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a b s t r a c t 

We study the design of resilient single-commodity flow networks that can remain robust against multiple 

concurrent edge failures. We model these failures as binary random variables, allowing us to formally 

formulate the network design problem as a two-stage robust optimization problem. With an objective of 

minimizing the overall cost of building and operating the network, the capacities of the edges are decided 

in the first stage, while the optimal flows are determined in the second stage once the uncertainty has 

been realized. We first examine the standard affine decision rules approach and show that it is not a 

viable approach when two or more edges are allowed to fail at the same time. We then propose a column 

and constraint generation algorithm that we tailor to this application. Since the problem does not satisfy 

the relatively complete recourse assumption, we employ an oracle with two subproblems : one to determine 

edge failure scenarios that render the required demand satisfaction infeasible, and if no such scenario 

exists, a second one to determine the flow rerouting plan of highest cost. Our column and constraint 

generation algorithm is applied to networks adapted from the Survivable Network Design Library. For 

each instance, we determine sequences of fully adaptive, robust optimal solutions for various levels of 

resiliency, identifying also the maximum number of concurrent edge failures that can be sustained by 

these networks. Finally, we demonstrate how our algorithm can be applied to a defender versus attacker 

context, via the use of a decision-dependent uncertainty set. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Networks are prevalent in a vast variety of contexts, and it

comes as no surprise that their optimal design has arisen as a

prime research question that has been contemplated extensively in

the open literature. Whether it be a supply chain ( Snyder, Scaparra,

Daskin, & Church, 2006 ), telecommunications ( Orlowski, Wessäly,

Pióro, & Tomaszewski, 2010 ), or transportation ( Alderson, Brown,

& Carlyle, 2015; Zhang, Lawphongpanich, & Yin, 2009 ) application,

to name but a few, obtaining optimal designs for such networks

is a very important task. Network design problems come in many

flavors, such as problems involving a single versus multiple com-

modities, problems in which the demands are to be met exactly

versus allowing for demand shortfall and pursuing some sort of

penalization scheme, as well as problems in which the network is

to be designed from scratch versus the case where a pre-existing
∗ Corresponding author. 
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etwork is to be expanded. The nominal case for a network design

roblem is often straightforward: decisions must be made on the

apacities of and/or flows through each edge of the network such

hat demand is satisfied at each node. Designing nominal networks

n all of the above settings can typically be achieved via solving

ome monolithic, often mixed-integer linear, optimization formula-

ion that utilizes flow balance constraints at its core. Mixed-integer

inear optimization has also been shown to be an effective tool to

ontrol the levels of network connectivity, spread and assortativity

y explicitly imposing constraints on collective properties of the

etwork ( Gounaris, Rajendran, Kevrekidis, & Floudas, 2011; 2016 ). 

The problem of designing networks, however, becomes signifi-

antly harder to tackle when uncertainty comes into play. Such un-

ertainty may appear in a variety of forms, with the most common

nes being uncertainty in the costs of the network or the demand

t each node. Bertsimas and Sim (2003) addressed cost uncer-

ainty through the use of robust optimization ( Ben-Tal, El Ghaoui, &

emirovski, 2009 ) with a uncertainty set of polyhedral type. The

opular uncertainty sets of Bertsimas and Sim (2004) have since

een commonly applied to network design problems as well, as

https://doi.org/10.1016/j.ejor.2019.06.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.06.021&domain=pdf
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een for example in the handling of demand uncertainty in virtual

rivate networks by Altın, Amaldi, Belotti, and Pınar (2007) . Uncer-

ain costs in the form of travel times as well as demand uncertain-

ies were also addressed using conic uncertainty sets by Ordóñez

nd Zhao (2007) in a capacity expansion version of the robust net-

ork flow problem. More recently, Cacchiani, Jünger, Liers, Lodi,

nd Schmidt (2016) and Gounaris and Schmidt (2019) considered

he case when uncertain demand may be represented through a fi-

ite number of scenarios or using Hose uncertainty sets, and Poss

nd Raack (2013) considered affine decision rules for handling un-

ertain demand. Many additional studies have elucidated the use

f robust optimization in the context of network design problems

nder cost and/or demand uncertainty ( Atamtürk & Zhang, 2007;

ee, Lee, & Park, 2013; Álvarez Miranda, Cacchiani, Lodi, Parriani,

 Schmidt, 2014; Mudchanatongsuk, Ordóñez, & Liu, 2008 ), and

ave demonstrated applications of such problems in a wide range

f fields. For instance, Gong, Garcia, and You (2016) and Gong and

ou (2017) formulate problems of selecting optimal biomass con-

ersion pathways, addressing price, supply and demand uncertain-

ies in their networks using a column-and-constraint generation

lgorithm ( Zeng & Zhao, 2013 ). It is clear that cost and demand

ncertainty is an important application area that has to-date at-

racted a significant amount of research effort. 

This manuscript will focus on network design under another

minous form of uncertainty, namely, the possibility for failure of

dges in the network topology. The failure of an edge may prevent

ome or all flow along that edge, potentially cutting off nodes that

upply or require commodities and eliminating any feasible way to

atisfy the overall commodity supply and demand requirements of

he network. The design of networks that are robust against such

ncertainty is often referred to as survivable , or resilient , network

esign, and can be addressed in a variety of ways. An early ap-

roach by Aneja, Chandrasekaran, and Nair (2001) considered the

ase where the network contains one source and one sink that

ust be connected, and assumed that flow may not be rerouted

fter the failure. In this case, the goal was to maximize the remain-

ng flow in the network given a single edge failure. Tomaszewski,

ióro, and Żotkiewicz (2010) described a “flow-restoration” prob-

em in which extra capacity is reserved along each edge such

hat, for every edge failure scenario, there exists enough capac-

ty for flow to be redirected along installed edges that did not

ail. The authors note that this problem is NP-hard for cases with

ultiple simultaneous edge failures, and argue that path genera-

ion techniques could be used to tackle it efficiently. Koster and

utschka (2011) also considered demand uncertainty in a single

ource and sink setting, achieving survivability under an edge fail-

re by limiting the percentage of flow along each path, which

orces flow diversification over disjoint paths. Many robust and

daptive maximum flow or minimum cut formulations are pro-

ided by Bertsimas, Nasrabadi, and Stiller (2013) when there exists

ne source and one sink, while Boginski, Commander, and Turko

2009) consider a conditional value-at-risk formulation for the net-

ork flow problem with an objective of minimizing cost when

ach edge has a probability of failure. 

The fact that the network designs are chosen prior to the edges

ailing leads naturally to min-max-min formulations, which corre-

pond nicely to two-stage robust optimization problems, which we

lso contemplate later in this manuscript. In the context of sup-

ly chains, Snyder et al. (2006) provided many formulations for

etwork design, focusing primarily on the cases when facilities or

ources may fail. This is similar to the problem of edge failures in

hat, if an entire node fails, then essentially each edge connected

o that node has failed. Such failure of a node would not be ac-

eptable in the application of this manuscript, which mandates

hat demands of all nodes must be met under all failure scenarios .

 column and constraint generation algorithm for robust network
esign was proposed by Simchi-Levi, Wang, and Wei (2017) for

ases with uncertain demands and uncertain capacities, modeled

hrough continuous polyhedral uncertainty sets. The effectiveness

f the algorithm was demonstrated through two case studies in-

olving uncertain demands in the context a robust lot-sizing prob-

em and a production postponement problem. Finally, Chen and

hillips (2013) studied the design of multi-commodity networks

hat are resilient to multiple edge failures. In their setting, each

ommodity has one source and sink, while pre-determined capac-

ty values must be applied for each edge that is chosen to be built.

he objective involves the minimization of investment costs, and

ptimal network designs are found using a Benders’ decomposition

pproach and a column-and-cut algorithm. 

Survivability against edge failures has also been approached

hrough the protection of edges before uncertainty is realized,

iewing the problem via an attacker-defender lens. Yuan et al.

2016a) utilized two-stage robust optimization to decide which

dges in a power grid network should be hardened to protect

gainst hurricane damage through a min-max-min model that will

inimize the load shedding due to failed edges. Allowing for such

oad shedding imbues relatively complete recourse to the prob-

em, which can then be addressed with the column-and-constraint

eneration algorithm proposed by Zeng and Zhao (2013) . Alderson

t al. (2015) formulated defender-attacker-defender models to as-

ess the operational resilience of transportation network infras-

ructure. In this approach, edges may be protected and new edges

ay be built at pre-set capacities up to a given defense budget,

n order to minimize the total cost of meeting the demand of

 single-commodity in a network. Their models allow for penal-

zed demand shortfall in their objective function due to edge fail-

res. Finally, Lou and Zhang (2011) considered the protection of

ransportation networks from attacks via a min-max-min formula-

ion for which a defender may either minimize the total amount

f unmet demand or maximize the total amount of flow through

he network. In this problem, each edge has a designated capac-

ty which may be decreased or eliminated due to an attacker’s

ecision, given that the edge is not protected by the defender.

he problem is solved via a mixture of a cutting-plane and active

et algorithm, which is common in discrete network design prob-

ems in the transportation sector in which discrete modifications,

uch as added lanes, are made to existing infrastructures ( Wang &

ardalos, 2017; Zhang et al., 2009 ). 

Another approach that one could potentially follow in a two-

tage robust optimization context is adjustable robust optimization.

his is a popular technique for addressing uncertainty through the

xplicit definition of second-stage recourse decisions as functions

f the uncertain parameters, often in affine relationships ( Ben-Tal,

oryashko, Guslitzer, & Nemirovski, 2003 ). The use of affine de-

ision rules has been shown to be effective in a variety of ap-

lications, from process scheduling ( Lappas & Gounaris, 2016 ) to

etwork capacity assignment with uncertain demands ( Babonneau,

ial, Klopfenstein, & Ouorou, 2013 ) to unit commitment problems

 Álvaro Lorca, Sun, Litvinov, & Zheng, 2016 ). Although there have

een cases where affine decision rules yield optimal, fully adaptive

olutions ( Bertsimas, Iancu, & Parrilo, 2010; Gounaris, Wiesemann,

 Floudas, 2013 ), it should be highlighted that this is not always

uaranteed, warranting the use of an alternative solution frame-

ork such as the column and constraint generation employed in a

umber of the above studies. 

In this paper, we explore the suitability and effectiveness of ad-

ustable robust optimization with affine decision rules as well as

olumn and constraint generation in solving a two-stage robust

ptimization formulation of the single-commodity network design

roblem under the possibility of multiple concurrent edge failures,

hich we model as binary random variables, as we primarily fo-

us on situations when edges would only fail completely, such as
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1 If G is not connected, then every one of its components defines an independent 

problem that could be addressed separately. 
2 A negative demand represents the net amount of the commodity that the node 

must supply to the rest of the network. 
3 We remark that it is straightforward to include fixed investment costs in this 

formulation through the presence of a binary variable indicating whether a new 

edge is built or not, albeit at an increase in computational cost. For simplicity of 

exposition, this extension is not considered in this work, but the same column and 

constraint generation algorithm would still apply. 
4 Note that, in this single-commodity flow problem where c f e > 0 , it will never 

be the case at an optimal solution that both f f e and f b e are nonzero; hence, these 

two sets of constraints suffice to enforce the edge capacity restrictions. 
power lines shorting out due to fallen trees, network cables go-

ing offline, pipeline leakages warranting a complete shutdown due

to environmental zero tolerance policy, or railroad tracks being

blocked by obstacles, to name but a few examples. In our prob-

lem setting, a network must be either designed from scratch or ex-

panded through the choice of capacity and flow variables for each

edge. These decisions must be made such that the network re-

mains feasible (i.e., demands are satisfied at each node) for any re-

alization of an uncertainty set that allows up to k concurrent edge

failures. Consequently, we assume at first that a node cannot be cut

off completely by edge failures, as otherwise the problem would be

guaranteed to be robust infeasible, though we later demonstrate

how to lift this assumption in the context of a defender-attacker

setting. Once the capacities are chosen in a first stage, we allow

uncertainty to realize, and we choose the flows in a second stage

after the edge failures have occurred. 

