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In this paper, we develop a general framework to analyze the influence of system load on service times 

in queueing systems. Our framework unifies previous results and ties them to possible future studies to 

help empirical and analytical researchers to investigate and model the ways in which load impacts service 

times. We identify three load characteristics: changeover , instantaneous load , and extended load . The load 

characteristics induce behaviors, or mechanisms , in at least one of the system components: the server , 

the network , and the customer . A mechanism influences the service-time determinants: the work content , 

service speed , or in-process delay . We identify and define mechanisms that cause service times to change 

with load and use the framework to categorize them. We argue that an understanding of the relationship 

between load and service times can come about only by understanding the underlying mechanisms. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

An understanding of queueing systems is critical to the

anagement of service, production, and supply chain systems.

ueueing theory informs the planning of customer service, ca-

acity, processing times, flow times, and delivery schedules. The

ueueing literature has clearly documented the influence of ser-

ice times on system load. What is less well understood is the

nfluence of load on service times. 

Consistent with the notion of service time in the empirical re-

earch that we review, we use “service time” in this paper to

ean the time spent inside the process boundaries and “process-

ng time” to mean the part of that time spent serving the cus-

omer. Most queueing theory models assume that service times

re exogenous. That is, they assume service times are independent

f the system state. Recent empirical studies have made it clear

hat service times are endogenous: They depend on load. The di-

ection and magnitude of the relationship are not clear, however,

nd the underlying mechanisms vary across applications. The fol-

owing quotes exemplify a sample of findings that at first glance

ppear contradictory, where ↗ denotes service times increase with

oad, ↘ denotes service times decrease with load, and sequences of

hese symbols denote non-monotone patterns: 
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↘ It can be seen that [service] time is appreciably longer at

low volumes of traffic... than it is at high volumes ( Edie, 1954 ,

p. 120). 

↗ High hospital occupancy has a significant and quantifiable

negative influence on ED [emergency department] through-

put, affecting patients both discharged and hospitalized ( Hillier,

Parry, Shannon, and Stack, 2009 , p. 767). 

↘↗ We find that workers accelerate the service rate as load

increases.... Long periods of increased load (overwork) have the

effect of decreasing the service rate ( Kc and Terwiesch, 2009 ,

p. 1486). 

↗↘ ... we show that the aggregate effect of load on service

time is an inverted U-shaped response, but of modest magni-

tude ( < 10% change) ( Batt and Terwiesch, 2016 , p. 32). 

↗↘↗ ... we find evidence that patient length of stay... increases

as occupancy increases, until a tipping point, after which pa-

tients are discharged early to alleviate congestion. More inter-

estingly, we find a second tipping point—at 93% occupancy—

beyond which additional occupancy leads to a longer LOS

[length of stay].... Collectively, we find that the underlying rela-

tionship between occupancy and LOS is N-shaped ( Berry Jaeker

and Tucker, 2017 , abstract). 

In interpreting these quotes, we follow the implicit assumption

n much of the literature that we survey, that mean service times

re inversely related to service rates and to throughput. We revisit

his assumption in Section 5 . 
l., Load effect on service times, European Journal of Operational 
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We do not rectify the theories in the above quotes in the sense

that we do not choose one above the other. Rather, we demon-

strate that choosing one above the other would be in error. We

reconcile them in the sense that we show how they fit together

into a common body of knowledge, a task which has not previ-

ously been attempted. 

Our review of the literature indicates that different changes

in service time are caused by responses to different load-driven

mechanisms. The extant research in this area has been exemplary,

and we believe that a framework that unifies previous results and

ties them to possible future studies will enrich this body of work.

We propose a framework that conceptualizes a relationship be-

tween queueing elements, load, and service time. We refer to the

framework as the Load Effect on Service Times (LEST) framework. 

The quotes above do not represent competing theories so much

as complementary theories. However, that was not the common in-

terpretation before we proposed the LEST framework. When we

began this work a central theme from published work and col-

leagues was the existence of a predominant reaction that, with

sufficient work, could be characterized and defined. Oliva and Ster-

man (2001 , p. 896) wrote of a “formal model [of] ‘high-contact’

service” and Kc and Terwiesch (2009 , p. 1488) proposed a “general

model of service operations,” both arguing for only one, or two,

of the mechanisms identified in this paper. We argue that there is

no such predominant response. Rather there are mechanisms that

are activated in different situations, caused by different factors, and

have different effects. Further we argue that research should move

away from seeking a dominant response to better understanding

the mechanisms. 

The LEST framework provides an organizing structure to a

growing body of empirical work on the relation between load

and service times. Some of the papers we analyzed were not in-

tended to be investigations of the effects of load on service times.

We know this because we wrote some of them ( Schultz, Juran,

Boudreau, McClain, & Thomas, 1998; Schultz, McClain, & Thomas,

2003 ). It was only after we began this research that we saw the

connection. Making those connections, bringing separate, previ-

ously unconnected, work into one frame is one of the contributions

of this paper. 

The answer to the question “What is the effect of load on ser-

vice time?” is “It depends.” The more difficult question, on what

does it depend, is the focus of much current research. We propose

that an understanding of these questions can occur only by under-

standing the mechanisms involved. Furthermore, we argue that ad-

vancement in this area will come about through a study of these

mechanisms, the size and shape of their effects, the operational

situations in which they are commonly activated, and the mod-

els describing how they interact with other system components.

We contribute to further research by providing common names

and definitions for mechanisms, giving organization to the body

of work and allowing future researchers to know what has come

before and how their work fits into the whole. 

The LEST framework breaks down the question of how load im-

pacts service time into its component parts and provides a lan-

guage to formulate questions about the component parts. In this

respect, LEST is similar to Kingman ’s (1961) equation, which de-

composes the impacts of variability, utilization, and average service

time on average delay; or Vroom’s Expectancy Theory, which pro-

vides a language for formulating questions about the role of be-

liefs and motives in work performance ( Vroom, 2005 ). Much of

the art of managing operations lies in knowing what questions

to ask. If we ask better questions, we can find better solutions.

This paper presents a conceptual model that focuses on the skill

of suggesting questions. We demonstrate a set of relationships,

the value of which is contained in the questions they help us to

generate. 
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a
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The LEST framework is general, in the sense that it is applica-

le to any type of production or service system. The framework

rovides a comprehensive and systematic basis to investigate and

xplain how system components react and interact in response to

ystem load and how the reactions and interactions cause varia-

ions in service times. We justify the generality of the framework—

n part, by scrutinizing published empirical studies and using the

ramework to explain the observed relationships between service

imes and system load. 

The LEST framework can help empirical researchers by identify-

ng promising questions for future research and assisting them in

lacing their work within the broader picture. The framework con-

eptualizes a thinking process that an empirical researcher can use

y provoking such questions as: How is load characterized? Which

ystem components react to load? What are the mechanisms that

elate load variations to system component reactions? Which parts

f the service time increase or decrease with which mechanisms?

y focusing on mechanisms, empiricists can contribute to the field

y building our understanding of the scope, frequency, and impact

f particular mechanisms. For example, is the effect of peer pres-

ure linear, concave, or convex in load? Does peer pressure affect

he work content, the service speed, or the in-process delay (the

hree determinants of the service time)? Is the effect different be-

ween servers and customers? 

The study of mechanisms will benefit analytical researchers as

ell, by making models richer and more closely connected to ob-

erved system behavior. The LEST framework can help analytical

esearchers to improve understanding of queues by answering two

undamental questions: “What are the factors on which service

imes depend? And, how can these factors be translated into state

ariables?” The proposed framework also emphasizes the impor-

ance of certain queueing model characteristics that appear to be

mportant in the empirical literature but that are less frequently

iscussed in the analytical literature, including single-node queue-

ng systems vs. queueing networks, human vs. inanimate servers

r customers, dedicated vs. shared servers, and single vs. multiple

ustomer types. 

In the remainder of the paper, we provide further background

n Section 2 ; propose the LEST framework in Section 3 ; identify,

efine, and categorize mechanisms in Section 4 ; discuss modeling

mplications in Section 5 ; and lay out our conclusions and discuss

uture research directions in Section 6 . 

. Background 

A. K. Erlang developed the classical Erlang C and B queueing

odels in the 1910s to quantify traffic congestion in telephone

ystems ( Brockmeyer, Halstrøm, Erlang, & Jensen, 1948 ). Such

lassical models are used for capacity planning in manufacturing,

elecommunication, and service systems and are used extensively

n research on production and service systems. These models are

haracterized by the assumption that service time distribution

arameters are exogenous—independent of the system state. 

Exogeneity was called into question, initially based on anecdo-

al evidence (e.g., Gomersall, 1964 ). Formal empirical research on

ueueing systems gained momentum in the 1990s ( Gupta, Verma,

 Victorino, 2006; Scudder & Hill, 1998 ) with the use of data col-

ected from field research, archival records, or laboratory exper-

ments. That work has increasingly called into question the va-

idity of the exogeneity assumption (e.g., Inman, 1999; Robbins,

edeiros, & Harrison, 2010 ). 

