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a b s t r a c t 

In this paper we address an exact algorithm for the block relocation problem with a stowage plan. This 

problem is an extension of the container (block) relocation problem that aims at minimizing the total 

number of relocations required for retrieving containers piled up in a container yard. The difference is 

that a stowage plan in a vessel is given in advance and it is taken into consideration when retrieving 

containers. More specifically, the retrieval order of containers should be feasible with respect to a given 

stowage plan. We construct a branch-and-bound algorithm with iterative deepening for unrestricted and 

restricted variants of this problem. To this end, we propose three lower bounds on the total number of 

relocations. We also extend dominance rules for the container relocation problem, in order to restrict the 

search space and improve the search efficiency. The effectiveness of the proposed algorithm is examined 

by numerical experiments for benchmark instances from the literature. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Container transportation is a major means of maritime freight

owadays, and the number of containers handled in sea ports

as been constantly increasing in recent decades. According to

he statistics of the United Nations Conference on Trade and De-

elopment, the world container port throughput is 752 million

EUs (Twenty-foot Equivalent Units) in 2017, which exhibits a 34%

rowth from 560 million TEUs in 2010 (UNICTAD, 2018) . To han-

le this many containers properly without causing serious delays,

ffective operations in sea ports are of crucial importance. 

Container terminals in sea ports provide temporal storage for

onnecting different transportation modes: Incoming containers

ia maritime and land transport are stored temporarily in a stor-

ge yard until they are retrieved for further maritime and land

ransport. Primarily due to space limitation, containers are usually

iled up vertically in tiers in the yard. Since cranes can access only

he topmost containers, relocations of containers within the yard

re inevitable, unless their retrieval order is known in advance

nd, at the same time, containers are stacked in accordance with

he order. Roughly speaking, three types of problems have been

tudied so far ( Caserta, Schwarze, & Voß, 2011a ) to reduce un-
∗ Corresponding author. 
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roductive relocations and to achieve a better container handling

erformance. The stacking problem determines appropriate stor-

ge locations of incoming containers using incomplete and often

tochastic information of their retrieval order. The pre-marshalling

roblem and the re-marshalling problem rearrange containers

ithin the yard off-line so that no relocations are necessary

hen they are actually retrieved. The relocation problem retrieves

ontainers from the yard while avoiding relocations as much as

ossible. This paper focuses on the relocation problem, which is

eferred to as the container relocation problem or the block(s)

elocation problem in the literature. 

In the ordinary setting of the relocation problem, each con-

ainer is assigned an integer priority value, and we aim at retriev-

ng containers in nondecreasing order of their priority values so as

o minimize the total number of relocations. The majority of ex-

sting studies on the relocation problem assume that the priority

alues are distinct and thus the retrieval order is unique, although

n practice it depends on several factors such as departure times,

estinations, stowage plans, and so on. Granted that assigning the

ame priority value to a group of containers enables us to treat a

ore general situation where the retrieval order within each group

s arbitrary, the current model that specifies the retrieval order by

riority values is restrictive. To alleviate this, we address an exten-

ion of the relocation problem, assuming that the containers are

oaded onto a vessel. In this problem, the retrieval order is deter-

ined by a stowage plan in the vessel. For example, if container

 is stacked below (above) container Y in the vessel, we must re-

https://doi.org/10.1016/j.ejor.2019.06.014
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d

trieve container X before (resp. after) container Y from the yard.

Otherwise, the retrieval order between them is arbitrary. Follow-

ing Ji, Guo, Zhu, and Yang (2015) , we refer to this problem as the

block relocation problem with a stowage plan (BRPSP). 

The purpose of this paper is to develop an efficient exact

algorithm for the BRPSP. We propose three lower bounds on the

total number of relocations, and construct a branch-and-bound

algorithm with iterative deepening. Then, we demonstrate the

effectiveness of the proposed algorithm through computational

experiments. 

The remainder of this paper is organized as follows.

Section 2 gives a brief survey of relevant studies. Section 3 states

a formal description of the BRPSP. Section 4 provides notation

and definitions used throughout this paper. Properties of the

retrieval order are investigated and summarized here as well.

Section 5 proposes three lower bounds on the objective value.

They are employed in the branch-and-bound algorithm constructed

in Section 6 . Section 6 also proposes dominance rules for reduc-

ing unpromising nodes in the search tree, and a simple greedy

heuristic for computing an upper bound. Section 7 examines

the effectiveness of the proposed algorithm as well as the lower

bounds through computational experiments. Section 8 summarizes

the results obtained in this paper. 

2. Literature review 

In this section, we briefly review the literature on the reloca-

tion problem and the pre-marshalling problem. For more details

on these and related problems, please refer to the survey papers

Caserta et al. (2011a) and Lehnfeld and Knust (2014) . 

The optimization model of the relocation problem originates

from Kim and Hong (2006) . They develop a branch-and-bound al-

gorithm and a greedy heuristic for the problem. Following their

study, several researchers have tackled this problem. Its NP-

hardness is proved ( Caserta, Schwarze, and Voß, 2012; van Brink

and van der Zwaan, 2014 ), and heuristics ( Azari, Eskandari, & Nour-

mohammadi, 2017; Caserta, Schwarze, & Voß, 2009; Caserta &

Voß, 2009b; Caserta, Voß, & Sniedovich, 2011b; Expósito-Izquierdo,

Melián-Batista, & Moreno-Vega, 2014; Forster & Bortfeldt, 2012; Jin,

Zhu, & Lim, 2015; Jovanovic & Voß, 2014; Jobvanovic, Tuba & Voß,

2019; Lee & Lee, 2010; Lin, Lee, & Lee, 2015; Petering & Hussein,

2013; Ting & Wu, 2017; Tricoire, Scagnetti, & Beham, 2018; Ün-

lüyurt & Aydın, 2012; Zhu, Qin, Lim, & Zhang, 2012 ), mathemat-

ical formulations ( Caserta et al., 2012; Eskandari & Azari, 2015;

Expósito-Izquierdo et al., 2014; Galle, Barnhart, & Jaillet, 2018; Pe-

tering & Hussein, 2013; Wan, Liu, & Tsai, 2009; Zehendner, Caserta,

Feillet, Schwarze, & Voß, 2015 ), de Melo da Silva, Toulouse, and

Wolfler Calvo (2018b) , and exact algorithms ( Expósito-Izquierdo

et al., 2014; 2015; Ku & Arthanari, 2016; Quispe, Lintzmayer, &

Xavier, 2018; de Melo da Silva, Erdo ̆gan, Battarra, & Strusevich,

2018a; Tanaka & Mizuno, 2018; Tanaka & Takii, 2016; Tricoire et al.,

2018; Ünlüyurt & Aydın, 2012; Zehendner & Feillet, 2014; Zhu

et al., 2012 ) have been proposed. Some of these studies aim at

minimizing the total crane working time ( Azari et al., 2017; Galle

et al., 2018; Lee & Lee, 2010; Lin et al., 2015; da Silva Firmino,

de Abreu Silva, & Times, 2019; Ünlüyurt & Aydın, 2012 ), but the

majority adopt the total number of relocations as the objective

function to be minimized. For a note on the relation of these ob-

jectives see Schwarze and Voß (2014) . In addition to the objec-

tive function, the relocation problem can be classified from the

following two aspects. The first classification concerns relocatable

containers. In the restricted variant of the problem, we can re-

locate only the topmost container above the container to be re-

trieved next. In contrast, any of the topmost containers is relo-

catable in the unrestricted variant of the problem. It follows that

we must determine the relocated container as well as its destina-
ion in the latter problem. Despite this difficulty, the unrestricted

roblem is considered in several studies (see Caserta et al., 2012;

xpósito-Izquierdo et al., 2014; Forster & Bortfeldt, 2012; Galle

t al., 2018; Jin et al., 2015; Kim & Hong, 2006; Petering & Hus-

ein, 2013; de Melo da Silva et al., 2018b; Tanaka & Takii, 2016;

ricoire et al., 2018; Zhu et al., 2012 ). The second classification is,

s already mentioned, in terms of priorities of containers. In the

roblem with distinct priorities, the retrieval order of containers

s unique, whereas the retrieval order among containers belong-

ng to the same group is arbitrary in the problem with duplicate

group) priorities. Only a small number of studies consider the lat-

er problem (see Forster & Bortfeldt, 2012; Jin et al., 2015; Kim &

ong, 2006; de Melo da Silva et al., 2018a; de Melo da Silva et al.,

018b; Tanaka & Takii, 2016 ). 

In the pre-marshalling problem, unlike the relocation prob-

em, we do not retrieve any containers but only rearrange them

ithin the yard in accordance with their retrieval priorities. An-

ther difference is that retrieval priorities are in general assumed

o be possibly duplicated in the pre-marshalling problem. Thus,

e do not treat the problem with distinct priorities separately.

he pre-marshalling problem is also well-studied in the literature,

nd heuristics ( Bortfeldt & Forster, 2012; Caserta & Voß, 2009a;

xpósito-Izquierdo, Melián-Batista, & Moreno-Vega, 2012; Hottung

 Tierney, 2016; Huang & Lin, 2012; Jovanovic, Tuba, & Voß, 2017;

ee & Chao, 2009; Wang, Jin, & Lim, 2015; Wang, Jin, Zhang, & Lim,

017 ), mathematical formulations ( Lee & Hsu, 2007; de Melo da

ilva et al., 2018b ), and exact algorithms ( van Brink & van der

waan, 2014; Tanaka & Tierney, 2018; Tierney, Pacino, & Voß, 2017;

hang, Jiang, & Yun, 2015 ) have been proposed. Its NP-hardness

an be proved in a similar manner to the relocation problem ( van

rink & van der Zwaan, 2014; Caserta et al., 2011a ). 

