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Many scheduling problems that can be identified inside safety-critical applications, such as in au- 

tonomous cars, tend to be mixed-critical. Such scheduling problems consider tasks to have different criti- 

calities depending on the safety levels (activation of brakes vs. activation of air-conditioning). The biggest 

challenge in those scheduling problems arises from the uncertainty of processing times as it disturbs the 

predictability of the system and thus makes the certification of the system difficult. To overcome this un- 

certainty, we model the tasks to have multiple processing times concerning their criticality. This approach 

converts these scheduling problems into a deterministic scheduling with alternative processing times. 

Here, we study an N P -hard single machine scheduling problem with makespan minimization, where 

the non-preemptive tasks can have multiple processing times. To solve the problem, we propose an ap- 

proximation algorithm, a novel mixed-integer linear programming block formulation, and an efficient ex- 

act branch-and-price decomposition for two criticality levels. Furthermore, we demonstrate that the op- 

timal schedules are represented as trees, which enables to formulate an exact algorithm for the problem 

with three criticality levels. The efficiency of the proposed method is demonstrated for difficult prob- 

lem instances with up to 10 0 0 tasks. The experimental evaluation demonstrates that our algorithms have 

improved the results of the best-known method by nearly two orders of magnitude. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

This paper addresses scheduling in mixed-criticality systems

here tasks have different degrees of importance ( criticalities ) and

hare a common resource. The key requirement of these systems

s to isolate tasks such that a lower-criticality task does not in-

uence any higher-criticality task. When the processing time of

asks is uncertain, the unexpected prolongation of a task may af-

ect the execution of another task with higher criticality, which is

xtremely dangerous for safety-critical systems. A naive solution

ssuming the worst-case processing times leads to inefficient uti-

ization of the resource. This is problematic, especially for embed-

ed systems having limited computational and hardware resources.

To overcome the processing time uncertainty, we utilize the

o-called F-shaped tasks , where each task has an integer critical-

ty and a set of alternative processing times. The schedules with

-shaped tasks are proactive and contain exponentially many al-

ernative schedules, with the alternative being selected based on
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he realized processing time of a task that occurs during the run-

ime execution of the schedule. The structure of the schedule guar-

ntees that in any of these alternatives, all highly critical tasks are

erformed, rejecting low-criticality tasks only if a more critical one

s prolonged. At the same time, the resource is efficiently utilized

ince when critical tasks are not prolonged, low-criticality tasks

ay use the resource. Therefore, the proactive schedules with F-

haped tasks achieve a trade-off between the required safety mar-

ins and an efficient resource usage. An important advantage of

his approach is that despite such flexibility, the schedules only

ake polynomial-sized space. In addition, even though the corre-

ponding optimization problem is N P -hard, our exact algorithms

re computationally efficient in practice. 

In the following text, we formally define a single resource

cheduling problem with non-preemptive F-shaped tasks to min-

mize the maximum completion time. The relation between real-

orld applications and this scheduling problem is provided in
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Fig. 1. Schedule with F-shaped tasks and the executed alternative. 
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1.1. Problem statement 

We assume a set of F-shaped tasks I MC = { T 1 , . . . , T n } to be

scheduled on a single resource. We define an F-shaped task (or F-

shape for short) and its criticality as follows: 

Definition 1 (F-shaped task) . The F-shaped task T i is a pair

(X i , P i ) where X i ∈ { 1 , . . . , L} is the task criticality and P i ∈ N 

X i ,

P i = 

(
p (1) 

i 
, p (2) 

i 
, . . . , p 

(X i ) 
i 

)
is a vector of processing times such that

p (1) 
i 

< p (2) 
i 

< . . . < p 
(X i ) 
i 

. 

Furthermore, we refer to p (� ) 
i 

as the processing time of T i at

level � . Let us denote L as the highest criticality in I MC , i.e., L =
max T k ∈ I MC X k . Having a set I MC of F-shaped tasks, we define a fea-

sible schedule of I MC as follows: 

Definition 2 (Feasible Schedule) . By the schedule for a set of

F-shaped tasks I MC = { T 1 , T 2 , . . . , T n } , we refer to the assign-

ment of start times s = (s 1 , s 2 , . . . , s n ) ∈ N 

n 
0 
. We say that schedule

(s 1 , s 2 , . . . , s n ) for I MC is feasible if and only if ∀ i, j ∈ { 1 , . . . , n } , i � =
j : (

s i + p 
( min {X i , X j } ) 
i 

≤ s j 

)
∨ 

(
s j + p 

( min {X i , X j } ) 
j 

≤ s i 

)
. (1)

The sufficient and necessary conditions for the feasibility of a

schedule with F-shaped tasks state that tasks are non-preemptive

and do not overlap on any criticality level. For example, in Fig. 1 a

where T 5 follows T 4 , F-shaped task T 5 cannot start earlier than that

at s 4 + p (2) 
4 

, since min {X 4 , X 5 } = 2 , which is the highest common

criticality level of T 4 and T 5 . 

Given the schedule s , we say that the completion time of a task

is given by its start time in s plus the processing time at the high-

est criticality level: 

Definition 3 (Makespan of a Schedule) . Given a feasible schedule

s = (s 1 , s 2 , . . . , s n ) , the completion time of task T j is given as C j =
s j + p 

(X j ) 
j 

. The maximal makespan of the schedule s is the latest

completion time, i.e., C max = max j C j = max j 
{

s j + p 
(X j ) 
j 

}
. 

Further in the text, we will use the term makespan instead of

the maximal makespan for simplicity. The problem we deal with

in this paper is to find a feasible schedule for the given set of
-shaped tasks with criticality at most L , which has the minimal

akespan: 

efinition 4 (MC–L Problem Statement) . Given the set I MC of F-

haped tasks with maximum criticality L , find a feasible schedule

inimizing the makespan, i.e., 

min 

s 
C max 

ubject to 

feasibility conditions (1) 

s ∈ N 

n 
0 . 

In the three-field Graham-Blazewicz scheduling notation

 Graham, Lawler, Lenstra, & Kan, 1979 ), the problem is denoted

s 1 | mc = L| C max , where 1 denotes the scheduling on a single

esource, mc = L stands for the mixed-criticality aspect of tasks

f maximal criticality L , and C max stands for the minimization

f the maximum completion time. This problem is known to be

 P -hard in the strong sense even for the special case mc = 2

two criticality levels), as shown by the reduction from 3-Partition

roblem in Hanzálek, Tunys, and Šůcha (2016) . 

.2. Related work 

Th e study of mixed-criticality systems originates from real-

ime scheduling community due to its practical applications. In

he seminal paper, Vestal (2007) proposed a model of mixed-

riticality that understands each task as a set of different process-

ng times for discrete levels of assurance. This understanding of

ixed-criticality was later adopted by many others in the follow-

ng works, e.g., Baruah et al. (2012) ; Baruah and Guo (2015) , Burns

nd Davis (2017) ; Burns, Davis, Baruah, and Bate (2018) and Davis,

ltmeyer, and Burns (2018) . This line of research mostly deals with

esponse time analysis of different scheduling policies consider-

ng preemptive tasks in so-called event-triggered systems ( Kopetz,

991 ). 

Often cited disadvantage of complex event-triggered systems

s their inability to be certified for safety-critical applications

 Anand, Fischmeister, Lee, & Phan, 2012; Jeon, Cho, Jung, Park,

 Han, 2011 ). Therefore, researches have turned their attention

oward static scheduling in mixed-criticality systems ( Behera &

haduri, 2018; Kopetz, 1991; Theis, Fohler, & Baruah, 2013 ) that
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olves the problem with certification and predictability. The prob-

em with preemptive tasks with two criticality levels was stud-

ed in Behera and Bhaduri (2018) . They proposed a heuristic algo-

ithm that constructs a static schedule for multiple resources while

onsidering precedence constraints. Hanzálek et al. (2016) were

he first to state the mixed-criticality as a static non-preemptive

cheduling problem, for which they proposed the relative-order

IP model to solve the problem with release times r i and dead-

ines ˜ d i , i.e., 1 | r i , ˜ d i , mc = L| C max and they proved that minimizing

he makespan is strongly N P -hard for two criticality levels. 

The follow-up works aimed to study different problems arising

rom the scheduling of F-shaped tasks. The idea of approximat-

ng cumulative distribution functions with F-shapes has appeared

n Novak, Sucha, and Hanzalek (2017) . Dürr et al. (2017) stud-

ed the case, where each task is given by a single number p i ∈ N

efining p i criticality levels with unit processing time prolonga-

ion; hence they appear as equilateral triangles in Gantt charts.

hey refer to this special case of the scheduling with F-shaped

asks as the triangle scheduling problem. Their main results are the

roof that the makespan minimization with triangular tasks is at

east weakly N P -hard and a quasipolynomial-time approximation

cheme for the problem. Seddik and Hanzálek (2017) noted that

akespan minimization with F-shaped tasks decreases the proba-

ility of tasks execution. Hence, instead of making compact sched-

les, they proposed a non-regular criterion that maximizes the ex-

cution probability of the tasks–spreading them as much as possi-

le under deadline constraints. They presented the proof that find-

ng optimal start times remains N P -hard under the fixed permu-

ation and they proposed (i) dynamic programming for the case of

wo criticality levels and (ii) MIP model for the general problem. 

Makespan minimization with tasks up to two criticality levels

i.e., MC-2) is closely related to classical parallel machine schedul-

ng problems ( Pinedo, 2016 ) such as uniformly related machines

ith makespan minimization (i.e., Q|| C max ( Kovács, 2010 )). The ma-

hines represent critical tasks while the speeds of the machines are

et proportionally to the difference of processing times p (2) 
i 

− p (1) 
i 

t their both levels. However, the makespan minimization in paral-

el uniform machines environments leads to suboptimal solutions

or MC-2 since makespan minimization disregards makespans on

achines with smaller load than C max . 

A closer problem is the scheduling on identical parallel ma-

hines with the total tardiness criterion, i.e., P || �T j ( Shim & Kim,

007 ). The total tardiness criterion minimizes the total sum of pro-

essing processing times of jobs that exceed their due date, which

elates to makespan minimization criterion in MC-2. This relation

s further discussed at the end of Section 3.2 . However, for the gen-

ral problem MC-2, the transformation cannot be used. 

Moreover, the problem with positive time lags 1 | l i j > 0 | C max 

ith chain precedence ( Munier & Sourd, 2003 ) can be used to

olve MC-2. Even thought it is possible to reduce to more complex

roblems to obtain a solution, in practice, it is computationally in-

fficient method, as the structure of the original problem that can

e exploited is not exposed to the algorithm. 

Another related problem is the bin packing ( Garey & Johnson,

990 ), which considers an unlimited number of bins (optionally of

ifferent sizes) and a set of items to pack. The goal is to pack the

tems using the minimum number of bins while their capacity is

ot exceeded. Further connections can be seen also with 1D cut-

ing stock problem ( Delorme, Iori, & Martello, 2016 ), where one

uts items of different size from material rolls of the given length

uch that the residual waste is minimized. The main difference

rom those two problems is that the size of the bin (material roll)

annot be exceeded (contrary to MC-2). 

Solving problems with more criticality levels brings yet another

evel of complexity, yielding looser relation to the above men-

ioned problems. The makespan scheduling with more criticality
evels can be then related to more general packing problems, such

s polyominoes ( Golomb, 1996 ). 

Taking a broader perspective, the problem in this study is re-

ated to stochastic optimization ( Sahinidis, 2004 ) due to the uncer-

ainty of processing times ( Hamaz, Houssin, & Cafieri, 2018 ). More-

ver, it contains aspects of task disruption ( Qi, Bard, & Yu, 2006 )

nd rejection ( Shabtay, Gaspar, & Kaspi, 2013 ) due to flexible ex-

cution of schedules, and robust scheduling ( Bertsimas, Brown, &

aramanis, 2011 ) due to the robustness with respect to processing

ime prolongation. To the best of our knowledge, none of these ap-

roaches alone can be applied to our problem, as we need a com-

ination of uncertainty, robustness and task rejection at once. The

roblem of static non-preemptive mixed-criticality scheduling has

een addressed by Hanzálek et al. (2016) ; Novak et al. (2017) only;

owever they lack computationally efficient exact solution method,

hich is presented in this paper. 

.3. Contribution and paper outline 

This paper focuses on the fundamental properties of F-shaped

asks that arise from scheduling problems in mixed-critical envi-

onments. We study the problem of the makespan minimization

ith F-shaped tasks (i.e., 1 | mc = 2 | C max and 1 | mc = 3 | C max ) and

evelop fast exact algorithms for solving the problems. The main

ontributions of this paper are as follows: 

– an approximation algorithm for the problem with two criti-

cality levels (see Section 3.1 ), 

– an exact efficient block MIP model that optimizes over non-

isomorphic permutations (see Section 3.2 ), 

– a branch-and-price algorithm with a pseudopolynomially 

solvable pricing problem (see Section 3.3 ), 

– a structural result on optimal permutations and a generaliza-

tion of the branch-and-price for more criticality levels (see

Sections 4.1 and 4.2 ), and 

– the experimental evaluation of the proposed algorithms (see

Section 5 ). 

