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a b s t r a c t 

We address an optimization problem that arises at seaports where containers are transported between 

stacking areas and small buffer areas of restricted capacity that are located within the reach of quay 

cranes. The containers are transported by straddle carriers that have to be routed such that given unload- 

ing and loading sequences of the containers at the quay cranes are respected. The objective is to minimize 

the turnaround times of the vessels. We analyze the problem’s computational complexity, present an in- 

teger program, and propose a heuristic framework that is based on decomposing the problem into its 

routing component and a component that handles the time variables and buffer capacities. The frame- 

work is analyzed in computational tests that are based on real-world data. Based on these tests, we ana- 

lyze the question of whether or not it pays off to deviate from the approach of permanently assigning a 

fixed number of straddle carriers to each quay crane, which is the strategy that is currently implemented 

at the port. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

A container port is a complex system consisting of berths

equipped with quay cranes, transport vehicles, stacking areas,

stacker cranes, and road or rail connections to the hinterland.

Each container port is a unique combination of these components

and features an individual vehicle fleet. Large ports handle several

million twenty-foot equivalent units (TEU) on an annual basis. Port

authorities therefore strive for sophisticated planning approaches

based on simulation or optimization techniques in order to stay

competitive. 

Operations research challenges at seaports are mostly con-

cerned with problem settings that directly or indirectly affect the

flow of containers within the ports. Container ports that can serve

several vessels simultaneously aim at high berth utilization rates,

so that decision makers have to determine appropriate assign-

ments of vessels to berths. Each berth is equipped with one or

multiple quay cranes . These cranes are needed for the process

of loading and unloading containers and have to be scheduled

appropriately. Inbound containers, i.e., containers that arrive by
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essels, must then be transported to large stacking (or storage) ar-

as, where they are temporarily stored for later processing by train,

ruck or vessel. Outbound containers, i.e., containers that arrive by

rain or truck and that have to be loaded onto a vessel, have to

e transported in the reverse direction. The corresponding trans-

ortation requests within the seaport can be executed by differ-

nt types of vehicles. Automated guided vehicles (AGVs) and man-

ally driven yard trucks (YTs) cannot lift or drop containers. They

ave to be loaded and unloaded at predefined handover positions

y quay cranes at the vessels or by yard cranes (or gantry cranes)

t the storage areas. Automated lifting vehicles (ALVs) are able to

erform lifting and dropping operations. However, yard cranes re-

ain necessary for stacking operations. Straddle carriers (SCs) and

each stackers (RSs) represent the most flexible solutions as these

ehicles can perform all necessary container operations, i.e., lift-

ng, dropping, and stacking, without the need for additional cranes.

Ss, however, are usually only applied in small and medium sized

orts. 

Especially in peak times, the major objective of port authori-

ies is the minimization of dwell times of vessels at the berths

see also Jaehn & Kress, 2018; Kovalyov, Pesch, & Ryzhikov, 2018;

ress, Dornseifer, & Jaehn, 2019; Nossack, Briskorn, & Pesch, 2018 ).

 key factor to achieving this objective is an efficient usage of

uay cranes (see, e.g., Goodchild & Daganzo, 2007 ), so that the

roblem of effectively planning the transportation processes of
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ontainers between quay cranes and storage areas is of specific

mportance. Our research (see also Meiswinkel, 2018 ) is motivated

y a real-world setting at a container port in Germany, where SCs

re used for transportation and storage (lifting, dropping, restack-

ng) operations. Buffer areas of limited capacity (four containers) at

he quay cranes allow the intermediate (short term) storage of con-

ainers that have been unloaded from a vessel or that have been

ropped by a SC and that are waiting to be loaded onto a vessel.

he current approach at the considered port is to permanently as-

ign three to five SCs to each quay crane. This, however, restricts

he potential of effectively routing the SCs, which is a prerequisite

or high quay crane utilization rates and, consequently, short dwell

imes of the vessels. In this article, we will therefore analyze if re-

axing this constraint is beneficial. 

.1. Related literature 

General survey articles on the vast amount of literature related

o logistic operations at container terminals and to ocean container

ransport in general are given by Steenken, Voß, and Stahlbock

2004) and Lee and Song (2017) , respectively. When it comes to

eaport operations, a major focus of the literature lies on the

forementioned berth allocation problem, the scheduling of quay

ranes, and on transportation operations within the ports. Compre-

ensive overviews of the relevant literature regarding these prob-

em settings are given by Bierwirth and Meisel (2010, 2015) and

tahlbock and Voß (2008) . Another recent literature overview by

ehnfeld and Knust (2014) focuses on problems of loading, unload-

ng and premarshalling of stacks in storage areas and combined

roblem settings. Carlo, Vis, and Roodbergen (2014a) survey litera-

ure on storage yard operations. Kuzmicz and Pesch (2019) present

iterature on approaches concerning the repositioning of empty

ontainers between Europe and China. 

All of the aforementioned survey articles include at least some

rticles related to transport operations and vehicle routing prob-

ems in container terminals, i.e., the field of study in the article

t hand. Detailed and more focused reviews on these topics are

rovided by Carlo, Vis, and Roodbergen (2014b) and Stahlbock and

oß (2008) . Hence, for the sake of brevity, we refer the reader to 

hese articles for a detailed overview of the field and restrict our-

elves to presenting only the most relevant literature in the context

f our problem setting in the remainder of this section. In doing so,

e categorize the publications based on the types of vehicles that

re considered by the respective authors, as these types strongly

ffect the way that buffer areas are implemented at the considered

orts. 

In case of vehicles that cannot perform lifting and dropping op-

rations themselves, e.g., AGVs or YTs, the nature of buffer areas

s profoundly different from our setting as they will always have

o be implemented by (loaded or unloaded) vehicles that wait to

e served by quay cranes or yard cranes. In contrast to our set-

ing, there is direct interaction between cranes and vehicles, so

hat specialized solution approaches for these settings are usually

ot directly applicable to our case. However, there are some in-

ights, analogies, and problem characteristics that are relevant to

he problem at hand and related directions for future research.

ish et al. (2005) , for example, consider a setting with AGVs and

 single quay crane that solely performs loading or unloading op-

rations. They prove that a simple greedy algorithm solves their

ingle crane problem to optimality. This result will most probably

lso hold for our case. Based on the greedy algorithm, Bish et al.

2005) then present a heuristic approach for the case of multiple

ranes. Other relevant papers include Bish (2003) , who focusses on

he problem of effectively routing AGVs and scheduling the related

uay crane operations. The author considers multiple quay cranes

hat perform both unloading and loading operations. The decision
f selecting a storage location out of a set of potential candidate lo-

ations for each unloaded container is integrated into the problem.

 heuristic method based on formulating the problem as a trans-

hipment problem is presented. Angeloudis and Bell (2010) focus

n a setting with various conditions of uncertainty. They develop

 dispatching approach with a planning horizon of two container

ovements per AGV and perform simulation experiments to com-

are the approach with other heuristics. Briskorn, Drexl, and Hart-

ann (2006) transform an AGV routing problem with the objec-

ive of minimizing the weighted sum of earliness, tardiness and

mpty travel time into an inventory based formulation and present

n exact algorithm. Kim and Bae (2004) present a MIP formula-

ion and a heuristic approach for the dispatching and routing of

GVs with the objective of minimizing the waiting time of cranes

s well as the total travel distance of the vehicles. Grunow, Gün-

her, and Lehmann (2004) consider AGVs that are able to carry

wo containers at a time. They present a priority rule based ap-

roach in order to minimize the total lateness. Similarly, Grunow,

ünther, and Lehmann (2006) consider AGVs that are able to carry

ither two small-sized containers or one large-sized container. The

uthors analyze the performance of this setting in comparison to a

etting where only one (either small- or large-sized) container can

e transported by each AGV. Lee, Cao, Shi, and Chen (2009) ana-

yze a port that uses YTs and integrate the scheduling of these ve-

icles with the problem of allocating containers to storage blocks.

ach container has a time window with a hard lower bound and

 soft upper bound. The authors focus on minimizing the total de-

ay with respect to these upper bounds and the total travel time

f the YTs. Ng, Mak, and Zhang (2007) consider YTs for the trans-

ortation of containers between yard cranes and quay cranes. A

et of genetic algorithms that minimize the makespan is presented

nd compared. 

In comparison to the aforementioned stream of research, the

cheduling of vehicles that can lift and drop containers them-

elves, e.g., SCs or ALVs, is more flexible, as these vehicles will

ot have to wait until the containers are taken over by the quay

ranes. Here, buffer areas allow the short term storage of con-

ainers without the interaction of any vehicle or crane, so that

he horizontal transport of containers by vehicles is decoupled

rom the crane operations, which is the perspective taken in this

aper. In this context, Nguyen and Kim (2009) consider a setting

hat takes account of buffer areas at the quay cranes and that is

airly similar to ours. While we consider SCs, they assume that the

ransportation of containers is performed by ALVs. They do not

ncorporate the yard crane schedules into their model, but rather

ssume that the ALVs spend a specific time period at the storage

reas to retrieve or store the containers. Hence, they abstract

rom the explicit incorporation of storage area operations, which

e aim to include into our model. Specifically, we include the

ossibility to split the processing of restacking operations and

he retrieving and storage operations of the associated containers

that have to be loaded onto or unloaded from a vessel) among

ultiple vehicles, rather than assigning just one vehicle to all of

hese operations. Additionally, different from our model, Nguyen

nd Kim (2009) do not consider safety time considerations in

rder to avoid collisions of the vehicles. They develop a heuristic

pproach that is based on a procedure that heuristically converts

uffer constraints into time window constraints. In contrast to our

pproach, it imposes fairly restrictive assumptions with respect

o the sequence of the containers that are processed by the ALVs.

urthermore, it is less flexible with respect to the incorporation

f the setting at the beginning of the planning horizon, so that

he authors leave the evaluation of their approach in a dynamic

nvironment for future research. Other relevant articles include

öse, Reiners, Steenken, and Voß (20 0 0) , who consider a setting

ith a fixed number of SCs and multiple quay cranes that feature
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storage areas buffer areas vessels

loading crane

unloading crane

straddle carriers quay cranes

Fig. 1. Problem setting. 
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buffers of unrestricted capacity. The authors present and evaluate

evolutionary algorithms. Kress, Meiswinkel, and Pesch (2015)

describe and analyze a combined partitioning and matching prob-

lem that can be used to model the transportation of containers

by RSs in small to medium sized ports that feature a small

temporary storage area in addition to the main stacking areas.

They present a heuristic framework that is based on decompos-

ing the problem into its matching and partitioning components.

Skinner et al. (2013) develop a genetic algorithm for routing SCs

in a fairly specific setting at a container terminal in Australia. In

contrast to the other studies, they do not only take account of the

transportation of containers between stacking areas and the quay

cranes but also consider transportation requests between stacking

areas and hinterland connections. Kim and Kim (1999) present a

routing problem with a mixed fleet of SCs and YTs in a setting

with multiple quay cranes that solely have to perform loading

operations. They present and evaluate a beam search algorithm. 

1.2. Problem setting and contribution 

As outlined above, we consider a setting where SCs are used to

transport containers between storage areas and quay cranes that

are equipped with buffer areas of limited capacity. This is illus-

trated in Fig. 1 . 

Because containers vary significantly in weight and the load

of vessels has to be balanced due to safety restrictions, we as-

sume that the sequences of containers that have to be loaded

onto or unloaded from the vessels by the quay cranes are deter-

mined in a higher level optimization problem and can be consid-

ered as given. Moreover, as frequently assumed in the literature,

the origin or destination location in the storage areas is assumed

to be known in advance for each container. In line with this as-

sumption, we assume that the movement of a given container to,

from, or within the storage areas cannot interfere with a lifting

or dropping operation of another container within the storage ar-

eas, e.g., by permanently “blocking” its corresponding container

stack. 

A container port is a highly dynamic environment, in which fre-

quent rescheduling of operations is needed. We therefore assume

the container sequences to be rather short and consider each quay

crane either as a loading crane that solely loads containers onto

a vessel or as an unloading crane that solely unloads containers

from a vessel (see Fig. 1 ). Hence, we do not consider crane dou-

ble cycling (see, for example, Goodchild & Daganzo, 2007 ), i.e., the

combined processing of loading and unloading operations in single

crane cycles (movements from the buffer to the vessel and back

or vice versa). Furthermore, at the beginning of the planning hori-

zon, the SCs may be located anywhere in the port and the cranes’

buffer areas may not be empty. SCs and quay cranes may also not
e immediately available because they may be in the process of

andling a container. 