In these studies for the relocation problem and the pre-

arshalling problem, the retrieval order is determined using pri-

rities of containers. There exist some extensions of the problems

n which the retrieval order is not determined simply by the pri-

rities. López-Plata, Expósito-Izquierdo, Lalla-Ruiz, Melián-Batista,

nd Moreno-Vega (2017) consider a variant of the relocation prob-

em where a due date is given for each container and the objective

s to minimize the total tardiness. In this problem, we need not

lways retrieve containers in EDD (earliest due date) order if a

enalty is paid for the delay. Tierney and Voß (2016) study a

obust version of the pre-marshalling problem where each con-

ainer has to be retrieved within its due window. To the best of

he authors’ knowledge, an extension of the relocation problem

hat considers a stowage plan when retrieving containers was

roposed for the first time by Ji et al. (2015) . They treat this

roblem as a bi-level decision problem. In the first level, the

etrieval order of containers is determined by a genetic algorithm.

iven the retrieval order, destination stacks of relocated containers

re determined by three heuristics in the second level. Here, only

ontainers above the container to be retrieved next are relocated,

eaning that their problem is the restricted variant of the BRPSP.

ovanovic, Tanaka, Nishi, and Voß (2018) construct greedy heuris-

ics and GRASPs (Greedy Randomized Adaptive Search Procedures)

or the restricted BRPSP. However, the unrestricted BRPSP has

ever been studied to date, although a better solution with fewer

elocations is expected by removing the restriction on relocatable

ontainers. Moreover, no exact algorithms are currently available

ven for the restricted BRPSP. These facts motivate us to develop

n exact algorithm for both unrestricted and restricted variants of

he BRPSP, which is the primary purpose of this paper. 

. Block relocation problem with a stowage plan 

In this section, we give a formal description of the BRPSP ad-

ressed in this paper. 



S. Tanaka and S. Voß / European Journal of Operational Research 279 (2019) 767–781 769 

Fig. 1. Transferring containers from a bay of a container yard to a bay of a vessel. 
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b  
Suppose that containers of the same size are stored in a con-

ainer yard, and some of them are transferred onto a vessel as il-

ustrated in Fig. 1 . As is often the case with the relocation problem,

nly one yard bay and one vessel bay are considered because mov-

ng a crane across bays is time-consuming, compared with moves

ithin one bay. Thus, we are to transfer N containers (container 1,

ontainer 2, . . . , container N ) in a yard bay to a vessel bay. The

ard bay is composed of S Y stacks whose heights are limited to T Y :

he maximum number of containers that can be placed in each

ard stack is T Y . The vessel bay has S V stacks. Each slot of the yard

ay and the vessel bay is denoted by a pair of stack s and tier t

s ( s , t ), where the tiers are numbered as 1, 2, . . . from bottom to

op. The initial slot of container c in the yard bay is given by ( s Y c ,

 

Y 
c ). Since we cannot place a container above an empty slot, there

lways exists a container d such that (s Y 
d 

= s Y c ) ∧ (t Y 
d 

= t Y c − 1) , if

ontainer c satisfies t Y c > 1 . The destination slot of container c in

he vessel bay is given in advance by ( s V c , t 
V 
c ). Clearly, there exists

ontainer d such that (s V 
d 

= s V c ) ∧ (t V 
d 

= t V c − 1) for any container c

atisfying t V c > 1 . We can transfer a container to its destination slot

n the vessel bay, if it is placed on top of a yard stack and, at the

ame time, its destination slot is on top of a vessel stack. If no such

ontainer exists, we must relocate containers. We assume that this

elocation is permitted only within the yard bay and containers

an never be moved again after they are placed in the vessel bay.

herefore, the following two types of operations are permitted: 

• Relocation 

A container on top of a yard stack is moved to the top of an-

other yard stack, if it is not full. 
• Retrieval (Transfer) 

A container on top of a yard stack is moved to the top of a

vessel stack, if this location is its destination slot. 

In the restricted BRPSP, an additional constraint is imposed on

elocations: 

• Only the topmost container above the container to be retrieved

next can be relocated. 

The objective of the BRPSP is to minimize the total number of

elocations necessary for transferring all the N containers from the

ard bay to the vessel bay. It is worth noting that the problem

ecomes equivalent to the relocation problem if the vessel bay is

omposed only of one stack. Thus, the BRPSP is NP-hard from the

P-hardness of the relocation problem. 

An initial yard bay configuration is illustrated in Fig. 2 . In this

gure as well as the other figures in this paper, vessel stacks are

amed alphabetically as A, B, and so on, and containers are de-

oted by their destination slots. For example, the destination slot

f containers A1 and C3 are the lowest tier of vessel stack A and

he third lowest tier of vessel stack C, respectively. An optimal so-

ution of this instance as the unrestricted BRPSP is shown in Fig. 3 .

t is composed of four relocations: container C2 from yard stack
 to 2, F3 from 2 to 1, B2 from 5 to 2, and A3 from 2 to 3. We

eed not consider retrievals explicitly when constructing a solu-

ion, since we can assume that retrievable containers are retrieved

s soon as possible. Note that this solution is infeasible for the re-

tricted BRPSP because container F3 is relocated from yard stack

, although container E1 is retrieved next from yard stack 5 (it is

etrieved first in Fig. 3 f). The details are omitted here, but we can

onfirm that interchanging the order of the relocations of contain-

rs F3 and E1 makes the solution feasible for the restricted BRPSP

ithout increasing the total number of relocations. 

. Notation, definitions, and precedence cycles 

In this section, we first summarize basic notation and defi-

itions used throughout this paper. Then, we investigate proper-

ies of cycles in retrieval precedence relations. Please also refer to

able 1 . 

.1. Basic notation and definitions 

Let us represent the current yard (and vessel) bay configuration

y C. We write c ∈ C if container c is in the yard bay, and c / ∈ C oth-

rwise (in the vessel bay). The current slot of container c ∈ C in the

ard bay is denoted by ( s Y c (C) , t Y c (C) ). The set of containers placed

n yard stack y in C is denoted by Y y (C) . The sets of containers al-

eady placed and not yet placed in the destination vessel stack s V c 

f container c in C are denoted by V c (C) and V̌ c (C) , respectively. 

The target group is composed of containers in the yard bay

hose destination slot is on top of the corresponding vessel stack.

ach container in the target group is referred to as a target con-

ainer. One of the target containers is retrieved from the yard bay

ext. We denote the target group in C by G(C) . The target stacks

re the yard stacks where at least one target container is placed.

he set of target stacks in C is denoted by T (C) . The topmost target

ontainer in a target stack y ( ∈ T (C) ) is denoted by g y (C) . Stacking

ontainers in target stack y are those placed above container g y (C) .

e denote by S y (C) the set of stacking containers in target stack y .

ereafter, the argument “(C) ” in each notation is omitted if there

s no ambiguity. 

The relocation of a container c from a yard stack s to a yard

tack d is denoted by the triplet ( c , s , d ). A feasible solution of the

roblem is represented by a sequence of feasible relocations ( c 1 , s 1 ,

 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ). We also define the relocation func-

ion L csd (C) to express the bay configuration obtained by applying

 c , s , d ) to C. Similarly, the retrieval function R (C) denotes the bay

onfiguration after all retrievable containers are retrieved in C. 

.2. Precedence graph and cycles 

Let us consider two containers c and d in the yard bay in a

ay configuration C . If s Y c (C ) = s Y 
d 
(C) and t Y c (C) > t Y 

d 
(C) , that is, if
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Fig. 2. An initial yard bay configuration ( S Y = 5 , T Y = 6 , S V = 6 ). 
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container c is placed above container d in the same yard stack,

we cannot relocate or retrieve container d before container c . If

s V c = s V 
d 

and t V c < t V 
d 
, that is, if the destination slot of container c

is below that of container d in the same vessel stack, we cannot

retrieve container d before container c . These facts yield prece-

dence relations between containers from top to bottom in a yard

stack, and from bottom to top in a vessel stack. In Jovanovic

et al. (2018) , these precedence relations are investigated in de-

tail and some properties are derived, which we introduce in the

following. 
Fig. 3. An optimal solution to the initial bay configuration in F
Let us define a yard precedence relation 

y −→ and a vessel prece-

ence relation 

v −→ in C as follows: 

 

y −→ d iff (s Y c (C) = s Y d (C)) ∧ (t Y c (C) > t Y d (C)) , (1)

 

v −→ d iff (s V c = s V d ) ∧ (t V c < t V d ) . (2)

ccordingly, we introduce a digraph G = (V, A ) , where 

 := { c | c ∈ C} , (3)

 := { (c, d) ∈ C × C | (c 
y −→ d) ∨ (c 

v −→ d) } . (4)

t is obvious that all yard containers in C can be retrieved with-

ut any relocations if the corresponding precedence graph G does

ot contain any cycle. In other words, cycles in G prevent us from

etrieving containers and thus we must disconnect all of them

y relocating containers to retrieve all the containers. To clas-

ify the cycles, we define a minimal cycle as follows: A cycle

 = { (c 1 , c 2 ) , (c 2 , c 3 ) , . . . , (c n , c 1 ) } ⊂ A is called minimal iff for any

 

′ ⊂ { c 1 , c 2 , . . . , c n } such that | V 

′ | < n , the subgraph of G induced

y V 

′ is acyclic. In short, a cycle is minimal if nodes composing it

o not form any subcycle. In Jovanovic et al. (2018) , it is proved
ig. 2 (unrestricted).The total number of relocations is 4. 
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Table 1 

Basic notation and definitions. 

N : Number of containers. 

S Y : Number of stacks in the yard bay. 

T Y : Height limit of yard stacks. The maximum number of containers that can be placed in each yard stack. 

S V : Number of stacks in the vessel bay. 

( s , t ): Slot in the t th tier of yard or vessel stack s . 

( s V c , t 
V 
c ): Destination slot of container c in the vessel bay. 