The rest of this paper is organized as follows. In Section 2 ,

e describe our model for processing time uncertainty, explain

he online execution of the schedule, and show real-life applica-

ions of the model. In Section 3 , we derive a factor-two approxi-

ation algorithm for the problem with two criticality levels, un-

eil the structure of optimal schedules, and propose an efficient

IP formulation that optimizes over non-isomorphic permutations.

n Section 4 , we generalize the method for more criticality levels.

he numerical experiments are described in Section 5 , where we

emonstrate the efficiency of our algorithms and bounds distin-

uishing easy instances from the difficult ones. The conclusions are

rawn in Section 6 . 

. Uncertainty and execution model 

In this section, we explain how uncertain processing time of a

ask, given by a probability distribution, can be modeled by an F-

haped task. Next, we will show how F-shapes form static sched-

les, that encapsulate different alternative runtime scenarios. Fi-

ally, we describe some real-life applications suitable for the pro-

osed model. 

.1. Approximation of a distribution function 

The processing time uncertainty may be expressed by a proba-

ility density function (PDF). Fig. 2 a shows a real-life PDF of compu-

ational times of an algorithm used in autonomous driving. This al-

orithm, described in Mat ̌ejka et al. (2018) consists of matrix mul-

iplications, fast Fourier transform, inverse transform, and a binary

earch. 
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Fig. 2. Approximation of computational times represented as an F-shaped task. 
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Real-life distributions of computational times often have a long

tail, i.e., the actual computational times can be significantly larger

than the expected value, but with a decreasing probability. There-

fore, it is convenient to display cumulative distribution functions

(CDFs) with a logarithmic scale on the y -axis (see Fig. 2 b). Each

task has criticality prescribed by the application requirements (e.g.,

the pedestrian tracking has higher criticality than adaptive light

shaping). Processing time p (� ) 
i 

at each criticality level � is given by

the CDF and the corresponding probability threshold. 

The choice of probability thresholds is dependent on the tar-

get application and its safety requirements. For example, often

the automotive safety integrity levels (ASIL) standard ( Jeon et al.,

2011 ) states that the system must guarantee that all high-criticality

activities will be successfully completed with the probability of

at least 0.999, medium-criticality with at least 0.99, and low-

criticality with 0.9. Then, it can be analytically computed by ex-

amining the worst-case coverage, that the choice of thresholds

0.999 for the high level, 
√ 

0 . 99 ≈ 0 . 995 for the medium level and√ 

0 . 9 √ 

0 . 99 
≈ 0 . 952 for the low critical level guarantees that in any

feasible schedule, all tasks will be successfully completed at least

with the required probability. See Fig. 2 b for the resulting F-shape.

2.2. Runtime execution scenarios 

A schedule with F-shaped tasks is the same as any other static

schedule, i.e., it is a static assignment of tasks to start times. How-

ever, it can be executed under different scenarios that emerge

from the processing time uncertainty. Hence, we distinguish two

concepts–a schedule and an execution scenario . The schedule is a

static assignment of F-shapes to start times, and is computed from

the given set of F-shaped tasks; thus, it is known before the run-

time execution. On the other hand, the execution scenario is a

function of the schedule and the observed processing time prolon-

gations; therefore, it is not known in advance. The criticality of an

F-shaped task plays a role in the runtime execution–a more critical

task is allowed to consume the resource time of a less critical task

to compensate for its prolongation if needed. This can happen in

cases where a more critical F-shape covers a less critical one (e.g.,

T 5 covers T 6 in Fig. 1 a). 

An example of a static schedule of F-shaped tasks can be seen

in Fig. 1 a. Since the exact processing time of tasks is not known in

advance, the schedule needs to account for the observed process-

ing time prolongations, i.e., provide an alternative for each pos-

sible scenario. The realized scenario is described in terms of the

execution level e t of the static schedule at each time instance t .

Denoting L as the maximum criticality among all tasks, the execu-

tion level e t : t → { 0 , 1 , . . . , L} is a piecewise constant function. In

Fig. 1 a, one of the possible execution scenarios is depicted by the

black line. Its value corresponds to the current system criticality

level with value 0 used in cases where the resource is idle. 
xample. We will describe the execution policy through a specific

xample depicted in Fig. 1 a. In this case, the execution has begun

t time t = 0 at the first level, i.e., e 0 = 1 . The task T 1 is executed

ntil time t = 5 . Here, it is observed that T 1 is not finished by that

ime. Therefore, its processing time is prolonged; i.e., the realized

rocessing time is greater than 5. The execution level is raised to

he second level, i.e., e 5 = 2 , and the execution of T 1 continues. At

ime t = 9 , T 1 is completed. However, tasks T 2 and T 3 are rejected

uring this scenario since the more critical task T 1 is prolonged

nd the execution of T 2 and T 3 would collide with it. Hence, if a

rolongation occurs, it is compensated by rejecting some of the

ow-criticality tasks. 

When a task is completed, the execution matches-up ( Bean,

irge, Mittenthal, & Noon, 1991 ) with the base level (i.e., e t = 0 ).

n our example, e 9 = 0 denotes that the resource was available at

ime t = 9 during the considered scenario. The next task executed

s T 4 , since at its start time s 4 = 11 , the resource was available; i.e.,

 11 = 0 and its execution starts at the first level. This sequence of

bserved events and reactions of the execution policy results in the

xecuted alternative depicted in Fig. 1 b. 

.3. Real-world applications 

As it was described in the previous subsection, static schedules

ith F-shaped tasks contain exponentially many alternatives, and

t might be the case that for a schedule, there are scenarios that

eject some or even all low-criticality tasks in the schedule. Nev-

rtheless, it is still reasonable to schedule all tasks and not to ex-

lude them from scheduling in advance because this behavior has

upport in the applications. 

First, most of real-life embedded systems perform a periodic

orkload ( Burns & Davis, 2017; Theis et al., 2013; Vestal, 2007 ),

.e., the same tasks (given in advance) are repeated over time (e.g.,

eriodical measurement of oil temperature). In these cases, the re-

ected task might be executed again in few milliseconds in the next

eriod (see, e.g., Dürr et al. (2017) for application to retransmis-

ion of communication messages in safety-critical embedded sys-

ems). In non-periodic environments, such as production schedul-

ng or scheduling of surgeries in an operating theater ( Seddik &

anzálek, 2017 ), the low-criticality tasks rejected in the current

cheduling horizon are transferred to the following one where they

ill be scheduled again. Secondly, the rejection of a task occurs

arely, and it is reasonable to assume that in practical applications,

e talk about exceptions. 

Furthermore, many of todays real-time applications, such as

dvanced driver assistance systems, demand both high comput-

ng power and safety guarantees. A real-life example of such sys-

ems is NVIDIA DRIVE 
TM 

PX2, which contains a powerful graphics

rocessing unit that runs deep neural networks for computer vi-

ion that secure autonomous driving capabilities. A common prop-

rty of such algorithms is that their computational time is not
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eterministic since it frequently depends on the content of the in-

ut image. For example, the computational load in the problem of

isual object tracking increases with the number of objects in the

amera image. Furthermore, the additional uncertainty comes from

ow-level mechanisms such as the shared access to the main mem-

ry, the processor caches and interconnects. 

. Problem with two criticality levels 

In this section, we deal with the problem restricted to two crit-

cality levels, i.e., MC-2. This problem models an environment that

istinguishes between critical and non-critical activities. The criti-

al activities are those that cannot be rejected under any circum-

tance, whereas non-critical are the ones that can be if a critical

ne is prolonged. Concerning practical applications, the number

f criticality levels L might be relatively low, i.e., usually L � n,

here n is the number of tasks in I MC . Indeed, without loss of gen-

rality, we can assume that L is bounded above by n , as proposed

y Lemma 1 : 

emma 1. For any instance I MC of the problem MC- L , there exists

n instance I ′ MC of the problem MC- L 

′ , L 

′ ≤ L , such that L 

′ ≤ n and

hat any feasible schedule for I ′ MC is a feasible schedule of I MC with

he same makespan. 

roof. Suppose we have a feasible schedule s for I MC . If there is

o task T i ∈ I MC with criticality � = X i , then there is no T j such that

 = min {X j , X i } . Therefore, removing level � from all tasks T i ∈ I MC ,
 i > � while keeping the start times s fixed will not violate the fea-

ibility conditions in Definition 2 . Moreover, the makespan C max =
ax k 

{
s k + p 

(X k ) 
k 

}
is preserved since X k � = � . 

By removing the level � , we effectively reduce the maximum

riticality in the instance I MC , since � ≤ max k X k = L . Therefore, we

btain an instance I ′ MC of the problem MC- L 

′ such that L 

′ < L .

his transformation can be chained until there is such unused level

 . Furthermore, since L 

′ ≤ |{X i | ∀ T i ∈ I ′ MC }| = |{X i | ∀ T i ∈ I MC }| ≤ n,

he claim follows. �

The corollary of Lemma 1 is that if I MC is an instance

f the problem MC- L , then without loss of generality, ∀ � ∈
 1 , . . . , L} ∃ T i ∈ I MC : X i = �, i.e., we can assume that for each crit-

cality level � ∈ { 1 , . . . , L} , a task with the same criticality exists.

he schedules are defined in terms of start times of tasks. How-

ver, it is easy to see that the search for schedules can be reduced

o an optimization problem over a set of permutations of tasks: 

efinition 5 (Left-shifted Schedule) . Let π = (π(1) , π(2) ,

 . . , π(n )) be a permutation of a set of tasks I MC . Then, the

eft-shifted schedule of permutation π is a schedule s , where the

ask π (1) starts at time 0 and all other tasks start at their earliest

tart times such that they do not overlap on any level with any

receding task in the order given by π , i.e., 

 π(1) = 0 

s π(i ) = max 
j<i 

{ 

s π( j) + p 
( min {X π(i ) , X π( j) } ) 
π( j) 

} 

∀ i ∈ { 2 , . . . , n } 
We say that a schedule s of a permutation π is dominant for

, if it has the minimum makespan among the set of all possible

chedules of the permutation π . 

emma 2. For any instance of MC- L , the lef t-shif ted schedule is

ominant for any permutation π . 

roof. By contradiction. Suppose we have a left-shifted sched-

le s of a permutation π and a feasible schedule s ′ of the

ame permutation π that is not left-shifted, such that C max ( s ′ ) <
 max ( s ) . Since s ′ is not left-shifted, then either s ′ 

π(1) 
> 0 or s ′ 

π(i ) 
>

ax j<i 

{
s ′ 
π( j) 

+ p 
( min {X π(i ) , X π( j) } ) 
π( j) 

}
for some i ∈ { 2 , . . . , n } . Therefore,
t holds that s ′ 
j 
> s j for some task T j ∈ I MC . However, since

 max ( s ) = max k 
{

s k + p 
(X k ) 
k 

}
is a non-decreasing function of start

imes, then it follows that C max ( s ′ ) ≥ C max ( s ) , which leads to the

ontradiction. �

That is, given the permutation of tasks, the optimal makespan

s achieved by shifting all tasks to the left while maintaining fea-

ibility, i.e., overlapping conditions from Definition 2 . Moreover, it

an be shown that for the case of � criticality levels, the makespan

f such schedule will always be at most � -times larger than the

ptimal one. 

roposition 1. Any algorithm for the problem MC- L producing the

ef t-shif ted schedule is L -approximation algorithm. 

roof. Let us denote the makespan of an optimal solution of I MC 
nstance as OPT (I MC ) and the makespan of any left-shifted solution

s LS (I MC ) . Since max � ≤L 
{∑ 

T j ∈ I MC : X j ≤� p 
(� ) 
j 

}
is a lower bound on

PT (I MC ) , we can write 

ax 
� ≤L 

{ ∑ 

T j ∈ I MC : X j ≤� 

p (� ) 
j 

} 

≤OPT (I MC ) ≤LS (I MC ) ≤
L ∑ 

� =1 

∑ 

T j ∈ I MC : X j = � 
p (� ) 

j 
≤

≤ L · max 
� ≤L 

{ ∑ 

T j ∈ I MC : X j ≤� 

p (� ) 
j 

} 

≤ L · OPT (I MC ) , 

here the third inequality follows from the fact that the longest

ossible left-shifted schedule has tasks sorted in a non-decreasing

rder of criticalities. �

In the next section, we will propose an approximation algo-

ithm for problem MC-2, that achieve on average better results

han its the worst-case guarantees. 