The resulting two-stage robust optimization approach is a very

natural one for handling uncertainty of this nature. Rather than a

priori generating all (or the most important subset of) failure sce-

narios of a multiple edge network so as to, say, support a stochas-

tic optimization approach, one can simply identify all edge failures

that might be realized in the network and appropriately correlate

them in an intuitive uncertainty set. Then, as one tries to maintain

overall network feasibility, one is not concerned with any proba-

bilistic interpretation of edge failures, but simply cares to ensure a

working network in the worst case. Two-stage robust optimization

also naturally encapsulates the order of events, with design deci-

sions that happen initially followed by uncertainty realizations and

resulting flow decisions. 

The major contributions of this manuscript are outlined as fol-

lows. 

1. We formalize the design of networks that maintain their abil-

ity to meet demand requirements after any k concurrent edge

failures as a two-stage robust optimization problem considering

costs for both capacities and flows. 

2. We show that the popular affine decision rules approach is ex-

act when k = 1 , but inadequate to admit robust feasible solu-

tions when k > 1. 

3. We propose a tailored column and constraint generation algo-

rithm to solve our robust network design problem to guaran-

teed optimality; this algorithm does not require the common as-

sumption of relatively complete recourse. 

4. We conduct a comprehensive set of computational studies to

measure the numerical tractability of our column and con-

straint generation algorithm, elucidating in the process the

price of robustness required to insure network designs against

various numbers of concurrent edge failures. 

5. We utilize a decision-dependent uncertainty set and demon-

strate how our algorithm can be applied on a defender versus

attacker network design context. 

The remainder of this manuscript is structured as follows. The

two-stage robust network design problem is outlined in Section 2 ,

along with an analysis of the applicability and limitations of us-

ing the affine decision rules approach to address it. Section 3 then

presents the proposed column and constraint generation algorithm

that we develop to obtain fully adaptive solutions to the two-

stage problem. The computational efficiency is demonstrated in

Section 4 , and the problem is expanded to the defender-attacker

paradigm in Section 5 . We finally conclude in Section 6 . 

2. Problem definition 

The single-commodity network design problem considered in

this paper is concerned with maintaining the ability to meet the

demand at each node despite a certain number, k , of concurrent
dge failures. In our context, an edge failure completely removes

he ability for any flow to move along the edge. Given that edge

ailures may occur, the optimum network topology and edge ca-

acities should be such that flow may be rerouted along the re-

aining edges and meet the demands at every node. 

Let G = (V, E) be a network superstructure, which we assume

ithout loss of generality (w.l.o.g.) to be a connected graph. 1 Each

dge e ∈ E is defined with origin node o ( e ) ∈ V and destination node

 ( e ) ∈ V . Flow is allowed to travel in either direction along the edge,

ith f 
f 

e representing forward flow along the edge from node o ( e )

o node d ( e ), and f b e representing backward flow, from the destina-

ion node to the origin node, along the edge. The flows must be as-

igned to the edges such that the demands b ∈ R 

| V | are satisfied for

ach node i ∈ V . 2 We remark that, w.l.o.g., we require 
∑ 

i ∈ V b i = 0

or the instance to be well-defined, as well as max i ∈ V { b i } > 0 for

he instance to be non-trivial. 

Obviously, for flow to occur along an edge, the edge must have

ome capacity. Whereas pre-installed capacities p e may be avail-

ble on certain edges of the network, we always allow for new

apacities u e to be added on any edge. Given these definitions, a

eterministic single-commodity flow network design problem may

e modeled via the formulation below. 

min 

u, f b , f f ∈ R 

∑ 

e ∈ E 
c u e u e + 

∑ 

e ∈ E 
c f e 

(
f f e + f b e 

)
s.t. f f e ≤ u e + p e ∀ e ∈ E 

f b e ≤ u e + p e ∀ e ∈ E ∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
= b i ∀ i ∈ V 

u e , f 
b 
e , f 

f 
e ≥ 0 ∀ e ∈ E (1)

The objective function in Formulation (1) is to minimize the to-

al cost to build the network and operate it by sending flows along

ts edges. The parameters c u e represent the capacity-dependent in-

estment costs, 3 amortized over the lifetime of the network, while

arameters c 
f 
e represent the costs to flow along the edges. The first

nd second sets of constraints ensure that the flows along each

dge, either forward or backward, do not exceed the total capacity

nstalled on the edge, 4 while the third constraint set corresponds

o the standard flow balance constraints, which ensure that the

um of all flows into and out of each node equals the demand of

he node. 

Formulation (1) may be solved to provide an optimal solution

o the network design problem for normal, or nominal , operation

hen the totality of the network’s edges remain functional. How-

ver, at the nominal solution, any edge failure may prevent the

etwork from being able to satisfy all node demands. Therefore,

he possibility for edge failures should be incorporated into the

odel in order to gain a robust network design that would satisfy

ll edge failure scenarios at the minimum cost. To that end, given

andom binary variables ξ e to indicate whether edges e ∈ E fail, an

ncertainty set is defined to allow up to k edges in the network

o simultaneously be in a state of failure at any moment during
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etwork operation, as follows: 

:= 

⎧ ⎨ 

⎩ 

ξ ∈ { 0 , 1 } | E| : 

∑ 

e ∈ E 
ξe ≤ k ∑ 

e : d(e )= i 
ξe + 

∑ 

e : o(e )= i 
ξe ≤ D i − 1 ∀ i ∈ V T 

⎫ ⎬ 

⎭ 

, 

(2) 

here D i is the degree of a node i ∈ V , and V T ⊆V is the subset of

erminal nodes, i.e., nodes that have nonzero demands, and hence,

ust either receive or transmit some amount of flow at any feasi-

le solution. 

Consequently, the second constraint in the uncertainty set man-

ates that at least one edge connecting to a terminal node must be

llowed to remain in operation. Had this constraint not been incor-

orated in the uncertainty set, we would allow for scenarios where

ll edges incident to some terminal node become inoperable, mak-

ng the problem trivially robust infeasible for any k ≥ min i ∈ V T D i .

esides this “numerical” motivation for adding this constraint, we

emark that restricting the uncertainty set in this manner con-

orms well with many real-world operational contexts, where extra

are would be taken to ensure the last operating edge of a node

tays online any time all other edges connecting to that node are

own. If, however, one is dedicated to allowing the complete elim-

nation of a node’s connectivity to other nodes, one could add a

enalty term to the objective function associated with missed de-

and, through the incorporation of slack variables into the flow

alance constraint. In this paper, we choose to focus on maintain-

ng completely demand feasible networks, which also makes for

 more theoretically interesting two-stage robust optimization set-

ing by preventing relatively complete recourse. 

We also remark that, for certain cases where it is appropriate

o allow for partial edge failures, the latter could be modeled by

llowing random variables ξ ∈ [0, 1], rather than ξ being binary.

hereas this is a relaxation of the uncertainty set �, it actually

akes the problem easier to solve computationally, as it reduces

he (otherwise MILP) separation problem to a mere LP. 

Given the uncertainty set defined above, Formulation (3) may

e constructed for the robust network design problem. In this a

wo-stage robust optimization model, the decisions of what ca-

acities to install are taken in the first-stage minimization, while

he actual operating flows are considered in the second-stage min-

mization, after potential edge failures have occurred via the max-

mization over the uncertainty set �. Note how, if an edge fails,

e = 1 and the right-hand-sides of the two corresponding capacity

onstraints in the inner problem become zero, denying any flow in

hat edge. 

min 

u ∈ R 

∑ 

e ∈ E 
c u e u e + max 

ξ∈ �
min 

f∈ R 

∑ 

e ∈ E 
c f e 

(
f f e + f b e 

)
s.t. u e ≥ 0 ∀ e ∈ E s.t. f b e ≤ (1 − ξe ) ( u e + p e ) ∀ e ∈ E 

f f e ≤ (1 − ξe ) ( u e + p e ) ∀ e ∈ E ∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
= b i ∀ i ∈ V 

f b e , f 
f 

e ≥ 0 ∀ e ∈ E 

(3) 

.1. An affine decision rule approach and its limitations 

Solving a two-stage robust optimization problem like (3) , which

eatures continuous second-stage variables (the flows), may be ap-

roached in a variety of ways. Perhaps the most common approach

ertains to the use of affine decision rules, where one opts to en-

orce an affine relationship between the second-stage variables and

he observed realization of the uncertain random variables, in an
ffort to gain a possibly conservative, yet tractable, solution to the

roblem. 

In order to apply the affine decision rules approach in our ro-

ust network design problem, the flow variables f b e and f 
f 

e are re-

efined using new variables to represent the slopes ( f b 
e,l 

, f 
f 

e,l 
∀ e ∈

 , l ∈ E ) and intercepts ( f b0 
e , f 

f 0 
e ∀ e ∈ E) of the postulated affine re-

ationships: 

f b e ← f b0 
e + 

∑ 

l∈ E 
ξl f 

b 
e,l ∀ e ∈ E 

f f e ← f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
∀ e ∈ E. (4) 

After replacing the original flow variables with these expres-

ions, and after converting the inner maximization problem into a

emi-infinite form (introducing an epigraph variable τ in the pro-

ess to reformulate the second-stage minimization operator), we

cquire Formulation (5) . Using standard techniques, further manip-

lation of this formulation will yield a linear programming model

hat can be addressed directly via standard linear optimization

odes. The final model as well as some remarks on its derivation

re presented in Appendix A . Note that this derivation requires a

elaxation of the binary random variables to continuous ones, in

rder to allow for dualization of the inner problem; this is equiva-

ent to allowing partial edge failures, yet under integer values for k ,

his mathematical relaxation will not alter the optimal solutions. 

min 

u, f,τ∈ R 

∑ 

e ∈ E 
c u e u e + τ

s.t. 
∑ 

e ∈ E 
c f e 

( 

f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
+ f b0 

e + 

∑ 

l∈ E 
ξl f 

b 
e,l 

) 

≤ τ ∀ ξ ∈ �

f b0 
e + 

∑ 

l∈ E 
ξl f 

b 
e,l ≤ (1 − ξe ) ( u e + p e ) ∀ ξ ∈ �, ∀ e ∈ E 

f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
≤ (1 − ξe ) ( u e + p e ) ∀ ξ ∈ �, ∀ e ∈ E 

f b0 
e + 

∑ 

l∈ E 
ξl f 

b 
e,l ≥ 0 ∀ ξ ∈ �, ∀ e ∈ E 

f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
≥ 0 ∀ ξ ∈ �, ∀ e ∈ E 

∑ 

e : d(e )= i 

( 

f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
− f b0 

e −
∑ 

l∈ E 
ξl f 

b 
e,l 

) 

+ 

∑ 

e : o(e )= i 

×
( 

f b0 
e + 

∑ 

l∈ E 
ξl f 

b 
e,l − f f 0 

e −
∑ 

l∈ E 
ξl f 

f 

e,l 

) 

= b i ∀ ξ ∈ �, ∀ i ∈ V 

u e ≥ 0 ∀ e ∈ E (5) 

Despite the widespread use of affine decision rules for a variety

f problems featuring continuous recourse variables, it is worth ex-

mining the suitability of the affine relationship assumption in the

ontext of network design problems with multiple concurrent edge

ailures. In fact, the following propositions show that, while affine

ecision rules provide exact optimal solutions without any adap-

ivity gap when at most one edge failure occurs, such rules are not

ppropriate when two or more edges are allowed to fail concur-

ently. 

roposition 1. For the robust network design problem defined in For-

ulation (3) under the uncertainty set defined in (2) with k ≤ 1, using

ffine decision rules of the form (4) will yield the optimum solution,

f one exists. 

roof. The case k = 0 is trivial, since the uncertainty set admits

nly a single scenario, namely the nominal realization ξe = 0 for all
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T  

w  
e ∈ E . These parameter values can thus be imposed on the problem,

simplifying it to a formulation that is equivalent to (1) under vari-

able transformations f b ← f b 0 and f f ← f f 0 . Solving this formulation

will obviously yield the same result as the deterministic problem,

which qualifies as the robust problem in this case. 