The task of picking up a container at its origin and moving it

o its destination by a SC is henceforth referred to as a job. As

ach job is associated with a distinct container, we will sometimes

efer to a job by its corresponding container and vice versa. The

obs can be classified according to the origin and destination of

he respective containers (see Fig. 1 ). Loading jobs relate to contain-

rs that originate at storage areas and have to be transported to a

uffer, where they are loaded onto a vessel by a quay crane. Simi-

arly, unloading jobs relate to containers that have to be transported

rom a buffer to their storage location upon having been unloaded

rom a vessel. Restacking jobs correspond to container movements

ithin the storage areas. They are taken into account because of

tacking restrictions in the storage area. It may, for example, be

ecessary to restack containers in order to be able to access spe-

ific storage locations of loading or unloading jobs. We assume that

ach restacking job is related to a distinct loading or unloading job.

ach of these loading or unloading jobs may be related to multiple

estacking jobs, all of which relate to the same stack in a storage

rea and have to be processed in a given sequence in order to be

ble to access the corresponding container or its designated stor-

ge position. These sequences are assumed to be rather short, be-

ause many restacking operations are performed in off-peak times

n order to be able to quickly access containers in peak times. Nev-

rtheless, the fact that the processing of restacking jobs and their

ssociated loading or unloading jobs may be split among multi-

le SCs may result in significant time savings when compared to

he situation in which only one SC processes all corresponding jobs

see Section 1.1 ). This is because it allows a container that corre-

ponds to a loading job to potentially be lifted before the process-

ng of the associated restacking containers is completed or to start

he processing of a container that has been unloaded from a ves-

el before the corresponding restacking jobs have been lifted. Note

hat, in line with our research question, we do not assume the as-

ignment of SCs to cranes to be fixed, so that - in contrast to the

ranes - SCs are allowed to process a mix of loading, unloading,

nd restacking jobs. 

As we address questions of rather general nature, the incor-

oration of the details of the port layout, e.g., driving lanes or

he layout of storage blocks, is not expected to have a critical

mpact on our findings. Hence, for the sake of simplicity, we do

ot explicitly take these details into account. Instead, we assume

hat the SCs move on driving lanes that are arranged on a grid

hat spans over the port and make use of the Manhattan metric for

he calculation of the distance between any pair of points on this

rid. Additionally, in order to extract a somewhat basic problem

etting, the SCs are assumed to be homogeneous and we do not

ake account of their acceleration or of varying speeds for loaded

nd unloaded movements. They are assumed to always be able to
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ass each other. Furthermore, when determining distances, each

uffer is assumed to be a single point, i.e., we do not differentiate

etween storage slots in the buffer areas. In order to avoid col-

isions, we assume that certain safety times must elapse between

ifting and dropping operations of containers. 

The problem is to determine a routing of the SCs, i.e., an

llocation of jobs to SCs and a corresponding sequencing of the

obs of each SC, subject to all capacity restrictions and precedence

elations, such that the resulting quay crane schedules allow for

hort turnaround times of vessels. Hence, the objective relates to

voiding idle times of the quay cranes that arise before all of the

ranes’ containers have been dropped in the buffer areas or loaded

nto the vessels. As mentioned above, we can only consider short

ontainer sequences and we will have to reschedule regularly. We

herefore consider the objective of minimizing the sum of the

ime instants at which quay cranes interact with their buffers, i.e.,

t which the process of lifting a container starts or the process

f dropping a container finishes. By doing so, we aim at favoring

dle times at the end of the quay crane schedules. This, in turn,

llows for flexible rescheduling, which is assumed to be initiated

hen new container data becomes available, in case of unexpected

vents, or whenever one of the SCs or quay cranes has completed

ll of its assigned jobs or operations. Regular rescheduling, of

ourse, requires the ability to determine high quality solutions

n relatively short computational times, so that exact approaches

o not seem to be a promising research direction for real-world

nstance sizes in light of our complexity results presented in

ection 2.2 . 

We refer to the problem under consideration as the M anhattan

etric S traddle C arrier R outing Problem with B uffer Areas (MSCRB).

o the best of the authors’ knowledge, our specific setting is

ew to the literature. Some basic results for a variant of our

etting have been presented and analyzed in the dissertation of

eiswinkel (2018) . In the paper at hand, we present results on

he computational complexity of MSCRB and develop a heuristic

ramework that is evaluated in computational tests. These tests are

ased on real-world data, so that we can elaborate on the ques-

ion of whether or not our approach is beneficial when compared

o the current practice outlined above. 

.3. Overview of this article 

The remainder of this article is structured as follows.

ection 2 is devoted to defining the notation used throughout

he article and analyzing the computational complexity of MSCRB.

urthermore, an integer programming formulation based on an

symmetric traveling salesman problem (TSP) with precedence

onstraints is presented. A heuristic framework is described in

ection 3 . It is based on decomposing MSCRB into its routing

omponent and a component that handles the time variables and

uffer capacities. The results of our computational tests are subject

f Section 4 . The paper closes with a conclusion in Section 5 . 

. Notation and insights 

We assume that the planning horizon is divided into a finite

umber of intervals of equal length and refer to the length of a

ime interval as a time unit. All time parameters are assumed to

e integral multiples of a time unit and can therefore be specified

y natural numbers. 

We denote the set of loading cranes by C l , the set of unload-

ng cranes by C u , and the complete set of quay cranes by C =
 

l ∪ C u , | C| = n q . Each crane c ∈ C is associated with a buffer ca-

acity b c ∈ N , representing the maximum number of containers
> 0 
hat can simultaneously be stored in its buffer, a set of containers

 c = { j c, 1 , . . . , j c, | J c | } that it must process, and a set J b c of contain-

rs that are located in the crane’s buffer at the beginning of the

lanning horizon. 

The loading process of a container (performed by some loading

rane) corresponds to picking up the container in the buffer, mov-

ng it to the vessel, dropping it on the vessel, and then returning

o the buffer. Similarly, the unloading process of a container (per-

ormed by an unloading crane) corresponds to moving from the

uffer to the vessel, picking up the container, moving to the buffer,

nd dropping the container. We assume that the time needed for

n unloading or loading processes is identical for all containers. It

s denoted by t q ∈ N > 0 . 

Fig. 2 illustrates the container sets that are relevant for loading

ranes. Dashed arrows represent container movements that are not

ubject to the optimization because the respective allocation deci-

ions are fixed at the beginning of the planning horizon (see below

or details). For each loading crane c ∈ C l , the containers of the set

 

b 
c must still be processed, i.e., J b c ⊆ J c . Additionally, there potentially

xists a subset J v c ⊆ J c of containers that are handled by SCs at the

eginning of the planning horizon and that will be dropped in the

rane’s buffer. However, J c does not include a container, the load-

ng process of which has already been started but has not yet been

ompleted by the crane at the beginning of the planning horizon.

e define J l c := J b c ∪ J v c for each c ∈ C l . 

For each unloading crane c ∈ C u (see Fig. 3 ), we have J c ∩ J b c = ∅ ,
.e., the containers of the set J b c have already been processed by

he crane and are waiting to be picked up by a SC. Additionally,

here may exist a container, the unloading process of which has

lready been started but has not yet been completed by c at the

eginning of the planning horizon, which we refer to by the set

 

q 
c that solely includes this container in case of its existence. This

ontainer is not included in J c as well. We define J u c := J b c ∪ J 
q 
c =

 j c, | J c | +1 , . . . , j c, | J c | + | J u c | } for each c ∈ C u . For the sake of notational

onvenience, we additionally define J u c := ∅ for all c ∈ C l . 

Each set J c , c ∈ C , is assumed to be ordered. That is, for each pair

f containers j c , i , j c , l ∈ J c with i < l , crane c must process j c , i before it

rocesses j c , l . We take account of the fact that crane c ∈ C may not

ave finished a loading or unloading process of a container at the

eginning of the planning horizon, by defining a time instant a 
q 
c ∈

 ≥0 , at which it is available for starting to lift the next container

n the buffer in case of a loading crane or at which it has dropped

he container in the buffer in case of an unloading crane. For all

ranes c ∈ C that are immediately available, we set a 
q 
c = 0 . 

Table 1 summarizes the notation regarding the quay cranes. 

Based on the above definitions, the set of loading jobs is J l :=
 

c∈ C l 
(
J c \ J l c 

)
, while the set of unloading jobs corresponds to J u :=

 

c∈ C u ( J c ∪ J u c ) (see Figs. 2 and 3 ). We define J := J l ∪ J u . In the con-

ext of jobs, we will usually not explicitly specify the quay cranes

hat must process or have processed the corresponding containers

n order to ease the notation, i.e., we will write j ∈ J . Each job j ∈ J

orresponds to a container that has not been started to be pro-

essed by a SC at the beginning of the planning horizon and that

ust be transported between buffer areas and storage areas. It is

ssociated with a (potentially empty) sequence of restacking jobs,

epresented by an ordered set R j = { r j, 1 , . . . , r j, | R j | } . R := 

⋃ 

j∈ J R j de-

otes the complete set of restacking jobs. If R j 	 = ∅ for some j ∈ J ,

he container related to job j may only be lifted (in case of a load-

ng job) or dropped (in case of an unloading job) by a SC when

he container related to r j, | R j | has been lifted. Furthermore, for r j , i ,

 j , l ∈ R j , j ∈ J , i < l , the container related to r j , i must be lifted before

he container related to r j , l can be lifted. The underlying reasoning

s illustrated in Fig. 4 for the case of a loading job which is blocked

y two containers that are stored in the same stack. Naturally,
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capacity 

from storage areas 

on straddle carriers
at start

buffer area vesselstorage areas

Fig. 2. Container sets associated to a loading crane. 

Fig. 3. Container sets associated to an unloading crane. 

Table 1 

Notation regarding the quay cranes. 

C l Set of loading cranes 

C u Set of unloading cranes 

C Set of quay cranes C = C l ∪ C u , | C| = n q 

t q Time needed to process a container 

by a quay crane 

t q ∈ N > 0 

a q c Availability time of crane c ∈ C a q c ∈ N ≥0 

b c Capacity of the buffer of crane c ∈ C b c ∈ N > 0 
J c Ordered set of containers that must 

be processed by crane c ∈ C 
J c = { j c, 1 , . . . , j c, | J c | } 

J b c Containers located in the buffer of 

crane c ∈ C at the beginning of the 

planning horizon 

J v c Containers that have to be processed 

by loading crane c ∈ C l and that 

are handled by a SC at the 

beginning of the planning horizon 

J l c Subset of the containers related to 

loading crane c ∈ C l 
J l c := J b c ∪ J v c , J c ∩ J l c = J l c 

J q c Set of at most one container that is 

in the process of being unloaded 

by unloading crane c ∈ C u at the 

beginning of the planning horizon 

J u c Subset of the containers related to J u c := J b c ∪ J q c , J c ∩ J u c = ∅ 
unloading crane c ∈ C u J u c = { j c, | J c | +1 , . . . , j c, | J c | + | J u c | } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Restacking jobs associated to a loading job. 
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these containers define restacking jobs that have to be processed

in the sequence which is defined by the stacking order. Again, for

the sake of notational convenience, we will usually write j ∈ R to

refer to a restacking job, i.e., we will omit its corresponding load-

ing or unloading job, whenever possible. Restacking jobs that are

in the process of being executed by some SC at the beginning of

the planning horizon are assumed to not be included in R . 

All relevant locations in the port are identified by points with

integer coordinates in a Cartesian coordinate system in the plane.

The distance between two points x and y in this coordinate system

is calculated by using the Manhattan metric and is denoted by d ( x ,

y ). Each job j ∈ J ∪ R is associated with two points, an origin and a

destination. We denote these points by ori ( j ) and dest ( j ), respec-

tively. For each loading job, the origin is a point that is located in

one of the storage areas, where it identifies some stack of contain-

ers, while the destination corresponds to a point that represents a

buffer area of a quay crane. Similarly, unloading jobs are associated

to an origin that represents a buffer and a destination in the stor-
ge areas. For restacking jobs, both the origin and destination are

oints in the storage areas. 

The set of SCs is denoted by K , | K| = n v . Each k ∈ K is associ-

ted with a time instant a v 
k 

∈ N ≥0 , at which it is available for pro-

essing the next container. In case of a SC that is handling a con-

ainer at the beginning of the planning horizon, this time instant

orresponds to the point in time at which it has finished process-

ng this container. For all remaining SCs, this time instant is set to

ero. As SCs may be located anywhere in the port at their availabil-

ty times, each k ∈ K is additionally associated with a starting point

 k , which corresponds to its position at time instant a v 
k 
. We define

 := { s 1 , . . . , s n v } . Again, we will sometimes write j ∈ S to refer to a

tarting position, i.e., we will not explicitly name the correspond-

ng SC. Furthermore, we denote the SC that handles a container

j ∈ 

⋃ 

c∈ C l J 
v 
c at the beginning of the planning horizon by SC ( j ) ∈ K .

e assume that the SCs move at a constant speed, neglecting ac-

eleration phases, and define p v ∈ N > 0 to be the time needed by a

C to move one distance unit. Furthermore, we define t v ∈ N > 0 to

e the time needed by a SC in order to lift or drop a container. The

otal time needed to process job j ∈ J ∪ R by a SC is denoted by t j .

his time includes the lifting and dropping operations, as well as

he time needed to move from the origin of job j to the destina-

ion of job j . Hence, t j = p v · d(ori ( j) , dest( j)) + 2 t v for all j ∈ J ∪ R .

ote that these processing times are integer because of using the

anhattan metric on integer coordinates to determine the relevant

istances. 