.1. Approximation algorithm 

We propose the following approximation algorithm. The main

oncept of the algorithm is to build the schedule using basic units,

hich we call blocks . Let us partition the input instance I MC into

wo disjoint subsets L and H , I MC = L ∪ H, L ∩ H = ∅ . Let L be the

et of tasks with low criticality L = { T j | ∀ T j ∈ I MC : X j = 1 } , | L | =
 L and H be the set of tasks with high criticality H = { T i | ∀ T i ∈
 MC : X i = 2 } , | H| = n H . Note that by Lemma 1 , we can assume that

 , H � = ∅ . The algorithm constructively partitions tasks into the so-

alled coverage sets . 

efinition 6 (Coverage set) . Let T i ∈ I MC be an F-shaped task.

hen, 

ov (T i ) ⊆
{

T j | ∀ T j ∈ I MC : X j = X i − 1 

}
s a subset of tasks with criticality X i − 1 . 

The coverage set cov( T i ) can be viewed as a set of less critical

asks, which immediately follows T i in a schedule. If T j ∈ cov( T i ),

hen T j is covered by T i . The tasks { T i } ∪ cov( T i ) form a block

see Fig. 3 a with three different blocks). The algorithm con-

tructs blocks that are used later to derive the whole schedule.

n each iteration, the algorithm takes an unassigned task T j ∈ L

ith the longest processing time p (1) 
j 

and a task T i ∈ H , which cur-

ently has the largest available gap, defined as W i = p (2) 
i 

− p (1) 
i 

−
 

T k ∈ cov (T i ) 
p (1) 

k 
. Note that the gap W i can be even negative if the

um of processing times of tasks in cov( T i ) is larger than p (2) 
i 

. After

 j ∈ L and T i ∈ H are selected, T j is assigned to the coverage set of

 i , i.e., T j ∈ cov( T i ). When the task T j is assigned, the gap W i is de-

reased by the processing time p (1) 
j 

. This procedure is repeated un-

il all tasks in L are assigned. In fact, the algorithm works similarly
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Fig. 3. Schedule with two criticality levels. 

Table 1 

Illustrative example of (APX-MC-2) algorithm. 

Input instance Iterations of the algorithm and the solution 

task X i P i iteration 

T 1 2 (3, 9) #1 cov( T 3 ) ← { T 4 }, W 3 ← 7 − 8 = −1 

T 2 2 (4, 8) #2 cov( T 1 ) ← { T 5 }, W 1 ← 6 − 4 = 2 

T 3 2 (2, 9) #3 cov( T 2 ) ← { T 6 }, W 2 ← 4 − 3 = 1 

T 4 1 (8 , −) #4 cov( T 1 ) ← { T 5 , T 7 }, W 1 ← 2 − 3 = −1 

T 5 1 (4 , −) permutation π = (T 1 , T 5 , T 7 , T 2 , T 6 , T 3 , T 4 ) 

T 6 1 (3 , −) schedule s = (0 , 10 , 18 , 20 , 3 , 14 , 7) 

T 7 1 (3 , −) 
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as the LPT (longest processing time first) rule for Q|| C max prob-

lem ( Kovács, 2010 ). 

The output of the algorithm is a permutation π of all tasks

in I MC . The permutation is formed by all tasks in H sorted in a

non-decreasing order of W i , each of them interleaved by assigned

tasks T j ∈ cov( T i ). The resulting schedule is given by the left-shifted

schedule of the permutation π . Table 1 shows an illustrative exam-

ple of how the algorithm proceeds. The pseudocode can be seen in

the (APX-MC-2) algorithm. 

Algorithm (APX-MC-2) 2-Approximation algorithm for MC-2. 

1: let p (1) 
1 

≥ p (1) 
2 

≥ . . . ≥ p (1) 
j 

≥ . . . ≥ p (1) 
n L 

2: W i ← p (2) 
i 

− p (1) 
i 

∀ T i ∈ H 

3: for j = 1 to n L do 

4: k ← arg max i W i 

5: W k ← W k − p (1) 
j 

6: cov (T k ) ← cov (T k ) ∪ { T j } 
7: end for 

8: π ← () 

9: for i = 1 to n H do 

10: π ← ( π, T i ) 
11: for all T j ∈ cov (T i ) do 

12: π ← 

(
π, T j 

)
13: end for 

14: end for 

15: return Left-Shifted ( π ) 

The algorithm runs in O(n L ( log n H + log n L ) + n H ) . The domi-

nant operations are sorting (line 1) and preservation of the max-

heap of W i ’s (line 5). The (APX-MC-2) algorithm ensures that the

makespan of any produced schedule is at most twice worse than

the optimal one, which can be seen directly from Proposition 1 .

The difficulty of improving the upper bound on the approxima-

tion factor is introduced by the presence of ”long” tasks in L to-

gether with uneven length of differences p (2) 
i 

− p (1) 
i 

of tasks in

T i ∈ H . However, for some specific classes of instances we can ob-

tain tighter factor: (i) when all tasks in H have the same con-

stant difference �> 0 between the second and the first level, i.e.,

∀ T i ∈ H : p (2) 
i 

− p (1) 
i 

= �, then the method of Epstein and Sgall

(2004) gives us a PTAS ( polynomial-time approximation scheme ),

(ii) when max T j ∈ L p 
(1) 
j 

≤ min T i ∈ H p 
(2) 
i 

− p (1) 
i 

, then (APX-MC-2) has
actor at most 3/2 (see Appendix A ). We note that the case (ii) is

he most practical one, since such instances arise from problems

here the original processing time distributions have long tails. 

Note that (APX-MC-2) works well in practice even for the gen-

ral problem, hence we use it as the initial heuristic for branch-

nd-price algorithm proposed in Section 3.3 . In the next section,

e derive the block MIP formulation that utilizes the structure of

ptimal permutations. 

.2. Block MIP formulation 

The proposed MIP model is based on a similar concept as the

pproximation algorithm described in the previous subsection. The

odel exploits three symmetries in the problem. The first symme-

ry comes from the fact that tasks in L with the same processing

ime are indistinguishable. Therefore, the constraint to schedule all

asks can be given by the requirement to schedule a given num-

er of tasks with a specific processing time, instead of scheduling

nique tasks’ occurrences. The second symmetry occurs in the or-

ering of tasks in cov( T i ). The last symmetry comes from the or-

ering of sets of tasks that are covered since the C max criterion

s invariant with respect to the ordering of blocks. This property

ecomes apparent from Fig. 3 , and is proven below. 

Let P = 

{
p (1) 

j 
| ∀ T j ∈ L 

}
be the set of unique processing times

f tasks in L (i.e., it is not a superset) and let n p = 

∣∣{T j | ∀ T j ∈ L :

p (1) 
j 

= p 
}∣∣, i.e., the number of tasks in L with processing time equal

o p ∈ P . 

The decision variable x i , p states the number of tasks in L with

rocessing time equal to p ∈ P that are covered by T i ∈ H , i.e., x i,p =
{ T j | ∀ T j ∈ cov (T i ) : p (1) 

j 
= p}| . The continuous variable B i corre-

ponds to the length of { T i } ∪ cov( T i ) block, e.g., see B 3 in Fig. 3 a.

he first symmetry is broken by constraint (4) , while the second

ymmetry is broken by constraint (3) . Finally, the third symmetry

s broken by the objective function. 

min 

∑ 

T i ∈ H 
B i (MIP-MC-2)

ubject to 

B i ≥ p (2) 
i 

∀ T i ∈ H (2)

B i ≥ p (1) 
i 

+ 

∑ 

p∈ P 
p · x i,p ∀ T i ∈ H (3)

∑ 

T i ∈ H 
x i,p = n p ∀ p ∈ P (4)

here 

B i ≥ 0 ∀ T i ∈ H (5)

x i,p ∈ Z 

+ 
0 ∀ (T i , p) ∈ H × P (6)

The model contains �(n H | P | ) ⊆ O(n H n L ) integer variables x i , p ,

hich define for each T ∈ H , how many tasks in L with the given
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rocessing time follow immediately after T i in a permutation. The

nal schedule s is given by the left-shifted permutation of tasks

 i ∈ H interleaved by T j ∈ cov( T i ). In fact, for each solution of MIP

ormulation (MIP-MC-2) , there are n H ! different but equivalent so-

utions. Fig. 3 b shows one particular solution equivalent to the one

n Fig. 3 a. Hence, to obtain a representative solution for this equiv-

lence class, we define canonical permutation , which we use to re-

onstruct the schedule s from a solution of (MIP-MC-2) . 

The permutation π is the canonical permutation if ∀ T i ,

 j ∈ H : i < j ⇒ π ( i ) < π ( j ) and ∀ T i ∈ H , ∀ T k , T l ∈ cov( T i ): k < l ⇒ π ( i ) <

( k ) < π ( l ). Therefore, in a canonical left-shifted schedule, T 1 ∈ H

s scheduled at time s 1 = 0 . The start time of task T q ∈ H , q > 1 is

iven by the following recurrent formula: 

 q = s q −1 + max 

{ 

p (2) 
q −1 

, p (1) 
q −1 

+ 

∑ 

T k ∈ cov (T q −1 ) 

p (1) 
k 

} 

∀ q : 1 < q ≤ n H . 

(7) 

The start times of the tasks T k ∈ cov( T q ), ∀ T q ∈ H are given as 

 k = s q + p (1) 
q + 

∑ 

T k ′ ∈ cov (T q ): k ′ <k 

p (1) 
k ′ ∀ T k ∈ cov (T q ) . (8)

he makespan C max of the schedule s = (s 1 , s 2 , . . . , s n ) is then 

 max = s n H + max 

{ 

p (2) 
n H 

, p (1) 
n H 

+ 

∑ 

T k ∈ cov (T n H ) 

p (1) 
k 

} 

. (9)

ow, we show that MIP formulation (MIP-MC-2) is correct. 

roposition 2. Given the optimal solution of (MIP-MC-2) , the sched-

le s is feasible and optimal. 

roof. First, we will show that such schedule s is feasible, and

ater, that it is optimal. To ensure feasibility, for all tasks in I MC ,
he conditions specified in Definition 2 need to be satisfied. For all

 i , T j ∈ H , i < j , the start times are set such that 

 j ≥ . . . ≥ s i +1 = s i + max 

{ 

p (2) 
i 

, p (1) 
i 

+ 

∑ 

T k ∈ cov (T i ) 

p (1) 
k 

} 

≥ s i + p (2) 
i 

, 

here the equality follows from (7) . Since X i = X j = 2 , the max-

mal common criticality level of T i and T j is 2; thus, s j ≥ s i +
p 
( min {X i , X j } ) 
i 

follows. For all T i , T j ∈ L , it holds that T i ∈ cov( T k ),

 j ∈ cov( T q ) for some T k , T q ∈ H . If T k � = T q , then without loss of gen-

rality, let us assume that k < q , and thus, s k ≤ s q . Therefore in

his case, it follows from the definition of the schedule s that

 k + p (1) 
k 

≤ s i + p (1) 
i 

≤ s q ≤ s j . If T k = T q and i < j , then s i + p (1) 
i 

≤
 j by (8) . For all T i ∈ H , T j ∈ L , there are essentially two cases.

f T j ∈ cov( T i ), then immediately s j ≥ s i + p (1) 
i 

. If T j �∈ cov (T i ) , then

here exists some T k such that T j ∈ cov( T k ). For k > i , we have s i +
p (2) 

i 
≤ s k ≤ s j , and for k < i , we have s k ≤ s j + p (1) 

j 
≤ s i . 

Now, we show that s has the optimal makespan. Applying re-

ursively (7) to makespan (9) leads to 

 max = 

n H ∑ 

q =1 

max 

{ 

p (2) 
q , p (1) 

q + 

∑ 

T k ∈ cov (T q ) 

p (1) 
k 

} 

. 

Since the objective of (MIP-MC-2) is a sum of B i s and each B i is

y constraints (2) and (3) equal to the maximum of terms in the

bove expression, (MIP-MC-2) minimizes C max . �

The formulation (MIP-MC-2) provides additional insights into

C-2 problem. Its structure is related to the scheduling problem

f parallel machines with the total tardiness criterion P || �T j ( Shim

 Kim, 2007 ). It is possible to polynomially reduce a special case

w  
f MC-2 when all tasks in T i ∈ H have the same constant difference

p (2) 
i 

− p (1) 
i 

= � between the second and the first level to problem

 | d j = �| ∑ 

T j . The transformation generates n H machines and n L 
asks with a common due date �. Then, it can be shown that

or every optimal solution of such instance of P | d j = �| ∑ 

T j holds

hat (i) the completion time of the last task on each machine is

reater than or equal to � or (ii) all start times are smaller than �.

nder the considered transformation, in case (i) the solution pro-

uced by P | d j = �| ∑ 

T j is optimal for MC-2 since its C max matches

 lower bound 

∑ 

T k ∈ I MC p 
(1) 
k 

. In case (ii), the total tardiness of this

nstance of P | d j = �| ∑ 

T j is equal to the sum of processing times

hat exceed the common due date �, since at most n H tasks have

on-zero tardiness in an optimal solution. We note that the reduc-

ion of the general case of MC-2 to Q || �T j , where the speeds of

achines are set proportionally to the differences p (2) 
i 

− p (1) 
i 

in or-

er to capture the fact that tasks in H are unequal is not exact

ince in case (ii) the contribution of each machine to the total tar-

iness is skewed by the machine speed. 