In the case k = 1 , the uncertainty set admits the above nomi-

nal realization, as well as additional realizations corresponding to

individual edge failure scenarios. Let E 1 ⊆E be the subset of edges

that are allowed to fail (alone) in some scenario admitted by the

applicable set. W.l.o.g., let us also assume that | E 1 | 	 = 0, since other-

wise the instance is equivalent to the trivial k = 0 case addressed

above. 

The only scenario that involves the failure of some edge e ′ ∈ E 1 ,

namely the scenario where ξe ′ = 1 and ξl = 0 for all l ∈ E �{ e ′ }, di-

rectly impacts the upper bounds of the corresponding edge’s flow

variables. More specifically, any robust feasible solution must sat-

isfy 

0 ≤ f b0 
e ′ + 

∑ 

l∈ E 
ξl f 

b 
e ′ ,l = f b0 

e ′ + f b e ′ ,e ′ ≤ (1 − ξe ′ )(u e ′ + p e ′ ) = 0 

0 ≤ f f 0 
e ′ + 

∑ 

l∈ E 
ξl f 

f 

e ′ ,l = f f 0 
e ′ + f f 

e ′ ,e ′ ≤ (1 − ξe ′ )(u e ′ + p e ′ ) = 0 . (6)

Thus, it is obvious that f b0 
e ′ + f b 

e ′ ,e ′ = 0 and f 
f 0 

e ′ + f 
f 

e ′ ,e ′ = 0 for all

e ′ ∈ E 1 , since the final solution must be robust to any such edge

failing. 

The robust solution must also satisfy the demand constraints

for any scenario, namely 

∑ 

e : d(e )= i 

( 

f f 0 
e + 

∑ 

l∈ E 
ξl f 

f 

e,l 
− f b0 

e −
∑ 

l∈ E 
ξl f 

b 
e,l 

) 

+ 

∑ 

e : o(e )= i 

×
( 

f b0 
e + 

∑ 

l∈ E 
ξl f 

b 
e,l − f f 0 

e −
∑ 

l∈ E 
ξl f 

f 

e,l 

) 

= b i ∀ ξ ∈ �, ∀ i ∈ V, 

(7)

which may be expanded over the 1 + | E 1 | possible realizations en-

compassed by the uncertainty set. For the nominal scenario, ξe = 0

for all e ∈ E , this yields the nominal demand satisfaction constraints

∑ 

e : d(e )= i 

(
f f 0 
e − f b0 

e 

)
+ 

∑ 

e : o(e )= i 

(
f b0 
e − f f 0 

e 

)
= b i ∀ i ∈ V. (8)

For the remaining scenarios where edges e ′ ∈ E 1 fail alone, and tak-

ing also into account the above proven fact that f b0 
e ′ + f b 

e ′ ,e ′ = 0 and

f 
f 0 

e ′ + f 
f 

e ′ ,e ′ = 0 , the solution must also satisfy constraints ∑ 

e : d(e )= i,e 	 = e ′ 

(
f f 0 
e + f f 

e,e ′ − f b0 
e − f b e,e ′ 

)
+ 

∑ 

e : o(e )= i,e 	 = e ′ 

×
(

f b0 
e + f b e,e ′ − f f 0 

e − f f 
e,e ′ 

)
= b i ∀ e ′ ∈ E 1 , ∀ i ∈ V. (9)

Examining constraints (8) and (9) reveals the presence of an ef-

fective flow variable for each edge and scenario combination. More

specifically, for general failure of edge e ′ , the flow along edge e is

simply f b0 
e + f b 

e,e ′ or f 
f 0 

e + f 
f 

e,e ′ , where the values of f b0 
e and f 

f 0 
e 

are equal to the nominal scenario flows, and f b 
e,e ′ and f 

f 

e,e ′ con-

stitute the flow adjustments necessary under the specific scenario

when edge e ′ fails. Thus, there effectively exists a unique set of

flow variables for each failure scenario, and if a robust feasible so-

lution exists for a given first-stage decision u e , it will be found. 

Furthermore, a robust optimal solution will be found with no

adaptivity gap. Consider again the failure of edge e ′ . Whereas the

effective flow variables for edge e ′ shall be equal to zero, correctly

capturing the requirement that no flow shall occur along a failed

edge, the effective flow variables for all other edges e will only be
estricted within the desirable bounds 

 ≤ f b0 
e + f b e,e ′ ≤ u e + p e ∀ e ∈ E \ { e ′ } 

 ≤ f f 0 
e + f f 

e,e ′ ≤ u e + p e ∀ e ∈ E \ { e ′ } . (10)

onsequently, picking values for these variables does not restrict

he range of possible first-stage decisions; once the latter have

een selected, each of the effective flow variables may be picked

erfectly so as to minimize the second-stage costs given the appli-

able failure scenario, resulting in the absence of an adaptivity gap

n the final solution. �

roposition 2. For the robust network design problem defined in For-

ulation (3) under the uncertainty set defined in (2) with k ≥ 2, and

iven the following two mild assumptions that 

1. this uncertainty set admits at least one scenario in which two

edges have failed, and 

2. a feasible network flow solution cannot be gained by solely utiliz-

ing edges that are never allowed to fail in the scenarios admitted

by this uncertainty set, 

using affine decision rules of the form (4) will never yield a feasible

olution, even if one exists. 

roof. We shall first prove the proposition for the setting k = 2 . In

his case, the uncertainty set encompasses all scenarios admitted

n the k = 1 case, as well as additional scenarios that correspond to

wo edges having failed at the same time. Let E 1 ⊆E be the subset

f edges that are allowed to fail alone, and let E 2 ⊆E 1 × E 1 be the

ubset of pairs of edges that are allowed to have failed at the same

ime, in some scenario admitted by the applicable set. Note how

he proposition requires in its first assumption that | E 2 | 	 = 0. 

Let a pair of edges ( e ′ , e ′′ ) ∈ E 2 , and note how this also implies

hat e ′ ∈ E 1 . Hence, any robust feasible solution should satisfy the

pper bounds of the flow variables of edge e ′ for both the scenario

here this edge has failed alone, as well as the scenario where it

as failed in conjunction with edge e ′′ ; that is, 

f b0 
e ′ + f b e ′ ,e ′ = 0 

f f 0 
e ′ + f f 

e ′ ,e ′ = 0 

f b0 
e ′ + f b e ′ ,e ′ + f b e ′ ,e ′′ = 0 

f f 0 
e ′ + f f 

e ′ ,e ′ + f f 
e ′ ,e ′′ = 0 . (11)

ombining the above, we deduce that f b 
e ′ ,e ′′ = 0 and f 

f 

e ′ ,e ′′ = 0 ,

hich should hold true for any edge e ′′ that may have failed at the

ame time with edge e ′ . It immediately follows that affine decision

ules for the two directional flows along any edge e ∈ E 1 must be

estricted to the form 

f b e ← f b0 
e ( 1 − ξe ) 

f f e ← f f 0 
e ( 1 − ξe ) . (12)

We shall now characterize the form of decision rules that are

ossible for edges e ∈ E �E 1 , i.e., edges that are not allowed to fail

n any scenario we wish to insure against, which according to the

efinition of our uncertainty set (2) , are exclusively the edges that

re adjacent to terminal nodes of degree one. Let node t ∈ V T be

uch a terminal node with degree D t = 1 , and let e be its only ad-

acent edge (w.l.o.g., consider the edge e defined with node t be-

ng its destination node, i.e., d(e ) = t). Applying the robust demand

atisfaction constraint (7) for node t yields 

f f 0 
e − f b0 

e 

)
+ 

∑ 

l∈ E 1 
ξl 

(
f f 
e,l 

− f b e,l 

)
= b t ∀ ξ ∈ �. (13)

his constraint needs to remain feasible for the nominal scenario

hen no edge fails, as well as any scenario where one or more
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dges from within the set E 1 fail. It is easy to show that these con-

itions result into the restrictions f 
f 0 

e − f b0 
e = b t and f 

f 

e,l 
− f b 

e,l 
= 0 ,

or all l ∈ E 1 , where the latter relationships can be further reduced

o f 
f 

e,l 
= f b 

e,l 
= 0 without loss of network flow feasibility. In sum-

ary, the affine decision rules for flows along edges e that are

ot allowed to fail must be restricted to only their constant, non-

djustable parts, f 
f 0 

e and f b0 
e . Noting also the fact that, for any

dge e ∈ E �E 1 , ξe = 0 applies for all scenarios admitted by the un-

ertainty set (by definition), we remark that the form of the affine

ecision rules presented in (12) in fact applies for these edges as

ell. Hence, the form applies for all edges e ∈ E . 

Substituting the restricted functional forms (12) into the robust

emand satisfaction constraint (7) for node d ( e ′ ), for some e ′ ∈ E 1 ,

ields ∑ 

e : d (e )= d (e ′ ) 

(
f f 0 
e (1 − ξe ) − f b0 

e (1 − ξe ) 
)

+ 

∑ 

e : o(e )= d(e ′ ) 

(
f b0 
e (1 − ξe ) − f f 0 

e (1 − ξe ) 
)

= b d(e ′ ) ∀ ξ ∈ �. (14) 

learly, this constraint removes much of our flexibility in deciding

he flows for e ′ . More specifically, the above constraint must be

atisfied for the nominal scenario where no edge fails, ∑ 

 : d (e )= d (e ′ ) 

(
f f 0 
e − f b0 

e 

)
+ 

∑ 

e : o(e )= d(e ′ ) 

(
f b0 
e − f f 0 

e 

)
= b d(e ′ ) , (15) 

s well as for the scenario where the edge e ′ fails alone, ∑ 

e : d (e )= d (e ′ ) 

(
f f 0 
e − f b0 

e 

)
−

(
f f 0 
e ′ − f b0 

e ′ 
)

+ 

∑ 

e : o(e )= d(e ′ ) 

(
f b0 
e − f f 0 

e 

)
= b d(e ′ ) . (16) 

ombining the above, we deduce that f 
f 0 

e ′ − f b0 
e ′ = 0 , which can be

urther reduced to f 
f 0 

e ′ = f b0 
e ′ = 0 without loss of network flow fea-

ibility. 

