time complexity of ¢(n?). Similar operations are executed in for S in steps 26-27.

Lemma 3. Let n be the number of items and the population size is linearly propotional to the number of items, i.e. p = {n, {> 0. Then, the worst case time
complexity of Next Population routine (Algorithm 3) is @ (n?).

Proof. Next Population routine in Algorithm 3 starts with the summation and division operations in Step 2-3 which take c;n amount of time. Step 4-7 take
c,$n amount of time. The for loop between step 8-34 runs %” amount of iterations. At each iteration, steps 9, 11 and 13 take c; amount of time in total and two
maximizations in steps 10 and 12 take c;n and c,n amount of time units. Steps 14 and 19 copy different parts of E, and F; to x which take csn and cqn amount
of time. Summations at steps 15 and 20 take c;n and cgn. Steps 16-18 and 21-23 take con® and cyon? amount of time due to Lemma 4. Steps 24-29 form
vectos with a dimension n. They take c;;n amount of time in total. Steps 30 and 32 take c;,n amount of time due to Lemma 2. Summations in steps 31 and 33

take c;3n amount of time. Steps 35, 36, 38, 40 and 41 take ci4n amount of time units and sorting at steps 37 and 39 take c,snlog,n. Therefore, the total
amount of time units isgn [er+ cro+ (a4 Ca+ Cs+ Cs+ ¢7+ s+ €11 + Cia + C13n + cran)n + (co + c10)n?] + (c13 + cua)n + cyshlog,n. Hence the worst-

case time comlexity is ¢ (n®).
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The genetic algorithm terminates when there is no improvement for k successive iterations or the number of iterations exceed a predefined bound
N. All parameters of the algorithm is chosen by trial-and-error method. Specifically, the population size and the number of iterations are set to
linearly proportional to the number of products in the assortment algorithm. The worst-case time complexity of this implementation is given in
Theorem 5.

Theorem 5. Let n be the number of items. If the population size, p, and the maximum number of iterations, N, are linearly proportional to the number of items,
ie. p={n, N = {,n, then the worst case time complexity of GA implementation is ¢/(n*).

Proof. The optimization routine given in Algorithm 4 consists of two large loops at steps 2-11 and steps 16-33 and series of assignments at steps 12-15 which
take in total ¢, n time units. The first loop runs for {n iterations. At each iteration steps 3-5 take c,n. Drop Heuristic at steps 6-8 and 21-23 take c3n? and c4n?.
Steps 9 and 10 take csn amount of time. The second loop runs for ¢, n iterations. At each iteration, Next Population routine (step 17) runs for cqn® amount of
time due to Lemma 3 and Mutation Operation (step 18) takes c;n* amount of time due to Lemma 1. Inner for loop between steps 19 and 26 runs for {n
amount of iteration. At each iteration, step 20 takes con, steps 21-23 take cyon?, step 24 and 25 takes c;;n amount of time. Step 27-32 take ¢;;n amount of
time. Hence the required amount of time to complete the algorithm is

cin + {nlean + (63 + c)n® + csn) + Gnlesn® + c7n? + n(cipn® + (o + c11)n) + cian).

Hence the worst case time complexity is ¢ (n*).

Algorithm 2
Mutation Operation of the Genetic Algorithm

1: Input: PopSize,F,S,n,a, M Prob
2: for all 1 < i < PopSize do
3: foralll<j<ndo

4: r < UJ0,1]

5: if M Prob < r then

6: xefij+a*U[—1,1}
7 if £ <0 then

8: Fij 0

9: else if x > 1 then
10: Fij +—1

11: else

12: Fyj« o

13: end if

14: €T 4— gij -l—a*U[—l,l]
15: if £ <0 then

16 Sij < 0

17: else if x > 1 then
18: Sij +—1

19: else
20: Sij =
21: end if
22: end if
23:  end for
24: end for

25: return F,S
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Algorithm 3

Next Population Routine For the Genetic Algorithm
1: Input: PopSize, NIter,n,w,p, LSL,UFL
2: for all 1 <i < PopSize do

3. By« U[0,1),¥j € J
4 8 U1 Vie
5. lspe; %LSL—ZjerjLUFL*F‘g))j
6 if lspc; < 0 then

7 I_T‘i(o) — DropHeuristic(Fi(O))

8 end if

9: sales + CalculateSales(Fi(O), Si(o))
100 fo; < D pjsales;