Table 2 summarizes the notation regarding the SCs and the

obs. 
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Table 2 

Notation regarding the SCs and the jobs. 

K Set of SCs | K| = n v 

t v Time needed to lift or drop a 

container by a SC 

t v ∈ N > 0 

p v Time needed by a SC to move 

one distance unit 

p v ∈ N > 0 

a v 
k 

Availability time of SC k ∈ K a v 
k 

∈ N ≥0 

s k Starting point of SC k ∈ K S := { s 1 , . . . , s n v } 
SC ( j ) SC that handles a container 

j ∈ ⋃ 

c∈ C l J 
v 
c at the beginning 

of the planning horizon 

SC ( j ) ∈ K 

J l Set of loading jobs J l := 

⋃ 

c∈ C l 
(
J c \ J l c 

)
J u Set of unloading jobs J u := 

⋃ 

c∈ C u ( J c ∪ J u c ) 

J Set of loading and unloading 

jobs 

J := J l ∪ J u 

R j Sequence of restacking jobs 

associated to job j ∈ J 
R j = { r j, 1 , . . . , r j, | R j | } 

R Set of restacking jobs R := 

⋃ 

j∈ J R j 
ori ( j ) Origin of job j ∈ J ∪ R Integer coordinate 

dest ( j ) Destination of job j ∈ J ∪ R Integer coordinate 

t j Time needed to process job 

j ∈ J ∪ R by a SC 

t j = p v · d(ori ( j) , dest( j)) + 2 t v 
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Table 3 

Additional notation. 

A Feasible movements of unloaded 

SCs 

t ij Travel time between destination of 

job i ∈ J ∪ R (or starting position 

i ∈ S ) and the origin of job 

j ∈ J ∪ R 

t i j = p v · d (d est(i ) , ori ( j )) 

t s Safety time t s ∈ N > 0 
t b Time that a container must remain 

unprocessed after it has been 

dropped in a buffer 

t b ∈ N > 0 

a o 
j 

Availability time of container 

j ∈ ⋃ 

c∈ C J 
b 
c 

a o 
j 
∈ N ≥0 

n b c Number of empty slots in the 

buffer of quay crane c ∈ C at the 

beginning of the planning 

horizon 

A b c Set of indices of empty slots of 

quay crane c ∈ C at the beginning 

of the planning horizon 

a b 
ic 

Availability time of the i th 

( i = 1 , . . . , n b c ) empty slot of the 

buffer of quay crane c ∈ C 

a b 
ic 

∈ N ≥0 

a r 
j 

Earliest possible completion time 

of a lifting or dropping 

operation of a job j ∈ J ∪ { r j ,1 | j ∈ J , 
R j 	 = ∅ } 

a r 
j 
∈ N ≥0 

t  

t  

a  

s  

n  

s  

l  

t  

t  

i  

s  

n  

T  

q

 

r

2

 

e  

t  

t  
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t  

w  

s  

s  

v  

a

 

i

w  
The movement of unloaded SCs is subject of the optimization

nd is modelled by an edge-weighted, directed graph G = (V, A ) ,

ith vertex set V and edge set A . Each j ∈ J ∪ R ∪ S defines a dis-

inct vertex of the set V . Feasible movements of unloaded SCs

re represented by the edge set A := {( i , j )| i ∈ J ∪ R ∪ S , j ∈ J ∪ R , i 	 = j }.

his definition of the edge set does not allow one-way travel set-

ings, where SCs can only move to a subset of buffer areas af-

er having dropped a container. However, by appropriately redefin-

ng the edge set of the graph (and potentially including dummy

ertices), these settings can be incorporated in a straightforward

anner. The weight t ij of an edge ( i , j ) ∈ A represents the (inte-

er) time needed by a SC to move from the destination of job

 (or a starting position i , if i ∈ S ) to the origin of job j , i.e.,

 i j = p v · d (d est(i ) , ori ( j )) if i ∈ J ∪ R or t i j = p v · d (i, ori ( j )) if i ∈ S .

 solution of the routing component of MSCRB is therefore rep-

esented by n v paths in G , with the path of SC k ∈ K starting

n s k ∈ S . 

Collisions are avoided by making use of safety times. The differ-

nce of the time instants at which the lifting process (performed

y a quay crane or a SC) of a container in a given slot of a buffer

s started and the time instant at which the dropping process of

he next container in this slot is finished must be at least t s ∈ N > 0 .

he same time period must elapse between the beginning and the

nd of two succeeding lifting operations of the restacking jobs of

 restacking set R j , j ∈ J , as well as between the beginning of the

ifting operation of r j, | R j | , j ∈ J , and the end of the lifting (in case

f a loading job) or dropping (in case of an unloading job) opera-

ion of the corresponding job j . Similarly, a container that has been

ropped in a buffer must remain unprocessed for at least t b ∈ N > 0 

ime units before it can be started to be picked up by a quay crane

r a SC. 

In order to take account of the setting at the beginning of the

lanning horizon, we make use of some additional notation. The

ifting process (by a quay crane or a SC) of a container j ∈ 

⋃ 

c∈ C J b c 

ay not start before time instant a o 
j 
∈ N ≥0 . Similarly, there may be

 restriction on the earliest possible completion time of a lifting or

ropping operation of a job j ∈ J ∪ { r j ,1 | j ∈ J , R j 	 = ∅ } within the stor-

ge areas because a corresponding (preceding) restacking operation

as been started just before the beginning of the planning horizon,

o that it is not included in R while the safety time has not yet

lapsed. Therefore, each job of this set is associated with a time in-

tant a r 
j 
∈ N ≥0 that corresponds to the earliest possible completion
ime of a lifting or dropping operation of the corresponding con-

ainer. Finally, an empty slot of a buffer may not be immediately

vailable for dropping a container because of the above safety re-

trictions. A slot of a buffer is considered to be empty at the begin-

ing of the planning horizon, if there is no container located in the

lot and if there is no SC that is processing a container or an un-

oading crane that has started an unloading process of a container

hat will be dropped in the slot. Note that a container that is in

he process of being lifted at the beginning of the planning horizon

s not considered to be located in any slot. The number of empty

lots in the buffer of quay crane c ∈ C at the beginning of the plan-

ing horizon is denoted by n b c . We define A 

b 
c := { 1 , . . . , n b c } for c ∈ C .

he availability time of the i -th empty slot, i ∈ A 

b 
c , in the buffer of

uay crane c ∈ C is represented by the parameter a b 
ic 

∈ N ≥0 . 

The additional notation used throughout this paper is summa-

ized in Table 3 . 

.1. An integer programming formulation of MSCRB 

We define two non-negative time variables, w 

in 
j 

and w 

out 
j 

, for

ach j ∈ 

⋃ 

c∈ C l J 
l 
c ∪ J, i.e., for all containers that interact with one of

he buffer areas within the planning horizon. w 

in 
j 

represents the

ime instant at which the dropping process (by a SC or a quay

rane) of j in its buffer is finished; w 

out 
j 

is the time instant at which

he lifting process is started. Similarly, for each restacking job j ∈ R ,

e define a non-negative variable w j that represents the time in-

tant at which the lifting process of the corresponding container is

tarted. We may restrict ourselves to considering all of these time

ariables to be integer, because all processing times, travel times,

nd time parameters are integral multiples of a time unit. 

In order to avoid lengthy case differentiations, we define auxil-

ary variables for the quay cranes, 

ˆ 
 

q 
j 

:= 

{
w 

in 
j 

if c ∈ C u , 

w 

out 
j 

if c ∈ C l , 
∀ c ∈ C, j ∈ J c , (1)



738 D. Kress, S. Meiswinkel and E. Pesch / European Journal of Operational Research 279 (2019) 732–750 

Fig. 5. Illustration of the variables associated to loading jobs. 

Table 4 

Definition of start ( j ), end ( j ), and stack ( j ). 

start ( j ) end ( j ) stack ( j ) 

j ∈ J l w 

in 
j 

− t j w 

in 
j 

w 

in 
j 

− t j + t v 

j ∈ J u w 

out 
j 

w 

out 
j 

+ t j w 

out 
j 

+ t j 

j ∈ R w j w j + t j w j + t v 

j ∈ S – a v 
k 

–
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and the SCs, 

ˆ w 

v 
j := 

{
w 

in 
j 

if j ∈ J l , 

w 

out 
j 

if j ∈ J u , 
∀ j ∈ J. (2)

We define ˆ w 

q 
j c, 0 

:= −t q + a 
q 
c for all c ∈ C l and ˆ w 

q 
j c, 0 

:= a 
q 
c for all

c ∈ C u . Moreover, auxiliary variables start ( j ) and end ( j ), j ∈ J ∪ R , rep-

resent the time instants at which a SC starts the lifting process

or completes the dropping process of a container, respectively. For

j ∈ S , j is related to a distinct starting point of a SC k ∈ K , and we

set end ( j ) := a v 
k 
. Analogously, stack ( j ), j ∈ J ∪ R , represents the time

instant at which a SC finishes a lifting or dropping process within

one of the stacking areas when executing job j . Table 4 illustrates

the values of these auxiliary variables. 

The movement of unloaded SCs is modelled by binary variables

x i j := 

{ 

1 if the same SC executes j immediately 
after executing/starting in i, 

0 otherwise , 
∀ (i, j) ∈ A. 

(3)

Fig. 5 illustrates the variables that have been defined above for

the case of loading jobs. It presents the state (loaded, unloaded,

picking up, dropping) of a SC k ∈ K (timeline on the top of the

figure) and a loading crane c ∈ C l (timeline on the bottom of the

figure) over the relevant part of the time horizon. k processes

job j ∈ J l immediately after i ∈ J l c , so that x i j = 1 . It starts lifting i

at time start ( i ) and finishes dropping i at time end ( i ). Note that

end(i ) − start(i ) = t i , i.e., we do generally not allow for a SC to

“wait” while being loaded. However, our model allows waiting pe-

riods for unloaded movements of a SC. In Fig. 5 , this is indicated

by the fact that start( j) − end(i ) ≥ t i j . In this context, note that our

model does not answer the question of where to wait as it is based
n the assumption that SCs can always pass each other. Hence, we

bstract from congestion situations, especially in front of the buffer

reas. 

In order to be able to model the buffer capacities, we make use

f binary variables b in 
i j 

∈ { 0 , 1 } and b out 
i j 

∈ { 0 , 1 } for all c ∈ C , i, j ∈
 c ∪ J u c , i 	 = j . The variables b out 

i j 
are also defined for all c ∈ C , i ∈ A 

b 
c ,

j ∈ J c ∪ J u c . We will refer to these variables as the b-variables. In this

ontext, recall that J u c = ∅ for all c ∈ C l . For a given crane c ∈ C and

ts corresponding buffer, b in 
i j 

takes the value one if w 

in 
i 

< w 

in 
j 
, i.e., if

ontainer i is dropped in the buffer before container j is dropped

n the buffer. If w 

in 
i 

= w 

in 
j 
, exactly one of the variables b in 

i j 
and b in 

ji 

s set to one. Similarly, b out 
i j 

is set to zero if w 

out 
i 

+ t s > w 

in 
j 

(or a b 
ic 

>

 

in 
j 

if i ∈ A 

b 
c ), i.e., if container j is dropped in the buffer before the

lot that container i has been dropped in (or before a slot that is

mpty at the beginning of the planning horizon) is available. 