C: Yard bay and vessel bay configuration. 

c ∈ C: Container c is in the yard bay in bay configuration C. 

c / ∈ C: Container c is in the vessel bay in bay configuration C. 

( s Y c (C) , t Y c (C) ): Slot of container c ( ∈ C) in bay configuration C. 

Y y (C) : Set of containers placed in yard stack y in bay configuration C. Y y (C) := { c ∈ C | s Y c = y } . 
V c (C) : Set of containers already placed in the destination vessel stack s V c of container c in bay configuration C. V c := { e / ∈ C | s V e = s V c } . 
V̌ c (C) : Set of containers not yet placed in the destination vessel stack s V c of container c in bay configuration C. V̌ c := { e ∈ C | s V e = s V c } . 
G(C) : Target group in bay configuration C . G(C ) := { c ∈ C | t V c = |V c (C) | + 1 } . 
T (C) : Set of target stacks. T (C) := 

⋃ 

c∈G(C) { s Y c (C) } . 
g y (C) : Topmost target container in target stack y ( ∈ T (C) ) in bay configuration C. g y (C) := argmax c∈G(C) ∩Y y (C) t 

Y 
c (C) . 

S y (C) : Stacking containers in yard stack y in bay configuration C . S y (C ) := { c ∈ Y y (C) | t Y c (C) > t Y 
g y (C) 

(C) } . 
( c , s , d ): Relocation of container c from yard stack s to yard stack d . 

L csd (C) : Relocation function. The bay configuration obtained by applying ( c , s , d ) to bay configuration C. 

R (C) : Retrieval function. The bay configuration after all retrievable containers are retrieved in bay configuration C. 

c 
y −→ d: Yard precedence relation. Container c is above container d in the same yard stack. 

c 
v −→ d: Vessel precedence relation. Container c should be placed below container d in the same vessel stack. 

M 

2 n : Set of minimal 2 n -cycles. 

K(a ) : Set of 2 n -blocking containers in minimal 2 n -cycle a ( ∈ M 

2 n ). K(a ) := { c | ((c, d) ∈ a ) ∧ (c 
y −→ d) } . To disconnect a , one of the 

containers in K(a ) has to be relocated. 

Fig. 4. A bay configuration and the corresponding precedence graph (dashed arrow: yard precedence, solid arrow: vessel precedence). 

Fig. 5. Minimal cycles in the precedence graph in Fig. 4 (dark: 2 n -blocking, white: 2 n -blocked). 
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hat G does not contain minimal cycles of an odd length. Further-

ore, yard precedence and vessel precedence appear in turn along

very minimal cycle. A precedence graph is illustrated in Fig. 4 . It

ontains four minimal 2-cycles and three minimal 4-cycles, which

re summarized in Fig. 5 . 

To disconnect a cycle, we should relocate a container in the cy-

le. Since yard precedence c 
y −→ d implies that container d cannot

e relocated before container c , there are n candidate containers

n a minimal 2 n -cycle (recall that half of the arcs in a minimal cy-

le are yard precedence). In Fig. 5 , dark nodes represent candidate

ontainers to be relocated. To distinguish them from the other n

ontainers, we refer to the former as 2 n -blocking and the latter

s 2 n -blocked. Please note that a container can be 2 n -blocking in

ore than one minimal 2 n -cycle. It is also the case that a container
 b
s both 2 n -blocking and 2 n ′ -blocking for n ′ 
 = n . In Fig. 5 , container

3 is 2-blocking in two minimal 2-cycles, and container C3 is 4-

locking in all the three minimal 4-cycles. Moreover, container B3

s both 2-blocking and 4-blocking. Hereafter, the set of all minimal

 n -cycles is denoted by M 

2 n . The set of 2 n -blocking containers in

 cycle a ∈ M 

2 n is denoted by K(a ) . 

. Lower bounds 

In this section, we propose three lower bounds on the total

umber of relocations for the unrestricted BRPSP. Since the re-

tricted BRPSP imposes an additional constraint on relocatable con-

ainers, the optimal value of the restricted BRPSP is not smaller

han that of the unrestricted BRPSP. It means that these lower

ounds are valid also for the restricted BRPSP. 
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5.1. Cycle and blocking-based lower bounds 

5.1.1. LB2c 

This simple lower bound counts the total number of 2-blocking

containers. To disconnect a minimal 2-cycle, we must relocate the

2-blocking container in it, as we have already seen in Section 4.2 .

Noting the fact that we must relocate all 2-blocking containers to

disconnect all minimal 2-cycles, we can use the total number of

2-blocking containers as a lower bound on the total number of re-

locations. This lower bound is denoted by LB2c. Let us define the

set of all 2-blocking containers by 

B 

2 := 

⋃ 

a ∈M 

2 

K(a ) . (5)

Then, we can write LB2c as LB2c := |B 

2 | . For the bay configura-

tion in Fig. 4 (a), containers A2, A3 and B3 are 2-blocking from

Fig. 5 (a), and relocating them disconnects all the four minimal 2-

cycles. Hence, we obtain LB2c = 3 . 

5.1.2. LB2c4c 

Although LB2c considers only minimal 2-cycles, we must dis-

connect all minimal 4-cycles as well to retrieve containers. Since

some of the minimal 4-cycles may be disconnected when mini-

mal 2-cycles are disconnected, we define ˜ M 

4 , the set of minimal

4-cycles that are independent of minimal 2-cycles as follows: ˜ M 

4 := { a ∈ M 

4 | K(a ) ∩ B 

2 = ∅} . (6)

We can see from this definition that if a ∈ M 

4 \ ˜ M 

4 , at least one of

the two 4-blocking containers in cycle a is 2-blocking. Please note

that in a cycle a ∈ 

˜ M 

4 , a 4- blocking container is never 2-blocking,

but a 4- blocked container can be 2-blocking. In Fig. 5 (b), the sec-

ond and third cycles belong to ˜ M 

4 , whereas the first one does not

because container B3 is 2-blocking as well as 4-blocking. Let us de-

note the set of 4-blocking containers by B 

4 , which is defined as 

B 

4 := 

⋃ 

a ∈ ̃  M 

4 

K(a ) . (7)

Next, we try to disconnect minimal 4-cycles in 

˜ M 

4 . To obtain a

lower bound on the total number of relocations, we should solve

the problem of minimizing the number of 4-blocking containers in

B 

4 that disconnect all minimal 4-cycles in 

˜ M 

4 . This problem can

be modeled as a minimum set cover problem: ˜ M 

4 is covered by a

minimum number of subsets ˜ M 

4 
c ⊂ ˜ M 

4 ( c ∈ B 

4 ), where ˜ M 

4 
c := { a ∈ 

˜ M 

4 | c ∈ K(a ) } . (8)

Specifically, ˜ M 

4 
c is the set of minimal 4-cycles that are discon-

nected by relocating 4-blocking container c . Unfortunately, the

minimum set cover problem is in general NP-hard ( Garey &

Johnson, 1979) . Therefore, we use a simple lower bound on its ob-

jective value that can be computed in polynomial time. Let m 1 , m 2 ,

. . . , m |B 4 | be the sequence of | ̃  M 

4 
c | ( c ∈ B 

4 ), sorted in nonincreas-

ing order. Then, it is easy to check that k ∗ satisfying 

k ∗−1 ∑ 

k =1 

m k < | ̃  M 

4 | ≤
k ∗∑ 

k =1 

m k (9)

gives a lower bound on the number of 4-blocking containers nec-

essary for disconnecting all minimal 4-cycles in 

˜ M 

4 . In summary,

the lower bound LB2c4c is given by LB2c4c := LB2c + k ∗. For the

bay configuration in Fig. 4 (a), B 

4 is composed of containers C3, D2,

and D3. Among them, container C3 disconnects both the minimal

4-cycles in 

˜ M 

4 , so that m 1 = 2 (container C3) and m 2 = m 3 = 1

(containers D2 and D3). Hence, k ∗ = 1 and LB2c4c = 3 + 1 = 4 in

this case. 
.2. Relaxation-based lower bound LBr 

It is true that LB2c and LB2c4c are not difficult to compute, but

hey ignore longer cycles in the precedence graph. As a result, the

ptimality gap tends to be large, which causes a negative impact

n the search performance of exact algorithms. In this section, we

ropose another lower bound LBr that considerably reduces the

ap at the cost of computation time. 

To obtain LBr, we introduce a relaxation of the original unre-

tricted BRPSP where infinitely many empty yard stacks are avail-

ble. In this relaxation, the destination of a relocation is always

n empty yard stack. It follows that each container is relocated at

ost once. Since the complexity of this relaxation is not trivial, we

pply a depth-first branch-and-bound algorithm to solve it. How-

ver, it is too time-consuming to enumerate all feasible relocations

ne by one. To reduce the search space and solve the relaxation as

ast as possible, we further investigate the structure of its optimal

olution. 

First, we show an interesting property that the restricted and

nrestricted variants of the relaxation are equivalent, although the

elaxation is derived from the unrestricted BRPSP. Therefore, we

nly need to search such solutions that the container to be re-

rieved next is at first determined among the target containers,

nd that only stacking containers above it are relocated until it is

etrieved. The following lemma states this property. 

emma 1. There exists an optimal solution of the relaxation where

etween two successive retrievals of target containers c and d , only

tacking containers above container d (if any) are relocated. 

roof. Suppose an optimal solution that does not satisfy the con-

ition of the lemma, and let container e be the first container that

reaks the condition. That is, container d is placed in a yard stack y

nd container e is relocated from another yard stack z 
 = y between

he retrievals of containers c and d . Since no other container is re-

rieved between these two retrievals, container e does not block

ny retrieval from yard stack z even if it is not relocated. Hence,

e can consider a new solution where the relocation of container

 is delayed until container d is retrieved. This solution satisfies

he condition of the lemma at least until container d is retrieved.

epeatedly delaying the relocation of a container that breaks the

ondition first, we reach an optimal solution satisfying the condi-

ion, which completes the proof. �

This lemma suggests that we only need to determine one by

ne the yard stack from which we retrieve a container next. There-

ore, we can represent a solution of the relaxation by a sequence

f target yard stacks. In the branch-and-bound algorithm for the

elaxation, an optimal sequence of yard stacks is searched for from

rst to last. We use LB2c4c as a lower bound on LBr in the algo-

ithm. To further improve its search efficiency, we apply a domi-

ance rule. 