.3. Branch-and-price decomposition 

In this section, we propose a branch-and-price decomposition

lgorithm ( Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance,

998 ) to solve the problem. In general, the problem is decomposed

nto several pricing problems and a single master problem that cou-

les them. We view tasks in H as individual subproblems that re-

olve the question which tasks in L should be covered by which

ask T i ∈ H . These subproblems are coupled by the criterion that

inimizes the sum of amounts by which the second levels p (2) 
i 

of

asks in H are exceeded. See, for example, the schedule in Fig. 3 b.

ere, the second level of task T 3 is exceeded by the amount of p (1) 
5 

.

his is an equivalent way of expressing C max criterion. To find out

ow to improve the current solution, we solve a pricing problem,

hich suggests new coverage sets cov( T i ) that can improve the ob-

ective with the current solution of the master problem. 

The master problem contains cover constraints requiring that

ll tasks in L are scheduled. Individual pricing problems commu-

icate with the master problem through shadow prices of cover

onstraints. Shadow prices express the need to schedule the par-

icular tasks in L . The problem (BNP-MC-2) represents the master

roblem, which is a linear programming (LP) problem with an ex-

onential number of variables (i.e., all possible coverage sets). Such

roblems can be solved efficiently through column generation (CG)

 Desrosiers & Lübbecke, 2005 ), which utilizes the fact that only a

olynomial-sized subset of variables has a non-zero value in an

ptimal solution of the problem. Each variable is associated with

 column of coefficients in the constraint matrix and the objec-

ive coefficient. CG starts with a few columns and progressively

uts new variables into the model. New columns are generated

y a dedicated algorithm that takes the current dual LP solution

f (BNP-MC-2) and produces a new column that can improve the

bjective value, or the algorithm proves that the current solution

f LP is optimal. Using CG, we can prove the optimality of the

ull model (with an exponential number of variables) even without

numerating all variables. Therefore, by solving the model, only a

mall subset of all variables is typically generated. 

.3.1. Master problem 

The master problem resolves the question, how to split a set

f tasks L into coverage sets such that L = 

⋃ 

T i ∈ H cov (T i ) while the

akespan is minimal. It uses an indicator variable x (s ) 
i 

, stating

hether the particular configuration s ∈ S is covered by T ∈ H . A
i i 
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Fig. 4. Optimal solution to the pricing problem instance from Table 2 . 
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configuration s ∈ S i encodes the number of tasks with the given

processing time occurring in cov( T i ) into the vector a 

(s ) 
i 

. Hence,

the entry a (s ) 
i,p 

denotes the number of tasks in L with processing

time equal to p , which is covered by T i in configuration s . S i is

the set of all configurations available for task T i . See an exam-

ple in Fig. 3 a. Here, T 4 , T 5 , T 6 , and T 7 have different processing

times. Hence, the schedule displays the following three configu-

rations: a 

(s 1 ) 
1 

= ( 1 , 0 , 1 , 0 ) � , s 1 ∈ S 1 a 

(s 2 ) 
2 

= ( 0 , 0 , 0 , 0 ) � , s 2 ∈ S 2 , and

a 

(s 3 ) 
3 

= ( 0 , 1 , 0 , 1 ) � , s 3 ∈ S 3 . 

The master problem can be stated with the following LP: 

min 

x 

∑ 

T i ∈ H 

∑ 

s ∈ S i 
O 

(s ) 
i 

x (s ) 
i 

(BNP-MC-2)

subject to ∑ 

T i ∈ H 

∑ 

s ∈ S i 
a (s ) 

i,p 
x (s ) 

i 
≥ n p ∀ p ∈ P (10)

∑ 

s ∈ S i 
x (s ) 

i 
≤ 1 ∀ T i ∈ H (11)

where 

x (s ) 
i 

≥ 0 ∀ s ∈ S i , ∀ T i ∈ H (12)

The objective coefficient is given as O 

(s ) 
i 

= max 
{

p (1) 
i 

+ 

∑ 

p∈ P p ·
a (s ) 

i,p 
− p (2) 

i 
, 0 

}
, ∀ T i ∈ H , ∀ s ∈ S i , where a (s ) 

i 
∈ Z 

| P| 
0 

. The constraint

(10) ensures that each task in L is scheduled, while the constraint

(11) states that each task T i ∈ H covers at most one configuration

s ∈ S i . In the beginning, the master problem is solved with re-

stricted configuration sets S i containing only the minimal num-

ber of configurations, ensuring the feasibility of the model (BNP-

MC-2) and with an empty configuration s 0 ∈ S i , ∀ T i ∈ H . The empty

configuration s 0 denotes the empty covering set, i.e., cov (T i ) = ∅ .
During the solution of (BNP-MC-2) , more configurations are be-

ing added. To efficiently determinate which configuration to add

at each step, we need to consider the dual form of the LP problem,

which is stated as follows: 

max 
y , γ

∑ 

p∈ P 
n p y p + 

∑ 

T i ∈ H 
γi (BNP-DMC2)

subject to ∑ 

p∈ P 
a (s ) 

i,p 
y p + γi ≤ O 

(s ) 
i 

∀ T i ∈ H, ∀ s ∈ S i (13)

where 

y p ≥ 0 ∀ p ∈ P (14)

γi ≤ 0 ∀ T i ∈ H (15)

The values of dual variables y and γ are used to decide which

configuration to generate to improve the current solution of (BNP-

MC-2) . This is achieved using the pricing problem, which generates

a constraint of type (13) that is violated by the current values of y

and γ . In the next section, we will derive the pricing problem. 

3.3.2. Pricing problem 

The pricing problem determines whether there exists a con-

straint that violates the current dual solution or whether the pri-

mary solution is optimal and no such constraint can be found.

Due to LP duality, each constraint (13) corresponds to the x (s ) 
i 

variable in the primary model (BNP-MC-2) , and hence, to the

whole column. To determine which column can enter the basis,
ne needs to find a violated constraint in the dual form (BNP-

MC2) . Therefore, at each iteration of the branch-and-price algo-

ithm, we ask whether there exists a configuration s ∈ S i (a col-

mn a 

(s ) 
i 

and objective coefficient O 

(s ) 
i 

) that violates one of the

onstraints (13) with the current dual solution ˆ y , ˆ γ of the master

roblem. This involves deciding whether the following expression

 > max 

{ 

p (1) 
i 

+ 

∑ 

p∈ P 
p · a (s ) 

i,p 
− p (2) 

i 
, 0 

} 

− ˆ γi −
∑ 

p∈ P 
a (s ) 

i,p ̂
 y p = μi (16)

olds for the given fixed values of ˆ γi and ˆ y . If one is interested in

 column with the lowest reduced cost μi , it is equivalent to the

roblem 

in 

a 
max { p (1) 

i 
+ 

∑ 

p∈ P 
p · a (s ) 

i,p 
− p (2) 

i 
, 0 } − ∑ 

p∈ P 
a (s ) 

i,p ̂
 y p (BNP-MC-2-PP)

a (s ) 
i,p 

∈ Z 

+ 
0 ∀ p ∈ P (17)

riting it down as an MIP leads to 

max 
a ,z 

∑ 

p∈ P 
a (s ) 

i,p ̂
 y p − z (18)

ubject to ∑ 

p∈ P 
p · a (s ) 

i,p 
≤ p (2) 

i 
− p (1) 

i 
+ z (19)

here 

z ≥ 0 (20)

a (s ) 
i,p 

∈ Z 0 ∀ p ∈ P (21)

hich can be seen as a variant of Knapsack Problem ( Martello,

isinger, & Toth, 20 0 0 ) with items whose values are given by the

urrent shadow prices of assignment constraints (10) and weights

re given by processing times of tasks that need to be fitted into

he knapsack of size given by the size of the gap of p (2) 
i 

− p (1) 
i 

.

owever, the difference is that there is a possibility to enlarge the

ize of the knapsack by some amount while incurring the identical

oss in the objective function. The structure of the pricing problem

hows a connection to 1D cutting stock problem ( Delorme et al.,

016 ), where the pricing problem is the classical Knapsack Prob-

em, since the length of any material roll in the cutting stock can-

ot be exceeded. 

An example of the pricing problem with n L = 5 tasks for the

articular T i ∈ H is displayed in Table 2 and the corresponding op-

imal solution in Fig. 4 . In this solution, T 1 , T 3 , and T 5 are selected

o form configuration s ∈ S i with a 

(s ) 
i 

= (1 , 0 , 1 , 0 , 1) � and O 

(s ) 
i 

= 1 . 

Therefore, for z = 0 , the pricing problem is an ordinary Knap-

ack Problem. Since the processing times are integers, the variable

 will also be always an integer in an optimal solution. Having a

seudopolynomial upper bound on z , we can solve different knap-

ack problems for all possible values of z separately. However, the

ricing problem can be solved even faster. Next, we will show that
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Table 2 

Example instance of the pricing problem for T i ∈ H , P i = (4 , 13) . 

j 1 2 3 4 5 

p (1) 
j 

2 10 3 7 5 

ˆ y j 6.0 0.5 5.5 1.0 4.5 
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he pricing problem is solvable in a pseudopolynomial time, and

ropose a dynamic programming algorithm to solve it. 

The constraints (10) in a master problem enforce the required

umber of tasks in L with the given processing time to be sched-

led. For convenience, let us work in the pricing problem with the

pecific occurrences of tasks in L instead. Hence, for each specific

ask size p ∈ P , we choose to work with n p number of tasks with

alues ˆ y j = ˆ y p . In this way, the pricing problem respects the avail-

ble number of tasks in L with the given processing time. 

roposition 3. The pricing problem can be solved in a pseudopoly-

omial time in the maximal length of a task. 

roof. For any fixed z ∈ N 0 , the pricing problem corresponding to

ask T i ∈ H with W = p (2) 
i 

− p (1) 
i 

becomes the knapsack problem

ith maximum capacity W + z, which can be solved in O(n L (W +
)) by dynamic programming. Since in any solution of the pricing

roblem, we pack items with total size of at most K = 

∑ 

T j ∈ L p 
(1) 
j 

,

e can set an upper bound on z as K ≤ n L max T j ∈ L p 
(1) 
j 

. There-

ore, the pricing problem can be solved as K independent knap-

ack problems while picking the best solution among them in total

(n L K(W + K)) time. �

However, we can do better. The pricing problem can be solved

y the following dynamic programming recurrence relation. Let

 ( k , j ) be an optimal solution to the pricing problem with capacity

 and tasks { T 1 , . . . , T j } ⊆ L . Let W = p (2) 
i 

− p (1) 
i 

. For any k , j ≤ 0, we

et U(k, j) = 0 . Then, the recurrent relation is given for k ≤ W as

ollows: 

(k, j) ← 

{
max { U(k, j − 1) , ˆ y j + U(k − p (1) 

j 
, j − 1) } if p (1) 

j 
≤ k 

U(k, j − 1) otherwise 
(22) 

nd for k > W , as 

(k, j) ← 

{ 

max { U(k, j − 1) , ˆ y j + U(k − p (1) 
j 

, j − 1) − (k − W ) } if k − p (1) 
j 

≤ W

max { U(k, j − 1) , ˆ y j + U(k − p (1) 
j 

, j − 1) − p (1) 
j 

} if k − p (1) 
j 

> W

(23) 

The optimal solution of the pricing problem is then given as
ˆ 
 = arg max k ∈ [ W + K ] U(k, n L ) with the objective value U( ̂ k , n L ) . If

U( ̂ k , n L ) − γi < 0 , then the set of tasks in the solution corre-

ponds to the new column that can enter the basis (i.e., it has the

o-called negative reduced cost ). The new column a 

(s ) 
i 

has the ob-

ective coefficient O 

(s ) 
i 

= max { ̂ k − W, 0 } and its entries are given by

he number of tasks with the given size contained in the solution

f U( ̂ k , n L ) . 

The worst-case total running time of the algorithm is O(n L (W +
)) . However, in some cases, the pricing problem can be further

implified by fixing the set of tasks that are necessarily included

n an optimal solution. 

emma 3. Every task T j ∈ L with ˆ y j /p (1) 
j 

≥ 1 is included in an optimal

olution of the pricing problem. 

Lemma 3 is due to the influence of z ∈ R 

+ 
0 

variable in MIP

18) to its criterion. If for a task, T j ∈ L holds ˆ y j ≥ p (1) 
j 

, then taking

t into the solution cannot hurt the objective, since an improve-

ent ˆ y j − p (1) 
j 

≥ 0 is achieved by enlarging z by the amount of

p (1) 
j 

. In the example in Table 2 , this rule suggests us to include
asks T 1 and T 3 . Lemma 3 is used in the algorithm for solving the

ricing problem in the following way. The set Q ⊆L of tasks satis-

ying ∀ T j ∈ Q : ˆ y j /p (1) 
j 

≥ 1 is taken out of the pricing problem in-

tance and the capacity W is decreased by 
∑ 

T j ∈ Q p 
(1) 
j 

. Then, the

ricing problem is solved only for the remaining tasks. 