Based on these definitions and a large positive integer M , an

nteger programming formulation of MSCRB is as follows: 

in 

∑ 

j∈ 
⋃ 

c∈ C J c 

ˆ w 

q 
j 

(4)

.t. 
∑ 

(i, j) ∈ A 
x i j = 1 ∀ j ∈ J ∪ R, (5)

∑ 

( j,i ) ∈ A 
x ji ≤ 1 ∀ j ∈ J ∪ R ∪ S, (6)

end(i ) + t i j − start( j) ≤ (1 − x i j ) M ∀ (i, j) ∈ A, (7)

ˆ w 

q 
j c,i −1 

+ t q − ˆ w 

q 
j c,i 

≤ 0 ∀ c ∈ C, j c,i ∈ J c , (8)

w 

in 
j + t b ≤ w 

out 
j ∀ j ∈ J \ ⋃ 

c∈ C u J 
b 
c ∪ 

⋃ 

c∈ C l J 
v 
c , (9)

a o j ≤ w 

out 
j ∀ j ∈ 

⋃ 

c∈ C J 
b 
c , (10)

w 

in 
j = 0 ∀ j ∈ 

⋃ 

c∈ C J 
b 
c , (11)

w 

in 
j = a v SC( j) ∀ j ∈ 

⋃ 

c∈ C l J 
v 
c , (12)
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in 
j = a q c ∀ c ∈ C u , j ∈ J q c , (13)

start(r j, | R j | ) + t s ≤ stack ( j) ∀ j ∈ J with R j 	 = ∅ , (14)

start(r j,i −1 ) + t s ≤ stack (r j,i ) ∀ j ∈ J, r j,i ∈ R j , i ≥ 2 , (15)

a r j ≤ stack ( j) ∀ j ∈ J ∪ { r j, 1 | j ∈ J, R j 	 = ∅} ,
(16) 

∑ 

i ∈ J c ∪ J u c ,i 	 = j 
b in i j −

∑ 

i ∈ J c ∪ J u c ∪ A b c 

b out 
i j ≤ b c − 1 ∀ c ∈ C, j ∈ J c ∪ J u c , (17)

w 

in 
j c,l 

− w 

in 
j c,i 

+ 0 . 5 ≤ M b in j c,i j c,l 
∀ c ∈ C, i = 1 , . . . , | J c | + | J u c | − 1

l = i + 1 , . . . , | J c | + | J u c | , (18) 

w 

in 
j c,l 

− w 

in 
j c,i 

≤ M b in j c,i j c,l 
∀ c ∈ C, i = 2 , . . . , | J c | + | J u c | , 
l = 1 , . . . , i − 1 , (19) 

w 

in 
j − (w 

out 
i + t s ) ≥ M(b out 

i j − 1) ∀ c ∈ C, i, j ∈ J c ∪ J u c , i 	 = j, 

(20) 

w 

in 
j − a b ic ≥ M(b out 

i j − 1) ∀ c ∈ C, i ∈ A 

b 
c , j ∈ J c ∪ J u c , (21)

w 

in 
j , w 

out 
j ∈ N ≥0 ∀ j ∈ 

⋃ 

c∈ C l J 
l 
c ∪ J, (22)

w j ∈ N ≥0 ∀ j ∈ R, (23)

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A, (24)

b in i j ∈ { 0 , 1 } ∀ c ∈ C, i, j ∈ J c ∪ J u c , i 	 = j, (25)

b out 
i j ∈ { 0 , 1 } ∀ c ∈ C, i, j ∈ J c ∪ J u c , i 	 = j or 

i ∈ A 

b 
c , j ∈ J c ∪ J u c . (26) 

The objective function (4) minimizes the sum of the time in-

tants at which the quay cranes interact with their buffer areas.

onstraints (5) and (6) guarantee that each job is processed by ex-

ctly one SC and take account of the fact that the number of SCs

nd their starting positions are given. Restrictions (7) ensure that

t least t ij time units elapse for the unloaded movement when a SC

rocesses job j ∈ J ∪ R immediately after job (or after having started

n) i ∈ J ∪ R ∪ S . They also take account of the availability times of

he SCs. Constraints (8) enforce the quay cranes to respect the

iven loading and unloading sequences of containers and guaran-

ee that t q time periods elapse between processing two contain-

rs. Furthermore, it takes account of the availability times of the

ranes. The fact that a container must remain unprocessed for t b 

ime units after having been dropped in a buffer is modelled by

estrictions (9) and (10) . Constraints (11) –(13) fix time variables of

ontainers that are located in a buffer or that are being processed

y a SC or a quay crane at the beginning of the planning hori-

on. The precedence relations among restacking jobs and their as-

ociated loading or unloading jobs as well as corresponding safety

ime restrictions are enforced by constraints (14) –(16) . The limited

apacities of the buffer areas are modelled by constraints (17) –(21) .
or the buffer of a crane c ∈ C and a container j ∈ J c ∪ J u c , the first

ummand on the left hand side of the corresponding constraint

17) counts the number of dropping operations in this buffer that

ave been completed before the dropping of j has been completed,

hile the second summand determines the number of lifting op-

rations that have been started and resulted in an available slot

efore the dropping of j has been completed. The constraint then

nforces the difference of these values to be no larger than the

uffer capacity reduced by one slot for container j . The summands

f the left hand side of constraints (17) make use of the b-variables

s defined above. These variables are linked to their corresponding

ime variables by constraints (18) –(21) . Note that, for a given set

f containers that have been dropped in a buffer at the same time,

onstraints (18) make use of the fact that all time variables are in-

egral multiples of a time unit to generate an artificial sequence

hat is needed for constraints (17) . Furthermore, note that con-

traints (20) and (21) take account of safety time considerations.

s we allow the SCs to process the containers associated to a given

uffer area in an arbitrary order as long as the buffer capacity is

ot exceeded and the container sequence of the crane is met, we

annot convert restrictions (17) –(21) into time window constraints

n a straightforward manner as, for example, done in Nguyen and

im (2009) and Vis, de Koster, and Savelsbergh (2005) . Finally, the

omains of the variables are defined by constraints (22) –(26) . 

.2. Computational complexity 

In this section, we will prove that the decision version of

SCRB, referred to as D-MSCRB, is NP-complete in the strong

ense by reduction of 3-Partition. D-MSCRB is defined in line with

ts optimization version and asks whether there exists a feasible

olution with objective function value of no more than a given L . 

An instance of 3-Partition, which is well known to be strongly

P-complete ( Garey & Johnson, 1979 ), is defined by 3 m + 1 in-

egers u 1 , . . . , u 3 m 

, B with 

∑ 3 m 

j=1 u j = mB and 

B 
4 < u j < 

B 
2 for all

j ∈ { 1 , . . . , 3 m } . It asks if there exists a partition of the set

 1 , . . . , 3 m } into m subsets U 1 , . . . , U m 

, such that 
∑ 

j∈ U i u j = B for

ll i ∈ { 1 , . . . , m } . Note that for every yes-instance of 3-Partition,

e have | U i | = 3 for all i ∈ { 1 , . . . , m } . Therefore, 3-Partition is still

trongly NP-hard if all integers are assumed to be multiples of 4 (if

his is not the case, they can simply be multiplied by 4). 

heorem 1. D-MSCRB is NP-complete in the strong sense. 

roof. It can easily be seen that D-MSCRB is in NP. 

Now, assume that we are given an instance I P of 3-Partition

ith all integers u 1 , . . . , u 3 m 

, B being multiples of 4. By definition

f 3-Partition, we have 

B 

4 

+ 1 ≤ u j ≤
B 

2 

− 2 ∀ j ∈ { 1 , . . . , 3 m } . (27)

ased on I P , we construct an instance I S of D-MSCRB in poly-

omial time as described in the following and as illustrated in

ig. 6 for even m . We define u ′ 
j 

:= u j · 11 m for all j ∈ { 1 , . . . , 3 m } ,
 

′ := B · 11 m , u ′ 
min 

:= min { u ′ 
1 
, . . . , u ′ 

3 m 

} , and set K = { 1 , 2 , . . . , m } , so

hat there are n v = m homogenous SCs. All SCs are immediately

vailable and located in the same starting point α := (0 , 
u ′ 

min 
2 −

 m − 2) at the beginning of the planning horizon, i.e., s k = α for

 = 1 , . . . , n v . Furthermore, we set t q = B ′ − u ′ 
min 
2 + 3 m − 1 and p v =

 

b = t s = t v = 1 . 

There are 3 m loading cranes C l = { c l 
1 
, . . . , c l 

3 m 

} and 3 m unload-

ng cranes C u = { c u 
1 
, . . . , c u 

3 m 

} that are equally distributed on the

ine (−3 m + 1 , 0) − (3 m, 0) and that are placed as described in

he following. For the sake of notational convenience, we refer to

he points that correspond to the locations of the cranes by their

ranes’ identifiers. Crane c l defines the rightmost crane at (3 m , 0).

1 
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Fig. 6. Illustration of I S for even m . 
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The remaining cranes are placed to the left of this crane in an al-

ternating manner such that d(c l 
i 
, c u 

i 
) = 1 for all i ∈ { 1 , . . . , 3 m } . Fi-

nally, the cranes c l 
i 

and c u 
i 

are interchanged if d(c l 
i 
, α) < d(c u 

i 
, α)

for all i ∈ { 1 , . . . , 3 m } . Hence, the resulting placement of the cranes

is such that d(c l 
i 
, α) > d(c u 

i 
, α) for all i ∈ { 1 , . . . , 3 m } and d(c 

j 
i 
, α) ≤

u ′ 
min 
2 − 2 for all j ∈ { u , l } and i ∈ { 1 , . . . , 3 m } . 

Each loading crane c l 
i 
∈ C l is associated to exactly two contain-

ers, j 
c l 

i 
, 1 

and j 
c l 

i 
, 2 

, the first one of which is located in the crane’s

buffer at the beginning of the planning horizon, so that it does

not define a job. Each unloading crane c u 
i 

∈ C u is associated to ex-

actly two containers, j c u 
i 
, 1 and j c u 

i 
, 2 , both of which have to be pro-

cessed by SCs. Note, however, that the processing of j c u 
i 
, 2 by some

SC does not have an effect on the answer of I S for all c u 
i 

∈ C u . We

will therefore restrict ourselves to solely considering the jobs re-

lated to j c u 
i 
, 1 for all c u 

i 
∈ C u in the remainder of this proof. Hence,

each crane is associated to exactly one job that is relevant for the

answer of I S . We set dest( j c u 
i 
, 1 ) = α for all c u 

i 
∈ C u . Furthermore, for

all i ∈ { 1 , . . . , 3 m } , we set ori ( j 
c l 

i 
, 2 

) to arbitrary values, such that 

d(α, ori ( j c l 
i 
, 2 )) + d(ori ( j c l 

i 
, 2 ) , c 

l 
i ) + 2 t v + d(c l i , c 

u 
i ) + d(c u i , α) + 2 t v 

= d(α, ori ( j c l 
i 
, 2 )) + t j 

c l 
i 
, 2 

+ d(c l i , c 
u 
i ) + t j c u 

i 
, 1 

= u 

′ 
i (28)

(see Fig. 6 ) and such that the y-coordinate of ori ( j 
c l 

i 
, 2 

) is greater

or equal to 
u ′ 

min 
2 − 3 m − 2 (shaded area in Fig. 6 ). Hence, for all i ∈

{ 1 , . . . , 3 m } , there is a one to one correspondence of the integer u i
of I P and the pair { c l 

i 
, c u 

i 
} of cranes of I S . 

All remaining parameters of I S are set to arbitrary values, such

that 

• each crane is necessarily idle for at least one time unit before

the processing of its last associated container if a SC starts the

lifting process or finishes the dropping process of the associated

job after time instant B ′ − u ′ 
min 
2 + 3 m, and 

• each crane can process all of its associated containers without

idle time if a SC starts the lifting process or finishes the drop-

ping process of the associated job no later than by time instant

B ′ − u ′ 
min 
2 + 3 m, and 

• j c u 
i 
, 1 can immediately started to be lifted ( t b has elapsed) upon

the earliest possible arrival of any SC at the corresponding

buffer for all c u 
i 

∈ C u , and 

• there exists at least one slot in the buffer of c l 
i 
, where a con-

tainer can be dropped immediately upon the earliest possible
l l 
arrival of any SC for all c 
i 
∈ C . i  
Finally, we set L to the objective function value of the optimiza-

ion version of D-MSCRB that is defined by all quay cranes pro-

essing their associated containers without any idle times before

rocessing their last container. 

In the remainder of this proof, we will show that I P is a yes-

nstance if and only if I S is a yes-instance, i.e., that we have con-

tructed a pseudo-polynomial transformation ( Garey & Johnson,

979 ) from 3-Partition to D-MSCRB, which proves the latter prob-

em to be strongly NP-complete. 