11: end for

12: d <+ {i: fv; = max (fv)}

13: Fheur — F((io)

14: Sheur < gg’)

15: n < fug

16: for all 1 <t < Nlter do

17 F® S®) < NextPopulation(FE-1) St-1))
18:  F® SO « Mutation(F®) S®)

19: for all 1 <i < PopSize do

200 Ispe; + LSL— Y, w;[UFL« B |
21: if Ispc; < 0 then

22: Fi(t) — DropHeuristic(Fi(t))

23: end if

24: sales CalculateSales(Fi(t), gi(t))
25: foi <= 37, pjsales;

26: end for ~
27 d < {i: fv; = max (fv)}
28: if fug > n then

29: ?heur — F((it)
30: Sheur < S((it)
31: n < fug

32:  end if

33: end for ~

34: return fheur,n
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Algorithm 4
Genetic Algorithm for the Assortment Problem
1: Input: PopSize, NIter,n,w,p, LSL,UFL
2: for all 1 <i < PopSize do
3. By« U[0,1),¥j € J
S «Ulo,1),vj € J
lspe; < LSL — )]
if lspc; < 0 then

4

=(0
5 w;|UFL  FY) |
6:
7: I_T‘i(o) — DropHeuristic(Fi(O))
8
9

jE€J

end if

. sales + CalculateSales(Fi(O), Si(o))
100 fo; < D pjsales;
11: end for
12: d <+ {i: fv; = max (fv)}
13: Fheur — F((io)
14: Sheur < gg’)
15: n < fug
16: for all 1 <t < Nlter do
17 F® S®) < NextPopulation(FE-1) St-1))
18:  F® SO « Mutation(F®) S®)
19: for all 1 <i < PopSize do

200 Ispe; + LSL— Y, w;[UFL« B |
21: if Ispc; < 0 then

22: Fi(t) — DropHeuristic(Fi(t))

23: end if

24: sales CalculateSales(Fi(t), gi(t))
25: foi <= 37, pjsales;

26: end for ~
27 d < {i: fv; = max (fv)}
28: if fug > n then

29: ?heur — F((it)
30: Sheur < S((it)
31: n < fug

32:  end if

33: end for ~

34: return fheur,n

Algorithm 5

CalculateSales Routine for the Genetic Algorithm

: Input: pr,gr,1,w,p,f,s,5,5D, Nltem

: for all 1 < j < NItem do

0 < Lfi/l; = SD]

dj < exp(B1 + Bagrj + Bsprj + Basj + B5f;)
salesj <— min(0; — s;,d;)

6: end for

7: return sales

AN R o e

C. Simulated Annealing Heuristic for the Assortment Planning Problem

We directly adapted the chromosome representation of our GA implementation for the solution representation of SA. Hence, all constraints are
satisfied as discussed in GA by definition and with the aid of the drop heuristic. Neighborhood structure is similar to the mutation operation of GA. It
is defined as replacing each value of the first row, i.e., f;, Vj€J, with f; + 8 = U[—1,1] where B is a constant and a real number from [0,1].
Similarly, each s; is changed with s; + 6U[—1,1] where 8 is a constant and a real number from [-1,1]. If any of the fj or s; stays out of the closed set
[—1,1] after the additions, they are adjusted to 1 if their values exceed 1, or 0 otherwise. Then, the drop heuristic takes action and repairs the solution
to satisfy constraint (8c) if it is violated. The algorithm terminates when number of iterations exceeds a predetermined limit N. Parameters of the SA
implementation is decided by trial-and-error.
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In order to analyze the computational complexity of the Simulated Annealing algorithm, we first figure out the complexity of the drop heuristic
(Algorithm 6) and perturb routine (Algorithm 7). Time complexity of the drop heuristic is given in the following lemma wheras the time complexity
of the perturb routine, given in Lemma 5 without Proof as it can be easily seen from the pseudocode.

Lemma 4. Let n be the number of items. The worst-case time complexity of Drop Heuristic is ¢’ (n?).