Suppose a sequence s 1 , s 2 , . . . , s n of yard stacks representing

 partial solution of the relaxation for a bay configuration C. Here,

e assume without loss of generality that C = R (C) : All retrievable

ontainers have been retrieved from C. Let us denote a dummy

mpty yard stack by •. Accordingly, ( c , s , •) denotes the relocation

f container c from yard stack s to a dummy empty yard stack, and

 cs •(C) the bay configuration obtained by applying ( c , s , •) to C. Let̂ 

 0 := C and define ̂ C i (1 ≤ i ≤ n ) by ̂ 

 i := R ◦ L c ik i s i • ◦ L c i,k i −1 s i • · · · ◦ L c i 1 s i •( ̂  C i −1 ) , (10)

here 

 s i ( ̂
 C i −1 ) =: { c i 1 , c i 2 , . . . , c ik i } , (11)
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4. |Y (C ) | = |Y (C) | . 
 

Y 
c i 1 

( ̂  C i −1 ) > t Y c i 2 
( ̂  C i −1 ) > · · · > t Y c ik i 

( ̂  C i −1 ) . (12) 

pecifically, ̂ C i is the bay configuration after the retrieval of the

arget container below stacking containers c i 1 , c i 2 , . . . , c ik i in yard

tack s i and subsequent retrievals that do not require relocations.

y using them, the dominance rule is summarized as the following

emma: 

emma 2. We need not consider the partial solution represented by

 1 , . . . , s n for C, if the following conditions are both satisfied: 

1. S s n ( ̂  C n −1 ) = S s n (C) . 

2. s 1 > s n . 

roof. Let X and Y be the partial solutions represented by s 1 , . . . ,

 n and s n , s 1 , . . . , s n −1 , respectively. We show that if X is opti-

al, Y is also optimal, when Conditions 1 and 2 are both satis-

ed. From Condition 1, the number of relocations from yard stack

 n in Y is equal to that in X . Let us define ̂ C ′ 1 , ̂ C ′ 2 , . . . , ̂ C ′ n for Y

n a similar manner to ̂ C 1 , ̂ C 2 , . . . , ̂ C n for X, respectively. That is,̂ 

 

′ 
1 

is the bay configuration after the retrieval from yard stack s n , 

nd 

̂ C ′ 
i 

(2 ≤ i ≤ n ) after the retrieval from yard stack s i −1 . Then, it

s easy to see that S s i ( ̂  C ′ 
i 
) ⊆ S s i ( ̂  C i −1 ) holds for 1 ≤ i ≤ n − 1 . Fur-

hermore, c ∈ ̂

 C ′ n implies c ∈ ̂

 C n . From the optimality of X , we ob-

ain S s i ( ̂  C ′ 
i 
) = S s i ( ̂  C i −1 ) ( 1 ≤ i ≤ n − 1 ) and 

̂ C ′ n = ̂

 C n because other-

ise, the number of relocations in Y is smaller than that in X ,

hich contradicts the optimality of X . This proves the optimality

f Y . Condition 2 is for breaking ties. �

This lemma is utilized to restrict the search space in the

ranch-and-bound algorithm for the relaxation. Suppose that at

ome node of depth n − 1 in the search tree, we have already re-

rieved containers from yard stacks s 1 , . . . , s n −1 in this order. Then,

e need not consider yard stack y ∈ T ( ̂  C n −1 ) for the next retrieval

t depth n , if there exists i ( 1 ≤ i ≤ n − 1 ) satisfying both s i > y and

 y ( ̂  C n −1 ) = S y ( ̂  C i −1 ) . It is because Lemma 2 is satisfied if ̂ C i −1 is re-

arded as the initial bay configuration C in the lemma. 

.3. Relations to a lower bound for the relocation problem 

For the relocation problem, several lower bounds on the total

umber of relocations have been proposed. Among them, the sim-

lest and most intuitive is the one proposed by Kim and Hong

2006) . In the relocation problem, a container is called a blocking

ontainer iff another container that should be retrieved earlier is

laced below it. Since it is obvious that each blocking container

s relocated at least once, they use the total number of blocking

ontainers as a lower bound on the total number of relocations,

hich we refer to as LB-KH. From this point of view, a direct ex-

ension of LB-KH to the BRPSP would be LB2c that counts the total

umber of 2-blocking containers. To improve LB2c, we take into

ccount 4-blocking containers as well in LB2c4c. We may further

mprove LB2c4c by considering minimal 6-cycles, 8-cycles, and so

n; however, it is difficult to develop an efficient algorithm for the

ower bound in this direction. To enable this, we need to inter-

ret LB-KH from a different viewpoint. In LB-KH, a blocking con-

ainer is assumed to be relocated exactly once and never twice

r more. It is equivalent to consider infinitely many empty stacks

nd to relocate each of the blocking containers to an empty stack.

his is the same idea as the relaxation introduced for LBr. In this

ense, LBr is another extension of LB-KH to our problem. Since

ach container is relocated at most once also in LB2c and LB2c4c,

e can relate them with the relaxation. Noting that LBr solves

he relaxation to optimality, we see that LB2c and LB2c4c only

ield its lower bounds. From these observations, it is obvious that

B2c ≤ LB2c4c ≤ LBr holds. 
. Exact algorithm 

In this section, we develop an exact algorithm for the BRPSP.

e adopt a branch-and-bound algorithm with iterative deepening

s the exact approach, because it has already been proved to be ef-

ective for similar problems such as the relocation problem ( Tanaka

 Mizuno, 2018; Tanaka & Takii, 2016; Zhu et al., 2012 ) and the

re-marshalling problem ( Tanaka & Tierney, 2018; Tierney et al.,

017 ). The framework is the same as those in Tanaka and Takii

2016) , Tanaka and Tierney (2018) , Tanaka and Mizuno (2018) , so

hat we only present its overview here. 

.1. Branch-and-bound algorithm with iterative deepening 

The branch-and-bound algorithm searches for an optimal se-

uence of relocations in the depth-first manner. Thus, a node at

epth k represents a partial sequence of feasible relocations of

ength k . It also represents the bay configuration obtained by ap-

lying the relocations and retrieving as many containers as possi-

le. We repeatedly employ this branch-and-bound algorithm with

he maximum search depth increased one by one. First, it is set

o the initial lower bound and the branch-and-bound algorithm is

pplied, in order to search for an optimal solution whose objective

alue is equal to the initial lower bound. The algorithm is termi-

ated if such a solution is found. Otherwise, we apply the branch-

nd-bound algorithm again with the maximum search depth in-

reased by one. It is repeated until an optimal solution is found or

he time limit is reached. 

.2. Dominance rules 

We utilize dominance rules to reduce the search space in the

ranch-and-bound algorithm. They are derived from those for the

elocation problem ( Tanaka & Mizuno, 2018 ), except for the last

ne. 

We first provide dominance rules for the unrestricted BRPSP.

hey enable us to exclude a partial sequence of relocations ( c 1 ,

 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) when searching for an opti-

al sequence for an initial bay configuration C. Roughly speaking,

ransitive Relocation Rules A and B combine two relocations ( c 1 ,

 1 , d 1 ) and ( c 1 , d 1 , d n ) into one relocation ( c 1 , s 1 , d n ), Transitive

elocation Rule C replaces ( c 1 , s 1 , d 1 ) and ( c 1 , d 1 , d n ) with ( c 1 ,

 1 , d ′ 1 ) and ( c 1 , d ′ 1 , d n ), respectively. The Independent Relocation

ule interchanges the order of two independent relocations ( c 1 , s 1 ,

 1 ) and ( c n , s n , d n ). Retrieval Rule A eliminates ( c 1 , s 1 , d 1 ) if con-

ainer c 1 can be retrieved without the relocation. Retrieval Rule B

eplaces ( c 1 , s 1 , d 1 ) with ( c 1 , s 1 , d 
′ 
1 
) if container c 1 can be retrieved

nyway. In the following lemmas, we assume without loss of gen-

rality that C = R (C) holds, and define C j (0 ≤ j ≤ n ) by C 0 := C and

 j := R ◦ L c j s j d j (C j−1 ) . 

emma 3. (Transitive Relocation Rule A) We need not consider the

equence ( c 1 , s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) for C, if the follow-

ng conditions are all satisfied: 

1. s n = d 1 , c n = c 1 , 

2. c 1 / ∈ { c 2 , . . . , c n −1 } , 
3. s 1 / ∈ { s 2 , d 2 , . . . , s n −1 , d n −1 } , 
4. |Y s 1 (C n −1 ) | = |Y s 1 (C) | − 1 . 

emma 4. (Transitive Relocation Rule B) We need not consider the

equence ( c 1 , s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) for C, if the follow-

ng conditions are all satisfied: 

1. s n = d 1 , c n = c 1 , 

2. c 1 / ∈ { c 2 , . . . , c n −1 } , 
3. d n / ∈ { s 1 , d 1 , . . . , s n −1 , d n −1 } , 
d n n −1 d n 
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Lemma 5. (Transitive Relocation Rule C) We need not consider the

sequence ( c 1 , s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) if the following con-

ditions are all satisfied for some d ′ 
1 
: 

1. s n = d 1 , c n = c 1 , 

2. c 1 / ∈ { c 2 , . . . , c n −1 } , 
3. d ′ 

1 
/ ∈ { s 1 , d 1 , s 2 , d 2 , . . . , s n , d n } , 

4. |Y d ′ 
1 
(C n −1 ) | = |Y d ′ 

1 
(C) | . 