First, assume that I P is a yes-instance and let U i = { u i 1 , u i 2 , u i 3 }
enote the i -th subset of a corresponding partition for i = 1 , . . . , m .

ow, for all i ∈ { 1 , . . . , m } , assign the following sequence of jobs

o SC i : j 
c l 

i 1 , 2 
, j c u 

i 1 , 1 
, j 

c l 
i 2 , 2 

, j c u 
i 2 , 1 

, j 
c l 

i 3 , 2 
, j c u 

i 3 , 1 
. Let each SC process the

obs of its sequence as fast as possible. As d(α, ori ( j 
c l 

i 
, 2 

)) + t j 
c l 
i 
, 2 

+
(c l 

i 
, c u 

i 
) + t j c u 

i 
, 1 

= u ′ 
i 

for all i ∈ { 1 , . . . , 3 m } , each SC finishes pro-

essing its sequence at time instant B ′ . Hence, SC i begins lift-

ng j c u 
i 3 , 1 

at time instant B ′ − 2 − ( 
u ′ 

min 
2 − 3 m − 2) − d(c u 

i 3 
, (0 , 0)) ≤

 

′ − u ′ 
min 
2 + 3 m for all i ∈ { 1 , . . . , 3 m } , so that there exists a solution

o I S where none of the quay cranes are idle before processing their

ast associated containers. 

Next, assume that I S is a yes-instance and let � be a corre-

ponding feasible solution, i.e., a solution where none of the quay

ranes are idle before processing their last associated containers.

e will make use of three auxiliary properties. 

roperty 1. Each SC k ∈ K processes exactly three unloading jobs in

. 

roof of Property 1. Assume that there is a SC k ∈ K that processes

t least four unloading jobs in �. Then this SC has to move from

oint α, which corresponds to its starting point at the beginning

f the planning horizon as well as the destination of all unload-

ng jobs, or an origin of some loading job (with a y-coordinate

hich is not smaller than the one of point α) to the quay, i.e.,

he x-axis in Fig. 6 , and back for at least four times. As p v =
 , this takes at least 8 · ( u 

′ 
min 
2 − 3 m − 2) = 4 u ′ 

min 
− 24 m − 16 time

nits. Because of (27) , we have 4 u ′ 
min 

− 24 m − 16 ≥ 4( B 
′ 

4 + 11 m ) −
4 m − 16 = B ′ + 20 m − 16 . Therefore, when additionally taking ac-

ount of six time units needed to lift and drop three containers,

he SC starts lifting the container of the fourth unloading job no

arlier than at time instant B ′ + 20 m − 10 − ( 
u ′ 

min 
2 − 3 m − 2) = B ′ −

u ′ 
min 
2 + 23 m − 8 > B ′ − u ′ 

min 
2 + 3 m, so that the corresponding unload-

ng crane is idle for at least one time unit, which contradicts the
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easibility of �. We can therefore conclude that no SC processes

ore than three unloading jobs. Since a total of 3 m unloading jobs

ust be processed and there are m SCs, each SC must processes

xactly three unloading jobs. �

roperty 2. Each SC k ∈ K processes exactly three loading jobs in �. 

roof of Property 2. As the y-coordinate of the origin of each

oading job is not smaller than the y-coordinate of point α, the

rgumentation is analogous to the proof of Property 1 . �

roperty 3. � is such that each SC k ∈ K processes its loading and

nloading jobs ( Properties 1 and 2 ) in an alternating manner, starting

ith a loading job. 

roof of Property 3. If SC k ∈ K were to process an unloading job

rst or if it were to process its jobs ( Properties 1 and 2 ) in a

on-alternating manner, it would necessarily have to make at least

even trips between some point with a y-coordinate not smaller

han the y-coordinate of point α and the quay before starting to

ift (in case of an unloading job) or drop (in case of a loading job)

ts last container in a buffer at the quay. When taking account of

he resulting travel times and the time needed to lift and drop con-

ainers, the remaining argumentation is analogous to the proof of

roperty 1 . �

Based on Properties 1 –3 and the fact that I S is a yes-instance

e make two observations. First, � is such that each SC k ∈ K

tarts its last lifting operation of an unloading job no later

han B ′ − u ′ 
min 
2 + 3 m, so that it finishes processing its last job

o later than B ′ + 3 m . Second, � is such that the sequence of

obs to be processed by each SC k ∈ K is composed of three

ubsequences, each of which is composed of a loading and an

nloading job and relates to a trip where the SC starts in α,

rocesses a loading job, and returns to α while processing an

nloading job. Denote the unique trip that contains loading job

j 
c l 

i 
, 2 

, i ∈ { 1 , . . . , 3 m } , by τ i and the sum of all travel and processing

imes of this trip by t ( τ i ). Because of (28) and the fact that

(c l 
i 
, α) > d(c u 

i 
, α) for all i ∈ { 1 , . . . , 3 m } , we have t(τi ) ≥ u ′ 

i 
for all

 ∈ { 1 , . . . , 3 m } . Furthermore, denote the loading crane indices that

orrespond to the three loading jobs processed by SC k ∈ K in � by

 1 , k 2 , k 3 ∈ { 1 , . . . , 3 m } . Then, based on the above deliberations, we

ave 
∑ 3 

i =1 u 
′ 
k i 

≤ ∑ 3 
i =1 t(τk i 

) ≤ B ′ + 3 m for all k ∈ K . When dividing

his expression by 11 m , we get 
∑ 3 

i =1 u k i ≤ B + 

3 
11 . Moreover, as

ll u i , i ∈ { 1 , . . . , 3 m } , are integer, we have 
∑ 3 

i =1 u k i ≤ B . By defi-

ition of 3-Partition, we additionally know that 
∑ 3 m 

i =1 u i = mB, so

hat 
∑ 3 

i =1 u k i = B for all k ∈ K = { 1 , . . . , m } in �. Hence, we have

onstructed a solution to I P , which concludes the proof. �

. Heuristic framework 

We now present a heuristic framework for MSCRB. It is illus-

rated in Fig. 7 . Given some instance of MSCRB, it initiates with a
Fig. 7. Heuristic f
onstructive procedure that generates a first feasible solution. This

rocedure iteratively assigns jobs to SCs (in a greedy or random

anner) such that idle times of quay cranes are avoided as far as

ossible. Details are presented in Section 3.1 . The solution is then

assed to an improvement procedure that is based on decomposing

SCRB into a graph-based routing component and a remaining in-

eger part for handling the time variables and buffer capacities . De-

ails are presented in Section 3.2 . Due to the close relationship of

he routing component of MSCRB and the asymmetric TSP, we pro-

ose to apply local search approaches for the routing component

hat have been designed and proven to perform well for the TSP,

amely an ejection chain heuristic ( Section 3.2.1 ) and a 3-Opt ap-

roach ( Section 3.2.2 ). Each routing solution examined within the

ocal search is evaluated by constructing a corresponding feasible

olution of MSCRB (taking account of all time variables and buffer

apacities) and computing its objective function value as described

n Section 3.2.3 . Note that we assume the input instance to have at

east one feasible solution during the remainder of this section. 

.1. Constructive procedure for MSCRB 

Our constructive procedure is illustrated in Fig. 8 . As mentioned

bove, its main idea is to iteratively assign jobs to SCs such that

dle times of quay cranes are avoided as far as possible. 

During runtime of the algorithm, we keep track of the status of

ach SC, i.e., the latest job that has been assigned to the SC and the

ime at which the dropping operation of the corresponding con-

ainer is completed by the SC. In the initialization step, each SC

 ∈ K is associated to its starting position s k and availability time a v 
k 
.

imilarly, each crane c ∈ C is associated with a time stamp repre-

enting the time instant at which it will next be available for pro-

essing a container. It is initialized with a 
q 
c . Furthermore, we ini-

ialize the time variables w 

in 
j 
, with j ∈ 

⋃ 

c∈ C J b c , j ∈ 

⋃ 

c∈ C l J 
v 
c , or c ∈ C u 

nd j ∈ J 
q 
c , as in constraints (11) –(13) . All remaining time variables

re marked as unset. The variables x ij are set to zero for all ( i ,

 ) ∈ A . 

The algorithm then iterates over the cranes c ∈ C and their cor-

esponding sets J c to potentially fix variables (1) to their earliest

ossible time instants and update the status of the cranes. Let j

e the container that is currently considered while iterating over

 c . If c is a loading crane and w 

in 
j 

is set to some value, the algo-

ithm fixes w 

out 
j 

in accordance with all additional time restrictions,

.g., safety time considerations or the time needed by a crane to

rocess a container. The iteration over J c stops, when the first con-

ainer with w 

in 
j 

unset is reached. If, on the other hand, c is an

nloading crane, the algorithm successively fixes variables w 

in 
j 

to

heir earliest possible time instants with respect to all additional

ime restrictions until all empty slots of the corresponding buffer

ave been taken into account. 

The algorithm then enters its main loop, where it first gener-

tes (or later modifies) a list L of most urgent containers. For each
ramework. 
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Fig. 8. Constructive Procedure. 
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buffer area, L includes at most one container. If the buffer area is

associated to a loading crane c ∈ C l , L includes the first container

j ∈ J c (in case of this container’s existence) with w 

in 
j 

unset that is

detected when iterating over J c as above. For an unloading crane

c ∈ C u , it includes a job j ∈ J c (if existing) with w 

in 
j 

minimal and w 

out 
j 

unset. 

The algorithm terminates with a feasible solution once L is

empty. If this is not the case, L is updated with respect to the

restacking jobs. That is, if an element j ∈ L has an associated non-

empty set R j , the first job l of this set with w l unset (if existent)

replaces j in L . 

Next, the algorithm generates (or later updates) a due date d j 
for each job j ∈ L . This idea is similar to the time window approach

by Nguyen and Kim (2009) and Vis et al. (2005) . A due date repre-

sents the latest time instant at which the processing of job j must

start in order to prevent the associated quay crane from staying

idle. Note that this due date may not be achievable or even be neg-

ative. In case of a restacking job, the due date takes account of all

lifting operations needed to process the succeeding restacking jobs

of the corresponding loading or unloading job. Again, the compu-

tation of due dates must take account of all additional time restric-

tions. The algorithm then selects a job with smallest due date from

L. We refer to this job by j ˆ c ,i in case of a loading or unloading job

or by r j , l in case of a restacking job. 

An example for the computation of due dates is as follows. As-

sume that a subset of the time variables associated to a loading

crane c ∈ C l has been fixed, so that the crane’s current time stamp

is time instant t . Moreover, assume that j c , i is the first container of

this crane’s sequence J c with an unset arrival time in the buffer, i.e.,

assume that w 

in 
j c,i 

is unset. Let R j c,i = { r j c,i , 1 } and assume that w r j c,i , 1 

is unset, so that r j c,i , 1 is included in L . That is, assume that j c , i has

an associated restacking job, the processing of which has not yet

been decided on. Obviously, c will not run idle if j c , i is dropped in

its buffer at time instant t − t b . To do so, a SC will first have to lift

r j c,i , 1 , before j c , i can finally be processed. Additionally, the safety

time t s must elapse between the beginning of the lifting operation

of r j c,i , 1 and the end of the lifting operation of j c , i . Hence, as t j c,i 
includes the lifting and dropping operations needed to process j c , i ,

we have d j c,i = t − t b − (t j c,i − t v ) − t s . 
In the next step of our constructive procedure, a SC 

ˆ k ∈ K for

rocessing job j ˆ c ,i or r j , l is selected. There are two strategies of

hoosing ˆ k based on the status of all SCs. The greedy approach se-

ects a SC that will be the first to arrive at the origin of the job.

n the alternative strategy, a SC is randomly selected. Based on the

election of ˆ k , it is then possible to fix variables (2) (or a time vari-

ble of a restacking job) and (3) . The former variable is fixed to its

arliest possible value with respect to all relevant time restrictions.

Based on the preceding computations for the selected SC 

ˆ k , the

lgorithm then fixes variables (1) of crane ˆ c (if the selected job is

 loading or an unloading job) with respect to all additional time

estrictions as described above. If the selected job is a restacking

ob, no variables are fixed. Hereafter, L is modified in accordance

ith these computations and the algorithm proceeds as described

bove. 

Note that, in the case of unloading cranes c ∈ C u , there may re-

ain jobs j ∈ J c with unset variables w 

out 
j 

and without an assigned

C upon termination of the algorithm. These variables, however,

re not relevant for the objective function value and the corre-

ponding jobs can, for example, be assigned to and sequentially

rocessed by an arbitrary SC. 

.2. Improvement procedure 

As mentioned above, our improvement procedure essentially

orresponds to calling a local search procedure that is well estab-

ished for the TSP on the routing component of a MSCRB solution.

he evaluation of the routing solutions examined within the local

earch is performed by constructing a corresponding feasible solu-

ion of MSCRB that takes account of all time variables and capacity

estrictions ( Section 3.2.3 ). 