.3.3. Initial solution and branching 

The branch-and-price algorithm starts with an initial set of

olumns that leads to a feasible solution of the model (BNP-MC-2) .

n our case, the initial solution comes from the (APX-MC-2) ap-

roximation algorithm, where set cov( T i ) forms the corresponding

olumn a 

(s ) 
i 

. After the master problem (BNP-MC-2) is solved with

he given set of columns, a subproblem corresponding to some task

 i ∈ H is selected. In our case, we solve the subproblems in the non-

ncreasing order of ˆ γi until there are no more columns with a neg-

tive reduced cost. 

The optimal solution to the master problem (BNP-MC-2) can

e fractional in general. Therefore, to ensure an integer solution,

 branching is employed inside the branch-and-price algorithm.

ence, every master problem acts as a node in the branch-and-

ound tree. The tree is searched in the depth-first fashion. We in-

roduce a branching strategy on the original variables, i.e., based

n x i , p variables from (MIP-MC-2) . It branches on the decision of

ow many tasks in L with processing time p are present in cov( T i ).

herefore, given a fractional value of the corresponding original

ariable x ∗
i,p 

obtained from the solution of the master problem, two

ranches with constraints � x ∗
i,p 

� ≤ x i,p and � x ∗
i,p 

� ≥ x i,p are created.

n the first case, the constraint is reflected in the pricing prob-

em by reducing the capacity W by p · � x ∗
i,p 

� and taking those tasks

nto the solution. In the latter case, the constraint is enforced by

etting shadow prices ˆ y j to −∞ for tasks T j ∈ L ′ ⊆
{

T j | ∀ T j ∈ L :

p (1) 
j 

= p 
}
, | L ′ | = n p − � x ∗

i,p 
� . Note that in the � x ∗

i,p 
� ≥ x i,p branch,

emma 3 may suggest to take some tasks that are forbidden in this

ranch. In this case, Lemma 3 does not apply. The choice of the

ariable to branch on is performed by selecting the corresponding

riginal variable with the most fractional value, i.e., the one maxi-

izing 
∣∣� x ∗

i,p 
+ 0 . 5 � − x ∗

i,p 

∣∣ function. 

. Problem with three criticality levels 

In this section, we generalize the results developed in

ection 3 for working with more criticality levels. We show that

ptimal schedules for problems with an arbitrary number of criti-

ality levels can be represented by trees. Based on this finding, we

ive a computationally efficient scheduling algorithm for the prob-

em with three criticality levels. 

.1. Tree schedule structure 

For simplicity, let us assume the problem with three criticality

evels and its solution depicted in Fig. 5 a. Note that the makespan

f the solution is given by the sum of lengths of blocks D 1 and

 2 formed by tasks with criticality level of three. This is due to

he analogous reason as in the case with two criticality levels de-

cribed in Section 3.2 since any permutation of blocks achieves the

ame makespan. 

The length of the block D 1 is given by the maximum between

p (3) 
1 

and the sum of lengths of blocks B 1 , B 3 , and B 4 formed by

asks with the criticality of two. Applying the above reasoning re-

ursively, an arbitrary order of blocks B 1 , B 3 , and B 4 achieves the

ame total length. To define the block B 1 , let us introduce the so-

alled restricted task : 
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Fig. 5. Schedule with three criticality levels and representation of its permutation 

as a tree. 
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Definition 7. Let T i ∈ I MC , X i > 1 be an F-shaped task. Then, T ′ 
i 

is

called the restriction of T i and is given as 

X 

′ 
i = X i − 1 , P ′ i = 

(
p (1) 

i 
, . . . , p (X i −1) 

i 

)
, 

i.e., it is an F-shape that remains after removing the highest criti-

cality level X i from T i . 

In Fig. 5 a, the permutation defining the order of tasks

in this complete solution is given by a nested system of

sets {cov( T 1 ), cov( T 2 )}, cov (T 1 ) = { T ′ 
1 
, T 3 , T 4 } , cov (T ′ 

1 
) = { T 6 } and

cov (T 2 ) = { T ′ 2 , T 5 } , cov (T 3 ) = { T 7 , T 8 } , cov (T 4 ) = { T 9 } , cov (T ′ 2 ) = ∅ ,
cov (T 5 ) = { T 10 } . 

Such a system of sets can be conveniently represented by a tree

describing coverage relations. Therefore, we establish the relation

between the schedules and trees: 

Lemma 4. An optimal schedule of the problem MC- L is representable

by a tree. 

For the problem with L criticality levels, the solution is given

by a rooted tree with L + 1 layers, where the root (0-th level) is

a dummy vertex and vertices in � -th layer, � ≥ 1, are given by all

tasks T i ∈ I MC with criticality X i = L − � + 1 . Furthermore, the im-

mediate successors of a vertex T i are tasks in cov( T i ) (including its

restriction T ′ 
i 

). Examples of a tree and the corresponding solution

are depicted in Fig. 5 b anda, respectively. Note that swapping sub-

trees rooted at T 3 and T 4 in Fig. 5 b leads to an isomorphic graph.

This transformation can be viewed as permuting B 3 and B 4 blocks

inside the schedule in Fig. 5 a, which leads to different but an

equivalent schedule. Therefore, isomorphic trees represent equiv-

alent schedules; hence, we optimize over non-isomorphic ones to

mitigate symmetries. 

The actual schedule corresponding to a tree is obtained by

traversing the tree in the preorder fashion; every time a vertex of

the tree corresponding to a non-restricted task is visited, the cor-

responding task is scheduled at the earliest possible start time. The

makespan of the schedule is given by the so-called critical subtree ,

which is a subgraph of the tree of the solution. 

Definition 8 (Critical Subtree) . Given a tree of solution K , a critical

subtree C ⊆K is a minimal subgraph of K that achieves the same

makespan as K . 

Fig. 5 c shows an example that highlights a critical subtree of

the schedule in Fig. 5 a. Basically, this is the minimal set of tasks

that causes the achieved makespan of the solution. Furthermore,
e show that optimal trees consist of optimal subtrees, as stated

y the following proposition: 

roposition 4. There is an optimal tree of the solution of the problem

C- L , such that every subtree rooted at a vertex corresponding to

ask T i ∈ I MC , X i > 1 is an optimal tree of all its child vertices with

espect to the problem MC-( X i − 1 ). 

roof. By contradiction. Let us denote the subtree rooted under

 i as tree( T i ). Suppose a unique optimal solution represented by

 tree K that contains a subtree tree( T i ) that is not an optimal

ree. For such a solution, there are two cases. Either for every crit-

cal subtree C ⊆K , there exists a task T j ∈ tree( T i ) ∩ C or not. If yes,

hen by rearranging tree( T i ) into an optimal one would decrease

he makespan of tree K , which is by the assumption optimal. In

he other case, by rearranging tree( T i ) into the optimal one would

ot increase its makespan, and thus, no task contained in tree( T i )

ould enter a critical subtree C . Therefore, the makespan of C , and

hus, K would not increase. �

Proposition 4 states that for any problem instance, there is an

ptimal solution with this property. However, in general, the opti-

al solution tree cannot be constructed in the bottom-up fashion,

.e., constructing optimal subtrees of tasks (and their restrictions)

ith criticality one and two and those joining with tasks of crit-

cality three and so on. In fact, it can be shown that this proce-

ure would yield suboptimal solutions. Hence, one has to first rea-

on about which tasks fall into which subtree, and given that such

ubtree is an optimal tree. However, Proposition 4 still provides a

seful insight into the structure of optimal solutions. We employ it

n the branch-and-price decomposition algorithm for the problem

ith three criticality levels in the following section. The concept of

he decomposition is similar to the one proposed in Section 3.3 –

o form blocks of tasks of the highest criticality by exploring pos-

ible options of how to cover the remaining tasks by them. As a

onsequence of Proposition 4 , given the set of tasks to be covered

y another task, we know that they need to be scheduled there

ptimally according to the C max criterion of the problem with one

riticality level less. The master problem is used to efficiently ex-

lore the options of which task should be covered by which tasks,

hile the pricing problem, given the coverages, schedules them

ptimally. 

.2. Branch-and-price decomposition for MC-3 

.2.1. Master problem 

For clarity, let us denote the set of all tasks with criticality three

s D = { T k | ∀ T k ∈ I MC : X k = 3 } , while the meaning of sets H , L , and

 remains the same as in Section 3.2 . The general idea here is sim-

lar to that in Section 3.3 for two criticality levels. Therefore, the

aster problem assigns tasks in H ∪ L to coverage sets associated

ith tasks in D . This can be stated as follows: 

min 

x 

∑ 

T k ∈ D 

∑ 

s ∈ S k 
O 

(s ) 
k 

x (s ) 
k 

(BNP-MC-3)

ubject to ∑ 

T k ∈ D 

∑ 

s ∈ S k 
a (s ) 

k,p 
x (s ) 

k 
≥ n p ∀ p ∈ P (24)

∑ 

T k ∈ D 

∑ 

s ∈ S k 
b (s ) 

k,i 
x (s ) 

k 
≥ 1 ∀ T i ∈ H (25)

∑ 

s ∈ S k 
x (s ) 

k 
≤ 1 ∀ T k ∈ D (26)

here 

x (s ) 
k 

≥ 0 ∀ s ∈ S k , ∀ T k ∈ D (27)
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he column coefficient is given as O 

(s ) 
k 

= max 
{∑ 

T i ∈ cov (T k ) 
B i −

p (3) 
k 

, 0 
}
, where the term cov( T k ) is a function of configuration

 . The constant B i denotes the length of the block given by

 i ∈ cov( T k ), defined in the same way as in (MIP-MC-2) . The vari-

ble x (s ) 
k 

states whether T k ∈ D covers the set of trees s ∈ S k , where

 is given by two vectors a 

(s ) 
k 

and b (s ) 
k 

. The coefficient a (s ) 
k,p 

states

ow many tasks in L with processing time equal to p are rooted

nder the subtree of T k ∈ D . The vector b (s ) 
k 

is the characteristic vec-

or (i.e., a vector with binary entries denoting the presence of an

lement) of tasks in H rooted under the subtree of T k ∈ D . 

The constraints (24) and (25) ensure that all tasks in H ∪ L are

cheduled, while the constraint (26) states that at most one config-

ration is selected per task T k ∈ D . The problem of how to generate

 new configuration s that can improve the current solution and

he computation of the column coefficient is solved by the pricing

roblem. 

.2.2. Pricing problem 

Since now the pricing problem embeds the MC-2 problem,

hich is strongly N P -hard, there is no pseudopolynomial algo-

ithm solving the problem unless P = N P . Hence, we formulate it

s an MIP model. The complete description of the pricing problem

orresponding to a task T k ∈ D can be stated as follows: 

max 
∑ 

T i ∈ H 
ˆ y i x i + 

∑ 

p∈ P 
ˆ y p 

∑ 

T i ∈ H∪{ T ′ 
k 
} 
q i,p − z (BNP-MC-3-PP) 

ubject to ∑ 

T i ∈ H∪{ T ′ 
k 
} 
B i − p (2) 

i 
(1 − x i ) ≤ p (3) 

k 
+ z (28) 

B i ≥ p (2) 
i 

∀ T i ∈ H ∪ { T ′ k } (29) 

B i ≥ p (1) 
i 

+ 

∑ 

p∈ P 
p · q i,p ∀ T i ∈ H ∪ { T ′ k } (30) 

∑ 

T i ∈ H∪{ T ′ 
k 
} 
q i,p ≤ n p ∀ p ∈ P (31) 

∑ 

p∈ P 
q i,p ≤ n L x i ∀ T i ∈ H ∪ { T ′ k } (32) 

x k = 1 (33) 

here 

z ≥ 0 (34) 

B i ≥ 0 T i ∈ H ∪ { T ′ k } (35) 

x i ∈ { 0 , 1 } ∀ T i ∈ H ∪ { T ′ k } (36) 

q i,p ∈ Z 

+ 
0 ∀ T i ∈ H ∪ { T ′ k } , ∀ p ∈ P (37) 

he coefficients ˆ y p are shadow prices for constraints (24) and co-

fficients ˆ y i correspond to shadow prices for constraints (25) . The

odel assigns the given number of tasks in L with processing time

qual to p using q i , p variable to the selected tasks from H that are

elected using x i variables. Moreover, for the given subproblem cor-

esponding to the task T ∈ D , we work inside the model with its
k 
estriction T ′ 
k 
, which is always included in every solution by con-

traint (33) . Finally, if the optimal objective value is greater than

ˆ γk , which is the shadow price for the constraint (26) associated

ith the current subproblem T k , then a column that can improve

he current solution of the master problem exists. The column co-

fficient O 

(s ) 
k 

is then given as the value of z variable in an optimal

olution. 

The advantage of (BNP-MC-3-PP) MIP model is that it does

ot contain a big-M constant. Furthermore, the sufficient condi-

ion for selecting a task in L into an optimal solution suggested by

emma 3 also applies here. Moreover, a similar statement about

asks in H is also valid; if ˆ y i /p (2) 
i 

≥ 1 for any T i ∈ H , then T i can be

aken into an optimal solution too. 