As we have already demonstrated, a valuable stream of em-

irical research has supported the dependence of service times

n load. A field study of toll collection for the Port Authority of

ew York found, for example, that drivers who wait longer in

ine are more likely to have their change ready, leading to shorter
l., Load effect on service times, European Journal of Operational 
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verage payment times ( Edie, 1954 ). A laboratory experiment of a

ow-inventory serial line ( Schultz et al., 2003 ) found that subjects

orked at a slower pace during a warmup period after an unin-

ended break caused by a job shortage (an absence of items to

ork on). Regression analysis of archival data from several hospi-

als ( Kuntz, Mennicken, Scholtes et al., 2011 ) suggested an inverted

-shape relationship between bed occupancy and length of hospi-

al stay: The LOS increased with occupancy up to a tipping point

s patients waited longer for diagnosis, and the LOS dropped af-

er the tipping point because doctors discharged patients earlier to

ccommodate incoming patients. 

These empirical findings represent some fundamental differ-

nces. In Edie (1954) , for example, it was the behavior of the driver

the customer) in response to load that affected payment time,

hereas in Schultz et al. (2003) , it was the worker (the server)

ho behaved adaptively. Another example is the way in which

ystem load is represented: Edie (1954) viewed load as the queue

ength (number of cars in line), whereas Schultz et al. (2003) char-

cterized load based on whether the amount of work in pro-

ess (WIP) was zero (idle period) or positive (busy period). Some

tudies showed a negative relationship (e.g., Edie, 1954 ), some a

ositive relationship (e.g., Schultz et al., 2003 ), and some both a

ositive and a negative relationship (e.g., Kuntz et al., 2011 ) be-

ween service times and system load. In this paper, we propose

 general framework that incorporates these and other controver-

ies. 

Although the voluminous body of research in queueing the-

ry since the days of Erlang has extended the classical models in

any ways, few modelers have relaxed the exogeneity assumption.

ackson (1963) , Welch (1964) , Harris (1967) , and Graves (1986) ,

mong others, have modeled state-dependent queues. The mean

ervice rate in these models depends on the system state, which

ould be either the queue length or the amount of unfinished work

 Dshalalow, 1997 ). Other theorists have developed vacation models

e.g., Levy & Yechiali, 1975 ) to capture the type of load characteri-

ation that Schultz et al. (1998) observed: lower service rates after

 break (vacation) due to setup. 

Despite these effort s, there has been limited progress in mod-

ling the effects of load on service times. We postulate that the

imited progress in this area is, partly, due to the fact that the na-

ure of the dependency of service times on load is not clear—the

ssue that the LEST framework can address. For the sake of model

ractability, state-dependent models often disregard the central

haracteristics of real queueing systems. Our proposed framework

ighlights such characteristics. Most state-dependent models as-

ume a single server, for example, and therefore overlook behaviors

ike social loafing ( Karau & Williams, 1993 ) in multi-server systems.

nd state-dependent models typically ignore interactions among

odes in a queueing network, such as the impact of hospital occu-

ancy on the LOS of patients in a hospital emergency department

ED) ( Hillier et al., 2009 ). 

Advances in numerical techniques and the growing empiri-

al evidence about queueing systems provides opportunities for

ueueing modelers to include significant characteristics of real sys-

ems and allow for more flexible interactions among system com-

onents. For example, phase-type distributions facilitate viewing

ervice times as the outcome of a dynamic process of customer–

erver interaction ( Kingman, 2009 , and Khudyakov, Gorfine, and

andelbaum, 2018 , as reported in Gans, Liu, Mandelbaum, Shen, &

e, 2010 ). Matrix-analytic methods ( Neuts, 1981 ) allow for differ-

nt load characteristics to affect service times simultaneously (e.g.,

zriel, Feigin, and Mandelbaum, 2014; Delasay, Ingolfsson, and Kol-

al, 2016a ). In this respect, OR is starting to achieve the kind of

ertile interplay between experiment and theory that one sees in

ther sciences such as physics ( Fisher, 2007 ). 
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
. Load effect on service times framework 

Our framework features a chain of effects that connects system

oad to service time ( Fig. 1 ). We identify three load characteris-

ics: changeover , instantaneous load , and extended load . (We abbre-

iate “instantaneous load” to “load” in the remainder of the paper.)

he load characteristics induce behaviors, or mechanisms , in one of

he system components: the server , the network , or the customer .

he mechanism influences one of the service-time determinants:

ork content , service speed , or in-process delay . In Sections 3.1 –3.3 ,

e explain each box in Fig. 1 and define our terminology. 

A mechanism is a link between load characteristics and service

ime due to a specific cause. We borrow the term from Batt and

erwiesch (2016) . One can visualize a mechanism ( Fig. 1 ) as a path

rom one of the load characteristics, through one of the system

omponents and one of the service-time determinants, to the ser-

ice time. 

Mechanisms are exclusive to one path but paths are not exclu-

ive to one mechanism: Multiple mechanisms can share the same

ath, but differ in cause. For example, we will see several mecha-

isms associated with the load–server–work content–service time

ath ( Table 1 ). Although they share the same path they are dif-

erent mechanisms because they have different causes. Changes to

he three load characteristics invoke different behaviors or induce

echanisms in three system components: the server, the network,

r the customer. The mechanism fatigue , for example, is caused

y high load for an extended period and causes servers to reduce

peed, resulting in longer service times ( Kc & Terwiesch, 2009 ).

he causes are often behavioral but they need not be. In this pa-

er mechanisms affect service time but the term could be used for

ther effects on queues as well. For instance, different causes of

ockeying could be referred to as mechanisms. 

.1. Load characteristics 

Load characteristics are the indices, measures, and conditions

y which system load is characterized. We identify three system

oad characteristics: 

Changeover refers to a change from one type of customer to an-

ther, including from idle to busy. We use changeover as a sepa-

ate load characteristic because it involves fundamentally different

echanisms than other changes in load. 

Load refers to a measure or set of measures that identifies how

usy or congested a system is at a given time. Load is usually mea-

ured as the number of jobs in the system, the caseload or number

f jobs assigned to a server (the mutitasking level), the amount of

nfinished work, or the occupancy rate or occupied capacity. The

umber of patients in an ED waiting room is one way to measure

D load. 

Extended load tracks the history of system load. It usually refers

o a situation in which the system has been under a heavy load

or an extended period. Gans et al. (2010) measure extended load

s the number of calls an agent has answered since the last service

ap of longer than an hour; these authors show that agents slow

own during periods of extended load. 

.2. System components 

Server : We use this term generically, without necessarily imply-

ng that servers are human. The server is the person, the resource,

r the bundle of people and other resources that provides service.

ome systems—diagnostic imaging for hospital physicians or com-

uter and telecommunication infrastructure for a call center ( Ak ̧s in

 Harker, 2003 ), for example—have shared resources that do not

elong exclusively to any single server. 
l., Load effect on service times, European Journal of Operational 
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Changeover

Load

Extended Load

Server

Network

Customer

Work Content (W)

Service Speed (S) Service Time

Load
Characteristics

System
Components

Service-Time
Determinants

In-process Delay (D)

Fig. 1. The LEST framework. 

Table 1 

Framework and mechanisms. 

System components 

Server Section 4.1 Network Section 4.2 Customer Section 4.3 

Load characteristics Changeover 

Section 4.X.1 

Work content Physical setup ( ↑ ) ( Schultz 

et al. 2003 ) Forgetting ( ↑ ) ( Bailey 1989; 

Mark et al. 2005; Schultz et al. 2003 ; 

Ibanez et al. 2017 ) 

Work content Network 

arrangement ( ↓ ) ( Delasay et al. 

2016b ) 

Work content Customer early 

task initiation ( ↓ ) ( Edie 1954; 

Wang & Zhou 2018 ) 

Service speed Loss of rhythm ( ↑ ) ( Schultz 

et al. 2003; Staats & Gino 2012 ) 

Load Section 

4.X.2 

Work content Task reduction ( ↓ ) ( Batt & 

Terwiesch 2016; Delasay et al. 2016b; 

Forster et al. 2003; KC 2014; Kc & 

Terwiesch 2009; KC & Terwiesch 2012; 

Kuntz et al. 2014; Oliva 2001; Oliva & 

Sterman 2001 ; Mæstad et al. 2010 ; Long & 

Mathews 2017 ; Chan et al. 2018 ) 

Engagement ( ↑ ) ( Delasay et al. 2016b; Tan 

& Netessine 2014 ) Server early task 

initiation ( ↓ ) ( Batt & Terwiesch 2016; 

Delasay et al. 2016b ) Multitasking–cognitive 

sharing ( ↑ ) ( Aral et al. 2012; KC 2014; Lu 

2013 ) 

Work content Geographical 

dispersion ( ↑ ) ( Delasay et al. 