We represent a solution of a TSP on some directed graph 

˜ G =
( ̃  V , ˜ A ) by a directed graph with vertex set ˜ V , that includes an edge

 i , j ) iff vertex j ∈ 

˜ V follows vertex i ∈ 

˜ V in the considered solution.

his latter graph is referred to as the supporting graph of the solu-

ion. As pointed out in Section 2 , a feasible solution of the routing

omponent of MSCRB is represented by n v paths on G = (V, A ) . We

herefore have to augment the edge set A in order to be able to

onvert this solution into a tour, i.e., a feasible solution of a TSP.
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Fig. 9. Doubly rooted reference structure. 
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e thus define A 

′ := A ∪ {( i , j ) | i ∈ V , j ∈ S �{ i }} and consider the di-

ected graph G 

′ := ( V , A 

′ ) in the remainder of this section. A given

easible solution of MSCRB is then transformed into the supporting

raph of a tour by connecting the last vertex of the path of the k -th

C with the first vertex of the path of SC k + 1 (with n v + 1 ≡ 1 )

or all k ∈ K . The reverse transformation, i.e., the transformation of

 tour into a feasible solution of MSCRB, is performed analogously.

We will make use of two local search approaches. The first al-

orithm is an ejection chain approach ( Section 3.2.1 ). A detailed

verview of these approaches is given by Rego and Glover (2010) .

jection chain methods have been proven to be a promising ap-

roach for a variety of combinatorial optimization problems, e.g.,

ssignment problems ( Rego, James, & Glover, 2010; Yagiura, Ibaraki,

 Glover, 2004 ), the crew scheduling problem ( Cavique, Rego, &

hemido, 1999 ), or partitioning problems (e.g., Dorndorf, Jaehn, &

esch, 2008; Kress, Boysen, & Pesch, 2017 ). Most important, they

ave very successfully been implemented for the TSP (examples in-

lude Glover, 1996; Pesch & Glover, 1997 ) and have been identified

o “lead the state-of-the-art in local search heuristics for the trav-

ling salesman problem” ( Rego & Glover, 2010 ). As an alternative

pproach, we make use of a 3-Opt heuristic ( Section 3.2.2 ), which

s another well known and successful technique for routing prob-

ems (see Korte & Vygen, 2012; Laporte, 1992 ). 

.2.1. Routing component: ejection chain approach 

Ejection chain methods are local search approaches that “pro-

ide the ability to strategically extend simpler neighborhoods, such

s those consisting of exchange (swap) moves or insert (shift)

oves” ( Rego et al., 2010 ), for example by making use of a ref-

rence structure that guides the generation of moves ( Glover, 1996 )

y allowing a controlled portion of infeasibility in temporal solu-

ions. A reference structure can be transformed into another ref-

rence structure or into feasible solutions by making use of well-

efined rules. 

Our ejection chain approach is embedded into a tabu search

ramework and makes use of the doubly rooted reference structure ,

hich has been introduced by Glover (1996) in the context of the

SP and allows being used on a directed graph. This reference

tructure comes in two variants (see Fig. 9 , where dotted vertices

epresent vertex chains of arbitrary length), which we represent

y supporting graphs in analogy to the representation of solutions

f the TSP, a tricycle ( Fig. 9 a) and a bicycle ( Fig. 9 b). Both variants

epresent infeasible solutions of a TSP, with at most two vertices

f the supporting graph violating constraints of the TSP because

f being incident to more than two edges. These vertices are re-

erred to as root vertices and we will denote them by λ1 (too many

utgoing edges) and λ2 (too many incoming edges). The root ver-

ices may coincide. Each root vertex λi , i ∈ {1, 2}, is associated to

wo subroots , denoted by μ1 
i 

and μ2 
i 
, being defined as the vertices

hat are incident to the two outgoing or incoming edges of the root

ertex other than the root vertex itself, respectively. Subroots of a

oot vertex may coincide with the other root vertex. Furthermore,

ubroots of two root vertices may coincide. A tricycle connects the

oot vertices by three edge-disjoint paths, two of which include
wo subroots each. The remaining path does not include a subroot.

imilarly, a bicycle is composed of two edge-disjoint cycles, each of

hich includes one root vertex and one of its subroots. If the root

ertices are distinct, they are connected by a path that includes the

emaining subroots. 

Each iteration of our ejection chain method has two stages,

s briefly illustrated in Algorithm 1 . In the probing stage , the

Algorithm 1: Ejection chain approach. 

Input : Feasible solution sol of MSCRB instance, tabu length τ , 

parameter stop 

Output : Feasible solution sol 

1. Initialization : Initialize tabu list and generate an instance 

re f Struc of the reference structure based on sol. 

2. Probing stage : Generate all neighbors of re f Struc by iterating

over all potential transformation steps in accordance with 

the tabu list. Evaluate each neighbor by transformation into 

its corresponding MSCRB solution(s) and computation of the

objective function value(s) as described in Section 3.2.3. 

Denote the most promising neighbor by bestNeighbor. 

3. Transition stage : Set re f St ruc := best Neighbor, update tabu 

list, and potentially update the best known solution sol. 

4. Stopping criterion : If sol has not improved for stop 

succeeding calls of step 3, terminate the algorithm. 

Otherwise, go to step 2. 

eference structures in the neighborhood of the incumbent ref-

rence structure are examined. They are constructed by iterating

ver all potential transformation steps on the incumbent reference

tructure as described below. Each neighbor is evaluated based

n transforming its reference structure into feasible solutions of

SCRB (via tours) and computing their objective function values

s described in Section 3.2.3 . After having explored the complete

eighborhood, the incumbent reference structure is updated to the

ne of a most promising neighbor (referred to as bestNeighbor in

lgorithm 1 ) in the transition stage . Moreover, the overall best solu-

ion detected by the ejection chain method is potentially updated. 

When generating the neighborhood of an incumbent reference

tructure in the probing stage, we have to perform transitions

nto other reference structures. Each of these transitions is based

n selecting any subroot μ j 
i 

∈ { μ1 
1 
, μ2 

1 
, μ1 

2 
, μ2 

2 
} and deleting the

dge e = (λi , μ
j 
i 
) if i = 1 or (μ j 

i 
, λi ) if i = 2 . Now, we add any

dge e ′ = (v , μ j 
i 
) ∈ A 

′ or e ′ = (μ j 
i 
, v ) ∈ A 

′ , e 	 = e ′ , that is not yet

art of the supporting graph, such that the resulting supporting

raph remains connected and such that each vertex has at least

ne incoming and one outgoing edge. This results in a reference

tructure, in which v is a root vertex. 

Let us now turn our attention towards the evaluation of refer-

nce structures in the probing stage of our ejection chain method.

here are two cases to consider. First, assume that the reference

tructure is a tricycle. In this case, we construct two tours. For each



744 D. Kress, S. Meiswinkel and E. Pesch / European Journal of Operational Research 279 (2019) 732–750 

Fig. 10. Computing time variables. 

Table 5 

Example for the jobs associated to a crane c ∈ C l with b c = 3 that are included in L . 

l (container index) 1 2 = i 3 4 5 = | J c | 
w 

in 
j c,l 

Fixed Fixed 

w 

out 
j c,l 

Fixed 

Included in L ? no (1 < i ) yes no ( w j in 
c, 3 

fixed) yes no ( 5 ≥ i + b c = 5 ) 
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pair of subroots, μi 
1 

∈ { μ1 
1 
, μ2 

1 
} and μ j 

2 
∈ { μ1 

2 
, μ2 

2 
} , that are not

part of the same path between the root vertices, we remove the

edges (λ1 , μ
i 
1 
) and (μ j 

2 
, λ2 ) and add the edge (μ j 

2 
, μi 

1 
) in the sup-

porting graph. Second, in case of a bicycle, one tour is constructed

if the root vertices are distinct. This is done by removing the edges

(λ1 , μ
i 
1 
) and (μ j 

2 
, λ2 ) and adding the edge (μ j 

2 
, μi 

1 
) , where μi 

1 

and μ j 
2 

are subroots that are part of the cycles. If the root vertices

coincide, analogous transformations result in two tours. 

The ejection chain method is initialized by generating an in-

stance of the reference structure based on an initial feasible solu-

tion of MSCRB (see Algorithm 1 ). To do so, we first transform this

solution into a tour as described above. This tour defines a sup-

porting graph. We then randomly remove an edge ( i , j ) of this sup-

porting graph and select two root vertices λ1 and λ2 that are not

incident to ( i , j ). Finally, the edges ( i , λ1 ) and ( λ2 , j ) are added to

the supporting graph. A tabu list is used to prevent the algorithm

from cycling. Its length is limited to a predefined threshold value,

referred to as the tabu length (referred to as τ in Algorithm 1 ). At

the end of the transition stage, the edge e ′ which has been added

to the supporting graph during the transformation of the reference

structure (from refStruc to bestNeighbor in Algorithm 1 ) is inserted

at the end of this list. Additionally, the first element of the list

is removed, if the tabu length is exceeded. Elements of the tabu

list may not be chosen as edges e to be deleted when generat-

ing neighbors of an incumbent reference structure. The algorithm

terminates when the overall best solution has not improved for a

given number of iterations (parameter stop in Algorithm 1 ). In or-

der to intensify the search process, we restart the ejection chain

algorithm for a given number of times. These restarts initiate with

the MSCRB solution that was returned by the previous call of the

algorithm and an empty tabu list. 

3.2.2. Routing component: 3-Opt approach 

The 3-Opt approach is well established in the literature. For the

sake of brevity, we refrain from presenting it in detail and refer the

reader to Korte and Vygen (2012) for details. In our context, it is a
ocal search algorithm that starts with an initial feasible solution of

SCRB that has been transformed into a tour as described above.

oughly speaking, the neighborhood of a given tour is defined by

ll tours that can be constructed by deleting at most three edges in

he supporting graph and afterwards replacing these edges with an

dentical amount of new edges. As this neighborhood can get very

arge for real-world instances of MSCRB, our implementation of 3-

pt skips an edge triple with a given probability when iterating

ver the triples. As before, each tour is evaluated by computing the

bjective function value of the corresponding solution of MSCRB

s described in Section 3.2.3 . The local search proceeds in a first-

t manner, until no additional improvement that exceeds a given

hreshold is achievable. 

.2.3. A fast heuristic for determining time variables and handling 

uffer capacities 

Given a solution of the routing component of MSCRB, we have

o compute feasible values of the time variables subject to the

apacity constraints of the buffer areas in order to be able to

etermine the objective function value of an associated solution

f MSCRB. To do so, we propose to make use of a heuristic ap-

roach that corresponds to a variant of the constructive procedure

ntroduced in Section 3.1 . It is illustrated in Fig. 10 . 

The initialization step and the process of fixing variables (1) is

dentical to the constructive procedure. The list L , however, is

onstructed in a different manner. It includes all loading and

nloading jobs that are ready to be processed by SCs based on

he fixed time variables that are associated to the buffer areas and

he precedence constraints defined by their associated restacking

ets. Let j c , i , c ∈ C , be the first container of the set J c with both w 

in 
j c,i 

nd w 

out 
j c,i 

marked as unset (if this job exists). If c ∈ C l , the jobs that

re associated with this crane’s buffer area and that are included

n L are the ones of the set { j c,l ∈ J c | i ≤ l < i + b c ∧ w 

in 
j c,l 

unset ∧
 j c,l , | R j c,l | fixed if it exists } . An example with c ∈ C l , b c = 3 , and

ithout the existence of restacking jobs is presented in Table 5 .
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t assumes that only few time variables have already been fixed

as indicated in the table), so that i = 2 and the jobs j c ,2 and j c ,4 
re included in L . Similarly, for each c ∈ C u , L includes all jobs of

he set { j c,l ∈ J c | l < i ∧ w 

out 
j c,l 

unset ∧ r j c,l , | R j c,l | fixed if it exists } .
oreover, L includes all restacking jobs that can be processed

n accordance with the relevant precedence constraints of their

estacking sets. Let r j , i , j ∈ J , be the first job of the set R j with w r j,i 

nset (if this job exists). Then this job is included in L . 

The algorithm terminates with a feasible solution of MSCRB if

 is empty, i.e., if all time variables have been fixed. If this is not

he case, the algorithm proceeds in line with the constructive pro-

edure. Based on the paths of the SCs that are given by the input

olution of the routing component, the algorithm iterates over all

Cs and fixes as many variables (2) and w j , j ∈ J , as possible to their

arliest possible time instants. The status of each SC is then up-

ated. If no status has changed, the algorithm terminates because

 feasible solution of MSCRB cannot be constructed based on the

iven routing solution. Otherwise, the algorithm continues as de-

cribed above. 

. Computational study 

We performed an extensive computational study based on real-

orld data of a port in Germany. The generation of the correspond-

ng test instances is described in detail in Section 4.1 . Our analysis

as driven by the following main research questions: 

Q1: Does it pay off to deviate from the approach of permanently

assigning a fixed number of SCs to each quay crane, which

is the strategy that is currently implemented at the port? 

Q2: How does an increasing number of quay cranes (and, thus,

jobs), an increasing number of SCs or larger buffer capacities

influence the above findings? 