.2.3. Initial solution and branching 

As an initial solution, we use a greedy algorithm that works in

wo steps. First, a new instance I ′ MC of the MC-2 problem is cre-

ted by taking I ′ MC = L ∪ H ∪ D 

′ , where D 

′ = 

{
T ′ 

k 
| ∀ T k ∈ D 

}
, i.e., the

et of restrictions of tasks in D . A solution to this problem instance

efines coverages corresponding to two bottom layers of the solu-

ion tree ( Fig. 5 b). The coverages in the top level of the tree are

etermined by the solution of yet another MC-2 problem instance

ollowing from the solution of I ′ MC , consisting of tasks T k � , X k � = 2

ith processing times p (1) 
k � 

= max 
{

p (2) 
k 

, p (1) 
k 

+ 

∑ 

T j ∈ cov (T ′ 
k 
) p 

(1) 
j 

}
and

p (2) 
k � 

= max 
{

p (3) 
k 

, p (1) 
k � 

}
for all T k ∈ D . Tasks with criticality one are

iven by the original tasks in H , with their coverage sets obtained

rom the solution of I ′ MC ; e.g., T 3 and cov( T 3 ) from Fig. 5 a are

reated as a single task with processing time p (1) 
3 

= B 3 . 

The branching is realized for each T k ∈ D both on the number

f assigned tasks in L with the given p ∈ P in the same way as

n Section 3.3.3 . For tasks in H , 0/1 branching is performed. We

se the most fractional value strategy for selecting the variable to

ranch on. The conditions imposed by the branching are taken into

he account by putting equivalent conditions into pricing problem

BNP-MC-3-PP) . 

. Computational experiments 

In this section, we provide experimental results obtained us-

ng the above-described methods. The testing environment consists

f a computer with Intel Xeon E5-2620 v2 @ 2.10 GHz equipped

ith 64 GB RAM running Gentoo Linux. The algorithms are im-

lemented in Python 3.5 and Java 8. As external solvers, Gurobi

ptimizer 7.0.2 and IBM CPLEX 12.7.1 are used. 

.1. Results of the approximation algorithm 

First, we estimate the phase transition ( Smith-Miles & Lopes,

012 ) of the problem MC-2. This is a set of threshold values on

umerical parameters of instances of the problem that separates

asy instances from the hard ones. From our computational experi-

nce, we have determined two main parameters that influence the

ifficulty of an instance the most. The first parameter is the ratio

etween the number of tasks of different criticalities, written as

 H / n L . The second parameter is the ratio between the mean value

f the gap W i = p (2) 
i 

− p (1) 
i 

of tasks in T i ∈ H and that of processing

ime p (1) 
j 

of tasks in T j ∈ L . We denote this ratio of processing times

s E [ W ] / E [ p] , where E states for the expected value. The choice of

hese parameters naturally arises from the way the makespan of a

olution is given. 

We say that an instance is easy if the objective of the solution

rovided by the (APX-MC-2) approximation algorithm equals to a

ower bound. Recall that a lower bound on the makespan in prob-
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Fig. 6. Results of (APX-MC-2) approximation algorithm in the instance space of MC-2. 
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lem MC-2 is given as 

lb = max 

{ ∑ 

T i ∈ H 
p (2) 

i 
, 

∑ 

T k ∈ I MC 

p (1) 
k 

} 

. 

Having an instance with relatively low (or high) ratios n H / n L and

E [ W ] / E [ p] makes (APX-MC-2) approximation algorithm likely to

result into a solution whose makespan matches the lower bound

lb , and thus, solving the instance optimally. Therefore, to assess

where the hard instances are located in the space of instances,

we evaluate the solutions produced by the (APX-MC-2) approxi-

mation algorithm using the grid search on a large set of parameter

values. Data in Fig. 6 are obtained for the problem with n = 50

tasks, with each data point averaged over 75 independent sam-

ples. Fig. 6 a shows the fraction of instances where the makespan

of solutions does not match the lower bound lb . Therefore, blank

areas are filled with instances for which the (APX-MC-2) approxi-

mation algorithm produces solutions with the objective matching

the lower bound lb . 

In general, even when the solution objective value is not equal

to a lower bound, the solution still might be optimal. Therefore, we

compare the results obtained by the (APX-MC-2) approximation al-

gorithm with those obtained by the optimal ones. In Fig. 6 b, the

ratio of sub-optimally solved instances by (APX-MC-2) is shown.

Here, even though solutions of instances with E [ W ] / E [ p] ≤ 1 do

not match a lower bound, they are mostly solved optimally. Fur-

thermore, it empirically shows all instances where n H ≥ n L are

solved optimally by the (APX-MC-2) approximation algorithm. 

We observe that the position of points in Fig. 6 is invariant to

the different values of n . The cluster of points in Fig. 6 b displays

where the difficult instances of the MC-2 problem are located in

the instance space. 

5.2. Computational time for MC-2 problem 

In this section, we evaluate algorithms proposed in

Sections 3.2 and 3.3 . We have used three different sets of in-

stances; each set consists of multiple batches that differ in the

total number of tasks n . Each of these batches contains 40 in-
tances. Table 3 summarizes the results for instances that are

enerated from the distribution corresponding to the cluster of

oints depicted in Fig. 6 b, which correspond to difficult instances.

e denote this dataset as MC-2-LOP . Table 4 shows the results

or instances that are located at the same position in the instance

lane but have more than three times larger standard deviation of

rocessing times of tasks in L , thus resulting in a larger set P . We

enote this dataset as MC-2-HIP . In practical problems related to

essage scheduling ( Dürr et al., 2017 ), tasks usually have length

iven as a power of two ( Dvo ̌rák & Hanzálek, 2016 ). This follows

rom the implementation aspects of real-life computer systems

i.e., lengths of packets). Thus, we also generate a set of instances

here processing times of tasks and their prolongations are given

s a 2 k , k ∈ N 0 , denoted as MC-2-2K . We perform experiments

ith range k ∈ [0, 7], and display the results in Table 5 . 

In all tables, the column gap is the mean optimality gap proven

y the solver within the time limit t max = 300 s , and is given as

00 · ub−lb 
ub 

, where ub is the objective value of the best solution

ound, while lb is the best proven lower bound. The column root

b denotes the lower bound obtained by a solver in the root node,

hile the column t denotes the mean computational time required

o prove the optimality of an integer solution (measured in sec-

nds) for the instances computed within the time limit. Columns

ap and t report two values separated by the slash symbol accord-

ng to whether multithreading with 12 CPU cores for a single run

MT) is allowed or just a single thread (ST) is used. In case of (BNP-

C-2) algorithm, only the ST performance is reported, owing to

ts implementation. For all methods, the lower bound computed in

he root node is reported as a single value as it does not depend

n the computing power available. 

The dash symbol denotes that for no instance in the batch, the

ptimality of an integer solution is proven within the time limit

although a feasible solution is found for each instance in any

xperiment). Finally, the column denoted as gen states the mean

umber of columns generated during the whole run of (BNP-MC-

) algorithm (measured in kilocolumns , i.e., thousands of columns)

cross all visited nodes. We compare our methods with the cur-

ently best-known exact method ( Hanzálek et al., 2016 ). The results

f their MIP model are given in the column entitled Relative-Order

IP . 



A
.
 N

o
va

k
,
 P.

 Su
ch

a
 a

n
d
 Z

.
 H

a
n

za
lek

 /
 E

u
ro

p
ea

n
 Jo

u
rn

a
l
 o

f
 O

p
era

tio
n

a
l
 R

esea
rch

 2
7

9
 (2

0
19

)
 6

8
7

–
7

0
3
 

6
9

9
 

Table 3 

Computational results for MC-2 problem on MC-2-LOP dataset. 

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP Hanzálek et al. (2016) 

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST 

10 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 113.0 ( ± 9.5) < 0.1 / < 0.1 0.00 ( ± 0.00) 113.3 ( ± 9.4) < 0.1 0.2 ( ± 0.0) 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 26.7 ( ± 3.1) < 0.1 / 0.2 ( ± 0.2) 

15 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 160.4 ( ± 10.7) < 0.1 / < 0.1 0.00 ( ± 0.00) 160.5 ( ± 10.6) < 0.1 0.2 ( ± 0.0) 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 28.6 ( ± 2.4) 0.9 ( ± 1.7) / 7.5 ( ± 28.7) 

20 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 209.8 ( ± 11.1) < 0.1 / < 0.1 0.00 ( ± 0.00) 210.3 ( ± 10.9) < 0.1 0.2 ( ± 0.1) 14.46 ( ± 8.61) / 20.83 ( ± 11.51) 29.6 ( ± 2.4) 38.6 ( ± 43.0) / 198.1 ( ± 63.0) 

40 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 412.3 ( ± 20.4) < 0.1 / 0.1 ( ± 0.1) 0.00 ( ± 0.00) 412.4 ( ± 20.3) 0.1 ( ± 0.0) 0.6 ( ± 0.5) 69.66 ( ± 5.34) / 73.87 ( ± 3.36) 30.4 ( ± 2.5) —

50 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 506.1 ( ± 17.0) 0.1 ( ± 0.4) / 0.1 ( ± 0.5) 0.00 ( ± 0.00) 506.1 ( ± 17.0) 0.1 ( ± 0.0) 0.6 ( ± 0.4) 79.54 ( ± 3.09) / 80.29 ( ± 1.80) 31.5 ( ± 2.4) —

100 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 988.0 ( ± 31.2) 0.1 ( ± 0.1) / 0.2 ( ± 0.1) 0.00 ( ± 0.00) 988.0 ( ± 31.2) 0.2 ( ± 0.0) 1.8 ( ± 0.7) 93.09 ( ± 0.75) / 93.59 ( ± 0.93) 31.5 ( ± 1.8) —

200 0.21 ( ± 0.00) / 0.21 ( ± 0.00) 1974.8 ( ± 39.2) 0.3 ( ± 0.2) / 0.5 ( ± 0.5) 0.00 ( ± 0.00) 1974.9 ( ± 39.2) 0.4 ( ± 0.1) 13.0 ( ± 5.0) 97.79 ( ± 0.32) / 98.13 ( ± 0.12) 32.8 ( ± 1.7) —

400 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 3949.5 ( ± 44.3) 0.5 ( ± 0.2) / 0.8 ( ± 0.3) 0.00 ( ± 0.00) 3949.5 ( ± 44.3) 0.8 ( ± 0.1) 167.4 ( ± 64.3) 99.10 ( ± 0.04) / 99.10 ( ± 0.04) 33.8 ( ± 1.3) —

800 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 7884.8 ( ± 74.5) 1.7 ( ± 1.2) / 2.6 ( ± 0.8) 2.90 ( ± 0.60) 7884.8 ( ± 74.5) 1.1 ( ± 0.0) – 99.54 ( ± 0.02) / 99.54 ( ± 0.02) 34.9 ( ± 1.5) —

10 0 0 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 9864.4 ( ± 69.8) 1.9 ( ± 0.9) / 4.7 ( ± 6.5) 2.68 ( ± 0.55) 9864.4 ( ± 69.8) 1.2 ( ± 0.0) – 99.63 ( ± 0.01) / 99.63 ( ± 0.01) 35.5 ( ± 1.9) —

Table 4 

Computational results for MC-2 problem on MC-2-HIP dataset. 