This result means that affine decision rules cannot route net

ow through any edge that can potentially fail in a scenario un-

er consideration. To that end, given the proposition’s second as-

umption, which states that a network flow solution satisfying all

emands may not be gained by utilizing only edges that are not

llowed to fail, affine decision rules cannot produce a robust fea-

ible solution for the setting of k = 2 . It trivially follows that this

esult holds also for the setting k ≥ 3, as the uncertainty sets in

hose instances shall be supersets of the k = 2 uncertainty set. �

We highlight that the two assumptions stated in

roposition 2 are indeed very mild, since they both imply

pplicable network superstructures of very limited nature. In

articular, if the uncertainty set does not admit any scenario in

hich two edges have failed, then the setting k = 1 is practically

quivalent to k ≥ 2, leading to the same collection of scenarios,

nd one should consult Proposition (1) instead. With regards to

he second assumption, it would be arguably rare to consider an

nstance for which a feasible network flow may be gained by using

nly edges protected due to their being adjacent to terminal nodes

f degree one. Consider, for example, a network with a star graph

uperstructure, with | V | − 1 terminal nodes of degree one and 1

entral node connecting them together. All edges in this instance

re protected from failure by construction of the uncertainty set;

ence, the nominal deterministic solution in this case would be

obust feasible (in fact, optimal), and the affine decision rules with

djustment variables attaining the value of zero would be able

o reproduce it. Other similar cases can be envisioned, but these

re rather extreme and, in most cases, not relevant for practical

urvivable network design problems. 
Given the above described limitations of affine decision rules

n our context, another approach must be followed. To that end,

e shall next present a tailored column and constraint generation

lgorithm to address the general case of the network design prob-

em under study. The proposed approach will either provide robust

ptimal solutions or prove robust infeasibility for any k value. 

. Column and constraint generation 

Column and constraint generation (CCG) was originally intro-

uced by Zeng and Zhao (2013) , and has been shown to be an

ffective methodology for solving two-stage robust optimization

roblems. In CCG, a master problem is formulated and solved to

elect values for the first-stage decisions. These decisions are then

assed to an oracle subproblem to determine random variable val-

es that are significant to consider, either because they make the

econd stage infeasible, or because they cause the overall objec-

ive function value to be higher than what was reported by the

aster problem. Once the subproblem identifies such random vari-

ble realizations, the master problem is augmented with new con-

traints and variables to specifically account for those, and the pro-

ess iterates. In this scheme, the master problem provides a lower

ound on the two-stage optimal solution, while the subproblem al-

ows for an upper bound to be computed. Iterations proceed until

he two bounds converge, at which point the algorithm terminates

ith a certificate of two-stage robust optimality (a fully adaptive

olution). 

Unlike a Benders dual cutting-plane approach ( Thiele, Terry, &

pelman, 2009 ), which only provides an implicit guarantee of ro-

ust feasibility, CCG works directly in the primal space and pro-

ides us with an explicit solution for the second stage. Further-

ore, it can in principle handle the general case of mixed-integer

ecourse, although one might have to pay the price of solving in-

reasingly larger subproblems. In the case when the second stage

roblem is a linear program, Zeng and Zhao (2013) demonstrate

ow KKT conditions may be utilized to reformulate the subprob-

em into a single-level problem that can be addressed directly via

 linear optimization solver. This treatment is valid only when rel-

tively complete recourse is assumed, meaning the subproblem is

ssumed to be always feasible regardless of the decisions made

n the first stage or the random variable realizations. Arguably, in

he original presentation of the CCG algorithm, there had been a

ignificant emphasis on this assumption for practical implemen-

ations. However, it should be highlighted that this assumption is

ot so reasonable in the context of the network design problem,

n which the subproblems determine flows to satisfy the demands

iven an edge failure scenario. If the master problem does not pro-

ide enough extra capacity on edges, then certain edge failures will

ause the flow problem to be infeasible. Thus, the CCG algorithm

ust be broadened to account for the possibility of uncertain re-

lizations that render the second stage infeasible in light of given

rst-stage decisions. 

In fact, the CCG algorithm that we implement for purposes of

ur work differs from the original variant ( Zeng & Zhao, 2013 ) in

 few key ways. Firstly, since the relatively complete recourse is

ot assumed, a generalized algorithmic step is proposed to address

he oracle through the use of two distinct subproblems, namely

 feasibility subproblem to seek uncertain parameter realizations

hat would render the second stage infeasible, and if such real-

zations do not exist, an optimality subproblem to determine re-

lizations that have the most detrimental impact on the overall

bjective function value. While this generalized CCG algorithm is

resented below in the network design context, the method of uti-

izing both a feasibility and an optimality subproblem is applicable

or a variety of two-stage robust optimization problems for which

he relatively complete recourse assumption does not hold. For
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example, a similar idea to employ two subproblems in the oracle

was also utilized in the context of unit commitment problems ( Lee,

Liu, Mehrotra, & Shahidehpour, 2014 ) and robust power distribu-

tion networks ( Lee, Liu, Mehrotra, & Bie, 2015 ). Secondly, while the

original CCG approach utilizes KKT conditions to reformulate the

second stage problems, in the following we will utilize strong lin-

ear programming duality to derive subproblems that are generally

more tractable and can be solved more efficiently towards identi-

fying the new columns and constraints to add to the master prob-

lem. In general, linear duality results in simpler second stage refor-

mulations than the KKT-based approach, as evidenced by the fact

that it has been preferred in the past for a variety of two-stage ro-

bust optimization problems solved with CCG implementations ( An

& Zeng, 2015; Jabr, Džafić, & Pal, 2015; Lee et al., 2015; Lee et al.,

2014; Ye & Li, 2016; Zhao & Zeng, 2012 ). Thirdly, from a practi-

cal standpoint, our implementation avoids a common shortfall of

previous approaches that pertains to the improper use of big-M

constraints for linearizing bilinear terms that arise in the CCG sub-

problems. We will later argue why this is the case and propose an

appropriate implementation remedy. 

3.1. Master problem 

Formulation (17) constitutes our master problem. This model

seeks to determine capacities that perform the best in light of the

collection of edge failure scenarios that have been identified as sig-

nificant to explicitly account for. 

min 

u, f,ζ∈ R 

∑ 

e ∈ E 
c u e u e + ζ

s.t. 
∑ 

e ∈ E 
c f e 

(
f f,l e + f b,l 

e 

)
≤ ζ ∀ l ∈ { 0 , 1 , . . . , n } 

f b,l 
e ≤ (1 − ξ ∗,l 

e )(u e + p e ) ∀ e ∈ E, ∀ l ∈ { 0 , 1 , . . . , n } 
f f,l e ≤ (1 − ξ ∗,l 

e )(u e + p e ) ∀ e ∈ E, ∀ l ∈ { 0 , 1 , . . . , n } ∑ 

e : d(e )= i 

(
f f,l e − f b,l 

e 

)
+ 

∑ 

e : o(e )= i 

(
f b,l 
e − f f,l e 

)
= b i 

∀ i ∈ V, ∀ l ∈ { 0 , 1 , . . . , n } 
u e ≥ 0 ∀ e ∈ E 

f b,l 
e , f f,l e ≥ 0 ∀ e ∈ E, ∀ l ∈ { 0 , 1 , . . . , n } 

(17)

The flow variables, f b,l 
e and f 

f,l 
e , now feature extra indices l ,

which correspond to the iteration of the CCG algorithm for which

they were generated. Hence, if n is the current iteration of the al-

gorithm, there are a total of n + 1 different sets of these variables

and corresponding constraints that have been added in the mas-

ter problem. Fixed values for the random variables, ξ ∗,l 
e , based on

the results of the subproblems solved in prior iterations, are ref-

erenced as parameters in the master problem in order to ensure

that important uncertain parameter realizations are considered in

the master problem. Iteration n = 0 is reserved for initializing the

algorithm via some pre-defined realization ξ ∗, 0 
e , which is usually

the nominal case ( ξ ∗, 0 
e = 0 , ∀ e ∈ E), or some other, easily inferred,

“bad” scenario that is part of the uncertainty set. The formulation

is thus initialized with variables f b, 0 
e and f 

f, 0 
e to represent flows

for this initially considered scenario, while the corresponding so-

lution becomes the first lower bound inside the overall algorithm.

Solving the master problem also yields provisional first-stage ca-

pacities u ∗e , which are then referenced as parameters in the oracle

subproblems. 

3.2. Oracle 

The general form of the oracle subproblem is presented in prob-

lem (18) , where the minimum cost of the flows is maximized over
ll possible edge failure realizations allowed by the uncertainty

et. 

max 
ξ∈ �

min 

f b , f f ∈ R 

∑ 

e ∈ E 
c f e 

(
f f e + f b e 

)
s.t. f b e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E 

f f e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E ∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
= b i ∀ i ∈ V 

f b e , f 
f 

e ≥ 0 ∀ e ∈ E 

(18)

The goal of solving the oracle is to identify the values of ξ e that

ause the most damage for our provisional network design, u ∗e , ei-

her by rendering the entire problem infeasible or by maximizing

he second-stage costs. Once such ξ e values are found, they are

ent back to master problem as parameters ξ ∗,n 
e , where n is the

ppropriate iteration identifier. Due to the bi-level nature of the

racle, we reformulate the inner minimization by utilizing strong

inear programming duality to gain a tractable, single-level formu-

ation. However, since there may exist realizations of ξ e that ren-

er the inner level infeasible due to our not assuming relatively

omplete recourse, there exists a possibility for the outer maxi-

ization to be unbounded, providing a numerical hurdle for ob-

aining solutions to feed back into the master problem. Further-

ore, an often overlooked possibility in the CCG literature involves

ncertainty realizations that render the inner minimization prob-

em both primal- and dual-infeasible. If we were to impose the

nner level’s dual formulation on the outer-level decision maker,

hen such realizations would be implicitly restricted from the lat-

er’s search space, leading possibly to the incorrect conclusion that

he provisional capacities are robust feasible, when in fact they are

ot. To that end, we follow an approach that addresses the ora-

le in two distinct steps. In the first step, we solve a feasibility

ariant of the oracle in order to determine if ξ e values exist that

ould cause an infeasible second stage problem. If such realiza-

ions do exist, then the master problem is restricted accordingly so

hat these realizations are no longer second-stage infeasible. Other-

ise, the original oracle (18) is solved (in what we later refer to as

he optimality subproblem) to determine worst-case second-stage

osts. 

.2.1. Feasibility subproblem 

The original subproblem (18) is modified through the introduc-

ion of positive slack variables σ b 
e , σ

f 
e , s 

+ 
i 
, and s −

i 
. The former two

ets of variables add slack to the capacity constraints, while the

atter two sets add slack to the demand equality constraints. The

nner objective function is now to minimize the values of these

lack variables, as shown in problem (19) . 

max 
ξ∈ �

min 

f b , f f ,σ b ,σ f ,s + ,s −∈ R 

∑ 

e ∈ E 

(
σ b 

e + σ f 
e 

)
+ 

∑ 

i ∈ V 

(
s + 

i 
+ s −

i 

)
s.t. f b e − σ b 

e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E 

f f e − σ f 
e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E ∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
+ s + 

i 
− s −

i 
= b i ∀ i ∈ V 

f b e , f 
f 

e , σ
b 
e , σ

f 
e ≥ 0 ∀ e ∈ E 

s + 
i 
, s −

i 
≥ 0 ∀ i ∈ V. 