2016b ) 

Work content Return ( ↑ ) ( KC 

2014; KC & Terwiesch 2012; 

Long & Mathews 2017 −) 

Service speed Social speedup pressure ( ↓ ) 
( Edie 1954; Kc & Terwiesch 2009; Lu 2013; 

Mas & Moretti 2009; Schultz et al. 1998; 

Shunko et al. 2018; Staats & Gino 2012; 

Tan & Netessine 2014; Wang & Zhou 2018 ) 

Social loafing ( ↑ ) ( Berry Jaeker & Tucker 

2012; Mas & Moretti 2009; Wang & Zhou 

2018 ) 

Service speed Geographical 

speedup ( ↓ ) ( Delasay et al. 

2016b ) 

In-process delay Multitasking–time sharing 

( ↑ ) ( Aral et al. 2012; Goes et al. 2018; KC 

2014; Lu 2013; Tan & Netessine 2014 ) 

Multitasking–interruptions ( ↑ ) ( Chisholm 

et al. 20 0 0; KC 2014; Lu 2013 ) Workload 

smoothing ( ↓ ) ( Berry Jaeker & Tucker 2012; 

Kim et al. 2014; Long & Mathews 2017 ) 

In-process delay Resource 

sharing ( ↑ ) ( Hillier et al. 2009 ) 

Downstream system congestion 

( ↑ ) ( Asaro et al. 2007; Delasay 

et al. 2016b; Forster et al. 

2003; Hillier et al. 2009; Kim 

et al. 2014; Long & Mathews 

2017; Louriz et al. 2012 ) 

In-process delay Abandonment 

( ↓ ) ( Batt & Terwiesch 2015; Lu 

et al. 2013; De Vries et al. 

2018 ) 

Extended Load 

Section 4.X.3 

Work content Service cancelation ( ↓ ) 
( Brown et al. 2005 ) 

Work content Network chaos 

( ↑ ) ( Delasay et al. 2016b ) 

Work content Deterioration ( ↑ ) 
( Kc & Terwiesch 2009 ) 

Service speed Learning by doing ( ↓ ) ( Lu 

2013 ) Fatigue ( ↑ ) ( Gans et al. 2010; Kc & 

Terwiesch 2009; Staats & Gino 2012 ) 

 

 

 

 

 

 

f  

o  

o  

s  
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t

Network : A system may consist of multiple subsystems. When

we analyze a subsystem or a “node,” consisting of a set of servers

performing the same task fed by one or multiple queues, we con-

sider a network mechanism to be any mechanism that originates

from outside the node of interest but impacts service times in the

node of interest. We interpret the term “network” broadly, to re-
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
er to any influencing component or agent from outside the node

f current interest. We provide three examples to illustrate types

f components that we intend to include: (1) upstream or down-

tream nodes, (2) a transportation network, for systems with mo-

ile servers, and (3) managerial action that impacts incentives or

argets that servers face. 
l., Load effect on service times, European Journal of Operational 
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Customer : The customer is the person or inanimate object that

eceives service. Patients are the customers in an ED, for example,

nd unfinished products are the customers in a manufacturing line.

To illustrate these definitions, consider a call center: Servers are

gents with associated resources (computers, desks, cubicles), cus-

omers are callers, and the network could include an interactive

oice response unit with which callers interact prior to entering a

ueue of callers waiting to talk to an agent. In an emergency med-

cal service (EMS) system, servers are ambulances with crews, cus-

omers are patients, and the network could include the road net-

ork or the EDs to which ambulances transport patients. 

.3. Service–time determinants 

Mechanisms that originate from a system component in re-

ponse to a load characteristic either increase or decrease one of

he service-time determinants (work content, service speed, or in-

rocess delay). We define service time as the length of time the

ustomer spends inside the process. The process boundaries are

efined by the user or investigator doing the study. The service

ime T begins when the customer arrives inside the process bound-

ries and ends when the customer leaves and consists of a com-

ination of processing time P and in-process delay D , that is, T =
 + D . We define an in-process delay as any period during which

he customer is inside the process but no work for that customer

s being done; therefore, some periods during which a customer is

aiting fall under our definition of in-process delay and others do

ot. 

We express the processing time as P = W/S, where W is a ran-

om amount of work that each customer brings and that needs to

e completed during the service time, and the service speed S is

easured in units of work per time unit. Thus, the service time

s T = P + D = W/S + D . The mechanisms that we are interested in

an impact W , S , or D . 

It is often useful to decompose a service into either stages (sin-

le or multi-stage, as in Gross, Shortie, Thompson, & Harris, 2008 )

r phases (access, check-in, diagnosis, service delivery, and check-

ut, as in Bitran & Lojo, 1993 ). Denoting the work content, ser-

ice speed, and in-process delay for Stage or Phase i by W i , S i ,

nd D i , respectively, the total service time can be presented as

 = 

∑ 

i ( W i / S i + D i ) . 

Decomposition into stages is especially useful for complex ser-

ices (e.g., ED and EMS) where the service constitutes various in-

ividual tasks requiring different resources, each responding dif-

erently to workload. Developing an understanding of the effect of

oad for each service stage separately and then aggregating the ef-

ects provides a better understanding of the overall effect of system

oad on service times because identifying mechanisms is easier for

impler tasks. For example, Batt and Terwiesch (2016) decompose

he ED process into “waiting,” “treatment,” and “boarding” stages.

s another example, the service time for an ambulance call can be

ecomposed into several stages, including “travel time to scene”

nd “scene time.” The travel time has natural measures for work

ontent (the travel distance) and service speed (the average speed

f the ambulance), as discussed in Delasay, Ingolfsson, and Schultz

2016b) . Although the work content of scene time is more difficult

o quantify, it could be related to the patient priority category as-

essed using standard triage scales. 

Decomposition of the processing time for a stage into work

ontent and speed could lead to better fitting or more par-

imonious empirical models. For example, processing time =
work content) / speed = (a + b × load ) / (c + d × load ) might pro- 

ide a well-fitting model of how processing time depends on load,

ven if “processing time = e + f × load ” provides a poor fit. That is,

ork content and speed might each have a simple relation with

oad even if processing time does not. 
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
Depending on the purpose of the analysis and availability of

ata, modelers may define the servers and the customers differ-

ntly for the same physical system. A particular time interval could

e viewed as processing time in one model and in-process delay

n another model. For example, time spent by an ED patient wait-

ng for test results can differ depending on one’s definition of the

erver. The time is in-process delay if one views the patient’s bed

s the server, but processing time if the server is seen as the re-

ource that prepares and delivers the test results. 

. Mechanisms 

Having developed the LEST framework, we analyze the exist-

ng empirical literature to show how this body of work fits into

he framework and to define mechanisms which cause service

imes to vary. It is possible to understand the relationship be-

ween load and service times only by understanding the mecha-

isms. Different mechanisms could be involved at different stages

f a service encounter, and their identification is crucial in explain-

ng why the overall relationship between load and service times

s positive, negative, or non-monotonic. We explore the mecha-

isms by reviewing published empirical papers that document de-

endency of service times on system load and demonstrate how

hese papers are connected through the identified mechanisms and

he LEST framework. We attempted to be comprehensive in list-

ng possible mechanisms and in reviewing the papers that doc-

ment them. For this, we used a snowball search strategy, start-

ng with empirical articles published in top OR/OM journals during

he last 10 years, such as Kc and Terwiesch (2009) . We system-

tically reviewed references that were cited in or cited by these

rticles, in search of articles, working papers, or books that re-

orted on empirical studies of the impact of load on service time.

sing this strategy, we found relevant sources covering a long

ime span (dating back to 1954), from a wide range of outlets

including top OM/OR journals but also articles from the med-

cal sciences, psychology, ergonomics, and economics). Although

ur focus was on reviewing empirical evidence, we also cite sev-

ral analytically-focused articles, in order to explain ideas and

echanisms. 

The nine cells in Table 1 correspond to all combinations of

he three load characteristics and the three system components. In

ach cell, we classify the hypothesized mechanisms that we iden-

ified based on the service-time determinants. After the name of

ach mechanism, we indicate whether the corresponding mech-

nism increases ( ↑ ) or decreases ( ↓ ) service time and we cite

uthors who discuss this mechanism. Some citations have a “-”

uperscript to indicate that data analysis failed to support the hy-

othesized mechanism. Mæstad, Torsvik, and Aakvik (2010) is an

xample of a study with “-” superscript. These authors hypothe-

ized that physicians exert less effort on diagnosis when responsi-

le for more patients but their data failed to support this hypoth-

sis. 

We discuss the mechanisms in the Server, Network, and Cus-

omer columns of Table 1 in Sections 4.1, 4.2 , and 4.3 , respectively.

n listing the mechanisms, we use ( S ), ( W ), and ( D ) to indicate

hether the mechanism impacts the service speed, the work con-

ent, or the in-process delay. 