Proof. The second step of the algorithm is the sum of the multiplication of f; and wj. Hence the time complexity of this operation is ¢, n. Suppose the while loop
between steps 3-7 run for t iterations. At each iteration, the minimization at step 4 requires c,n time unit, step 5 takes c; time unit, the summation of in step 6
requires c4n time units. Hence the total time complexity of the drop heuristic is c1n + t((c; + c4)n + c3). For the worst case analysis, suppose LSL = 0. Then
the while loop has to run fj times for all j € J. The number of total iterations is bn. Hence the total time complexity is b(c, + c,)n* + (czb + c))n < O (n?).

Lemma 5. The wost-case time complexity of the perturbation routine is ¢ (n).
Using Lemma 4 and 5, the computational complexity of the Simulated Annealing algorithm is presented in the following theorem.

Theorem 6. Let n be the number of items. If the maximum number of iterations is propotional to the number of items, i.e. NIter = {n, then the worst case time
complexity of Simulated Annealing (SA) implementation is ¢ (n?).

Proof. The implementation starts with initialization phase. A random solution is created and assigned as initial solution at steps 3-4 which require c;n amount
of time units. Step 5 takes c;n. Assume that this solution is infeasible. Then, the algorithm calls Drop Heuristic (steps 6-8) which requires c;n*> amount of time
units (Lemma 4). The initial feasible solution is used to calculate sales at steps 9-12 which take c,n?> amount of time units. Calculated profit is initialized at step
13. This takes csh. The initialization is followed by the main loop at steps 14-36. The loop runs for {n amount of iterations. Steps 15 and 16 take csn amount of
time units to generate a solution for iteration i. The modification of this solution with the feasibility condition takes c;n? (steps 17-19). Sales and profit are
calculated at steps 20 and 21 in cgn time units. Gradient vector is calculated at steps 22-34 in con in the worst case. Cooling is applied at step 35 in c;o amount
of time. Total required amount of time of the simulated annealing is

(c1 + ¢ + c3)n + cun? + ¢n(esn® + (cs + g + co)n + cyp).
Hence the worst-case time complexity of the simulated annealing algorithm is @ (n?).

Algorithm 6
Drop.Heur Routine for the Simulated Annealing Algorithm

1: Input: f,w,p, LSL

2: Ispc=LSL — 3 . ;w;f;

3: while Ispc < 0 do

40 k=arg minje,]{%, fi #0}
5 fe=fr—1

6:  lspc=LSL— 3}, ;w;f;
7: end while

8: Output: f.

Algorithm 7
Perturbation Routine for the Simulated Annealing Algorithm
1: Input: f,5,5,6,n
2: for all1 <j<ndo
3: I%fj—FB*U[—].,l}
if x <0 then
fj +—0
else if x > 1 then
fi1
else
fj — T
10:  end if
11 x4+ s;+0xU[-1,1]
12: if z <0 then

© 2 NS gk

13: s; <0

14: else if x > 1 then
15: S5 1

16: else

17: S — T

18: end if

19: end for

20: return f,s
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Algorithm 8

Simulated Annealing Algorithm for Assortment Problem
1:

= e
N = O

_ = =

._.
<@

NN ==
2o © ®

WoWw W W W NN NNNNNN

35:
36:
37:

Appendix D. Supplementary data
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Input: Nlter,n,w,p, LSL,UFL,0,Tq.

T < Thax

£« ulo,1),vj e J

s\« Ul0,1),¥j € J

Ispc®) « LSL -

if 1spc(® < 0 then
£ <« DropHeuristic(f(®)

end if

Fheulr' — ?(0)

Sheur < 5(0)

ey wilUFLx 7]

. sales + CalculateSales(f(®,5()
(0 > e pjsales;

Nheur < 77(0)
for all 1 < i< Nlter do
O 50 « Perturbation(Fi-1),50-1))
Ispc® <« LSL -3 w;|UFL % f]@j
if Ispct? < 0 then
£ « DropHeuristic(fV)
end if
sales + CalculateSales(fV,510)
7@ > jesPjsales;
A ) — pli=1)
if A <0 then
fheur — f(l)
§heur — 5(1)
Nheur < "7(1)
else
r+ U[0,1]
if r < exp(—A/T) then
fheur — f(l)
Sheur < §(i)
Nheur <~ 77(1)
end if
end if
T+ Txa
end for
return fheur, Sheur, Mheur

JjeJ

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jretconser.2019.04.007.
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