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP Hanzálek et al. (2016) 

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST 

10 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 153.6 ( ± 29.8) < 0.1 / < 0.1 0.00 ( ± 0.00) 157.3 ( ± 28.6) < 0.1 0.2 ( ± 0.0) 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 49.9 ( ± 9.1) 0.1 ( ± 0.1) / 0.4 ( ± 0.4) 

15 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 219.4 ( ± 31.8) < 0.1 / 0.1 ( ± 0.2) 0.00 ( ± 0.00) 221.5 ( ± 31.2) < 0.1 0.2 ( ± 0.0) 23.38 ( ± 7.49) / 28.44 ( ± 10.31) 50.4 ( ± 8.0) 16.5 ( ± 41.4) / 18.6 ( ± 47.6) 

20 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 279.9 ( ± 36.8) < 0.1 / 0.1 ( ± 0.1) 0.00 ( ± 0.00) 280.9 ( ± 36.1) < 0.1 0.2 ( ± 0.0) 29.84 ( ± 17.31) / 26.45 ( ± 20.64) 56.0 ( ± 7.7) 46.4 ( ± 23.0) / 220.1 ( ± 42.6) 

40 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 547.4 ( ± 40.6) 0.3 ( ± 0.9) / 0.5 ( ± 1.2) 0.00 ( ± 0.00) 550.5 ( ± 40.2) 0.1 ( ± 0.0) 0.3 ( ± 0.1) 65.08 ( ± 7.83) / 68.92 ( ± 5.14) 57.8 ( ± 6.2) —

50 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 684.5 ( ± 49.9) 0.6 ( ± 1.1) / 1.3 ( ± 2.2) 0.00 ( ± 0.00) 686.0 ( ± 49.0) 0.1 ( ± 0.2) 0.8 ( ± 1.0) 74.89 ( ± 4.58) / 76.27 ( ± 3.81) 58.9 ( ± 8.4) —

100 0.08 ( ± 0.00) / 0.08 ( ± 0.00) 1317.2 ( ± 69.7) 2.0 ( ± 3.9) / 6.4 ( ± 12.5) 0.00 ( ± 0.00) 1318.1 ( ± 69.4) 0.5 ( ± 0.9) 24.4 ( ± 84.4) 90.75 ( ± 1.51) / 91.39 ( ± 1.31) 62.0 ( ± 6.3) —

200 0.04 ( ± 0.01) / 0.04 ( ± 0.01) 2624.4 ( ± 124.3) 15.2 ( ± 41.2) / 16.2 ( ± 34.7) 0.26 ( ± 0.36) 2625.6 ( ± 123.3) 0.8 ( ± 0.8) 51.4 ( ± 70.5) 96.60 ( ± 0.77) / 97.24 ( ± 0.21) 67.2 ( ± 6.6) —

400 0.04 ( ± 0.05) / 0.02 ( ± 0.01) 5225.5 ( ± 172.6) 13.4 ( ± 20.1) / 11.8 ( ± 14.6) 2.10 ( ± 0.98) 5226.8 ( ± 174.0) 1.0 ( ± 0.3) 139.5 ( ± 95.9) 98.79 ( ± 0.11) / 98.79 ( ± 0.11) 69.9 ( ± 5.1) —

800 0.01 ( ± 0.01) / 0.01 ( ± 0.01) 10256.8 ( ± 225.0) 30.7 ( ± 43.0) / 31.3 ( ± 35.4) 2.05 ( ± 0.96) 10256.8 ( ± 225.0) 1.0 ( ± 0.1) 116.5 ( ± 26.1) 99.37 ( ± 0.04) / 99.37 ( ± 0.04) 74.0 ( ± 6.4) —

10 0 0 0.05 ( ± 0.07) / 0.03 ( ± 0.03) 12883.5 ( ± 285.2) 35.8 ( ± 41.2) / 49.2 ( ± 59.1) 1.90 ( ± 0.96) 12883.5 ( ± 285.2) 1.1 ( ± 0.0) — 99.49 ( ± 0.04) / 99.49 ( ± 0.04) 74.2 ( ± 5.7) —

Table 5 

Computational results for MC-2 problem on MC-2-2K dataset. 

(MIP-MC-2) (BNP-MC-2) Relative-Order MIP Hanzálek et al. (2016) 

n tasks gap [%] MT/ST root lb [–] t [s] MT/ST gap [%] ST root lb [–] gen [kcols] t [s] ST gap [%] MT/ST root lb [–] t [s] MT/ST 

10 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 214.3 ( ± 85.0) < 0.1 / < 0.1 0.00 ( ± 0.00) 217.8 ( ± 84.2) < 0.1 0.2 ( ± 0.0) 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 99.5 ( ± 36.0) 0.3 ( ± 0.4) / 1.0 ( ± 1.4) 

15 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 329.2 ( ± 89.7) < 0.1 / < 0.1 0.00 ( ± 0.00) 333.3 ( ± 87.7) < 0.1 0.2 ( ± 0.0) 12.44 ( ± 5.88) / 12.20 ( ± 6.83) 126.0 ( ± 19.6) 22.7 ( ± 56.1) / 15.5 ( ± 28.3) 

20 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 451.4 ( ± 125.5) < 0.1 / < 0.1 0.00 ( ± 0.00) 454.0 ( ± 124.3) < 0.1 0.2 ( ± 0.1) 23.06 ( ± 8.44) / 22.49 ( ± 11.01) 130.8 ( ± 9.8) 65.1 ( ± 58.1) / 199.2 ( ± 66.5) 

40 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 858.7 ( ± 168.5) < 0.1 / < 0.1 0.00 ( ± 0.00) 866.5 ( ± 167.0) < 0.1 0.3 ( ± 0.1) 46.40 ( ± 11.87) / 48.95 ( ± 10.70) 132.1 ( ± 10.9) —

50 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 10 0 0.4 ( ± 154.2) < 0.1 / < 0.1 0.00 ( ± 0.00) 1003.1 ( ± 152.9) 0.1 ( ± 0.0) 0.4 ( ± 0.1) 56.00 ( ± 7.38) / 59.24 ( ± 7.27) 134.1 ( ± 2.5) —

100 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 2020.8 ( ± 277.0) < 0.1 / < 0.1 0.00 ( ± 0.00) 2022.5 ( ± 275.8) 0.1 ( ± 0.0) 0.7 ( ± 0.2) 83.23 ( ± 3.15) / 84.23 ( ± 3.02) 135.2 ( ± 1.7) —

200 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 3970.7 ( ± 399.3) 0.1 ( ± 0.0) / 0.1 ( ± 0.1) 0.00 ( ± 0.00) 3970.7 ( ± 399.3) 0.2 ( ± 0.0) 2.2 ( ± 0.6) 93.77 ( ± 0.54) / 95.93 ( ± 0.56) 135.8 ( ± 0.9) —

400 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 7964.0 ( ± 630.9) 0.2 ( ± 0.1) / 0.3 ( ± 0.2) 0.00 ( ± 0.00) 7964.0 ( ± 630.9) 0.4 ( ± 0.0) 12.4 ( ± 2.1) 98.01 ( ± 0.13) / 98.01 ( ± 0.13) 136.0 ( ± 0.0) —

800 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 16290.2 ( ± 850.3) 0.7 ( ± 0.3) / 0.9 ( ± 1.0) 0.00 ( ± 0.00) 16290.2 ( ± 850.3) 0.7 ( ± 0.0) 107.2 ( ± 14.8) 99.02 ( ± 0.05) / 99.02 ( ± 0.05) 136.0 ( ± 0.0) —

10 0 0 0.00 ( ± 0.00) / 0.00 ( ± 0.00) 19705.5 ( ± 771.3) 0.9 ( ± 0.8) / 1.3 ( ± 1.0) 0.00 ( ± 0.00) 19705.5 ( ± 771.3) 0.9 ( ± 0.0) 204.2 ( ± 31.4) 99.20 ( ± 0.02) / 99.20 ( ± 0.02) 136.0 ( ± 0.0) —
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Fig. 7. Median of the total number of columns generated for instances of MC-2. 
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We can see that the smaller the size of P is, the faster the in-

stances are solved. This pattern is also spotted in results for both

MC-2-LOP and MC-2-2K datasets, where the instances of the same

size n are solved by (MIP-MC-2) about 10 times faster in compar-

ison to the results for the MC-2-HIP dataset. Interestingly, e.g., for

n = 400 tasks, even though the total number of instances unsolved

to the optimality is larger in the ST mode than in the MT mode,

the average gap for the former is smaller. 

The relative-order MIP proposed in Hanzálek et al. (2016) par-

ticularly struggles with the MC-2-2K dataset, solving all instances

only with n = 10 tasks, despite having a relatively small P . In com-

parison to Hanzálek et al. (2016) , relative-order MIP can solve the

instances with up to n ≈ 15 tasks, whereas our proposed methods

scale up to n = 10 0 0 tasks. Moreover, Relative-Order MIP ( Hanzálek

et al., 2016 ) does not gain any significant advantage for instances

where | P | < n L . Furthermore, lower bounds in the root node ob-

tained by the relative-order method of Hanzálek et al. (2016) are

weaker than those in cases of (MIP-MC-2) and (BNP-MC-2) . 

The median of the total number of columns generated by (BNP-

MC-2) needed to prove the optimality of an integer solution for an

instance is depicted in Fig. 7 . The figure shows that the number

of generated columns needed to prove optimality is roughly linear

in the number of tasks. The smallest number of columns gener-

ated is required in MC-2-2K dataset. The second smallest number

of generated columns is observed in MC-2-LOP dataset, producing,

on average, approximately twice as many columns. The most diffi-

cult dataset to solve is found to be MC-2-HIP in terms of both the

number of columns generated and computational time. One can

notice a spike in Fig. 7 for the batch n = 100 , where one instance

took more than 7 kilocolumns to solve. We see that the cardinality

of P influences the mean and variance of the number of columns

generated. 

For a better assessment, where the hotspots of our implemen-

tation of (BNP-MC-2) are, we measure the time spent in solving

the master problem and pricing problem separately. We find out

that over 95% of the total computational time is spent on the pric-

ing problem. Hence, the algorithm can be accelerated if an efficient

vectorized implementation of the algorithm for the pricing prob-

lem is used. 

5.3. Computational time for the MC-3 problem 

We work with two datasets for MC-3 problem, denoted as MC-

3-HIP and MC-3-2K . Each of them contains batches of instances

with a different number of tasks n . For each size n , the batch has

40 instances. In both datasets, the ratio between the number of

tasks with different criticalities is n D /n H = n H /n L ≈ 0 . 75 for each

instance. The datasets differ in the distribution of processing times.

For MC-3-HIP dataset, the processing times are given such that for

every two consecutive criticality levels, the ratios of the means of

their prolongation is approximately 1.5 (i.e., the region of hardness

displayed in Fig. 6 b). In dataset MC-3-2K , the processing times and

their prolongations on each level are given as 2 k , k ∈ [0, 7] to mimic
he problems of practical interests inspired by packet scheduling,

imilarly to MC-2-2K . 

In dataset MC-3-HIP , the algorithm (BNP-MC-3) can optimally

olve nearly all instances up to the size n = 100 within the time

imit. It runs out of time only in a single case for sizes n = 50

nd n = 100 . However, for the instances where the optimality is

ot proven, the optimality gap, on average, is only 0.42%. Further-

ore, the number of generated columns is about the same as that

bserved in the dataset MC-2-HIP , showing that the scalability is

lso preserved for problems with more criticality levels. Tables 6

nd 7 show that scaling capabilities of Hanzálek et al. (2016) ap-

roach are the same regardless of the number of criticality levels,

hus being able to solve instances about n ≈ 15–20 tasks. Similar

o that in Section 5.2 , (BNP-MC-3) can solve instances with almost

wice the number of tasks than those in Hanzálek et al. (2016) . 

.4. Discussion 

For problem MC-2, both methods (MIP-MC-2) and (BNP-

C-2) proposed in this paper outperform Relative-Order MIP

 Hanzálek et al., 2016 ). Under the used testing settings, the (MIP-

C-2) average computation time is faster than (BNP-MC-2) com-

utation time, except for a few cases in batch n = 100 of the MC-2-

IP dataset and n = 200 in the MC-2-LOP dataset, where (BNP-MC-

) has closed all instances. It would be possible to further improve

he performance of (BNP-MC-2) , e.g., by solving pricing problems

n parallel since they are independent. However, this is beyond the

cope of this paper. 

For some use-cases, using model (MIP-MC-2) might pose two

isadvantages. One of them is that its performance depends on

 commercial solver, which is not an affordable option for some

pplications. On the other hand, (BNP-MC-2) needs only an LP

olver for solving the master problem, which is the task where

on-commercial solvers perform better than those in MIP. More-

ver, only a small part of the computational time is spent on the

aster problem. Most of the time is spent on the pricing problem,

hich is solved by a dynamic programming algorithm without any

hird-party software package. 

Moreover, (BNP-MC-2) gains advantages in some special cases

f the problem due to its pseudopolynomially solvable pricing

roblem. For example, if the values of processing times are re-

tricted, then the pricing problem becomes solvable in polyno-

ial time. Another disadvantage of (MIP-MC-2) is its memory

omplexity. It uses O(n L n H ) variables, and therefore, 	(n 2 
L 
n H )

emory space (i.e., the size of the constraint matrix), whereas

BNP-MC-2) is observed in Fig. 7 to use O(n L ) variables, which can

e further reduced (e.g., by removing old columns from the sim-

lex tableau). Finally, (BNP-MC-2) is further generalized for more

riticality levels. 

For MC-3 problem, (BNP-MC-3) outperforms Relative-Order MIP

 Hanzálek et al., 2016 ). The dataset MC-3-2K turns out to be eas-

er than MC-3-HIP , in terms of the number of columns generated,

omputational time, and the number of instances solved. However,

BNP-MC-3) struggles to prove the optimality for a single instance

n a batch with n = 50 , causing a noticeable spike in the number

f columns generated. On the other hand, it solves all instances in

atches n ∈ {10 0, 20 0, 40 0}. Note that (BNP-MC-3) achieves smaller

omputational times than (BNP-MC-2) for the solved instances in

atch n = 10 0 0 on average. This is because while pricing prob-

ems in the case of (BNP-MC-3) are being solved as an MIP, (BNP-

C-2) implementation uses a dynamical programming algorithm

hat has pseudopolynomial time complexity in the total sum of all

rocessing times of tasks. Hence, even though the pricing prob-

em in (BNP-MC-2) is in some sense easier to solve (solvable in

seudopolynomial time) than the pricing problem in (BNP-MC-3)

strongly N P -hard), the average case computational time for the
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Table 6 

Computational results for MC-3 problem on MC-3-HIP dataset. 