.1. Server mechanisms 

In total we identify fifteen server mechanisms. We review

hree server–changeover mechanisms in Section 4.1.1 , nine server–

oad mechanisms in Section 4.1.2 , and three server–extended load

echanisms in Section 4.1.3 . 
l., Load effect on service times, European Journal of Operational 
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4.1.1. Server–changeover mechanisms 

(W) Physical setup : Additional tasks required when changing to

service a different customer class or switching from non-idle to

idle. When servers run out of customers of a certain type they

may incur a time penalty as they switch to serve a new customer

type. We use the term “physical setup” to differentiate it from

setup due to cognitive sharing, which we discuss later partly under

“forgetting” and partly under “multitasking–cognitive sharing.” Re-

searchers have long argued for the productivity benefits of reduc-

ing physical setups through strategies like specialization and mass

production ( Cellier & Eyrolle, 1992; Schultz et al., 2003 ). 

(W) Forgetting : Loss of required information from immedi-

ate memory. Forgetting involves adding tasks, rereading a chart

for instance, which increases the work content and service time.

When servers take a break from their main duty, they may for-

get particulars relevant to the task. Forgetting is relevant in situ-

ations that involve multitasking but also in situations where the

server has responsibility for only one customer at a time. Time

taken to remember the operation involves extra work (including

mental setup) that increases work content ( Steedman, 1970 ). In

their field study in an information technology (IT) and accounting

company, Mark, Gonzalez, and Harris (2005) found that workers

who switch tasks could experience an average resumption lag of

25 minutes when they return to their original task because of

the time needed to remember what they were doing originally.

Bailey (1989) and Lu (2013) revealed that forgetting is a function

of break time: The longer the break, the longer the processing time

penalty. Schultz et al. (2003) tested the forgetting mechanism in

a laboratory setting of a low-inventory serial production line. Al-

though their experiments showed that breaks lead to significantly

longer processing times, they did not support an association be-

tween time penalty and length of break for short breaks (another

example of a study that failed to support a hypothesised mecha-

nism). Ibanez, Clark, Huckman, and Staats (2017) found that radi-

ologists take twice as long to read the digital images for a case

immediately after a break than otherwise, and they take 1.7% less

time for a case that is a repetition of the prior case type, rather

than a new case type. It is not clear, however, whether the increase

in radiologist reading time is because of an increase in work con-

tent or a decrease in speed. Possibly, this is an example of the loss

of rhythm mechanism, which we discuss next. 

(S) Loss of rhythm : Time penalty due to a break in the rhythm of

work. The time penalty is independent of the break length. Breaks

interrupt that rhythm and lower service speed until the rhythm

is regained ( Rubinstein, Meyer, & Evans, 2001 ). Staats and Gino

(2012) analyzed loan-processing times in a bank and found that

the assignment of a variety of tasks to employees results in higher

average completion times. Schultz et al. (2003) provided evidence

for loss of rhythm in a low-inventory serial line, noting that the

time penalty appeared independent of the break length. 

4.1.2. Server–load mechanisms 

(W) Task reduction : Terminating service before completion or

eliminating one or more discretionary service steps. This is also

known as cutting corners ( Oliva & Sterman, 2001 ). Task reduction

is more common in professional services with discretionary task

completion criteria; thus, professionals use their subjective judg-

ment to decide which tasks need to be completed. Hopp, Iravani,

and Yuen (2007) formulated an analytical model of a service with

discretionary tasks and proved that task reduction is optimal if ser-

vice value is concave-increasing and cost is increasing in service

time. Stidham Jr. and Weber (1989) , George and Harrison (2001) ,

and Alizamir, de Véricourt, and Sun (2013) reached similar conclu-

sions. 

Early discharge (referred to as “demand-driven discharge” in

Chan, Green, Lekwijit, Lu, & Escobar, 2018 ) is the manifestation
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
f task reduction in healthcare systems through which healthcare

rofessionals ration the capacity of medical units during busy pe-

iods. Kc and Terwiesch (2009) and KC and Terwiesch (2012) asso-

iated the shorter LOS of cardiothoracic surgery and intensive care

nit (ICU) patients at high occupancy levels with early discharge

ecisions made to increase bed availability for incoming patients.

untz, Mennicken, and Scholtes (2014) and Berry Jaeker and Tucker

2017) observed a negative association between hospital LOS and

ed occupancy above a tipping point, which they explained as be-

ng due to early discharges. Berry Jaeker and Tucker (2017) further

bserved that at very high occupancy, the supply of patients that

an be discharged early might be exhausted, leading to a second

ipping point—an effect that they refer to as saturation. Delasay

t al. (2016b) mentioned that “ED surge capacity protocols” could

ncourage early discharging of ED patients to accelerate admis-

ion of a patient transferred by ambulance when the EMS system

s under high load. Not all studies have found empirical support

or early discharge, however—Chan et al. (2018) did not find evi-

ence for an effect of congestion on ICU LOS, and Long and Math-

ws (2017) showed that the shorter LOS in response to higher load

oes not affect the amount of provided care (work content) and it

nly affects the boarding time (the time patients await transfer to

ther hospital units). We elaborate on this when we discuss work-

oad smoothing ; a load–server–in-process delay mechanism. 

Batt and Terwiesch (2016) found that the number of diagnos-

ic tests for low-acuity patients decreases with the ED waiting

oom census. Similarly, KC (2014) showed that physicians spend

ess time on patient diagnosis when they are assigned to treat sev-

ral patients simultaneously. This could have negative effects on

are quality. In contrast, Forster, Stiell, Wells, Lee, and Van Wal-

aven (2003) failed to find evidence to support the impact of hos-

ital occupancy on the proportion of ED patients who are referred

o hospital consultants for diagnosis. Mæstad et al. (2010) also ob-

erved no association between physician multitasking and diagnos-

ic effort per patient, measured by the number of relevant ques-

ions asked and the number of examinations performed. 

Outside healthcare, Oliva and Sterman (2001) and Oliva

2001) found that workers in back-office operations for a bank

pent less time per order when load was higher and they attribute

his to eliminating such tasks as post-service documentation. 

(W) Engagement : Increased attention to all tasks caused by in-

reased workload. When lines are short, an increase in the load

auses servers to become engaged, spending more time and ex-

ending greater effort to improve quality or earn more income.

opp et al. (2007) formulated this mechanism in their model for

iscretionary services where there is a tradeoff between quality

nd speed, and Debo, Toktay, and Van Wassenhove (2008) included

t in a model of credence services in which servers could spend

xtra time on unnecessary tasks to earn more income and cus-

omers cannot verify the appropriateness of the amount of pro-

ided service (e.g., medical and car repair). The extra effort in-

olved in the engagement mechanism could also be stimulated

n response to a perceived challenge of managing tasks in higher

orkloads ( Bendoly, 2011 ; Deci, Connell, & Ryan, 1989 ). Tan and

etessine (2014) reported that assigning more diners to a waiter

rolongs the duration of the diners’ meal (as long as the restau-

ant is not highly congested) as it encourages the waiter to exert

ore upselling effort; the adjusted hourly sales per waiter increase

ith load. Delasay et al. (2016b) related the longer average scene

ime as the fraction of busy ambulances increases (when the EMS

oad is not critically high) to the engagement mechanism by the

aramedics to prevent the need for hospital transportation. 

(W) Server early task initiation : Performing some stages or tasks

f a service earlier than usual. Batt and Terwiesch (2016) found

hat ED triage nurses order more diagnostic tests for patients when

he ED waiting room is more crowded, in order to shorten the
l., Load effect on service times, European Journal of Operational 

https://doi.org/10.1016/j.ejor.2018.12.028


M. Delasay, A. Ingolfsson and B. Kolfal et al. / European Journal of Operational Research xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: EOR [m5G; January 14, 2019;20:58 ] 

L  

t  

p  

n  

t  

n

 

t  

t  

u  

e  

f  

t  

h

c

i  

a  

d  

t  

t  

r

 

c  

f  

1  

p  

p  

t  

A  

o  

t  

fi  

i  

p  

s  

p

 

m  

A  

w  

R  

b  

s  

c  

s

 

i  

m  

e  

a  

E  

u  

d  

M  

w  

b  

a  

s  

(  

p  

b  

m  

2  

t  

s  

w  

t  

m  

a  

c  

(  

s  

N  

c  

c  

s  

N

 

d  

s  

f  

p  

c  

M  

o  

W  

t  

c  

d  

v  

T  

a  

l

 

m  

t  

i  

a  

l  

A  

t  

s  

s  

o  

(  

s  

a  

i  

s  

i

 

i  

t  

t  

a  

o  

(  

t  

d  

o  

i

 

i  

w  

t  

t  

i  

t  

f  

t  

o  

l  
OS by making the test results ready by the time a physician sees

he patient. Delasay et al. (2016b) observed that chute times, the

reparation for the ambulance crew after receiving the dispatch

otification, are shorter when EMS load is high, which is consis-

ent with ambulance crews anticipating the receipt of a dispatch

otification when most of the other ambulances are in service. 