(19)

Note how this problem does possess relatively complete re-

ourse by construction. Hence, we can apply linear duality to re-

ormulate it into a singe-level problem. This results in (20) , which

onstitutes a quadratic programming problem due to the presence
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n the objective function of bilinear terms between the random

ariables ξ e and the dual variables νb 
e and ν f 

e , 

max 
ξ∈ �

νb ,ν f ,μ∈ R 

∑ 

e ∈ E 
(1 − ξe )(u 

∗
e + p e ) ν

b 
e 

+ 

∑ 

e ∈ E 
(1 − ξe )(u 

∗
e + p e ) ν

f 
e + 

∑ 

i ∈ V 
b i μi 

s.t. νb 
e + μo(e ) − μd(e ) ≤ 0 ∀ e ∈ E 

ν f 
e − μo(e ) + μd(e ) ≤ 0 ∀ e ∈ E 

−1 ≤ νb 
e , ν

f 
e ≤ 0 ∀ e ∈ E 

−1 ≤ μi ≤ 1 ∀ i ∈ V. (20) 

Due to the fact that ξ e are binary, the bilinear terms may be

ffectively eliminated from the problem by introducing new aux-

liary variables z b e and z 
f 
e and by imposing that, at an optimal

olution, those be equal to the products νb 
e ξe and ν f 

e ξe , respec-

ively. A common approach to achieve this is by applying the well-

nown “Glover” linearization technique, which calls for utilizing

ig-M constraints. An alternative approach followed here is to re-

ormulate these bilinear terms as explicit implications. The apo-

oses of the latter can then be enforced during the branch and

ound search directly as cuts, whenever the corresponding pro-

ases are activated (see, e.g., the concept of logical constraints in

odern mixed-integer linear solvers). 

max 
ξ∈ �

νb ,ν f ,μ,z b ,z f ∈ R 

∑ 

e ∈ E 
( u 

∗
e + p e ) (ν

b 
e − z b e ) 

+ 

∑ 

e ∈ E 
( u 

∗
e + p e ) (ν

f 
e − z f e ) + 

∑ 

i ∈ V 
b i μi 

s.t. νb 
e + μo(e ) − μd(e ) ≤ 0 ∀ e ∈ E 

ν f 
e − μo(e ) + μd(e ) ≤ 0 ∀ e ∈ E 

ξe = 0 ⇒ z b e = 0 ∀ e ∈ E 

ξe = 1 ⇒ z b e = νb 
e ∀ e ∈ E 

ξe = 0 ⇒ z f e = 0 ∀ e ∈ E 

ξe = 1 ⇒ z f e = ν f 
e ∀ e ∈ E 

−1 ≤ νb 
e , ν

f 
e ≤ 0 ∀ e ∈ E 

−1 ≤ μi ≤ 1 ∀ i ∈ V (21) 

If the optimal objective value of problem (21) is nonzero, then

he chosen values of u ∗ are robust infeasible, and the optimal ξ e 

olution stemming from this problem can be used to further re-

trict our first stage decisions in the master problem. In doing

o, the values of ξ ∗
e representing the optimal solution to problem

21) are stored and explicitly used to generate new rows in the

aster problem, Formulation (17) . However, if the optimal objec-

ive is zero, then the current solution from the master problem is

obust feasible, and the original form of the subproblem – now re-

erred to as the optimality subproblem – must be solved to deter-

ine true worst-case costs of the provisional first-stage decisions. 

.2.2. Optimality subproblem 

The optimality subproblem is utilized after we have solved the

easibility subproblem and have confirmed that the master prob-

em has selected a robust feasible design. Thus, an upper bound

n the overall two-stage problem may be calculated by finding the

orst-case second-stage flow costs. Since the inner minimization

s linear in the flow variables f b e and f 
f 

e , strong linear program-

ing duality may again be used to reformulate the original sub-

roblem (18) , as follows. 
max 
ξ∈ �

νb ,ν f ,μ∈ R 

∑ 

e ∈ E 
(1 − ξe )(u 

∗
e + p e ) ν

b 
e 

+ 

∑ 

e ∈ E 
(1 − ξe )(u 

∗
e + p e ) ν

f 
e + 

∑ 

i ∈ V 
b i μi 

s.t. νb 
e + μo(e ) − μd(e ) ≤ c f e ∀ e ∈ E 

ν f 
e − μo(e ) + μd(e ) ≤ c f e ∀ e ∈ E 

νb 
e , ν

f 
e ≤ 0 ∀ e ∈ E (22) 

Again, the resulting bilinear terms ξe νb 
e and ξe ν

f 
e must be lin-

arized. However, we should highlight that, unlike the case of the

easibility subproblem, the utilization of big-M constraints here

ould not be appropriate. This is due to the fact that proper se-

ection of the big-M coefficients requires the knowledge of valid

ounds on the dual variables, which are generally not available in

he case of the optimality subproblem. In fact, the use of arbitrary

ig-M values poses risks onto the rigorousness of the solutions.

ore specifically, solving an overly restricted subproblem consti-

utes an effective relaxation of the overall two-stage problem such

hat the first-stage decisions are not properly evaluated in terms

f the worst-case total costs. Thus, the choice of a large but not

igorous big-M coefficient in this context has the potential to ad-

it first-stage decisions which are suboptimal in the robust sense.

n order to avoid this situation, it is imperative that the bilinear

roducts are handled via explicit implication constraints, which are

hen implemented as logical constraints in the employed mixed-

nteger linear optimization packages. 

max 
ξ∈ �

νb ,ν f ,μ,z b ,z f ∈ R 

∑ 

e ∈ E 
(u 

∗
e + p e )(ν

b 
e − z b e ) 

+ 

∑ 

e ∈ E 
(u 

∗
e + p e )(ν

f 
e − z f e ) + 

∑ 

i ∈ V 
b i μi 

s.t. νb 
e + μo(e ) − μd(e ) ≤ c f e ∀ e ∈ E 

ν f 
e − μo(e ) + μd(e ) ≤ c f e ∀ e ∈ E 

ξe = 0 ⇒ z b e = 0 ∀ e ∈ E 

ξe = 1 ⇒ z b e = νb 
e ∀ e ∈ E 

ξe = 0 ⇒ z f e = 0 ∀ e ∈ E 

ξe = 1 ⇒ z f e = ν f 
e ∀ e ∈ E 

νb 
e , ν

f 
e ≤ 0 ∀ e ∈ E (23) 

The optimal ξ e solution stemming from the optimality sub-

roblem corresponds to the edge failure scenario that imposes the

ighest possible costs to route flows given the chosen capacities

 

∗
e . This scenario shall then be incorporated in the master problem

o as to further restrict the first stage decisions, by adding new

ets of variables and constraints appearing in Formulation (17) as
∗,l 
e in the second and third constraint blocks, where l represents

 counter for the current iteration of the algorithm (see details in

ext section). 

.3. Full algorithm 

Now that we have defined the master and two subproblem for-

ulations, we can outline in more detail the CCG algorithm that

e developed so as to address the robust network design prob-

em under study. Given a choice of k and an optimality tolerance

, the algorithm below will either yield a robust optimal solution,

r a certificate that the instance is robust infeasible for k (or more)

dge failures. 

1. Initialize optimal first-stage decisions u 
opt 
e to empty, bounds

UB = + ∞ and LB = −∞ , iteration counter n = 0 , and set up the

nominal realization as ξ ∗, 0 
e = 0 for all e ∈ E . 
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Table 1 

Network superstructure sizes and deterministic optimal costs (objective function 

values) for various ρ settings. 

Network | V | | E | ρ = 0 . 5 ρ = 1 . 0 ρ = 2 . 0 

abilene 12 15 51384.72 69367.03 105328.93 

atlanta 15 22 7782567.50 15399035.00 30406980.00 

brain 161 166 2146.77 2862.36 4293.54 

dfn-bwin 10 45 16139.41 21519.21 32278.82 

dfn-gwin 11 46 3583.78 4778.37 7167.56 

di-yuan 11 42 3447150.00 459620 0.0 0 689430 0.0 0 

france 25 45 3890.16 5186.88 7780.32 

geant 22 36 72718.43 96957.90 145436.85 

germany50 50 88 379939.13 506585.50 759878.25 

giul39 39 86 28.92 38.56 57.84 

india35 35 80 1171.20 1561.60 2342.40 

newyork 16 49 13090.80 17454.40 26181.60 

nobel-eu 28 41 808680.00 1078240.00 1617360.00 

nobel-germany 17 26 178702.50 238270.00 357405.00 

nobel-us 14 21 1945173.00 2593564.00 3890346.00 

norway 27 51 18009.21 24012.28 36018.42 

pdh 11 34 13328338.80 17771118.40 26656677.60 

pioro40 40 89 181091.19 241454.92 362182.37 

polska 12 18 13121.97 17495.96 26243.94 

sun 27 51 521.45 695.26 1042.89 

ta1 24 51 5970763.75 7961018.33 11941527.49 

ta2 65 108 8111296.78 1430 0 028.77 25956798.12 

zib54 54 80 331471.58 441962.10 662943.16 

c  

c  

w  

t  

p  

z  

e  

r  

m  

v  

n

 

C  

A  

P  

b  

l

a

 

o  

t  

i  

c

4

 

t  

s  

w  

o  

w  

t

networks for which b i = 0 for all i ∈ V , only a trivial solution with all capacities and 

flows at 0 would be found, and thus these 3 datasets were excluded from consider- 

ation. 
2. Solve the master problem (17) . 

(a) If the master problem is infeasible, return. The instance is

robust infeasible. 

(b) Obtain provisional first-stage decisions u ∗e , and set LB equal

to the master problem’s optimal objective value. 

(c) If UB − LB ≤ ε, return. The current solution u 
opt 
e is robust op-

timal. 

3. Solve the feasibility subproblem (21) . 

(a) If the optimal objective function value is zero, then go to

Step 4. 

(b) Set ξ ∗,n +1 
e in the master problem to be equal to the feasibil-

ity subproblem’s optimal ξ e values, and go to Step 5. 

4. Solve the optimality subproblem (23) , and let φ be its optimal

objective value. 

(a) If 
∑ 

e ∈ E c u e u 
∗
e + φ < UB, then update incumbent u 

opt 
e = u ∗e and

set UB = 

∑ 

e ∈ E c u e u 
∗
e + φ. 

(b) If UB − LB ≤ ε, return. The current solution u 
opt 
e is robust op-

timal. 

(c) Set ξ ∗,n +1 
e in the master problem to be equal to the optimal-

ity subproblem’s optimal ξ e values. 