5. (|Y d ′ 
1 
(C n −1 ) | < |Y d 1 

(C n −1 ) | − 1) ∨ ((|Y d ′ 
1 
(C n −1 ) | = |Y d 1 

(C n −1 ) | −
1) ∧ (d ′ 1 < d 1 )) . 

Lemma 6. (Independent Relocation Rule) We need not consider the

sequence ( c 1 , s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) for C, if the follow-

ing conditions are all satisfied: 

1. { s 1 , d 1 } ∩ { s 2 , d 2 , . . . , s n , d n } = ∅ , 
2. |Y s 1 (C n −1 ) | = |Y s 1 (C) | − 1 , 

3. s 1 > s n . 

Lemma 7. (Retrieval Rule A) We need not consider the sequence ( c 1 ,

s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) for C, if the following conditions

are all satisfied: 

1. c 1 / ∈ { c 2 , . . . , c n −1 , c n } , 
2. (c 1 ∈ C n −1 ) ∧ (c 1 / ∈ C n ) , 
3. s 1 / ∈ { s 2 , d 2 , . . . , s n , d n } , 
4. |Y s 1 ( C n −1 ) | = |Y s 1 (C) | − 1 . 

Here, C n −1 is the bay configuration just before container c 1 is re-

trieved (between C n −1 and C n from Condition 2). 

Lemma 8. (Retrieval Rule B) We need not consider the sequence ( c 1 ,

s 1 , d 1 ), ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ) if the following conditions are all

satisfied for some d ′ 
1 
: 

1. c 1 / ∈ { c 2 , . . . , c n −1 , c n } , 
2. (c 1 ∈ C n −1 ) ∧ (c 1 / ∈ C n ) , 
3. d ′ 

1 
/ ∈ { s 1 , d 1 , s 2 , d 2 , . . . , s n , d n } , 

4. |Y d ′ 
1 
( C n −1 ) | = |Y d ′ 

1 
(C) | , 

5. (|Y d ′ 
1 
( C n −1 ) | < |Y d 1 

(C n −1 ) | − 1) ∨ ((|Y d ′ 
1 
( C n −1 ) | = |Y d 1 

(C n −1 ) | −
1) ∧ (d ′ 

1 
< d 1 )) . 

Brief proofs of these lemmas are presented in Appendix A .

The primary difference from the dominance rules in Tanaka and

Mizuno (2018) is how to break ties. In Tanaka and Mizuno (2018) ,

ties are broken by the stack priority. The priority of a stack in the

relocation problem is defined by the smallest priority value of con-

tainers placed in the stack. In our problem, however, we cannot

define it in a similar manner. Therefore, ties are broken simply by

the yard stack number in Condition 3 of Lemma 6 . We also use the

yard stack height in Condition 5 of Lemmas 5 and 8 , and ties are

broken first by the yard stack height, and next by the yard stack

number. 

Condition 4 in Lemma 7 becomes a little complicated, com-

pared with those in the corresponding dominance rule for the re-

location problem. It is because container c 1 should not block an-

other retrieval from yard stack s 1 even if it is not relocated from

there, as such retrievals may enable retrievals of other containers

including container c 1 itself in the original sequence. To this end,

Condition 4 is introduced so that no container is retrieved from

yard stack s 1 prior to container c 1 regardless of whether it is re-

located or not. Similarly, Condition 4 in Lemma 8 ensures that no

container is retrieved from yard stack d ′ 
1 

prior to container c 1 . 

As is the case with the restricted relocation problem, only

Lemmas 4 and 8 are applicable to the restricted BRPSP due to the

constraint on relocatable containers. On the other hand, we can de-

rive a new dominance rule for the restricted BRPSP, which is simi-

lar to Lemma 2 . Suppose a partial sequence of feasible relocations

( c 11 , s 1 , d 11 ), . . . , (c 1 k , s 1 , d 1 k ) , ( c 21 , s 2 , d 21 ), . . . , (c 2 k , s 2 , d 2 k ) ,
1 1 2 2 
 . . , ( c n 1 , s n , d n 1 ), . . . , (c nk n , s n , d nk n ) , where k 1 , k 2 , . . . , k n stacking

ontainers are relocated from target stacks s 1 , s 2 , . . . , s n , respec-

ively. Let us define C i j (1 ≤ i ≤ n , 0 ≤ j ≤ k i ) by 

 i j := 

{ C i −1 ,k i −1 
j = 0 , 

L c i j s i d i j 
(C i, j−1 ) , 1 ≤ j ≤ k i − 1 , 

R ◦ L c i j s i d i j 
(C i, j−1 ) , j = k i , 

(13)

here C 0 k 0 := C. For this sequence of relocations, the following

emma holds. 

emma 9. (Target Stack Rule) We need not consider the sequence

 c 11 , s 1 , d 11 ), . . . , (c 1 k 1 , s 1 , d 1 k 1 ) , ( c 21 , s 2 , d 21 ), . . . , (c 2 k 2 , s 2 , d 2 k 2 ) ,

 . . , ( c n 1 , s n , d n 1 ), . . . , (c nk n , s n , d nk n ) for C, if the following condi-

ions are all satisfied: 

1. S s n (C n 0 ) = S s n (C) , 

2. { d n 1 , . . . , d nk n } ∩ { d 11 , . . . , d 1 k 1 , . . . , d n −1 , 1 , . . . , d n −1 ,k n −1 
} = ∅ . 

3. Y d n j 
(C n 0 ) = Y d n j 

(C) for all j ( 1 ≤ j ≤ k n ). 

4. s 1 > s n 

roof. Let us denote by X and Y the original sequence and a

ew sequence ( c n 1 , s n , d n 1 ), . . . , (c nk n , s n , d nk n ) , ( c 11 , s 1 , d 11 ), . . . ,

(c 1 k 1 , s 1 , d 1 k 1 ) , (c n −1 , 1 , s n −1 , d n −1 , 1 ) , . . . , (c n −1 ,k n −1 
, s n −1 , d n −1 ,k n −1 

) ,

espectively. We show that if X is optimal, then Y is also optimal

hen Conditions 1–4 are all satisfied. Clearly, Conditions 1 and 4

orrespond to Conditions 1 and 2 in Lemma 2 , respectively. From

onditions 2 and 3, the destination stacks d n 1 , . . . , d nk n of stacking

ontainers in yard stack s n do not change before a container is re-

rieved from yard stack s n −1 in X . It follows that retrieving a con-

ainer from yard stack s n before retrieving a container from yard

tack s 1 does not block any retrievals and relocations from (or to)

ard stacks d n 1 , . . . , d nk n . Therefore, the optimality of X implies the

ptimality of Y as in Lemma 2 . �

.3. Upper bound heuristic 

An upper bound is computed at promising nodes in the course

f the branch-and-bound algorithm using a simple greedy heuris-

ic. It is an improved version of MBW4CB+MM4CB proposed in

ovanovic et al. (2018) for the restricted BRPSP. Therefore, it yields

 valid upper bound also for the unrestricted BRPSP. The heuristic

s composed of the following two decisions: 

(A) Determine the yard stack among the target stacks from

which the topmost target container is retrieved next. 

(B) Determine the destination of each stacking container in that

yard stack. 

To determine the source yard stack s from which the topmost

arget container g s is retrieved next, we evaluate several objectives

n lexicographic order. We choose the yard stack that optimizes

he first objective function. If there is more than one candidate,

e choose the one that optimizes the second objective function,

nd so on. Let us denote the topmost container in yard stack y by

 y . Then, the objectives used for each target yard stack y ∈ T are

escribed as follows: 

1. Minimize |S y \ (B 

2 ∪ B 

4 ) | , the number of stacking containers

that are neither 2-blocking nor 4-blocking. 

2. Minimize |S y ∩ B 

4 | , the number of 4-blocking stacking

containers. 

3. Minimize |S y ∩ B 

2 | , the number of 2-blocking stacking contain-

ers. 

4. Maximize min e ∈S y (t V e − |V e | ) , the minimum number of contain-

ers that should be retrieved before retrieving each stacking

container e . 

5. Maximize | ̌V g y | , the number of containers that are not yet relo-

cated to the vessel stack of the topmost target container g y . 
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Table 2 

Comparison of upper bound heuristics for initial bay configurations ( bold : best results). 