(W) Multitasking–cognitive sharing: Loss of required informa-

ion due to having simultaneous responsibility for multiple cus-

omers with different service needs. Humans tend to multitask

nder high load. For example, an ED physician who treats sev-

ral patients at the same time can see one patient while waiting

or test results for another patient. Despite the presumed produc-

ivity benefits of multitasking ( Lindbeck & Snower, 20 0 0 ), it can

urt productivity due to three distinct mechanisms “multitasking–

ognitive sharing,” “multitasking–time sharing,” and “multitasking–

nterruptions.” We discuss cognitive sharing here and time sharing

nd interruptions later in this section under server–load–in-process

elay . Researchers who studied multitasking have not always dis-

inguished clearly among these three mechanisms. We separate

hem because their causes are different and to encourage future

esearchers to distangle their effects. 

Psychological studies recognize additional effort needed to refo-

us on an interrupted task (cognitive sharing) as the main reason

or productivity loss due to multitasking ( Gladstones, Regan, & Lee,

989; Pashler, 1994; Rubinstein et al., 2001 ). KC (2014) related the

roductivity loss in ED physicians with case load (the number of

atients assigned to a physician) of more than six patients partly

o cognitive sharing. Studying multitasking in a recruiting firm,

ral, Brynjolfsson, and Alstyne (2012) found that a small amount

f multitasking improves the number of vacancies filled per unit

ime but that excessive multitasking results in longer unit time to

ll a specific vacancy. They related this, partly, to cognitive switch-

ng among multiple projects. Lu (2013) related longer request com-

letion times for agents with higher case loads, partly, to cognitive

haring involved in frequent task suspensions. She reported more

ronounced productivity losses for longer suspension times. 

It is important to make the distinction between the

ultitasking–cognitive sharing and forgetting mechanisms clear.

s a server’s case load increases, the task of reviewing status

hen switching between customers increases ( Monsell, 2003;

ubinstein et al., 2001 ). To the extent that this is a variable cost

ased on load (as in multitasking–cognitive sharing), this is a

erver–load –work content mechanism. To the extent this is a fixed

ost of changing between customers (as in forgetting), this is a

erver–changeover –work content mechanism. 

(S) Social speedup pressure : People feel pressure to speed up

n order to avoid delaying the service of others. Speedup is com-

on in systems in which server performance is visible to oth-

rs. Slower servers work faster when performance feedback is

vailable ( Bandiera, Barankay, & Rasul, 2013; Schultz et al., 2003 ).

die (1954) demonstrated that under the pressure of backed-

p traffic, toll collectors at the George Washington Bridge expe-

ited service, by limiting conversation with drivers, and Mas and

oretti (2009) found that slow supermarket cashiers speed up

hen customers are backed up and the slow cashiers are seen

y faster cashiers. In a supermarket with dedicated queues, Wang

nd Zhou (2018) replicated the finding that supermarket cashiers

peed up when more customers are waiting. Kc and Terwiesch ’s

2009) regression models revealed that in-hospital patient trans-

orters speed up in response to load, defined as the fraction of

usy transporters, and researchers have observed speedups when

ore requests are assigned to agents of a bank ( Staats & Gino,

012 ) or an IT firm ( Lu, 2013 ). Schultz et al. (1998) demonstrated

hrough laboratory experiments that workers in a low-inventory

erial line, where the WIP in between-station buffers can be traced,

ork faster when they are causing blockage of a preceding sta-
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
ion or starvation of a succeeding station. Using data from an e-

ail contact center, capacity estimation models in Hasija, Pinker,

nd Shumsky (2010) showed that the processing rate of any server

ould roughly double as the center is staffed with fewer servers

more load on each server results in speedup). Workers have been

hown to work faster in systems with visible queues ( Shunko,

iederhoff, & Rosokha, 2018 ). Though waiters were shown to in-

rease upselling as load increases from low to medium (as we dis-

ussed under engagement), they accelerate service by reducing up-

elling efforts as load increases past some tipping point ( Tan &

etessine, 2014 ). 

(S) Social loafing : Servers exert less effort when their effort is

ifficult to monitor. Social loafing , a.k.a free riding , occurs when

ervers decrease their effort s to avoid pulling the weight of a

ellow team member ( Karau & Williams, 1993 ). Social loafing is

revalent in congested systems where individual effort is diffi-

ult to monitor ( Latane, Williams, & Harkins, 1979 ). Mas and

oretti (2009) argued that supermarket cashiers slow down to let

ther cashiers handle the additional workload during peak periods.

ang and Zhou (2018) observed that when the queue configura-

ion in the supermarket in their study was switched from dedi-

ated queues to a pooled queue (but a longer one), social loafing

ominates social pressure speedup resulting in the average ser-

ice time that increases with the queue length. Berry Jaeker and

ucker (2012) found that hospital nurses work slower intention-

lly to avoid being assigned new patients when they predict that a

arge number of patients will be admitted from the ED. 

(D) Multitasking–time sharing: Sharing server capacity among

ultiple customers. At each instant, one customer has the atten-

ion of the server. Tan and Netessine (2014) mentioned time shar-

ng as a possible reason for prolonged meal duration of diners

ssigned to a waiter serving several tables simultaneously. The re-

ationship between case load and productivity may not be linear.

ral et al. (2012) found in a recruiting firm that excessive mul-

itasking results in longer duration to fill a specific vacancy. Be-

ides relating it to cognitive sharing, they also mentioned the rea-

on as the delay recruiters face in returning to the activities of

ne project while cycling through activities of other projects. Lu

2013) found that a higher case load increases the revisit time for

ervices that were suspended due to interruptions. Goes, Ilk, Lin,

nd Zhao (2018) confirmed that time sharing due to multitask-

ng causes delays in live-chat agents’ responses to customers, and

howed that the marginal effect of more multitasking on delays is

ncreasing. 

(D) Multitasking–interruptions: Momentary pauses in a service

nteraction with a customer because the server needs to at-

end to requests from other customers. Using a time and mo-

ion study, Chisholm, Collison, Nelson, and Cordell (20 0 0) found

 positive correlation between physician case load and number

f interruptions that require the physician’s attention. Though Lu

2013) found that a higher case load increases the duration of in-

erruptions (as we discussed under multitasking–time sharing), she

id not find evidence for the effect of case load on the frequency

f interruptions. KC (2014) also discussed the negative impacts of

nterruptions on physicians’ productivity and longer LOS. 

To explain how time sharing, interruptions, and cognitive shar-

ng interact, suppose that a server with case load N meets twice

ith each customer. A simple representation of each customer’s

otal service time is T 1 + T 2 + T 3 , where T 1 and T 3 are time in-

ervals the server spends with the customer, and T 2 is the time

nterval between the two meetings with the server, during which

he customer might receive service from another resource or wait

or the server to finish meeting with some of the other N − 1 cus-

omers. In this fashion, service time is the total time until the end

f the last meeting with the server, and T 2 is the in-process de-

ay. A higher case load N increases T 2 through the time sharing
l., Load effect on service times, European Journal of Operational 
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mechanism, because the server needs to serve a larger number

of the other customers, on average, before returning to the cus-

tomer of interest. A higher case load causes T 1 and T 3 to be longer,

on average, through the interruptions mechanism, because the fre-

quency of interruptions from other customers increases. And fi-

nally, a higher case load can increase the work content of the task

of reviewing status when switching between customers, through

cognitive sharing, causing T 3 to be longer. 

(D) Workload smoothing : Completing the discharge of customers

whose processing is complete earlier, in anticipation of incoming

demand. Long and Mathews (2017) observed that ICU patients of-

ten board while awaiting transfer to other hospital units. By de-

composing ICU LOS into care time and boarding time, they found

that the shorter LOS during higher ICU occupancy is not related

to early discharge decisions (in contrast to findings by other re-

searchers about early discharge, which we cited under the task re-

duction mechanism) but is instead caused by decreased boarding

times of patients that are discharged in order to free ICU capac-

ity. This study highlights the importance of decomposing service

time into processing time and in-process delay, as we propose in

the LEST framework. Similarly, Kim, Chan, Olivares, and Escobar

(2014) found that the impact of load on ICU care time depends

on the medical condition and the origin of patients that are about

to be admitted. Berry Jaeker and Tucker (2012) reported that hos-

pital medical teams react to a high volume of incoming scheduled

patients from a surgery unit by discharging patients earlier. 