(BNP-MC-3) Relative-Order MIP ( Hanzálek et al., 2016 ) 

n tasks gap [%] MT root lb [–] gen [kcols] t [s] MT gap [%] MT root lb [–] t [s] MT 

10 0.00 ( ± 0.00) 191.8 ( ± 22.4) < 0.1 0.2 ( ± 0.0) 0.00 ( ± 0.00) 71.5 ( ± 9.2) < 0.1 

15 0.00 ( ± 0.00) 312.5 ( ± 27.8) < 0.1 0.3 ( ± 0.1) 0.00 ( ± 0.00) 72.4 ( ± 8.9) 0.6 ( ± 0.2) 

20 0.00 ( ± 0.00) 379.1 ( ± 30.2) < 0.1 0.3 ( ± 0.2) 0.00 ( ± 0.00) 73.3 ( ± 7.1) 8.1 ( ± 22.7) 

40 0.00 ( ± 0.00) 720.6 ( ± 46.4) 0.1 ( ± 0.0) 1.8 ( ± 1.4) 44.40 ( ± 8.98) 81.5 ( ± 7.8) –

50 0.06 ( ± 0.00) 876.9 ( ± 45.0) 0.2 ( ± 0.7) 3.4 ( ± 2.7) 61.11 ( ± 9.22) 85.1 ( ± 6.3) –

100 0.02 ( ± 0.00) 1692.0 ( ± 72.1) 0.2 ( ± 0.3) 18.9 ( ± 15.3) 88.39 ( ± 1.20) 88.5 ( ± 5.3) –

200 0.17 ( ± 0.22) 3364.7 ( ± 100.3) 0.3 ( ± 0.3) 110.4 ( ± 77.6) 96.20 ( ± 0.66) 92.8 ( ± 6.3) –

400 0.63 ( ± 0.53) 6712.4 ( ± 146.4) 0.8 ( ± 0.7) 273.0 ( ± 185.2) 98.72 ( ± 0.07) 96.0 ( ± 4.8) –

800 0.81 ( ± 0.55) 13139.7 ( ± 206.2) 1.0 ( ± 0.1) – 99.34 ( ± 0.03) 98.6 ( ± 3.8) –

10 0 0 0.82 ( ± 0.52) 16515.2 ( ± 250.9) 1.1 ( ± 0.1) – 99.47 ( ± 0.02) 100.0 ( ± 4.8) –

Table 7 

Computational results for MC-3 problem on MC-3-2K dataset. 

(BNP-MC-3) Relative-Order MIP Hanzálek et al. (2016) 

n tasks gap [%] MT root lb [–] gen [kcols] t [s] MT gap [%] MT root lb [–] t [s] MT 

10 0.00 ( ± 0.00) 229.2 ( ± 80.9) < 0.1 0.2 ( ± 0.1) 0.00 ( ± 0.00) 118.0 ( ± 30.7) 0.4 ( ± 1.3) 

15 0.00 ( ± 0.00) 289.6 ( ± 90.4) < 0.1 0.6 ( ± 1.0) 8.44 ( ± 0.00) 119.2 ( ± 28.4) 9.7 ( ± 21.8) 

20 0.50 ( ± 0.00) 408.9 ( ± 86.1) 0.1 ( ± 0.8) 0.5 ( ± 1.0) 19.89 ( ± 9.26) 130.9 ( ± 13.6) 50.1 ( ± 70.1) 

40 5.20 ( ± 5.12) 728.6 ( ± 156.8) 0.2 ( ± 0.6) 3.3 ( ± 8.9) 38.99 ( ± 11.16) 138.0 ( ± 4.8) –

50 9.36 ( ± 0.00) 867.3 ( ± 164.3) 0.4 ( ± 2.2) 4.6 ( ± 16.1) 50.87 ( ± 9.95) 137.3 ( ± 3.2) –

100 0.00 ( ± 0.00) 1786.8 ( ± 237.6) < 0.1 0.3 ( ± 0.1) 81.79 ( ± 2.92) 139.3 ( ± 2.6) –

200 0.00 ( ± 0.00) 3372.7 ( ± 287.2) 0.1 ( ± 0.0) 0.9 ( ± 0.5) 92.68 ( ± 0.71) 141.8 ( ± 2.7) –

400 0.00 ( ± 0.00) 6769.8 ( ± 467.8) 0.1 ( ± 0.0) 4.3 ( ± 1.7) 98.11 ( ± 0.12) 142.9 ( ± 2.0) –

800 3.33 ( ± 0.75) 13199.3 ( ± 661.7) 0.3 ( ± 0.4) 29.1 ( ± 21.6) 99.03 ( ± 0.05) 143.9 ( ± 0.6) –

10 0 0 3.60 ( ± 0.52) 16517.5 ( ± 941.5) 0.6 ( ± 0.5) 81.4 ( ± 12.5) 99.23 ( ± 0.04) 143.9 ( ± 0.6) –
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ormer tends to be lower with the tested lengths of processing of

asks. 

It would be possible to improve (BNP-MC-2) and (BNP-MC-3)

lgorithms with other techniques, such as generating more

olumns at once, Lagrangian relaxation, primal heuristics, sta-

ilization, and suppression of the tailing-off effect ( Lübbecke &

esrosiers, 2005 ). Hence, they still provide room for a perfor-

ance improvement, but these are beyond the scope of this

aper. 

. Conclusion 

In this paper, we have studied the problem of scheduling F-

haped tasks to minimize the makespan of the schedule. This prob-

em has applications such as those in real-life mixed-criticality sys-

ems, where high-criticality activities coexist with less-criticality

nes on a shared resource. The processing time for such activi-

ies is uncertain. To overcome the uncertainty, an F-shape model-

ng the activity contains a set of alternative processing times. The

chedules contain exponentially many alternative schedules, where

he performed alternative is selected based on the observed ex-

cution scenario. The schedule remains static and its behavior is

redictable. However, the synthesis of such flexible schedules is

omputationally expensive; hence, we proposed efficient exact al-

orithms to solve the problem. 

We showed that optimal schedules are equivalent to trees con-

isting of optimal subtrees, and established the relation between

roblems with � and � + 1 criticality levels. We suggested an ap-

roximation algorithm, a block MIP model, and a branch-and-price

ecomposition algorithm with a pseudopolynomially solvable pric-

ng problem for a problem with two criticality levels, for which

e proposed a dynamic programming algorithm. Furthermore, we

eneralized the proposed decomposition to obtain the exact algo-

ithm for a problem with three criticality levels. The experimental

esults showed an excellent scaling ability of our approach on hard

roblem instances. We found that it takes only a few hundreds of
enerated columns, on average, in our decomposition algorithms to

olve instances with up to 10 0 0 tasks to the optimality. 

A possible extension of the proposed model and algorithms

ight consider including a penalty for each covered task in the

chedule or optimization of a bi-criteria objective function that

ould find a trade-off between the schedule length and the num-

er of covered tasks in such a schedule. Both extensions can be

eveloped as a generalization of the proposed methods, as they

ecide which tasks shall be covered by others during the solution. 
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ppendix A 

actor 3/2 for a special case of MC-2 

For the problem with two criticality levels, i.e., MC-2, where it

olds that the longest task in L is not longer than the difference

etween the second and the first level of any task in H , i.e., 

ax 
T j ∈ L 

p (1) 
j 

≤ min 

T i ∈ H 

(
p (2) 

i 
− p (1) 

i 

)
, (SLT) 

e can obtain factor 3/2 for (APX-MC-2) algorithm. Such instances

rise from the practical problems where the original distribution

unctions describing processing time uncertainty have long tails,

hich is the realistic case. Note that such condition does not rule

ut solutions where a task in L overlaps the second criticality level

f some task in H . 

roposition 5. (APX-MC-2) is a 3/2 -approximation algorithm for the

roblem MC-2 satisfying condition (SLT) . 

https://doi.org/10.13039/501100004578
https://doi.org/10.13039/501100008530
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Proof. Let lb = 

∑ 

T i ∈ H p 
(1) 
i 

+ max 

{ ∑ 

T i ∈ H 
(

p (2) 
i 

− p (1) 
i 

)
, 
∑ 

T j ∈ L p 
(1) 
j 

}
be a lower bound on the optimal makespan. Furthermore, let us

denote the makespan of the schedule produced by (APX-MC-2) for

instance I MC as APX (I MC ) . Without loss of generality, we may as-

sume that n L > n H ; otherwise, the algorithm returns an optimal

schedule due to assumption (SLT) . We say that a task T j ∈ L is as-

signed if inserting it into coverage set cov( T i ) of the chosen T i ∈ H

does not decrease the available gap below zero (i.e., W i < 0). Oth-

erwise, we say T j overlaps . We denote by L the set of all tasks that

overlap and the processing time of the longest overlapping task by

p = max 
T j ∈ L p 

(1) 
j 

. 

First, we note that (APX-MC-2) assigns at least n H largest tasks

in L . Indeed, let T j ∈ L be the first task of L that overlaps at the k -th

step of the algorithm. Suppose that k ≤ n H . Since T j overlaps a task

with the largest available gap T i � = arg max T i ∈ H W i , then T j overlaps

any other task T i ∈ H during k -th iteration. However, since k ≤ n H ,

then there is either (i) a task T i ′ ∈ H with the currently available

gap W i ′ = p (2) 
i ′ − p (1) 

i ′ , i.e., with no assigned tasks so far or (ii) every

task T i ∈ H has exactly one task in its coverage set. In the case (i),

by the assumption (SLT) we have that W i ′ ≥ p (1) 
j 

, which contradicts

the choice of T i � . In the case (ii), T i � violates assumption (SLT) since

p (2) 
i � 

− p (1) 
i � 

< p (1) 
j 

. Therefore, k > n H . We proceed by splitting the

proof into two cases. 

Case 1: 
∑ 

T i ∈ H 
(

p (2) 
i 

− p (1) 
i 

)
≤ ∑ 

T j ∈ L p 
(1) 
j 

. 

We start by bounding the cardinality of L . To do so, suppose

that | L | ≥ n H . Since all tasks in L have the property that their as-

signment into any task T i ∈ H would lead to W i < 0, we could put at

least one task in L to the coverage set of every task in H . Hence, it

would hold that ∀ T i ∈ H : W i < 0, which implies an optimal solution.

Therefore, suppose that | L | ≤ n H − 1 , i.e., we have at most n H − 1

overlapping tasks. Then we can write 

APX (I MC ) 

OPT (I MC ) 
≤

∑ 

T i ∈ H p 
(2) 
i 

+ 

∑ 

T j ∈ L p 
(1) 
j 

lb 

= 

∑ 

T i ∈ H p 
(2) 
i 

+ 

∑ 

T j ∈ L p 
(1) 
j ∑ 

T i ∈ H p 
(1) 
i 

+ 

∑ 

T j ∈ L p 
(1) 
j 

≤ 1 + 

∑ 

T j ∈ L p 
(1) 
j ∑ 

T j ∈ L p 
(1) 
j 

≤

≤ 1 + 

∑ 

T j ∈ L p 
(1) 
j 

n H · p + 

∑ 

T j ∈ L p 
(1) 
j 

≤ 1 + 

∑ 

T j ∈ L p 
(1) 
j 

2 · ∑ 

T j ∈ L p 
(1) 
j 

≤ 3 

2 

, 

where the first inequality follows from the fact that the expression

in the numerator is an upper bound on the APX (I MC ) , the equality

from the definition of lb , the second inequality follows from Case

1 assumption, the third from the fact that at least n H tasks in L of

length at least p are assigned and the fourth inequality from the

fact that n H · p ≥ (n H − 1) · p ≥ ∑ 

T j ∈ L p 
(1) 
j 

. 

Case 2: 
∑ 

T i ∈ H 
(

p (2) 
i 

− p (1) 
i 

)
> 

∑ 

T j ∈ L p 
(1) 
j 

. 

Similarly, as in Case 1, we may assume that at most n H − 1 tasks

from L are overlapping, i.e., | L | ≤ n H − 1 . If this would not be the

case, we would have at least n H tasks from L with the property

that assigning any of them to arbitrary T i ∈ H would lead to W i < 0,

which contradicts Case 2 assumption. Then, similarly as in Case 

APX (I MC ) 

OPT (I MC ) 
≤

∑ 

T i ∈ H p 
(2) 
i 

+ 

∑ 

T j ∈ L p 
(1) 
j ∑ 

T i ∈ H p 
(2) 
i 

≤ 1 + 

∑ 

T j ∈ L p 
(1) 
j ∑ 

T i ∈ H p 
(2) 
i 

≤ 1 + 

∑ 

T j ∈ L p 
(1) 
j ∑ 

T j ∈ L p 
(1) 
j 

≤ 3 

2 

. 

where the third inequality follows from Case 2 assumption and the
fourth inequality from the same arguments as in Case 1. �
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