N S V S Y T Y greedy heuristics in Jovanovic et al. (2018) proposed 

LT + MBW MM + MBW MM4CB + MBW MM + MBW4CB MM4CB + MBW4CB 

10 3 3 6 2.350 2.175 2.225 2.175 2.225 2.225 

16 3 4 6 6.100 5.600 5.675 5.525 5.600 5.450 

16 3 3 8 8.975 8.200 8.150 8.200 8.250 8.425 

31 3 8 6 13.275 12.350 12.175 11.925 11.575 11.275 

31 3 6 8 20.075 16.800 17.425 17.0 0 0 17.250 16.175 

46 3 12 6 23.0 0 0 21.700 19.100 20.525 18.775 18.175 

46 3 9 8 33.625 28.350 28.925 27.900 28.625 27.175 

19 5 5 6 3.925 3.525 3.675 3.500 3.500 3.350 

19 5 4 8 5.875 5.375 5.400 5.075 5.100 4.950 

29 5 8 6 7.775 7.825 6.850 7.075 6.675 6.475 

29 5 6 8 11.975 10.275 9.950 9.400 9.675 9.400 

54 5 14 6 21.125 20.200 18.325 18.225 16.875 16.400 

54 5 11 8 28.225 24.975 23.600 23.300 22.375 20.850 

79 5 20 6 36.950 34.975 29.400 31.875 28.125 27.300 

79 5 15 8 53.950 46.0 0 0 41.450 44.125 40.300 38.800 

50 10 13 6 11.275 11.800 10.675 10.150 9.550 9.150 

50 10 10 8 14.050 13.650 12.175 12.050 11.400 11.250 

70 10 18 6 21.125 20.350 18.600 17.325 16.725 15.875 

70 10 14 8 26.825 24.300 22.800 21.850 20.825 20.050 

120 10 30 6 45.900 47.150 40.950 42.200 39.050 36.075 

120 10 23 8 66.350 62.225 52.050 58.275 51.175 48.625 

170 10 43 6 72.225 75.850 62.725 71.600 61.075 56.550 

170 10 32 8 107.250 100.125 84.425 93.900 79.675 79.500 

94 15 24 6 23.875 23.625 20.900 20.750 19.175 18.550 

94 15 18 8 34.375 31.800 29.050 29.075 26.925 24.875 

124 15 31 6 37.950 38.025 35.200 35.800 33.150 29.850 

124 15 24 8 53.700 51.350 43.850 45.675 41.775 40.100 

199 15 50 6 76.050 80.575 67.900 72.350 66.825 61.550 

199 15 38 8 106.250 105.100 87.300 95.725 84.525 79.450 

274 15 69 6 118.375 124.275 107.750 116.775 104.475 92.450 

274 15 52 8 169.025 165.850 136.775 152.025 132.400 125.725 

150 20 38 6 43.400 44.850 39.700 40.175 39.050 35.375 

150 20 29 8 61.025 58.850 51.475 52.500 48.300 44.250 

190 20 48 6 62.675 65.250 57.150 58.800 57.350 49.075 

190 20 36 8 89.175 84.550 74.075 79.600 72.125 65.450 

290 20 73 6 112.250 122.875 106.825 115.825 102.500 91.950 

290 20 55 8 164.375 159.600 136.175 149.700 131.775 122.225 

390 20 98 6 174.575 194.475 164.125 184.875 164.075 141.500 

390 20 74 8 247.125 246.975 203.475 234.200 199.325 185.275 

 

 

 

t  

t  

o  

t  

N  

p  

t  

c  

p  

t

i  

t  

b

 

d  

f

 

 

 

 

 

 

T  

d  

o  

n  

c  

i  

n

(  

c  

o  

p  

s  

i  

w  

r

6

a

 

o  
6. Minimize min e ∈ (Y y \S y ) \{ g y } (t V e − |V e | ) , the minimum number of

containers that should be retrieved before retrieving each con-

tainer e placed below the topmost target container g y . 

The difference from the retrieval heuristic MBW4CB is that

hree objectives 4–6 are introduced in our heuristic. They con-

ribute to breaking ties that often occur only with the first three

bjectives. The fourth objective is to avoid relocating stacking con-

ainers that will become available for retrieval in the near future.

ote that (t V e − |V e | ) is the number of containers that should be

laced below container e in its vessel stack s V e . The fifth objective is

o retrieve as soon as possible a target container that blocks many

ontainers. It maximizes the number of containers that should be

laced above target container g y in its vessel stack. The last objec-

ive is for evaluating containers placed below target container g y 
n the yard stack. A smaller value of (t V e − |V e | ) implies that con-

ainer e is blocked by fewer containers. Therefore, it is expected to

ecome retrievable soon after retrieving container g y . 

After source yard stack s is determined, we next determine the

estination yard stack d of each stacking container c ∈ S s by the

ollowing procedure: 

(i) If there exists at least one yard stack y where (a) container

c does not become 2-blocking or 4-blocking, and (b) its top-

most container p y satisfies c 
v −→ p y , the yard stack that mini-

mizes t V p y 
is chosen among such yard stacks. 

(ii) Otherwise, the following objectives are evaluated in lexico-

graphic order for each yard stack y 
 = s satisfying |Y y | < T : 
1. Avoid making container c 2-blocking after relocation. 

2. Avoid making container c 4-blocking after relocation. 

3. Maximize min e ∈Y y (t V e − |V e | ) , the minimum number of

containers that should be retrieved before retrieving each

container e in the yard stack. 

he relocation heuristic MM4CB is exactly the same as (ii), and the

ifference is (i). Even if container c does not become 2-blocking

r 4-blocking when relocated to a yard stack y , it may cause a

ew blocking there. However, it at least does not block topmost

ontainer p y due to Condition (b). In this case, such a yard stack

s preferred for keeping the other yard stacks as potential desti-

ations for future relocations. If we focus only on vessel stack s V c 

 = s V p y 
), t V c and t V p y 

are interpreted as the priorities of containers

 and p y , respectively, where a smaller value means a higher pri-

rity. Since the priority of yard stack y decreases from t V p y 
to t V c by

lacing container c (note that t V c < t V p y 
holds from c 

v −→ p y ), the yard

tack that minimizes the decrease is chosen among those satisfy-

ng Conditions (a) and (b). This can avoid using another yard stack

ith a larger priority that has a higher potential for accepting a

elocation. 

.4. Implementation of lower bounds in the branch-and-bound 

lgorithm 

A lower bound is computed at every node in the search tree

f the branch-and-bound algorithm. To this end, we need to
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Table 3 

Comparison of lower bounds for initial bay configurations ( italic : average over instances for which LBr is obtained). 

N S V S Y T Y LB2c LB2c4c LBr 

solved LB CPU time [s] 

ave max 

10 3 3 6 1.600 1.825 40 1.900 0.00 0.00 

16 3 4 6 3.500 4.350 40 4.400 0.00 0.00 

16 3 3 8 4.325 5.375 40 5.400 0.00 0.00 

31 3 8 6 6.125 8.525 40 9.0 0 0 0.00 0.00 

31 3 6 8 8.450 10.825 40 11.175 0.00 0.00 

46 3 12 6 9.500 13.625 40 14.550 0.00 0.00 

46 3 9 8 12.800 16.925 40 18.050 0.00 0.00 

19 5 5 6 2.225 2.900 40 3.050 0.00 0.00 

19 5 4 8 2.950 4.025 40 4.150 0.00 0.00 

29 5 8 6 3.450 5.200 40 5.500 0.00 0.00 

29 5 6 8 4.425 6.525 40 7.050 0.00 0.00 

54 5 14 6 6.725 11.400 40 13.150 0.00 0.00 

54 5 11 8 9.200 14.050 40 16.025 0.00 0.00 

79 5 20 6 9.950 17.450 40 21.250 0.00 0.00 

79 5 15 8 14.200 22.550 40 27.175 0.00 0.00 

50 10 13 6 3.875 6.200 40 7.425 0.00 0.00 

50 10 10 8 4.0 0 0 7.300 40 8.525 0.00 0.00 

70 10 18 6 4.525 9.275 40 11.675 0.00 0.00 

70 10 14 8 6.050 11.725 40 14.625 0.00 0.00 

120 10 30 6 8.450 18.325 40 25.450 0.05 0.20 

120 10 23 8 12.300 24.050 40 33.150 0.06 0.35 

170 10 43 6 11.150 27.075 40 39.325 4.13 36.33 

170 10 32 8 15.650 34.225 40 50.725 5.82 30.34 

94 15 24 6 4.525 9.0 0 0 40 12.500 0.00 0.06 

94 15 18 8 6.650 12.650 40 17.200 0.00 0.03 

124 15 31 6 5.725 13.125 40 19.775 0.15 0.80 

124 15 24 8 7.800 17.800 40 26.275 0.34 4.40 

199 15 50 6 9.375 23.950 40 38.600 211.95 1312.81 

199 15 38 8 12.425 31.400 39 49.051 364.78 180 0.0 0 

274 15 69 6 13.200 35.575 0 — 180 0.0 0 180 0.0 0 

274 15 52 8 17.950 47.575 0 — 180 0.0 0 180 0.0 0 

150 20 38 6 5.825 13.700 40 21.350 4.42 37.08 

150 20 29 8 7.650 17.475 40 27.975 7.50 73.82 

190 20 48 6 6.700 18.100 39 29.923 255.26 180 0.0 0 

190 20 36 8 9.425 24.675 38 40.368 464.65 180 0.0 0 

290 20 73 6 10.475 30.950 0 — 180 0.0 0 180 0.0 0 

290 20 55 8 14.300 41.900 0 — 180 0.0 0 180 0.0 0 

390 20 98 6 13.350 45.300 0 — 180 0.0 0 180 0.0 0 

390 20 74 8 19.625 60.400 0 — 180 0.0 0 180 0.0 0 
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l  
identify minimal 2- and 4-cycles. They are necessary also for the

upper bound heuristic. To make the computation as efficient as

possible, we note that the bay configuration at the current node

does not change greatly from its parent node: Only a single con-

tainer is relocated. It is true that all retrievable containers should

also be retrieved, but they do not affect cycles because containers

in a cycle can never be retrieved without relocating at least one

container in that cycle, meaning that the retrieved containers do

not belong to any cycle. For simplicity, we assume that no con-

tainers are retrieved, and suppose that container c is relocated to

yard stack y at the current node. Since container c is placed on

top of a yard stack at both parent and current nodes, it is never

2 n -blocked. We can easily check whether container c becomes 2-

blocking after the relocation, by scanning containers placed in yard

stack y . Its time complexity is O ( T Y ). With regard to minimal 4-

cycles, we assume that a Boolean value b ij is given for every pair

of containers i and j (1 ≤ i < j ≤ N ) at the parent node. It takes 1

iff containers i and j are 4-blocking containers in the same mini-

mal 4-cycle. To update b ij at the current node, we first set b jc := 0

(1 ≤ j < c ) and b cj := 0 ( c < j ≤ N ). Then, we check whether there ex-

ists a quadruplet ( c , d , e , f ) such that containers c , d , e and f yield a

minimal 4-cycle in this order. If it is found, we let b ce := 1 if c < e ,

and b ec := 1 otherwise, unless container e is 2-blocking, noting that

container c is not 2 n -blocked and hence 4-blocking. The cycle is in
 t
he form c 
y −→ d 

v −→ e 
y −→ f 

v −→ c (cf. Fig. 5 (b)), and it can be rewritten

rom (1) and (2) as 

(s Y d = y ) ∧ (s V e = s V d ) ∧ (t V e > t V d ) ∧ (s Y f = s Y e ) ∧ (t Y f < t Y e ) 

∧ (s V c = s V f ) ∧ (t V c > t V f ) . (14)

o check this relation, we must enumerate all permutations of d ∈
 y , e ∈ V̌ d , and f ∈ { f ′ ∈ Y 

s Y e 
| t Y 

f ′ < t Y e } . Therefore, the time com-

lexity is given by O (( T Y ) 2 T V ), where T V is the maximum height

f vessel stacks. Please note that we compute not ˜ M 

4 but its sub-

et in this implementation. Although some pair of containers may

e 4-blocking in more than one minimal 4-cycle, we simply check

hether it is 4-blocking or not in at least one minimal 4-cycle, ig-

oring the number of its occurrences. We use this subset in place

f ˜ M 

4 in the procedure explained in Section 5.1.2 . However, it does

ot violate the validity of LB2c4c as a lower bound. It is because all

ycles in 

˜ M 

4 are disconnected anyway by disconnecting all cycles

n the subset. 