4.1.3. Server–extended load mechanisms 

(W) Service cancelation : Denying service to a customer to ob-

tain extra rest or improve metrics. Overwork and the consequent

productivity deterioration is the natural outcome of working for

long periods ( Çakir, Hart, & Stewart, 1980; Setyawati, 1995 ). Over-

worked servers may simply refuse to serve a customer in order to

obtain extra rest. Brown et al. (2005) discovered this phenomenon

when they encountered call times of less than 10 seconds in a call

center’s data—caused by overworked agents who hung up on cus-

tomers in order to reduce workload. 

(S) Learning by doing : Productivity gains through learning over

short horizons (within a shift, for instance). Extended load can

result in productivity gains through learning by doing, in con-

trast to fatigue. Learning can occur over time horizons as short

as the length of a shift or as long as months or even years. The

higher cumulative number of service completions, for instance, the

greater the productivity gains through long-term learning for med-

ical teams ( Pisano, Bohmer, & Edmondson, 2001 ) and call center

agents ( Gans et al., 2010 ). In support of short-term learning pro-

ductivity gains, Lu (2013) reported shorter completion times of re-

quests handled later in a shift in a call center. 

(S) Fatigue : The inability of servers to maintain high levels of ef-

fort over extended periods. Speeding up cannot be sustained indef-

initely; when servers are overworked, they slow down ( Dietz, 2011;

Sze, 1984 ). As Kc and Terwiesch (2009) showed, hospital trans-

porters slow down after experiencing extended high-load periods

and overworked physicians delay discharge decisions for surgery

patients. Staats and Gino (2012) observed the same kind of slow-

down behavior by loan processors in a bank. Similarly, Gans et al.

(2010) found call times in a call center to be positively associated

with the number of calls an agent has answered since the last

break period. 

4.2. Network mechanisms 

In total we identify six network mechanisms. We review one

network–changeover mechanism in Section 4.2.1 , four network–

load mechanisms in Section 4.2.2 , and one network–extended load

mechanism in Section 4.2.3 . 
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
.2.1. Network–changeover mechanisms 

(W) Network arrangement : Planned positioning of servers to im-

rove response for future customers. Delasay et al. (2016b) consid-

red an EMS system as a network of ambulance locations, patient

ddresses, and hospital locations connected via city roads. Network

rrangement refers to the positioning of servers (ambulances) at

lanned locations in order to reduce average travel time to future

ustomers (patients). 

.2.2. Network–load mechanisms 

(W) Geographical dispersion : Longer response times because of

ewer available servers that are more widely dispersed. Delasay

t al. (2016b) proposed geographical dispersion as the reason for

onger ambulance travel distance to a scene when EMS load is

igher. High EMS load means fewer available ambulances to cover

 city. Geographic dispersion is also relevant for an array of ser-

ices, including repair- and tow-truck services, hospital porter ser-

ices, taxi and delivery services, and fire and police. 

(S) Geographical speedup : Higher average travel speed for longer

rips. Geographical speedup mitigates geographical dispersion by

nabling ambulance crews to travel at higher speeds on longer

rips that involve at least some highway or main artery travel

 Budge, Ingolfsson, & Zerom 2010; Delasay et al. 2016b ). 

(D) Resource sharing : Congestion due to sharing a resource with

ther processes. If multiple nodes in a network share a common

esource, then an increase in load can prolong in-process delay at

he individual nodes, through resource sharing . An example of re-

ource sharing, as modeled in Ak ̧s in and Harker (2003) , is the si-

ultaneous use of a common information processing resource by

everal agents in a call center, which incurs additional delay in call

urations. Hillier et al. (2009) found that high hospital occupancy

ot only prolongs ED LOS of admitted patients to the hospital but

lso increases LOS of patients discharged from the ED; they indi-

ate one possible explanation could be that the ED and the hospi-

al share such resources as treatment areas, lab services, and care

roviders. 

(D) Downstream system congestion : Congestion in a service due

o back up of customers waiting to proceed to a downstream ser-

ice. When the various stages of a service are provided at inter-

elated nodes of a queueing network, load at one node may im-

act service times at other nodes. Downstream system congestion

nvolves resources being tied up serving customers who cannot be

dmitted to a congested downstream node. Viewing an ED and a

ospital as nodes of a network, Forster et al. (2003) and Hillier

t al. (2009) showed that extremely high hospital ward occupancy

ates increase the LOS of those ED patients who have been admit-

ed to a hospital ward. Asaro, Lewis, and Boxerman (2007) , Louriz

t al. (2012) , Kim et al. (2014) , and Long and Mathews (2017) iso-

ated the boarding time component of the LOS and documented

he positive association between boarding time in a hospital unit

nd the occupancy of downstream units. In the context of EMS,

elasay et al. (2016b) observed ambulance paramedics need to

ait longer to offload patients when EDs are crowded. 

.2.3. Network–extended load mechanisms 

(W) Network chaos : Increased deviation of server locations from

lanned positions because of extended load. Network chaos is the

pposite of network arrangement. If EMS load remains high for a

ong period, ambulance locations are more likely to deviate from

heir planned positions, leading to longer travel times ( Delasay

t al., 2016b ). 

.3. Customer mechanisms 

In total we identify four customer mechanisms. We review one

ustomer–changeover mechanism in Section 4.3.1 , two customer–
l., Load effect on service times, European Journal of Operational 
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c  
oad mechanisms in Section 4.3.2 , and one customer–extended

oad mechanism in Section 4.3.3 . 

.3.1. Customer–changeover mechanisms 

(W) Customer early task initiation : Shorter processing times due

o customers using waiting time (pre-process delay) to perform

asks that would otherwise be done during service time. Edie

1954) proposes this mechanism as the reason for shorter hold-

ng times at toll booths at higher volumes. If there is no line, then

rivers have to search to find their tolls after they drive up to

he booth. Wang and Zhou (2018) postulate that the same mecha-

ism applies to supermarket customers waiting to be served by a

ashier. 

.3.2. Customer–load mechanisms 

(W) Return : Customers returning to the process because they

ere not adequately served during the previous encounter. As dis-

ussed under the task reduction mechanism, servers may end a

ervice encounter prematurely, which may degrade service quality

nd cause customers to return to the system, thereby prolonging

otal service time. KC and Terwiesch (2012) and KC (2014) docu-

ented returns by showing that the likelihood of a patient revis-

ting EDs and ICUs soon after discharge increases with the load at

ischarge time. Lower quality of care because of excessive multi-

asking is cited as the reason for returns in KC (2014) , and early

ischarge decisions are associated with returns in KC and Terwi-

sch (2012) . As we discussed under task reduction, unlike KC and

erwiesch (2012) and KC (2014) , Long and Mathews (2017) isolated

he boarding time from ICU LOS and found no evidence for an ef-

ect of load on revisit rates. Motivated by these empirical results,

han, Yom-Tov, and Escobar (2014) formulated queueing models to

nvestigate the implications of early discharge decisions and asso-

iated returns for long-term system behavior. 

(D) Abandonment : Customers leaving the process, without re-

eiving complete service, due to long waiting time (in-process de-

ay) and customers’ limited patience. Balking can be viewed as a

pecial case of abandonment, in which a customer abandons im-

ediately upon arrival. Balking (a customer mechanism) is the

ounterpart to service cancelation (a server mechanism). Abandon-

ent during an in-process delay not only affects the service time

f the current customer but also affects the service time of the

ollowing customers, and hence the system-wide average service

ime. 

Abandonment is mostly documented as a mechanism occur-

ing during pre-process delay (before service begins). For exam-

le, Batt and Terwiesch (2015) showed that queue length (among

ther measures of load) affects abandonment from an emergency

epartment waiting room (a semi-observable multi-class queue),

e Vries, Roy, and De Koster (2018) found that queue length af-

ects abandonment from a restaurant (a semi-observable single-

lass queue), and Lu, Musalem, Olivares, and Schilkrut (2013)

elated the nonlinear and decreasing effect of queue length on pur-

hasing incidents at a grocery deli counter (an observable single-

lass queue) to the balking decisions of the customers in response

o longer wait times. Though we are not aware of any empirical

tudies on abandonment during an in-process delay, the same fac-

ors causing abandonments during pre-process delay could hypo-

hetically impact abandonment during in-process delay; for exam-

le, in multi-stage systems and during the wait to receive service

rom a downstream node. This could be a future research direction

orth exploring. 

.3.3. Customer–extended load mechanisms 

(W) Deterioration : Additional processing required when over-

ork results in reduced service quality. When overwork is asso-

iated with reduced service quality, additional processing may be
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
equired. After showing that system-level overwork increases the

OS for surgery patients, Kc and Terwiesch (2009) argued that fa-

igued care providers are more prone to making medical errors,

eading to complications that call for additional processing. 

We note that the return and deterioration mechanisms involve

 chain of load-induced behaviors, first in the servers and subse-

uently in the customer. We classify these mechanisms based on

he final system component in the chain, that is, the customer.

he reason is that in order to understand these mechanisms, re-

earchers need to study conditions experienced by customers that

ould cause them to return, or that would cause their condition

o deteriorate. 