5. Iterate counter n ← n + 1 , and go to Step 2. 

4. Computational results 

The proposed CCG algorithm from Section 3 was implemented

and tested on instances from the Survivable Network Design Li-

brary (SNDLib) ( Orlowski et al., 2010 ). SNDLib conveniently pro-

vides base graphs for many different instances, but since these are

constructed for a telecommunications framework, each demand in

the SNDLib networks is associated with a specific source node and

target node. In order to adapt the instances to the current single-

commodity network problem, the demands are aggregated as if

there is only one commodity. More specifically, given SNDLib data

β jk to denote demands from a source node j ∈ V to a destination

node k ∈ V , the demand b i will account for any demands with node

i as target less any demands with node i as source; that is, 

b i := 

∑ 

j∈ V 
β ji −

∑ 

k ∈ V 
βik . (24)

The remaining necessary parameters, such as pre-installed ca-

pacities and costs, were extracted from the SNDLib database as fol-

lows. Pre-installed capacities p e are directly listed in the database

for every edge, and those values were adopted (many datasets sim-

ply list p e = 0 ). Regarding costs, we note that the edges in the

SNDLib datasets are listed with an associated “module capacity”

and “module cost.” As the capacities in this formulation are con-

tinuous rather than discrete, the cost per capacity c u e was simply

calculated as a ratio between the module cost and the module ca-

pacity. Furthermore, since flow costs c 
f 
e are not provided in the

SNDLib context, we define them as a fraction of the capacity costs,

i.e., c 
f 
e = ρ c u e , where ρ is a fixed parameter to control the rela-

tive influence of each of the two types of costs in the objective

function. In our computational experiments, we used the settings

ρ ∈ {0.5, 1.0, 2.0}. It is also worth noting that, in some cases, mul-

tiple pairs of module costs and capacities are provided; as a rule,

the first pair in the order listed is always the one adopted to define

the cost parameters for our study. In the rare case that no module

capacity and cost were provided for an edge, the capacity variable

u e is fixed to zero, and only pre-installed capacity may be utilized

for that edge (the pre-installed capacity in these instances can still

be subject to an edge failure). 

In total, 23 network datasets were utilized from SNDLib to pro-

vide a variety of different sized and shaped initial graphs. 5 In each
5 We remark that the SNDLib contains a total of 26 datasets. However, since the 

aggregation of demands for networks ‘cost266’, ‘janos-us-ca’ and ‘janos-us’ created 

M

w

ase, all edges are assumed to be bi-directional, such that flow

ould be chosen in either direction. However, as the initial graphs

ere analyzed, it became clear that some preprocessing simplifica-

ions could be made to the instances in order to reduce the com-

lexity of the problems. For instance, if a node has a demand of

ero and degree two, with the same pre-installed capacity on each

dge, the two edges connecting to this node may be effectively

epresented as one common edge, with the intermediate node re-

oved from the problem formulation. This and other similar obser-

ations were used to construct a preprocessing algorithm for the

etworks. This algorithm is presented in Appendix B . 

All optimization models in this work were solved using

PLEX 12.7.0 via the CPLEX Callable Library (C API) ( IBM, 2016 ).

ll runs were performed in the Tiger Supercomputing Cluster at

rinceton University, and were allocated two 2.6 gigahertz Sandy-

ridge cores, each with 4 gigabytes of RAM, allowing CPLEX to uti-

ize two threads. The MIP absolute gap tolerance was set to 10 −7 

nd the MIP integrality tolerance was set to 0. 

For reference, Table 1 presents the input network sizes and the

ptimal objective function values for the deterministic versions of

hese instances ( k = 0 ). We highlight that optimizing the determin-

stic instances was very tractable, in general, as all these runs con-

luded in less than 0.06 wall clock seconds. 

.1. The effect of increasing number of edge failures 

For each instance, the value of k was continually increased un-

il a value was reached for which the network could no longer

ustain flows meeting the applicable demand requirements at the

orst case. 6 For each run (value of k ), we allowed a time limit

f three hours 7 for the algorithm to either return the optimal net-

ork topology and associated objective function value, or to certify

hat the network is robust infeasible. 
6 The collection of detailed results can be found in the electronic “Supplementary 

aterials” that are provided as part of this article. 
7 Convergence within the allotted time was not an issue, as each run finished 

ell below the time limit for every network. 
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Fig. 1. Robust feasibility and average price of robustness over all networks under various ρ settings, as a function of the number of concurrent edge failures. 

Fig. 2. Price of robustness for various representative networks from the SNDLib, as a function of number of concurrent edge failures. 
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As k increases, the optimal solutions become more robust at the

xpense of a more expensive network. The price of robustness (POR)

an thus be calculated for each network at each value of k by com-

aring the total cost with the network’s nominal cost (case k = 0 ,

ee Table 1 ); that is, 

OR (k ) = 

Robust Optimal Network Cost at k - Deterministic Opt

Deterministic Optimal Network Cos

The percentage of networks that remain robust feasible, as well

s the average price of robustness across all such networks, was

alculated and plotted in Fig. 1 as a function of k . It is evident

rom this figure that the robust satisfaction of demand at all nodes

n many networks is not possible for k as low as k = 2 . In fact,

nly 13 out of the 23 networks considered in the study remain

obust feasible at k = 2 . Those networks that remain feasible incur,
Network Cost 
. (25) 

n average, a POR of 1.25 at ρ = 0 . 5 and a POR of 0.85 at ρ = 2 . 0 .

nly 5 networks remain robust feasible when k = 5 , while only 2

f those remain feasible when k = 10 . The network ‘dfn-bwin’ can

andle the highest number of concurrent edge failures, remaining

obust feasible up to k = 15 . 

While Fig. 1 indicates that the average POR is higher when

he cost is more heavily capacity-dependent (i.e., when ρ = 0 . 5 ),

he price of robustness is also very much dependent on the net-

ork itself. This can be inferred by the drop in average POR as

e move from k = 9 to k = 10 , which is due to the fact that net-

ork ‘dfn-gwin’ (a network with generally higher POR contribu-

ion to the overall average) became robust infeasible at that point.
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Fig. 3. Objective value, time to solve, and number of CCG iterations for network ‘dfn-bwin’, as a function of number of concurrent edge failures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Average computational time (in seconds) required across each of the runs as a func- 

tion of k and ρ . 

k ρ = 0 . 5 ρ = 1 . 0 ρ = 2 . 0 

0 0.01 0.01 0.01 

1 0.81 0.89 0.77 

2 5.78 4.43 4.15 

3 44.63 38.48 41.51 

4 24.91 25.27 28.05 

5 57.82 65.76 63.96 

6 61.10 67.08 121.39 

7 69.76 84.24 110.54 

8 43.16 43.52 52.48 

9 161.37 109.40 175.00 

10 119.96 124.70 126.68 

11 473.34 509.997 519.63 

12 424.92 457.93 377.74 

13 985.41 1325.45 1440.69 

14 1151.11 1094.17 1324.14 

15 689.55 661.21 653.93 

16 a 0.53 0.60 0.28 

a The most resilient (and only still feasible at k = 15 ) network ‘dfn-bwin’ becomes 

infeasible at k = 16 , which is fast to prove, and thus leads to a very short time entry 

in this row. 

4

f

 

(  

k  

T  

c  

t  

l

 

c  
Network-specific POR values are plotted in Fig. 2 for a selection of

representative networks. It can be observed that, while in all cases

POR increases monotonically with k , the rate of increase shows

high variability among different instances. 

Focusing on network ‘dfn-bwin’ allows for a closer look at the

performance of the algorithm over time and iterations, both in

general terms as well as for specific k values. In particular, Fig. 3

highlights the optimal costs of ‘dfn-bwin’ as k increases, along with

the number of iterations and time it took for the algorithm to

converge. We observe that, while the runs required only a few

minutes when k ≤ 10, they got significantly longer as k increased

beyond this point. The longest run required 1325 wall clock sec-

onds, when k = 13 , indicating that the runtime does not mono-

tonically increase with k . This is also reflected in the average run-

times across all network instances, as shown in Table 2 . Interest-

ingly, while the number of iterations tends to increase initially in

Fig. 3 , there is not a significant trend or difference between the

number of iterations over the final eight k values. The number of

iterations also does not directly correlate to the time required for

the run, indicating that much of the time requirement at larger k

values may be due to specific subproblem calls rather than the in-

creasing size of the master problem. Finally, Fig. 4 provides some

insight into the behavior of the algorithm as the various iterations

progress. As these plots suggest, many iterations are required be-

fore the first feasible upper bound is calculated, which can be at-

tributed to the number of combinations of edge failures that can

exist and that may cause the second stage to be infeasible. For

the case when k = 5 , about three quarters of the iterations were

required before an initial upper bound was reached, and the gap

was closed rather rapidly in the remaining iterations. This behav-

ior was further amplified in the case when k = 10 , where the gap

was completely closed as soon as an upper bound was obtained

after a total of 102 iterations. These observations point to the con-

clusion that the algorithm would greatly benefit from an early de-

termination of a good robust feasible upper bound, which could,

for example, be obtained via some heuristic. 
a  
.2. Comparison of affine decision rules and CCG with one edge 

ailure 

While we have already shown that the affine decision rules

ADR) approach is not applicable to the SNDlib problems when

 > 1, its potential for the special case when k = 1 is of interest.

herefore, the ADR formulation was implemented for k = 1 and

ompared to the CCG algorithm. Table 3 demonstrates the rela-

ive effectiveness of both approaches in finding robust optimal so-

utions when k = 1 and for the intermediate ρ = 1 setting. 

As expected, the optimal objective function values for both

ases are exactly the same, confirming numerically that the ADR

pproach is exact for this case. Interestingly, however, in most
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Fig. 4. Progress of upper and lower bounds for instance ‘dfn-bwin’ under two different settings for k . 

Table 3 

Comparison of computational times for the CCG algorithm versus the affine decision 

rules approach when k = 1 and ρ = 1 . 

Network Optimal cost CCG ADR 

time (in seconds) time (in seconds) 

abilene 120309.07 0.13 0.06 

atlanta 18932785.00 0.08 0.23 

brain 3134.30 0.28 0.74 

dfn-bwin 30451.25 0.21 2.69 

dfn-gwin 8099.44 0.26 4.35 

di-yuan 5780085.68 0.26 2.20 

france 8267.08 0.89 3.09 

geant 144748.06 0.52 1.38 

germany50 739454.44 3.21 21.45 

giul39 53.27 3.25 68.51 

india35 2278.54 1.94 36.11 

newyork 24460.56 0.46 3.98 

nobel-eu 1706129.61 0.53 1.98 

nobel-germany 377555.62 0.23 0.51 

nobel-us 4425847.75 0.12 0.26 

norway 36088.09 0.54 5.79 

pdh 25111336.36 0.21 1.13 

pioro40 343107.85 2.87 58.82 

polska 33120.88 0.09 0.06 

sun 1124.84 0.68 7.43 

ta1 10698220.03 0.73 7.22 

ta2 16481127.50 2.03 61.19 

zib54 625961.94 0.91 9.88 

Average N/A 0.89 13.00 
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ases the CCG algorithm finds the optimal solutions much faster

han the latter. This is despite the fact that CCG requires multi-

le iterations, between 4 and 44 for these networks, with at least

wice as many optimization calls during the course of the algo-

ithm. It appears that the significant number of added flow ad-

ustment variables ( O 

(| E| 2 )) and additional constraints increases

he complexity of the ADR formulations such that performing the

any, albeit smaller, optimization calls in the CCG algorithm is

ore efficient than solving the large ADR models once. Evidently,

he ability to focus only on the most important scenarios identified

y the oracle is a strong benefit of the CCG approach. 
. Application on a defender-attacker paradigm 

We now demonstrate how the CCG algorithm can be expanded

o more complex applications of network design through the in-

orporation of a defender versus attacker setting ( Alderson et al.,

015; Brown, Carlyle, Salmerón, & Wood, 2006; Lou & Zhang,

011; Snyder et al., 2006; Yuan et al., 2016b; Yuan, Zhao, &

eng, 2014 ), such as those that often arise in network interdic-

ion ( Avenhaus & Canty, 2009; Cormican, Morton, & Wood, 1998;

ullivan & Cole Smith, 2014; Washburn & Wood, 1995 ) or security

 Baykal-Gürsoy, Duan, Poor, & Garnaev, 2014; Gueye, Walrand, &

nantharam, 2010 ) games. Rather than passively designing a net-

ork to account for potential edge failures, we can now actively

eek to defend specific nodes up to a defense budget �D , with

 e ∈ {0, 1} representing the choice of an edge e ∈ E being protected,

 

e ∈ E 
r e ≤ �D . (26) 

he defender will here and now choose which edges cannot fail,

ait and see which edges an attacker (be it a malevolent actor

r a random event) causes to fail, and then make final defensive

ctions to reroute flows. 