We will elaborate on these questions in Section 4.4 after having

nswered some auxiliary questions dealing with the appropriate-

ess of the proposed heuristic framework in Section 4.3 : 

A1: What is the quality of the solutions determined by the

heuristic framework when being compared with exact so-

lutions, determined by calling CPLEX on model (4) –(26) , for

small instances? Is this quality sufficient for real-world us-

age of the heuristic framework? 

A2: Which setup of the heuristic framework (ejection chain vs.

3-Opt, random vs. greedy selection of SCs in the construc-

tive procedure) performs best in terms of solution quality for

medium and large instances that are inspired by real-world

szenarios? 

A3: Are the runtimes of the heuristic framework (as analyzed in

A2) in ranges that allow its usage in real-world scenarios? 

All computational tests were executed on a PC with an

ntel®Core TM i7-4770 CPU running at 3.4 GHz and 16 GB of RAM

nder a 64-bit version of Windows 8. We used a 64bit version of

BM ILOG CPLEX 12.7. 

.1. Instance generation 

Our test instances were generated randomly, based on real-

orld data of a port in Germany. We received data for about

0 0 0 containers, including their origin and destination locations,

he SCs that were assigned to the containers, the distances trav-

lled by the loaded SCs when transporting the containers, and the

verage speed of the SCs. Moreover, we received information on

ll relevant parameters of MSCRB, e.g., the time needed to lift or

rop a container by a SC or to process a container by a quay

rane. 
All relevant locations of a problem instance were generated ran-

omly in a Cartesian coordinate system in the plane, with the di-

ensions having been set according to the real-world data. The

uay cranes are located at the waterfront, so that we arbitrarily set

heir y-coordinates to 0. The x-coordinates of the quay cranes were

rawn from uniform distributions on the interval [0,600]. Similarly,

ll relevant origin or destination locations of jobs were drawn from

niform distributions over the intervals [0,600] (x-coordinates) and

50,350] (y-coordinates). Finally, the starting positions of the SCs

ere drawn from the intervals [0,600] (x-coordinates) and [0,350]

y-coordinates). All generated coordinates are integer valued. In or-

er to align the generated locations with the real-world data, we

et the length of a time unit as well as the value of p v to one sec-

nd. Moreover, in line with the real-world data, we set t v to 20

econds. Furthermore, we set t q = 4 · t v , t s = t b = 0 . 25 · t v (see also

origuera & Espinet, 2006; Steenken et al., 2004 ). 

In all of our test instances, a crane is a loading crane with

robability 0.5. Otherwise, it is an unloading crane. The buffer ca-

acity b c is assumed to be equal for all cranes c ∈ C of each test

nstance. Furthermore, each test instance features containers that

re located in the buffer areas at the beginning of the planning

orizon. In case of unloading cranes, we assume that the restack-

ng sets of the corresponding jobs are empty. In case of loading

ranes, we assume that these containers are the first ones to be

rocessed by the cranes. For the sake of simplicity, all cranes, SCs,

mpty slots and containers are assumed to be immediately avail-

ble, and the length of each nonempty restacking set is set to one

ontainer. Table 6 summarizes these basic assumptions for all test

nstances. 

The parameters of our test instances, which we will apply for

nalyzing Q1–Q2 and A2–A3, are presented in Table 7 , where J R :=
 \ ⋃ 

c∈ C J u c . We generated five test instances for each parameter

ombination that results in an identical number of containers that

ave to be processed by each crane. This results in a total of 2160

nstances. As can be seen from Table 7 , the number of quay cranes

 

q of our test instances varies between three and six. The current

pproach at the considered port is to permanently assign three to

ve SCs to each quay crane. Hence, we generated instances with

 

v ∈ { 3 n q , 4 n q , 5 n q } . The buffer capacity varies between three and

ve. As moti vated in Section 1.2 , the sequences of containers that

ave to be loaded onto or unloaded from the vessels by the quay

ranes and that are known when routing the SCs are rather short.

urrently, the considered port considers about 20 containers per

uay crane, which is reflected in our test instances. As restacking

perations are usually performed in off-peak times, the percentage

f loading and unloading jobs that feature a nonempty restacking

et is assumed to be rather small. It varies from 5% to 15% of the

obs that do not correspond to containers located in a buffer area

t the beginning of the planning horizon. 

In light of the computational complexity of MSCRB, we gener-

ted additional sets of small instances (with respect to the num-

er of quay cranes and containers) in order to analyze auxil-

ary question A1. The corresponding parameters are presented in

able 8 . Again, we generated five test instances for each param-

ter combination that results in an identical number of contain-

rs that have to be processed by each crane, i.e., a total of 100

nstances. 

.2. Setup of the algorithms 

We consider four variants of the heuristic framework presented

n Section 3 . Each variant combines a strategy of selecting SCs

n the constructive procedure ( Section 3.1 ) and a succeeding im-

rovement procedure ( Section 3.2 ) that guides the construction

nd evaluation ( Section 3.2.3 ) of MSCRB solutions. The four vari-

nts are listed in Table 9 . 
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Table 6 

Instance generation: basic parameters. 

t q [ seconds ] t v [ seconds ] t s [ seconds ] t b [ seconds ] a q c a v 
k 

a o 
j 

a r 
j 

a b 
ic 

p v [ seconds ] | R j | if R j 	 = ∅ 

80 20 5 5 0 0 0 0 0 1 1 

Table 7 

Generation of real-world instances: Q1–Q2 and A2–A3. 

Loading cranes Unloading cranes 

n q b c | J c \ J l c | | J b c | J v c | J c | | J b c | J q c n b c n v /n q |{ j | j ∈ J R , R j 	 = ∅ }| 

3,4,5,6 3,4,5 10,14,18,22 � 0.5 b c � ∅ 10,14,18,22 � 0.5 b c � ∅ b c − | J b c | 3,4,5 � 0.05| J R | � , � 0.1| J R | � , � 0.15| J R | � 

Table 8 

Generation of small instances: A1. 

Loading cranes Unloading cranes 

n q b c | J c \ J l c | | J b c | J v c | J c | | J b c | J q c n b c n v /n q |{ j | j ∈ J R , R j 	 = ∅ }| 

2,3 4 4,6,8,10,12 � 0.5 b c � ∅ 4,6,8,10,12 � 0.5 b c � ∅ b c − | J b c | 3,4 � 0.1| J R | � 

Table 9 

Variants of the heuristic framework. 

Name Selection of SC Improvement procedure 

EC g Greedy Ejection chain approach, Section 3.2.1 

EC r Random Ejection chain approach, Section 3.2.1 

3 OPT g Greedy 3-Opt approach, Section 3.2.2 

3 OPT r Random 3-Opt approach, Section 3.2.2 
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The parameters of the heuristic framework were set based on

preliminary tests on randomly constructed instances. The improve-

ment procedure within EC g and EC r is restarted four times (see

Section 3.2.1 ), i.e., it is called five times in total. The first call is

initiated with the MSCRB solution which has been determined by

the constructive procedure. The succeeding calls are initiated with

the MSCRB solutions that have been computed based on their re-

spective previous calls. When restarting, the tabu list is cleared.

The tabu length is set to 0.5 · | V |. A call of the ejection chain pro-

cedure is terminated, when the best solution determined within

the call has not improved for 0.8 · | V | iterations. In order to al-

low reasonable runtimes of the 3-Opt variants of the heuristic

framework, 3 OPT g and 3 OPT r skip an edge triple with a probability

of 50%. The threshold for the termination criterion introduced in

Section 3.2.2 is set to the value of t s . 

In addition to the heuristic framework, we use CPLEX with a

given time limit on model (4) –(26) as an additional approach for

determining solutions to an instance of MSCRB. We rate the quality

of a solution with objective function value F alg ( I ) returned by a spe-

cific algorithm alg ∈ { EC g , EC r , 3 OPT g , 3 OPT r , CPLEX } for some given

problem instance I of MSCRB with the ratio F alg ( I )/ F ∗( I ), where F ∗( I )

is the best objective function value returned by any of the consid-

ered algorithms for problem instance I . 

4.3. Auxiliary questions: evaluation of the heuristic framework 

For auxiliary question A1 (small test instances, Table 8 ), we set

the CPLEX time limit to one hour. Table 10 presents the computa-

tional results. For each set of instances, the table depicts the per-

centage of instances that CPLEX was able to solve to optimality

(column “opt.”) and the average time t a v g needed to compute these

solutions. Additionally, it presents average quality ratios qual a v g 
and computational times of the four variants of the heuristic

framework when restricting the analysis to the instances that were
olved to optimality by CPLEX. In the last row, the table addition-

lly lists the overall average values of the corresponding columns. 

As can be seen from Table 10 , CPLEX is able to compute optimal

olutions when the number of containers is sufficiently small. Fur-

hermore, CPLEX benefits from an increasing number of SCs for a

iven number of quay cranes and containers. However, when aim-

ng to compute optimal solutions, the computational results do not

llow for using CPLEX for real-world instances that usually feature

ore than 12 containers per crane (see Section 4.1 ). 

With respect to the heuristic framework, the greedy variants

 OPT g and EC g perform slightly better than the random variants

 OPT r and EC r . Except for the larger instances with n q = 3 and

 

v = 12 , where the quality ratios of 3 OPT r become quite large, all

ariants of the heuristic framework are reasonable candidates for

eal-world usage, both with respect to the computational times

nd the solution qualities. 

For the real-world test instances and auxiliary questions A2–

3, we set the CPLEX time limit to 180 seconds and make use

f the best solution determined by CPLEX within this limit. Note

hat 180 s/t q = 2 . 25 , so that this is a reasonable limit for com-

utational times in real-world online settings of MSCRB, where

escheduling is initiated with new container data whenever one

f the SCs or quay cranes has completed all of its assigned jobs or

perations. 

With respect to auxiliary question A2, Table 11 presents the re-

ulting average quality ratios for each group of instances with an

dentical number of quay cranes, containers per crane and SCs.

or CPLEX, the table additionally includes the percentage of in-

tances for which a feasible solution was found in parentheses.

gain, the last row presents overall average values of the corre-

ponding columns. 

As CPLEX does not reliably return feasible solutions within the

ime limit, it is not an appropriate candidate for real-world us-

ge. With respect to the heuristic framework, 3 OPT g and EC g now

learly outperform their random counterparts in terms of solu-

ion quality. While EC g benefits from an increasing number of SCs,

 OPT g performs similarly well for all ratios n v /n q . Therefore, when

ot taking computational times into account, 3 OPT g seems most

ppropriate for practical applications. 

In order to answer A3, Tables 12 and 13 present average and

aximum runtimes of the algorithms for the real-world instances,

espectively. Bold elements in the tables highlight the best value

or the corresponding set of instances. It is immediately obvious

hat 3 OPT g features computational times that do not allow its
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Table 10 

Performance of CPLEX and the heuristic framework for small instances, CPLEX time limit: 3600 seconds. 

CPLEX 3 OPT g EC g 3 OPT r EC r 

n q n v | J c | 
∗ opt. [%] t a v g [seconds] qual a v g t a v g [seconds] qual a v g t a v g [seconds] qual a v g t a v g [seconds] qual a v g t a v g [seconds] 

2 6 4 100 0.016 1.006 0.001 1.006 0.026 1.02 0.001 1.071 0.028 

6 100 0.407 1.023 0.006 1.032 0.086 1.013 0.008 1.029 0.087 

8 80 6.775 1.015 0.019 1.021 0.192 1.044 0.021 1.124 0.162 

10 40 1795.513 1.058 0.051 1.081 0.332 1.039 0.185 1.151 0.319 

12 0 – – – – – – – – –

2 8 4 100 0.017 1.002 0.001 1.002 0.038 1.003 0.002 1.035 0.041 

6 100 0.135 1.005 0.005 1.003 0.101 1.015 0.007 1.003 0.107 

8 80 85.691 1.076 0.018 1.029 0.164 1.05 0.033 1.036 0.181 

10 60 368.154 1.086 0.058 1.108 0.333 1.099 0.099 1.127 0.313 

12 0 – – – – – – – – –

3 9 4 100 0.296 1.012 0.006 1.012 0.1 1.101 0.005 1.062 0.104 

6 80 2.285 1.016 0.027 1.02 0.207 1.15 0.023 1.026 0.208 

8 20 752.436 1.074 0.139 1.096 0.479 1.292 0.016 1.108 0.515 

10 0 – – – – – – – – –

12 20 0.081 1.015 0.006 1.015 0.119 1.044 0.01 1.067 0.155 

3 12 4 100 0.091 1.011 0.009 1.015 0.182 1.012 0.015 1.059 0.178 

6 100 271.102 1.016 0.019 1.011 0.341 1.185 0.014 1.044 0.343 

8 80 177.558 1.046 0.088 1.044 0.591 1.481 0.106 1.088 0.658 

10 0 – – – – – – – – –

12 0 – – – – – – – – –

avg. 59 133.858 1.025 0.022 1.025 0.192 1.093 0.029 1.06 0.197 

∗: | J c \ J l c | in case of loading cranes 

Table 11 

Average quality ratios for real world instances, CPLEX time limit: 180 seconds. 