.4. Summary of mechanisms 

Server mechanisms. Load effects on servers have been mixed. All

erver–changeover mechanisms that we identified increased ser-

ice time. Yet, it is not difficult to imagine a case in which the

erver takes advantage of a break in order to prepare for the next

ervice. We observed mixed impacts for server–load mechanisms:

our mechanisms decrease the service time and five mechanisms

ncrease it. A common feature of server–load mechanisms is the

vailability of performance feedback; a feature of queueing systems

arely included in mathematical models. Servers react to load if

heir performance is observable by others. Some server–load mech-

nisms decrease service time for a single service encounter, but

hey cause deterioration in service quality that may require cus-

omers to revisit the system later. If we track the effects of these

echanisms over multiple service encounters, therefore, we may

nd longer total service time. Most studies in this area document

ervers’ reactions to extended load to be slowdown due to over-

ork, which increases service time. Although servers learn and

ain a rhythm when doing a specific job over a long period, fatigue

s likely to be the dominant mechanism if the high-load period is

ufficiently long. 

Network mechanisms. Although analytical models of queueing

etworks abound, empirical research on network mechanisms is

ot common. Most of the empirical papers that we reviewed are in

edical journals. These papers demonstrate the impact of down-

tream system congestion and resource sharing on prolonging ser-

ice times when two systems are connected in series, as in a stan-

ard tandem queueing network. 

Customer mechanisms. We identified far fewer customer mecha-

isms than server mechanisms. The reasons could include (1) cus-

omers having less control over service encounters, (2) greater in-

erest in servers because they are subject to managerial control,

nd (3) customer data being more difficult to obtain, because of

rivacy regulations. In addition, we found no customer mecha-

isms that influence service speed. We expect they exist but have

ot been studied in the literature. 

We conclude this section by summarizing the definitions of the

dentified mechanisms in Table 2 . To the extent that these defini-

ions become standard, and the LEST framework is accepted, we

ow have the ability to categorize future research. This will allow

esearchers to identify those papers that extend theory on known

echanisms and those papers that attempt to identify new mech-

nisms. To the extent that these mechanism definitions are ap-

lied and are searchable, empirical and analytical researchers will

e able to gather and review relevant studies for each mechanism,

elping us to identify the frequency, significance, and breadth of

hese phenomena. 

. Implications for modeling 

Translating findings from empirical research into mathemati-

al queueing models is not always straightforward. Most empirical
l., Load effect on service times, European Journal of Operational 
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Table 2 

Mechanisms. 

Mechanism Framework Cell Definition 

Physical setup Changeover, Server, Work content ( ↑ ) Additional tasks required when changing to service a different 

customer class. ( Schultz et al. 2003 ) 

Forgetting Changeover, Server, Work content ( ↑ ) Loss of required information from immediate memory. Involves a 

fixed cost in speed of switching from one task type to another. The 

delay is a function of changeover. ( Bailey 1989; Ibanez et al. 2017; 

Mark et al. 2005; Schultz et al. 2003 ) 

Loss of rhythm Changeover, Server, Service speed ( ↑ ) Time penalty due to a break in the rhythm of work. The time 

penalty is independent of the break length. ( Schultz et al. 2003; 

Staats & Gino 2012 ) 

Task reduction Load, Server, Work content ( ↓ ) Terminating service before completion or eliminating one or more 

discretionary service steps. Also known as cutting corners. ( Batt & 

Terwiesch 2016; Chan et al. 2018; Delasay et al. 2016b; Forster 

et al. 2003; KC 2014; Kc & Terwiesch 2009; KC & Terwiesch 2012; 

Kuntz et al. 2014; Long & Mathews 2017; Mæstad et al. 2010; Oliva 

2001; Oliva & Sterman 2001 ) 

Engagement Load, Server, Work content ( ↑ ) Increased attention to all tasks caused by increased workload. 

( Delasay et al. 2016b; Tan & Netessine 2014 ) 

Server early task initiation Load, Server, Work content ( ↓ ) Performing some stages or tasks of a service earlier than usual. 

( Batt & Terwiesch 2016; Delasay et al. 2016b ) 

Multitasking–cognitive sharing Load, Server, Work content ( ↑ ) Loss of required information due to having simultaneous 

responsibility for multiple customers with different service needs. 

( Aral et al. 2012; KC 2014; Lu 2013 ) 

Social speedup pressure Load, Server, Service speed ( ↓ ) People feel pressure to speed up in order to avoid delaying the 

service of others. ( Batt & Terwiesch 2016; Edie 1954; Kc & 

Terwiesch 2009; Lu 2013; Mas & Moretti 2009; Schultz et al. 1998; 

Shunko et al. 2018; Staats & Gino 2012; Tan & Netessine 2014; 

Wang & Zhou 2018 ) 

Social loafing Load, Server, Service speed ( ↑ ) Servers exert less effort when their effort is difficult to monitor. 

( Berry Jaeker & Tucker 2012; Mas & Moretti 2009; Wang & Zhou 

2018 ) 

Multitasking–time sharing Load, Server, In-process delay ( ↑ ) Sharing server capacity among multiple customers. At each instant, 

one customer has the attention of the server. ( Aral et al. 2012; 

Goes et al. 2018; KC 2014; Lu 2013; Tan & Netessine 2014 ) 

Multitasking–interruptions Load, Server, In-process delay ( ↑ ) Momentary pauses in a service interaction with a customer 

because the server needs to attend to requests from other 

customers. ( Chisholm et al. 20 0 0; KC 2014; Lu 2013 ) 

Workload smoothing Load, Server, in-process delay ( ↓ ) Completing the discharge of customers whose processing is 

complete earlier, in anticipation of incoming demand. ( Berry Jaeker 

& Tucker 2012; Kim et al. 2014; Long & Mathews 2017 ) 

Service cancelation Extended load, Server, Work content ( ↓ ) Denying service to a customer to obtain extra rest or improve 

metrics. ( Brown et al. 2005 ) 

Learning by doing Extended load, Server, Service speed ( ↓ ) Productivity gains through learning over short horizons (within a 

shift, for instance). ( Lu 2013 ) 

Fatigue Extended load, Server, Service speed ( ↑ ) The inability of servers to maintain high levels of effort over 

extended periods. ( Gans et al. 2010; Kc & Terwiesch 2009; Staats & 

Gino 2012 ) 

Network arrangement Changeover, Network, Work content ( ↓ ) Planned positioning of servers to improve response for future 

customers. ( Delasay et al. 2016b ) 

Geographical dispersion Load, Network, Work content ( ↑ ) Longer response times because of fewer available servers that are 

more widely dispersed. ( Delasay et al. 2016b ) 

Geographical speedup Extended load, Network, Service speed ( ↑ ) Higher average travel speed for longer trips. ( Delasay et al. 2016b ) 

Resource sharing Load, Network, In-process delay ( ↑ ) Congestion due to sharing a resource with other processes. ( Hillier 

et al. 2009 ) 

Downstream system congestion Load, Network, In-process delay ( ↑ ) Congestion in a service due to back up of customers waiting to 

proceed to a downstream service. ( Asaro et al. 2007; Delasay et al. 

2016b; Forster et al. 2003; Hillier et al. 2009; Kim et al. 2014; Long 

& Mathews 2017; Louriz et al. 2012 ) 

Network chaos Extended load, Network, Work content ( ↓ ) Increased deviation of server locations from planned positions 

because of extended load. ( Delasay et al. 2016b ) 

Customer early task initiation Changeover, Customer, Work content ( ↓ ) Shorter processing times due to customers using waiting time 

(pre-process delay) to perform tasks that would otherwise be done 

during service time. ( Edie 1954; Wang & Zhou 2018 ) 

Return Load, Customer, Work content ( ↑ ) Customers returning to the process because they were not 

adequately served during the previous encounter. ( KC 2014; KC & 

Terwiesch 2012; Long & Mathews 2017 ) 

Abandonment Load, Customer, In-process delay ( ↓ ) Customers leaving the process, without receiving complete service, 

due to long waiting time (in-process delay) and customers’ limited 

patience. ( Batt & Terwiesch 2015; De Vries et al. 2018; Lu et al. 

2013 ) 

Deterioration Extended load, Customer, Work content ( ↑ ) Additional processing required when overwork results in reduced 

service quality. ( Kc & Terwiesch 2009 ) 
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Fig. 2. Illustrative Markov chain models. 
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esearch focuses on how load (and other factors) impacts service

imes , whereas mathematical queueing models are typically formu-

ated in terms of service rates . Nevertheless, empirical research that

ocuments fundamental mechanisms through which service times

ncrease or decrease with load can help modelers formulate mod-

ls that at least capture directional effects, if one assumes that ser-

ice rates move in the opposite direction to service times—an as-

umption that we will revisit at the end of this section. 