. Computational experiments 

In this section, we examine the effectiveness of the proposed

ower bounds and the exact algorithm using them by computa-

ional experiments. 
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Table 4 

Comparison of the branch-and-bound algorithm for LBr with and without Lemma 2 ( bold : LBr is successfully obtained for all 40 instances). 

N S V S Y T Y without Lemma 2 with Lemma 2 

solved CPU time [s] solved CPU time [s] 

ave max ave max 

10 3 3 6 40 0.00 0.00 40 0.00 0.00 

16 3 4 6 40 0.00 0.00 40 0.00 0.00 

16 3 3 8 40 0.00 0.00 40 0.00 0.00 

31 3 8 6 40 0.00 0.00 40 0.00 0.00 

31 3 6 8 40 0.00 0.00 40 0.00 0.00 

46 3 12 6 40 0.00 0.00 40 0.00 0.00 

46 3 9 8 40 0.00 0.00 40 0.00 0.00 

19 5 5 6 40 0.00 0.00 40 0.00 0.00 

19 5 4 8 40 0.00 0.00 40 0.00 0.00 

29 5 8 6 40 0.00 0.00 40 0.00 0.00 

29 5 6 8 40 0.00 0.00 40 0.00 0.00 

54 5 14 6 40 0.00 0.00 40 0.00 0.00 

54 5 11 8 40 0.00 0.00 40 0.00 0.00 

79 5 20 6 40 0.10 2.90 40 0.00 0.00 

79 5 15 8 40 0.17 5.12 40 0.00 0.00 

50 10 13 6 40 0.00 0.00 40 0.00 0.00 

50 10 10 8 40 0.00 0.00 40 0.00 0.00 

70 10 18 6 40 0.02 0.41 40 0.00 0.00 

70 10 14 8 40 0.01 0.07 40 0.00 0.00 

120 10 30 6 25 853.97 180 0.0 0 40 0.05 0.20 

120 10 23 8 18 1113.84 180 0.0 0 40 0.06 0.35 

170 10 43 6 0 180 0.0 0 180 0.0 0 40 4.13 36.33 

170 10 32 8 0 180 0.0 0 180 0.0 0 40 5.82 30.34 

94 15 24 6 39 50.07 180 0.0 0 40 0.00 0.06 

94 15 18 8 40 15.40 313.54 40 0.00 0.03 

124 15 31 6 19 1078.32 180 0.0 0 40 0.15 0.80 

124 15 24 8 11 1415.04 180 0.0 0 40 0.34 4.40 

199 15 50 6 0 180 0.0 0 180 0.0 0 40 211.95 1312.81 

199 15 38 8 0 180 0.0 0 180 0.0 0 39 364.78 180 0.0 0 

274 15 69 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

274 15 52 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

150 20 38 6 10 1430.73 180 0.0 0 40 4.42 37.08 

150 20 29 8 0 180 0.0 0 180 0.0 0 40 7.50 73.82 

190 20 48 6 0 180 0.0 0 180 0.0 0 39 255.26 180 0.0 0 

190 20 36 8 0 180 0.0 0 180 0.0 0 38 464.65 180 0.0 0 

290 20 73 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

290 20 55 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

390 20 98 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

390 20 74 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 

 

I  

h  

{  

r  

t  

y  

t  

p  

c  

c

 

d  

6

7

c

 

p  

a  

b

p  

M

f  

c  

p  

m  

v  

i  

7

b

 

L  

s  

r  

l  

f

d  

p  

f

Benchmark instances are derived from Jovanovic et al. (2018) 1 .

n this dataset, the number of vessel stacks ( S V ) and the minimum

eight of the vessel stacks are chosen from {3, 5, 10, 15, 20} and

3, 5, 10, 15}, respectively. The shape of the vessel bay is symmet-

ic: The stack height increases from left to center one by one, and

hen decreases from center to right one by one. The height of the

ard stacks ( T Y ) is either 6 or 8. The number of containers ( N ) and

he number of yard stacks ( S Y ) are determined so that the occu-

ancy rate of the yard bay becomes around 66%. The instances are

haracterized by four parameters ( N , S V , S Y , T Y ), and the dataset

ontains 40 randomly generated instances for each combination. 

The algorithms are coded in C 

2 and the program is run on a

esktop computer with an Intel Core i7-6700K CPU (4.0GHz) and

4GB RAM. The time limit is set to 1800s for each instance. 

.1. Comparison of upper bound heuristics for initial bay 

onfigurations 

First, we examine the effectiveness of the proposed up-

er bound heuristic for initial bay configurations. In Table 2 ,

verage objective values over each set of 40 instances are
1 Available from http://mail.ipb.ac.rs/ ∼rakaj/brlp/brlp.htm . 
2 The source code is available from https://sites.google.com/site/shunjitanaka/ 

rpsp . 

a  

L  

s  

b  

i  
resented. The results of the five greedy heuristics LT+MBW,

M+MBW, MM4CB+MBW, MM+MBW4CB, and MM4CB+MBW4CB 

rom Jovanovic et al. (2018) are shown in the corresponding

olumns, and “proposed” stands for the upper bound heuristic pro-

osed in this study. We can confirm that the new heuristic al-

ost always yields the best results. The differences from the pre-

ious heuristics are large especially for large-sized instances, and

t brings us a 10% reduction in the objective value in several cases.

.2. Comparison of lower bounds LB2c, LB2c4c, and LBr for initial 

ay configurations 

We next compare the three lower bounds LB2c, LB2c4c, and

Br. In Table 3 , the average values of LB2c and LB2c4c over 40 in-

tances are presented in “LB2c” and “LB2c4c”, respectively. With

egard to LBr, the branch-and-bound algorithm reaches the time

imit of 1800s for some instances. Hence, the number of instances

or which LBr is obtained successfully is given in “solved”, and “LB”

enotes the average value of LBr over “solved” instances. We also

rovide the average and maximum computation times in seconds

or LBr in “ave” and “max”, respectively (note that “ave” and “max”

re always over 40 instances). The computation times of LB2c and

B2c4c are all less than 0.01s and so are omitted in the table. For

mall-sized instances with N ≤ 31, the differences among the lower

ounds are not pronounced. They become more significant as the

nstance size becomes larger, and LB2c gives only a poor lower

http://mail.ipb.ac.rs/~rakaj/brlp/brlp.htm
https://sites.google.com/site/shunjitanaka/brpsp
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Table 5 

The number of instances solved to optimality and computation time by the branch-and-bound algorithm for the unrestricted BRPSP ( bold : all 40 instances are solved to 

optimality). 

N S V S Y T Y u-bb(LB2c) u-bb(LB2c4c) u-bb(LBr) 

solved CPU time [s] solved CPU time [s] best solved CPU time [s] 

ave max ave max ave max 

10 3 3 6 40 0.00 0.00 40 0.00 0.00 2.150 40 0.00 0.00 

16 3 4 6 40 0.00 0.00 40 0.00 0.00 4.950 40 0.00 0.00 

16 3 3 8 40 0.00 0.00 40 0.00 0.00 7.225 40 0.00 0.00 

31 3 8 6 38 222.35 180 0.0 0 40 0.04 1.01 9.625 40 0.00 0.10 

31 3 6 8 39 112.36 180 0.0 0 40 0.07 1.69 12.875 40 0.01 0.10 

46 3 12 6 1 1755.53 180 0.0 0 35 289.59 180 0.0 0 15.300 40 2.51 34.02 

46 3 9 8 1 1787.85 180 0.0 0 36 355.63 180 0.0 0 19.825 40 23.29 595.28 

19 5 5 6 40 0.00 0.01 40 0.00 0.00 3.200 40 0.00 0.00 

19 5 4 8 40 0.00 0.01 40 0.00 0.00 4.575 40 0.00 0.00 

29 5 8 6 40 0.74 17.63 40 0.00 0.02 5.775 40 0.00 0.00 

29 5 6 8 40 1.02 26.31 40 0.00 0.01 7.650 40 0.00 0.00 

54 5 14 6 0 180 0.0 0 180 0.0 0 23 956.19 180 0.0 0 13.450 40 1.83 46.89 

54 5 11 8 1 1781.06 180 0.0 0 23 877.57 180 0.0 0 16.725 40 5.86 73.26 

79 5 20 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 22.275 27 632.69 180 0.0 0 

79 5 15 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 30.0 0 0 18 1091.29 180 0.0 0 

50 10 13 6 22 855.83 180 0.0 0 37 226.72 180 0.0 0 7.450 40 0.00 0.02 

50 10 10 8 18 1067.75 180 0.0 0 38 160.51 180 0.0 0 8.875 40 0.02 0.26 

70 10 18 6 2 1713.50 180 0.0 0 6 1570.84 180 0.0 0 11.700 40 0.60 20.98 

70 10 14 8 0 180 0.0 0 180 0.0 0 6 1600.39 180 0.0 0 14.950 39 51.27 180 0.0 0 

120 10 30 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 26.375 22 842.52 180 0.0 0 