3 OPT g EC g 3 OPT r EC r CPLEX 

n q | J c | 
∗ n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 

3 10 1.063 1.048 1.03 1.09 1.068 1.037 1.169 1.221 1.206 1.182 1.146 1.095 1 (100) 1 (100) 1 (100) 

14 1.018 1.038 1.028 1.052 1.046 1.041 1.103 1.213 1.32 1.184 1.169 1.167 1.048 (60) 1.019 (84.4) 1.008 (95.6) 

18 1.006 1.006 1.007 1.049 1.034 1.021 1.183 1.206 1.306 1.212 1.218 1.192 1.113 (20) 1.066 (17.8) 1.071 (31.1) 

22 1.003 1.004 1.005 1.055 1.03 1.025 1.159 1.302 1.294 1.257 1.233 1.229 1.279 (15.6) 1.267 (13.3) 1.138 (15.6) 

4 10 1.041 1.034 1.027 1.058 1.052 1.027 1.212 1.326 1.355 1.178 1.14 1.096 1.01 (100) 1.001 (95.6) 1.001 (100) 

14 1.011 1.01 1.016 1.053 1.025 1.024 1.179 1.318 1.386 1.199 1.179 1.156 1.057 (22.2) 1.061 (37.8) 1.011 (37.8) 

18 1.003 1.003 1.003 1.043 1.019 1.014 1.232 1.331 1.355 1.232 1.201 1.202 1.257 (6.7) 1.127 (6.7) 1.131 (6.7) 

22 1.001 1.001 1.002 1.043 1.02 1.011 1.255 1.42 1.376 1.247 1.258 1.211 – (0) – (0) 3.531 (2.2) 

5 10 1.012 1.029 1.021 1.035 1.034 1.023 1.235 1.358 1.423 1.168 1.128 1.103 1.031 (80) 1.008 (86.7) 1 (82.2) 

14 1.003 1.005 1.004 1.031 1.017 1.011 1.275 1.376 1.363 1.192 1.171 1.138 1.155 (11.1) 1.086 (11.1) 1.074 (24.4) 

18 1.002 1.001 1.005 1.025 1.021 1.005 1.375 1.374 1.595 1.245 1.246 1.208 – (0) – (0) 1.439 (2.2) 

22 1.001 1.002 1.004 1.034 1.013 1.008 1.395 1.481 1.564 1.279 1.256 1.247 – (0) – (0) – (0) 

6 10 1.007 1.014 1.012 1.02 1.016 1.012 1.293 1.431 1.486 1.166 1.132 1.08 1.045 (55.6) 1.011 (68.9) 1.007 (66.7) 

14 1.001 1.003 1.008 1.022 1.012 1.006 1.324 1.447 1.45 1.198 1.179 1.135 1.476 (2.2) 1.196 (4.4) 1.651 (8.9) 

18 1.001 1.002 1.005 1.023 1.013 1.008 1.344 1.569 1.536 1.242 1.224 1.214 – (0) – (0) – (0) 

22 1 1.002 1.004 1.024 1.011 1.003 1.348 1.532 1.587 1.276 1.286 1.237 – (0) – (0) – (0) 

avg. 1.011 1.013 1.011 1.041 1.027 1.017 1.255 1.369 1.413 1.216 1.198 1.169 1.046 (29.6) 1.024 (32.9) 1.039 (35.8) 

∗: | J c \ J l c | in case of loading cranes 

Table 12 

Average runtimes in seconds for real world instances, CPLEX time limit: 180 seconds. 

3 OPT g EC g 3 OPT r EC r CPLEX 

n q | J c | 
∗ n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 

3 10 0.5 0.5 0.4 0.9 1.1 1.3 0.4 0.2 0.2 1 1.1 1.4 180 171.3 114.8 

14 3 2.2 2.8 2.4 2.7 3.1 2 0.9 0.5 2.8 2.9 3.4 180 180 176.8 

18 12.1 10.9 9.3 5.6 6.3 6.8 5.4 4.1 2.8 6.1 7.1 7.9 180 180 180 

22 36.4 31.6 30.6 9.4 12.1 12.1 21.4 10.7 6.3 11.1 13.3 14.1 180 180 180 

4 10 1.4 1.9 1.2 2.1 2.5 2.9 0.8 0.5 0.2 2.3 2.8 3.3 180 169.2 108.8 

14 11.2 10.5 10.1 5.9 6.5 8.1 5.8 1.9 1.6 6.6 7.4 9.2 180 180 180 

18 49.9 30.4 28.2 13.5 15.5 17.5 18.2 5.4 5 14.9 17.8 19.9 180 180 180 

22 138.4 117.5 49.5 24.5 29.5 30.4 42.3 10.8 8.5 28.3 35 35.7 180 

5 10 4.8 3.9 3.5 4.1 5.1 5.7 1.4 0.3 0.4 4.8 5.6 6.6 180 176.7 134.8 

14 32.9 22.3 15.1 12.4 14.3 16.3 8.4 3.2 1.3 14.3 16.7 18.3 180 180 180 

18 81.7 100.4 42.7 26.5 32 35.2 17.1 12.3 2 31.2 38 40.1 180 

22 315.3 186.1 132.9 56 62.6 67.2 77.9 22 5.1 67.1 72.7 78.6 

6 10 10.2 4 5.8 7.5 9.1 10.8 2.4 0.6 0.6 8.6 9.7 12.2 180 175.7 153.9 

14 51.7 44 24.8 21.5 24.8 28.4 6 3.9 1.4 24.7 28.9 32.4 180 180 180 

18 191.5 164.5 132.3 48.5 56 67.1 28.7 5.2 6.6 58.3 64.5 77 

22 523.6 405.1 134.2 94.5 110 117.4 60.5 24.9 9.6 113.7 129.5 131.5 

∗: | J c \ J l c | in case of loading cranes 
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Table 13 

Maximum runtimes in seconds for real world instances. 

3 OPT g EC g 3 OPT r EC r 

n q | J c | 
∗ n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 n v 

n q 
= 3 n v 

n q 
= 4 n v 

n q 
= 5 

3 10 2.4 2.7 2.1 1.5 1.5 1.8 1.5 0.8 1.7 1.4 1.6 1.8 

14 12.8 11.4 16.6 3.8 4.1 4.7 9.1 5.5 3.3 3.9 4.4 5.1 

18 28 39.6 44.1 8.4 8.7 10.3 23.8 33.6 25.9 9.7 9.8 11 

22 145.2 123.4 228.3 14.2 18.1 18.1 77.1 68.9 53 18.3 21.4 21.4 

4 10 5.3 6.3 7.1 3 3.5 3.9 3.6 5 1.2 3 3.7 4.3 

14 35.5 72.3 68.8 8.7 9.5 11.5 45.7 16.2 28.2 9.8 11.3 13.6 

18 290.3 201.2 175.1 18.7 22.4 27.1 126.6 58.5 65.5 21.5 26.9 29.4 

22 512.1 529.3 224.1 39 45.4 50.4 779.4 177.4 127.9 45.6 50.2 51.9 

5 10 13.6 17.3 25.2 5.7 6.5 8.3 6.6 1.7 3.3 6.3 7.7 8.3 

14 122.6 144.3 110.7 17.4 21.9 24.1 56.8 35.5 10.4 19 24.2 25.1 

18 289.9 449.9 266.9 39.7 52.4 57 322.1 103.5 18.3 47.5 65.9 60.7 

22 1188.2 650.6 1466.4 83.1 96.1 99.4 1157.3 365.3 67 95.7 122 115.7 

6 10 33.9 25.3 44.6 11.3 13.8 15.4 21.3 4.4 14.3 13.1 12.1 16 

14 367.4 328.5 146.1 28.1 33.1 41.4 34.8 39.7 16.7 34 41 43 

18 758 833.9 1039.6 77.8 77.9 98.5 226.6 60.3 83.4 85.9 96.6 108.9 

22 2649.9 2053.1 1455.6 156 154.9 174.5 339.2 300.3 72.8 165.8 201 182.7 

∗: | J c \ J l c | in case of loading cranes 

Fig. 11. Impact of relaxing fixed SC assignments: cranes and SCs. 
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usage in real-world online settings of MSCRB in most cases. All

calls of EC g , however, feature runtimes that are smaller than the

180 seconds time limit motivated above. Additionally, we found

that the effect of varying buffer capacities on the average runtimes

of EC g is fairly small. Hence, when balancing runtimes and quality

ratios, EC g is the most appropriate setup of the heuristic frame-

work in real-world settings. 

4.4. Impact of relaxing fixed SC assignments 

Based on our results in Section 4.3 , we can now analyze our

main research questions by solely focussing on EC g . As described
bove, the current approach at the considered port is to perma-

ently assign three to five SCs to each quay crane. That is, each SC

olely processes jobs that are associated to its assigned crane. We

imulate this approach by a heuristic referred to as FIX g . Basically,

his heuristic corresponds to sequentially calling the greedy ver-

ion of our constructive procedure ( Section 3.1 ) for each crane, its

ssociated jobs (including the restacking jobs), and its associated

Cs. 

Fig. 11 illustrates the effect of relaxing fixed SC assignments by

omparing the average quality ratios of EC g and FIX g for different

roups of instances with a varying number of quay cranes and SCs.

he depicted quality ratios take into account all variants of the

euristic framework and CPLEX as analyzed in Section 4.3 . 
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Fig. 12. Impact of relaxing fixed SC assignments: buffer capacity. 
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It can be seen that relaxing fixed SC assignments has a signif-

cant positive effect (research question Q1) on the objective func-

ion value of MSCRB: the difference of the quality ratios varies be-

ween about 0.2 and 0.37. With respect to Q2, we find that the

umber of containers per crane plays a minor role for the achiev-

ble time savings, whereas the differences in the quality ratios

end to increase for an increasing number of quay cranes (and,

hus, jobs) as well as for a decreasing number of SCs, where the

atter effect is more distinct for larger numbers of quay cranes. 

Fig. 12 presents the average quality ratios when focussing on

arying buffer capacities in line with Fig. 11 . As can be seen, the ef-

ect of varying capacities on the achievable savings is rather small.

. Conclusion 

In this paper, we have considered a SC routing problem that

rises at container ports where quay cranes are equipped with

uffer areas of limited capacity that allow short time storage of

ontainers. The SCs are in charge of transporting containers be-

ween these buffer areas and the stacking areas of the port, while

aving to respect given unloading and loading sequences of the

ontainers at the quay cranes. The objective of the routing prob-

em represents the overall goal to minimize the turnaround times

f the vessels at the port. In contrast to the current approach at

he considered port, we do not fix the assignment of SCs to quay

ranes. 

We have provided a proof for the strong NP-hardness of the

roblem under consideration. Furthermore, we have presented

n integer program based on an asymmetric traveling salesman

roblem with precedence constraints. We have then introduced a

euristic framework, that decomposes the problem into a routing

omponent and a component that handles the time variables and

he buffer capacities. Computational tests have provided evidence

or the applicability of a variant of this framework that applies an

jection chain approach for the routing component in real-world

nline settings. Furthermore, seeing significant improvements in

he objective function value when freely routing the SCs, we have

hown that the relaxation of the fixed SC assignments is an inter-

sting strategy to be considered by port authorities. 

There remain several interesting questions to be answered

n future research. Potential limitations of our model could, for

xample, be evaluated in a simulation study. Other relevant

uestions are concerned with generalizations or modifications

f the problem studied in this article in order to include more

etails of the port layout, other transportation vehicles (AGVs, YTs,

LVs, etc.), or more general loading or unloading strategies at the

uay cranes. In order to achieve high crane utilization rates, for

xample, some terminal operators seek to implement crane double

ycling strategies. Due to the fact that this results in cranes and

Cs dropping containers in the same buffer areas, this oftentimes
esults in deadlock situations in practice (see, for example, Carlo

t al., 2014b; Lehmann, Grunow, & Günther, 2006 ). In order to

revent or resolve such deadlocks, our model and algorithms may

e extended appropriately. Similarly, one can explicitly model

aiting periods of SCs in order to prevent congestion situations

r include one-way travel settings or other details of the port

ayout that are frequently applied in practice. Further research

ould also be undertaken to investigate the potential of integrating

ecisions of higher level optimization problems into our model,

.g., container sequencing decisions at the quay cranes or decisions

n destination locations of containers in the storage areas, which

e have treated as parameters is this study. 
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