For example, empirical work has shown that average service

ime increases when the social loafing mechanism is in effect

 Section 4.1.2 ), when a physical setup is incurred ( Section 4.1.1 ),

nd when servers become fatigued ( Section 4.1.3 ). Although the di-

ection of change in the average service time is the same, model-

ng these three mechanisms requires different approaches. Starting

ith a standard M / M /1 system with arrival rate λ and service rate

and a single state variable, I , representing the number of cus-

omers in the system, the following modifications provide possible

arkov chain models of these three mechanisms. 

Social loafing: The service rate decreases with I ( Fig. 2 a), to

apture the fact that the server decreases her speed when the

ueue builds up ( μ> μ′ > μ′ ′ ). See Do, Shunko, Lucas, and Novak

2018) for a model of a multi-server parallel-queue system consist-

ng of multiple copies of this type of model, one for each server,

ith a service rate that decreases with the number of servers. 

Physical setup: A binary state variable indicates whether the

erver was busy when the customer that is currently receiving ser-

ice arrived ( Fig. 2 b). The service rate, μ> μ′ , is higher for such

ustomers. See Welch (1964) for a more general version of this

odel. 

Fatigue: An additional state variable, J , counts the number

f customers served during the current busy period, as a mea-

ure of fatigue ( Fig. 2 c). The service rate decreases as J increases

 μ> μ′ > μ′ ′ ). See Delasay et al. (2016a) for a multi-server version

f this model. 

Fig. 2 a–2 c illustrate how queueing modelers have revisited tra-

itional queueing models to capture empirical findings. Each of

hese models captures a single mechanism. More complex mod-

ls can capture multiple mechanisms—for example, Delasay et al.

2016a) model social speedup pressure and fatigue together, and

o et al. (2018) model social speedup pressure and social loafing

ogether. 

In all of these illustrative models, the empirical finding was

hat service time increased with a change in a load characteris-
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a

Research, https://doi.org/10.1016/j.ejor.2018.12.028 
ic, and the models captured this with a service rate that decreases

ith the load characteristic change. Wang and Zhou (2018) demon-

trate that if the service rates increase with I , then the mean ser-

ice times decrease with I , for a model that has the structure

hown in Fig. 2 a. Future research should investigate whether sim-

lar results hold for models with multiple state variables, such as

he ones in Fig. 2 b–2 c. 

Future research should also investigate how one can go beyond

ranslating directional effects for mean service times to directional

ffects for service rates towards also translating the magnitude of

ffects on mean service times to magnitude for effects on service

ates. One approach to that challenge is to use statistical methods

hat directly estimate how service rates (rather than mean service

imes) depend on the system state, as Azriel et al. (2014) do. An-

ther possible approach is to develop computational methods for

etermining state-dependent service rates that will result in a set

f desired values for state-dependent mean service times. This ap-

roach has not been investigated, to our knowledge. 

. Conclusion and future directions 

Empirical researchers have recently challenged the assumption

f exogenous service times in queueing models by providing ev-

dence for dependence of service times on load in such systems

s call centers, emergency rooms, and banks. Studies typically fo-

used on the most obvious manifestation of load in queueing sys-

ems: the current congestion level and its effect on servers. A few

esearchers also tracked load history and found evidence for such

ehaviors as slowdown in response to overwork. 

We proposed the LEST framework that can be employed by

mpirical and analytical researchers to investigate and model ser-

ice time dependencies on load. The LEST framework has three di-

ensions: (1) load characteristics, (2) system components, and (3)

ervice-time determinants. 

In the first dimension, we identified three load characteris-

ics: changeover , load , and extended load . Changeover refers to the

witch from idle to busy or from one task to another, which in-

uces mechanisms like setup. Load is the instantaneous system

ongestion level, and extended load is the past history of load. We

ound it interesting that, in a general sense, reactions to extended

oad relate to past events, changeover relates to the present, and

oad relates to customers who will receive service in the future. 
l., Load effect on service times, European Journal of Operational 
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In the second dimension of the LEST framework, we identified

three system components: server , customer , and network . We recog-

nized that servers are not the only system components that react

to load. Customers do as well. The service time at a particular node

in a queueing network can also depend on load at upstream and

downstream nodes. Therefore, we include the network as the third

system component. 

In the third dimension of the LEST framework, we decomposed

service time into three determinants—work content , service speed ,

and in-process delay . Researchers should strive to measure work

content and service speed separately, for each stage of service, to

help identify and separate mechanisms with different causes. 

Organizing frameworks can have a significant impact on the di-

rection and progress of an academic field. In queueing theory, for

example, the notation introduced by Kendall (1953) , has served as

a powerful organizing framework for over half a century. We con-

tend that the LEST framework provides a structure for researchers

and practitioners to consider the implications of load on service

times. Through queueing theory, we already have a reasonably

clear understanding of the effects of congestion on waiting time.

When considering the effects of congestion on service times, the

LEST framework gives both researchers and practitioners the op-

portunity to ask the right questions by considering the mecha-

nisms identified in this paper that may be relevant to their con-

text. In addition, LEST helps them to undertake deeper analysis by

giving them a framework for asking questions about possible new

mechanisms that may apply. Delasay et al. (2016b) provides an ex-

ample of a way the framework can be used to break down the

relationship between load and EMS system service time, to allow

for better analysis and to look for new and notable mechanisms. 

While engaged in this research, we observed an apparent dis-

connect between analytical papers and empirical papers. Most an-

alytical research and most textbooks are heavily influenced by the

modeling tractability focus on interarrival times, processing times,

and queueing disciplines. The empirical work shows the impor-

tance of single vs. multitasking servers, visibility of queues, visi-

bility of coworkers, interruptions, single vs. multiple queues, and

shared resources. The difference between the factors important in

models, those that get taught, and those that show up in empir-

ical work is uncomfortable. Although there certainly are queue-

ing models that consider some of these factors, we believe that it

is valuable to go further in developing analytical models of these

phenomena. These models will not be easy to formulate or ana-

lyze, but they may prove to be of great value. 

Accordingly, we return to what we consider the most impor-

tant contribution of this paper. As we have demonstrated, there is

no single answer to the question of “What is the effect of load on

service times?” The answer is: “It depends.” We believe that fur-

ther research in this area should leave aside the general question

and focus on the more specific ones. Although a universal theory

of the effects of load on service times would be laudable, we do

not believe that such a thing exists. 

Rather, we would direct research into specific mechanisms. A

mechanism is a link between a change in load and a change in ser-

vice times. Each mechanism activates a particular set of parameters

and a particular cause for that relationship. In some cases mul-

tiple papers have different names for what is, in effect, the same

mechanism. This leads to serious issues with continuity of research

if later researchers can only find part of the previous literature.

In this paper, we identified 25 mechanisms and explained them

through the LEST framework. We demonstrated how the findings

of previous empirical papers are connected through the identified

mechanisms and the LEST framework. By classifying the published

studies according to the LEST framework, research gaps in the em-

pirical literature are highlighted. The literature focuses primarily

on the aggregate effect of load on server behavior, for example,
Please cite this article as: M. Delasay, A. Ingolfsson and B. Kolfal et a
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gnoring server heterogeneity. A promising avenue for further re-

earch is an investigation of the distribution of skill levels across

ervers—the degree of cross training for human servers—and its

mpact on load mechanisms. 

Not all mechanisms are equally important. Important mecha-

isms are those that occur frequently, have a significant impact,

nd improve predictability. In our opinion, task reduction, en-

agement, social speedup pressure, downstream system conges-

ion, fatigue, and abandonment may qualify as important mecha-

isms. However identified, researchers should investigate a set of

ey mechanisms. Editors should recognize that significant contri-

utions come not just from the identification of new mechanisms

ut also from the exploration of important, previously identified,

echanisms. Empirical researchers may ask how the parameters of

he service time distributions change, identify the moderators and

ediators, or examine the ways in which different people react.

nalytical researchers could use that information to build models

o help us understand the effects of these mechanisms on sys-

em performance. By combining the contributions of two differ-

nt research methods, we can use the strengths of each, overcome

he weaknesses of both, and build a better understanding of how

ueues work in practice. 

We hope that researchers can use the LEST framework to de-

elop new understanding of load effects. One contribution of our

aper is to show a way forward for the development of differ-

nt reactions of service time to load and to fit all the parts to-

ether into a comprehensive whole. We do not present theory that

loses out the development of this topic. Rather, we open the doors

o show how different work fits together in previously unknown

ays. 

The LEST framework leads to a new and important question,

amely, when does the impact of one type of mechanism dominate

nother? It seems clear that there is not one dominating mecha-

ism. Rather the dominant mechanism depends on the particular

ituation. Further research on situational factors that lead to the

omination of which mechanism should be done. Such research re-

uires a framework with which to think about and compare mech-

nisms and situations. 

Our paper does not close the question of how service times de-

end on load, it repositions it; we do not provide the answers, we

rovide the questions. 
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