As a result, the uncertainty set must be extended to reflect the

act that, when r e = 1 , an edge e ∈ E cannot fail. However, since r e 
s explicitly in the control of the decision-maker, we warrant the

se of a decision-dependent uncertainty set. Such sets have been

ecently proposed to allow robust optimization approaches han-

le uncertainty of endogenous nature ( Lappas & Gounaris, 2018;

ohadani & Sharma, 2018; Poss, 2014 ). Here, we demonstrate that

he column and constraint generation algorithm of Zeng and Zhao

2013) can also be applied in this context. More specifically, let a

ecision-dependent uncertainty set as follows: 

r (r) := 

{
ξ ∈ { 0 , 1 } | E| : 

∑ 

e ∈ E 
ξe ≤ �A 

ξe ≤ 1 − r e ∀ e ∈ E 

}
, (27) 

here �A represents the attacker’s budget, replacing k from the

revious examples. 
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Fig. 5. Effect of the attacker and defender budgets on network feasibility for SNDLib 

network ‘abilene’. Points do not appear when the combination of �A and �D is in- 

feasible. 

 

w  

s

�  

A  

o  

s  

t

 

t  

s  

o  

s  

w  

f  

n  

t  

m  

f  

u  

f  

p

5

 

p  

m  

w  

H  

p  

S  
The random variable realization ξe = 1 still represents an edge

failing, while the second constraint in the uncertainty set limits

the admissible realizations for ξ such that protected edges can-

not fail. We highlight that, since the defender now has a choice

to immunize (at a cost) any edge, we have now lifted our orig-

inal prohibition of simultaneous failure of all edges adjacent to

a node, allowing such a scenario to be admitted by the uncer-

tainty set. The new two-stage, defender-attacker-defender formu-

lation appears below. 

min 

u,r 

∑ 

e ∈ E 
c u e u e + c r e r e + max 

ξ∈ �r (r) 
min 

f 

∑ 

e ∈ E 
c f e 

(
f f e + f b e 

)
s.t. 

∑ 

e ∈ E 
r e ≤ �D s.t. f b e ≤ (1 − ξe ) ( u e + p e ) ∀ e ∈ E 

u e ≥ 0 ∀ e ∈ E f f e ≤ (1 − ξe ) ( u e + p e ) ∀ e ∈ E 

r e ∈ { 0 , 1 } ∀ e ∈ E 
∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
= b i ∀ i ∈ N 

f b e ≥ 0 ∀ e ∈ E 

f f e ≥ 0 ∀ e ∈ E 

(28)

5.1. Augmented master problem and subproblems 

As in the previous examples, we shall seek to apply a col-

umn and constraint generation algorithm, which requires appro-

priate adaptations of the master problem (17) and the subprob-

lems (21) and (23) . When building the master problem, we must

be especially careful to take into account that an edge cannot fail,

if it is made resilient; that is, if the subproblem chooses a solution

ξ ∗ causing an edge e to fail, there must be a way to disregard this

edge failure in the master problem, if r e = 1 . We propose achiev-

ing this through two indicator constraints that define a new total

capacity x l e for each edge in every scenario l , which considers edge

failures only if the edge is not resilient: 

r e = 1 → x l e = u e + p e ∀ e ∈ E, ∀ l ∈ L 

r e = 0 → x l e = (1 − ξ ∗,l 
e )(u e + p e ) ∀ e ∈ E, ∀ l ∈ L 

(29)

It is easy to see that whenever an edge is protected, its capacity

will not be impacted by any possible edge failures. Using these

new capacity variables, the master problem can be written in For-

mulation (30) . 

min 

u,r, f b,l , f f,l 

∑ 

e ∈ E 
( c u e u e + c r e r e ) + ζ

s.t. 
∑ 

e ∈ E 
c f e 

(
f f,l e + f b,l 

e 

)
≤ ζ ∀ l ∈ L 

∑ 

e ∈ E 
r e ≤ �D 

r e = 1 → x l e = u e + p e ∀ e ∈ E, ∀ l ∈ L 

r e = 0 → x l e = (1 − ξ ∗,l 
e )(u e + p e ) ∀ e ∈ E, ∀ l ∈ L 

0 ≤ f b,l 
e , f f,l e ≤ x l e ∀ e ∈ E, ∀ l ∈ L ∑ 

e ∈ E: d(e )= i 
f f,l e − f b,l 

e + 

∑ 

e ∈ E: o(e )= i 
f b,l 
e − f f,l e = b i ∀ i ∈ N, ∀ l ∈ L 

x l e ≥ 0 ∀ e ∈ E, ∀ l ∈ L 

r e ∈ { 0 , 1 } ∀ e ∈ E 

u e ≥ 0 ∀ e ∈ E (30)

ρ

The general oracle is the defined as follows: 

max 
ξ∈ �∗

r 

min 

f b , f f 

∑ 

e ∈ E 
c f e 

(
f f e + f b e 

)
s.t. f b e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E 

f f e ≤ (1 − ξe ) ( u 

∗
e + p e ) ∀ e ∈ E ∑ 

e : d(e )= i 

(
f f e − f b e 

)
+ 

∑ 

e : o(e )= i 

(
f b e − f f e 

)
= b i ∀ i ∈ V 

f b e , f 
f 

e ≥ 0 ∀ e ∈ E, (31)

here �∗
r represents the uncertainty set based on the optimal re-

ilient edges r ∗e chosen in the master problem. 

∗
r := 

{
ξ ∈ { 0 , 1 } | E| : 

∑ 

e ∈ E 
ξe ≤ �A 

ξe ≤ 1 − r ∗e ∀ e ∈ E 

}
. (32)

t this point, the derivation of the final subproblems follows that

f Section 3 , albeit with the modified uncertainty set. This is a

traightforward exercise, which we shall not present in detail at

he interest of brevity. 

We are now ready to apply a column and constraint genera-

ion algorithm under the case of a decision dependent uncertainty

et. In the master problem, the defender chooses what the capacity

f each edge is and which edges should be resilient. Then via the

ubproblem, the attacker makes their best play to destroy the net-

ork, and the defender readjusts flows to account for this. If the

easibility subproblem reveals edge failures ξ ∗
e that can make the

etwork infeasible, then the master problem is solved again with

hese edge failures taken into account, adjusting which edges are

ade resilient and the overall edge capacities. If the problem is

easible but suboptimal, then (similarly to Section 3 ) the edge fail-

res ξ ∗
e are added back into the master problem to be accounted

or by the defender. The algorithm iterates until the network is

roven infeasible or a robust optimal solution is found. 

.2. Insights from the defender-attacker setting 

For brevity, only a short discussion of results from this setting is

rovided. It should be noted that these problems result to an MILP

aster problem due to the binary decisions on edge resilience,

hich in general increase computational complexity and runtimes.

owever, it is still possible to gain interesting insights to the im-

ortance of the attacker and defender budgets, as seen in Fig. 5 for

NDlib network ‘abilene’. In these runs, costs are defined such that

= 1 . 0 and c r e := 100 c u e . 
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A key distinction in the defender-attacker formulation is that

ccess to each node is no longer guaranteed by the uncertainty

et. Access to each node must be ensured by the defender’s ac-

ions, if their budget allows them to. Fig. 5 shows that when re-

ilient edges are not utilized ( �D = 0 ), it is impossible to protect

gainst an attacker; no solution exists when �A = 1 and �D = 0 .

ntuitively, this can be explained by the fact that (in the network

abilene’) there exists at least one node with a single connecting

dge. When �D = 1 , a defense can be gained for up to one edge

ailure. However, a feasible network cannot be guaranteed for two

imultaneous edge failures unless eight edges can be protected!

et, by a defensive budget of 11, the entire 15 node network can

e ensured to be feasible. 

In this brief example, it is clear that the defender-attacker

aradigm can utilize the same general column and constraint gen-

ration methodology to provide key insights into robust network

esign. We can now understand how many edges must be pro-

ected to guarantee robustness, and the amount at which the net-

ork can be attacked at each level of protection before the net-

ork fails. Furthermore, if costs are scaled similarly to the toy

anner conducted in this section, it may also become evident that

ecoming robust is cheaper via making edges resilient rather than

ncreasing edge capacity. While there is plenty more that could be

iscussed in the future regarding this paradigm, this section serves

s one example of how the CCG methodology can be expanded to

ore advanced problems of robust network design. 

. Conclusions 

The single-commodity network design problem under the pos-

ibility for multiple concurrent edge failures was formulated as a

wo-stage robust optimization problem and solved to optimality

sing a tailored column and constraint generation algorithm. It was

hown that a column and constraint generation approach is more

uited to this problem than an adjustable robust optimization for-

ulation with affine decision rules, which is exact when only one

dge failure occurs but cannot provide robust feasible solutions in

ost practical cases when two or more edges have failed at the

ame time. The column and constraint generation algorithm was

ailored to this problem with two subproblems forming the oracle,

roviding random variable realizations that may cause infeasibility

r that are most detrimental to the cost. Computational examples

dapted from SNDLib demonstrate the effectiveness of this column

nd constraint generation algorithm. Optimal network topologies

ere calculated for each network up until the number of simul-

aneous edge failures for which no feasible topology exists for the

etwork, with the price of robustness calculated in each of these

ases. It is easy to see that this formulation can be readily ex-

ended to more complex settings, such as the defender-attacker-

efender paradigm discussed briefly in this paper. The formula-

ion can also be relaxed to allow for partial edge failures through

ontinuous random variables, or to even allow demand infeasibil-

ty through the introduction of slack variables in the flow balance

onstraints. In conclusion, the results of this work demonstrate the
uitability of two-stage robust optimization for designing resilient

etworks, as well as the potential of a well-implemented column

nd constraint generation algorithm for a variety of applications. 
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ppendix A. Affine decision rules formulation 

The affine decision rules formulation in (5) can be addressed

ia standard reformulation techniques based on strong linear

rogramming duality. More specifically, the requirement to enforce

n inequality constraint for all uncertainty realizations admissible

y the uncertainty set can be reformulated into a constraint-

pecific inner level linear optimization problem, enforcing that the

onstraint will be satisfied at the worst-case with respect to the

ncertain parameters ξ . This inner level optimization problem is

eplaced with its dual problem, for which a feasible solution main-

ains that the original inequality constraint is satisfied. Thus, the

riginal inequality constraints referencing parameters ξ are trans-

ormed into a set of regular linear constraints that constitute their

obust counterparts. We remark that, while performing this step,

e regard the random variables ξ as continuous in [0,1]. Since this

s an effective relaxation of the uncertainty set, any feasible solu-

ion found will remain robust for the original uncertainty set (2) .

otably, under mild assumptions on the problem input, including

he setting k = 1 , the uncertainty set is totally unimodular in ξ ,

eading the proposed continuous relaxation to be, in fact, exact. 

In addition, the requirement to enforce an equality constraint

or all uncertainty realizations admissible by the uncertainty set

an be replaced with an equivalent set of linear conditions de-

ived via coefficient matching. The conditions essentially enforce

hat the coefficient of every uncertain parameter referenced in the

riginal equality constraint, as well as the latter’s non ξ -dependent

erm, be zero at any feasible solution. We remark that these con-

itions constitute an exact reformulation of the original constraint

or all settings of k , since for k = 0 they default to the nominal

eterministic constraints, while for k ≥ 1 the uncertainty set’s con-

truction ensures that the number of distinct scenarios admissible

y the set is always greater than the number of uncertain param-

ters that may potentially obtain a nonzero value. After the refor-

ulations described above, the final affine decision rules approx-

mation of our original two-stage robust optimization problem is

hown in Formulation (33) . In this model, variables λ, μ and ν are

ppropriately defined dual variables that were introduced during

he derivation process. Note how the final formulation constitutes

 linear program that can be solved via standard linear optimiza-

ion solvers. 

https://doi.org/10.13039/100000002
https://doi.org/10.13039/100006502
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min 

u, f,τ,λ,μ,ν∈ R 

∑
e ∈ E

s.t. − τ + 

∑ 

e ∈ E 
c f e 

(
f f 0 
e + f b0 

e 

)
+ λ1 k + 

∑ 

i ∈ V T 
(D i − 1) μ1 

i + 

∑ 

e ∈ E 
ν1 

e ≤ 0 

λ1 + μ1 
d(l) + μ1 

o(l) + ν1 
l −

∑ 

e ∈ E 
c f e 

(
f f 
e,l 

+ f b e,l 

)
≥ 0 

f b0 
e − u e + λe, 2 k + 

∑ 

i ∈ V T 
(D i − 1) μe, 2 

i 
+ 

∑ 

l∈ E 
νe, 2 

l 
≤ p e 

λe, 2 + μe, 2 
d(l) 

+ μe, 2 
o(l) 

+ νe, 2 
l 

− f b e,l ≥ 0 

λe, 2 + μe, 2 
d(e ) 

+ μe, 2 
o(e ) 

+ νe, 2 
e − f b e,e − u e ≥ p e 

f f 0 
e − u e + λe, 3 k + 

∑ 

i ∈ V T 
(D i − 1) μe, 3 

i 
+ 

∑ 

l∈ E 
νe, 3 

l 
≤ p e 

λe, 3 + μe, 3 
d(l) 

+ μe, 3 
o(l) 

+ νe, 3 
l 

− f f 
e,l 

≥ 0 

λe, 3 + μe, 3 
d(e ) 

+ μe, 3 
o(e ) 

+ νe, 3 
e − f f e,e − u e ≥ p e 

− f b0 
e + λe, 4 k + 

∑ 

i ∈ V T 
(D i − 1) μe, 4 

i 
+ 

∑ 

l∈ E 
νe, 4 

l 
≤ 0 

λe, 4 + μe, 4 
d(l) 

+ μe, 4 
o(l) 

+ νe, 4 
l 

+ f b e,l ≥ 0 

− f f 0 
e + λe, 5 k + 

∑ 

i ∈ V T 
(D i − 1) μe, 5 

i 
+ 

∑ 

l∈ E 
νe, 5 

l 
≤ 0 

λe, 5 + μe, 5 
d(l) 

+ μe, 5 
o(l) 

+ νe, 5 
l 

+ f f 
e,l 

≥ 0 ∑ 

e : d(e )= i 

(
f f 0 
e − f b0 

e 

)
+ 

∑ 

e : o(e )= i 

(
f b0 
e − f f 0 

e 

)
= b i 

∑ 

e : d(e )= i 

(
f f 
e,l 

− f b e,l 

)
+ 

∑ 

e : o(e )= i 

(
f b e,l − f f 

e,l 

)
= 0 

u e ≥ 0 

λ1 ≥ 0 

λe, j ≥ 0 

μ1 
i ≥ 0 

μ1 
i = 0 

μe, j 
i 

≥ 0 

μe, j 
i 

= 0 

ν1 
l ≥ 0 

νe, j 

l 
≥ 0 

Appendix B. Preprocessing of initial graphs 

Section 4 outlines how graphs provided from the Survivable

Network Design Library are adapted from a telecommunications

context to a single-commodity context for use with the formula-

tions in this manuscript. After adapting the problem to this con-

text, it became clear that in many cases, a variety of simplifications

could be made to provide problem instances with fewer nodes

or edges to consider, and consequently, formulations with fewer

variables and constraints. Specifically, the following rules facilitate

such preprocessing of the input data, and can be applied to sim-

plify our network design instances. Note that application of this

procedure is meant to be recursive; that is, if any simplifications

are adopted, the whole procedure should be applied again on the

simplified graph until no more simplifications are possible. 
 

+ τ

∀ l ∈ E 

∀ e ∈ E 

∀ l ∈ E, ∀ e ∈ E, l 	 = e 

∀ e ∈ E 

∀ e ∈ E 

∀ l ∈ E, ∀ e ∈ E, l 	 = e 

∀ e ∈ E 

∀ e ∈ E 

∀ l ∈ E, ∀ e ∈ E 

∀ e ∈ E 

∀ l ∈ E, ∀ e ∈ E 

∀ i ∈ V 

∀ l ∈ E, ∀ i ∈ V 

∀ e ∈ E 

∀ e ∈ E, ∀ j ∈ { 2 , 3 , 4 , 5 } 
∀ i ∈ V T 

∀ i ∈ V \ V T 

∀ i ∈ V T , ∀ e ∈ E, ∀ j ∈ { 2 , 3 , 4 , 5 } 
∀ i ∈ V \ V T , ∀ e ∈ E, ∀ j ∈ { 2 , 3 , 4 , 5 } 
∀ l ∈ E 

∀ l ∈ E, ∀ e ∈ E, ∀ j ∈ { 2 , 3 , 4 , 5 } 
(33) 

1. A node with degree one and demand zero may be removed

from the graph, along with its adjacent edge, since flow to

this node will never be required in an optimal network de-

sign, and since nature will never have an incentive to dam-

age this edge. 

2. If the graph contains a loop that involves a node i with de-

gree no less than three, for which all nodes in the loop other

than node i have degree two and demand zero, then flow

will never enter this loop in an optimal solution, while na-

ture will never have an incentive to damage any of its edges.

Hence, each of the nodes and edges in the loop may be

removed, with the exception of node i , which shall remain

connected to the rest of the graph, albeit with a degree that

is now reduced by two. 
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Fig. B1. Initial and simplified graphs of problem ‘zib54’. Each node is labeled with its demand. The dashed lines indicate new edges gained through the removal of nodes 

with degree two and demand zero. 
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3. A node with degree two and demand zero may be removed

from the graph, if its two adjacent edges feature the same

pre-installed capacity. The two edges may then be replaced

with one new edge, since routing flow through this trans-

shipment node requires that the flows into and out of the

node be equal. Furthermore, nature would have no incentive

to damage both edges concurrently, while damaging one of

the original edges is effectively equivalent to damaging the

new combined edge. While the cost to install new capac-

ity on the new edge shall be equal to the sum of costs ap-

plicable for the two replaced edges, the pre-installed capac-

ity of the new edge shall be equal to their common original

value. 8 

The preprocessing of the graphs can allow certain problems

o be substantially simplified. For example, Fig. B.1 showcases the

ase of problem ‘zib54’, which featured a reduction in number of

odes from 54 to 37 and a reduction in total number of edges from

0 to 62. Note how a loop extending from the bottom right node of

he initial graph was completely removed after this simplification. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2019.06.021 . 
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Jabr, R. A., Džafić, I., & Pal, B. C. (2015). Robust optimization of storage investment

on transmission networks. IEEE Transactions on Power Systems, 30 (1), 531–539.

doi: 10.1109/TPWRS.2014.2326557 . 
Koster, A. M. C. A., & Kutschka, M. (2011). An integrated model for survivable net-

work design under demand uncertainty. In Proceedings of the 8th international
workshop on the design of reliable communication networks (DRCN) (pp. 54–61).

doi: 10.1109/DRCN.2011.6076885 . 
Lappas, N. H., & Gounaris, C. E. (2016). Multi-stage adjustable robust optimiza-

tion for process scheduling under uncertainty. AIChE Journal, 62 (5), 1646–1667.

doi: 10.1002/aic.15183 . 
Lappas, N. H. , & Gounaris, C. E. (2018). Robust optimization for decision-making un-

der endogenous uncertainty. Computers & Chemical Engineering, 111 , 252–266 . 
Lee, C., Lee, K., & Park, S. (2013). Benders decomposition approach for the robust

network design problem with flow bifurcations. Networks, 62 (1), 1–16. doi: 10.
1002/net.21486 . 

Lee, C., Liu, C., Mehrotra, S., & Bie, Z. (2015). Robust distribution network recon-

figuration. IEEE Transactions on Smart Grid, 6 (2), 836–842. doi: 10.1109/TSG.2014.
2375160 . 

Lee, C., Liu, C., Mehrotra, S., & Shahidehpour, M. (2014). Modeling transmission line
constraints in two-stage robust unit commitment problem. IEEE Transactions on

Power Systems, 29 (3), 1221–1231. doi: 10.1109/TPWRS.2013.2291498 . 
Lou, Y., & Zhang, L. (2011). Defending transportation networks against random and

targeted attacks. Transportation Research Record: Journal of the Transportation Re-

search Board, 2234 , 31–40. doi: 10.3141/2234-04 . 
Mudchanatongsuk, S. , Ordóñez, F. , & Liu, J. (2008). Robust solutions for network de-

sign under transportation cost and demand uncertainty. The Journal of the Oper-
ational Research Society, 59 (5), 652–662 . 

Nohadani, O., & Sharma, K. (2018). Optimization under decision-dependent uncer-
tainty. SIAM Journal on Optimization, 28 (2), 1773–1795. doi: 10.1137/17M1110560 .

Ordóñez, F., & Zhao, J. (2007). Robust capacity expansion of network flows. Net-

works, 50 (2), 136–145. doi: 10.1002/net.20183 . 
Orlowski, S., Wessäly, R., Pióro, M., & Tomaszewski, A. (2010). Sndlib 1.0–Survivable

Network Design Library. Networks, 55 (3), 276–286. doi: 10.1002/net.20371 . 
Poss, M. (2014). Robust combinatorial optimization with variable cost uncertainty.

European Journal of Operational Research, 237 (3), 836–845 . 
Poss, M., & Raack, C. (2013). Affine recourse for the robust network design problem:

Between static and dynamic routing. Networks, 61 (2), 180–198. doi: 10.1002/net.

21482 . 
imchi-Levi, D., Wang, H., & Wei, Y. (2017). Constraint generation for two-stage
robust network flow problem. INFORMS Journal on Optimization, 1 (1), 49–70.

doi: 10.1287/ijoo.2018.0 0 03 . 
nyder, L. V., Scaparra, M. P., Daskin, M. S., & Church, R. L. (2006). Planning for

disruptions in supply chain networks. Models, methods, and applications for in-
novative decision making (pp. 234–257). doi: 10.1287/educ.1063.0025 . 

ullivan, K. M. , & Cole Smith, J. (2014). Exact algorithms for solving a euclidean
maximum flow network interdiction problem. Networks, 64 (2), 109–124 . 

Thiele, A., Terry, T., & Epelman, M. (2009). Robust linear optimization with recourse.

Optimization Online . http://www.optimization-online.org/DB _ FILE/2009/03/2263.
pdf . 
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