120 10 23 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 37.175 7 1526.67 180 0.0 0 

170 10 43 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 47.150 3 1747.71 180 0.0 0 

170 10 32 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 66.800 0 180 0.0 0 180 0.0 0 

94 15 24 6 1 1773.75 180 0.0 0 1 1756.06 180 0.0 0 12.750 38 114.05 180 0.0 0 

94 15 18 8 0 180 0.0 0 180 0.0 0 1 1760.06 180 0.0 0 17.600 34 411.91 180 0.0 0 

124 15 31 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 20.775 26 724.90 180 0.0 0 

124 15 24 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 28.500 18 1083.95 180 0.0 0 

199 15 50 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 58.425 0 180 0.0 0 180 0.0 0 

199 15 38 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 77.0 0 0 0 180 0.0 0 180 0.0 0 

150 20 38 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 25.400 18 1104.00 180 0.0 0 

150 20 29 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 35.075 8 1623.30 180 0.0 0 

190 20 48 6 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 46.300 1 1792.10 180 0.0 0 

190 20 36 8 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 63.900 0 180 0.0 0 180 0.0 0 

total 403 566 899 
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bound when N ≥ 46. LB2c4c is much better than LB2c even in this

case, but LBr is providing further improvements, granted that it be-

comes intractable when N ≥ 190. 

To further investigate the impact of the dominance rule

( Lemma 2 ) on the branch-and-bound algorithm for LBr, we show

the computation time with and without the dominance rules in

Table 4 . We can see that the dominance rule greatly contributes to

reducing the computation time for larger-sized instances. Without

it, we fail in obtaining LBr for one instance with N = 94 , whereas

it enables us to obtain LBr for all instances with N ≤ 170. 

7.3. Branch-and-bound algorithm for the unrestricted BRPSP 

We already know that LBr is considerably better than LB2c and

LB2c4c. However, its effectiveness as a lower bound in exact algo-

rithms is still unclear because it requires longer computation time

than the other two. To investigate the effectiveness, we apply the

proposed branch-and-bound algorithm with the lower bound being

changed. The results for the unrestricted BRPSP are presented in

Table 5 . In this table, “u-bb(LB2c)”, “u-bb(LB2c4c)”, and “u-bb(LBr)”

indicate the branch-and-bound algorithm with LB2c, LB2c4c and

LBr, respectively. The number of instances solved to optimality is

provided in “solved”, and “ave” and “max” stand for the average

and maximum computation times, respectively. The average objec-

tive value of optimal (or best on instances not solved to optimality)

solutions is shown in “best”. It now turns out that LBr is more ap-

propriate than LB2c and LB2c4c as a lower bound in the proposed

branch-and-bound algorithm. Indeed, u-bb(LBr) is capable of solv-
ng instances with N ≤ 70 to optimality, the size of which is twice

s large as N ≤ 29 of u-bb(LB2c) and N ≤ 31 of u-bb(LB2c4c). Com-

aring Tables 3 and 5 , we notice that LBr yields such a good lower

ound that the optimality gap is less than one on average for in-

tances with N ≤ 70. On the other hand, the initial upper bound

s not very tight, according to Table 2 . It seems difficult to obtain

 good solution only by simple greedy heuristics. We also notice

hat the difference between the initial upper bound and the opti-

al (or best) objective value obtained by the branch-and-bound al-

orithm is relatively small for instances with N ≥ 150. The branch-

nd-bound algorithm can explore only a few nodes due to long

omputation times for LBr, and thus fails to find good solutions for

hese instances. 

.4. Branch-and-bound algorithm for the restricted BRPSP 

In Table 6 , we summarize the results by the branch-and-bound

lgorithm for the restricted BRPSP (“r-bb( ∗)”). In “best in Jovanovic

t al. (2018) ”, we provide best solutions obtained by all greedy

euristics and GRASPs in Jovanovic et al. (2018) . We can verify that

Br is better than LB2c and LB2c4c also for the restricted BRPSP.

omparing Table 6 with Table 5 , we find that r-bb(LBr) solves more

nstances to optimality than u-bb(LBr): 978 instances by r-bb(LBr),

s opposed to 899 instances by u-bb(LBr). It is not surprising that

he restricted problem is easier to solve than the unrestricted prob-

em because the constraint on relocatable containers greatly re-

uces the search space. Nevertheless, the differences in optimal

alues of restricted and unrestricted problems are minor at least
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Table 6 

The number of instances solved to optimality and computation time by the branch-and-bound algorithm for the restricted BRPSP ( bold : all 40 instances are solved to 

optimality). 

N S V S Y T Y best in 

Jovanovic et al. 

(2018) 

r-bb(LB2c) r-bb(LB2c4c) r-bb(LBr) 

solved CPU time [s] solved CPU time [s] best solved CPU time [s] 

ave max ave max ave max 

10 3 3 6 2.150 40 0.00 0.00 40 0.00 0.00 2.150 40 0.00 0.00 

16 3 4 6 5.075 40 0.00 0.00 40 0.00 0.00 5.025 40 0.00 0.00 

16 3 3 8 7.575 40 0.00 0.00 40 0.00 0.00 7.300 40 0.00 0.00 

31 3 8 6 10.225 40 0.46 11.12 40 0.00 0.01 9.650 40 0.00 0.00 

31 3 6 8 14.325 40 0.47 5.23 40 0.01 0.07 13.325 40 0.02 0.85 

46 3 12 6 16.725 20 1043.99 180 0.0 0 40 0.45 10.05 15.325 40 0.00 0.03 

46 3 9 8 22.625 10 1454.10 180 0.0 0 40 10.77 179.85 20.525 40 1.11 36.14 

19 5 5 6 3.225 40 0.00 0.00 40 0.00 0.00 3.200 40 0.00 0.00 

19 5 4 8 4.800 40 0.00 0.00 40 0.00 0.00 4.575 40 0.00 0.00 

29 5 8 6 6.100 40 0.01 0.08 40 0.00 0.00 5.800 40 0.00 0.00 

29 5 6 8 8.175 40 0.02 0.46 40 0.00 0.00 7.650 40 0.00 0.00 

54 5 14 6 14.475 7 1555.73 180 0.0 0 38 123.43 180 0.0 0 13.450 40 0.04 1.55 

54 5 11 8 18.700 7 1630.02 180 0.0 0 40 123.61 1341.91 16.900 40 0.06 0.72 

79 5 20 6 24.625 0 180 0.0 0 180 0.0 0 2 1749.87 180 0.0 0 21.925 37 162.22 180 0.0 0 

79 5 15 8 33.675 0 180 0.0 0 180 0.0 0 2 1734.90 180 0.0 0 28.850 37 238.62 180 0.0 0 

50 10 13 6 7.775 37 239.98 180 0.0 0 40 20.99 798.41 7.450 40 0.00 0.00 

50 10 10 8 9.375 34 345.35 180 0.0 0 40 0.65 9.39 8.875 40 0.00 0.02 

70 10 18 6 13.250 4 1651.09 180 0.0 0 24 826.20 180 0.0 0 11.725 40 0.02 0.22 

70 10 14 8 16.750 4 1644.14 180 0.0 0 17 1151.37 180 0.0 0 14.950 40 0.23 6.24 

120 10 30 6 30.525 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 26.850 23 865.08 180 0.0 0 

120 10 23 8 40.825 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 37.325 14 1296.40 180 0.0 0 

170 10 43 6 48.200 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 43.775 13 1359.35 180 0.0 0 

170 10 32 8 64.675 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 66.850 2 1723.10 180 0.0 0 

94 15 24 6 14.625 1 1755.82 180 0.0 0 6 1628.67 180 0.0 0 12.600 39 69.83 180 0.0 0 

94 15 18 8 20.325 1 1757.61 180 0.0 0 3 1692.40 180 0.0 0 17.350 40 3.29 77.00 

124 15 31 6 24.300 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 20.175 33 411.58 180 0.0 0 

124 15 24 8 32.375 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 28.225 22 894.40 180 0.0 0 

199 15 50 6 51.500 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 56.975 0 180 0.0 0 180 0.0 0 

199 15 38 8 66.425 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 76.200 0 180 0.0 0 180 0.0 0 

150 20 38 6 27.650 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 23.650 24 880.58 180 0.0 0 

150 20 29 8 36.650 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 32.525 14 1290.68 180 0.0 0 

190 20 48 6 41.675 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 45.200 0 180 0.0 0 180 0.0 0 

190 20 36 8 55.375 0 180 0.0 0 180 0.0 0 0 180 0.0 0 180 0.0 0 63.650 0 180 0.0 0 180 0.0 0 

total 485 652 978 
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or the instances solved to optimality. For medium- and large-sized

nstances with N ≥ 79, the best objective value of the restricted

roblem is sometimes better than that of the unrestricted problem

ue to the poor performance of the branch-and-bound algorithm

or the unrestricted problem. In practical situations, the restricted

RPSP might be sufficient and we need not solve the unrestricted

RPSP. Compared with our algorithm, the greedy heuristics and

RASPs in Jovanovic et al. (2018) find optimal and near-optimal

olutions for small-sized instances, but they become less efficient

s the instance size becomes larger. In particular, the gap from our

est objective value is almost 5 on average for instances with ( N ,

 

V , S Y , T Y ) = (79, 5, 15, 8). It is thought that there is still room for

mprovement in heuristic and metaheuristic approaches. 

. Conclusion 

This paper addressed the block relocation problem with a

towage plan and constructed an exact algorithm for both re-

tricted and unrestricted variants of the problem. To this end, we

roposed three lower bounds: LB2c and LB2c4c based on prece-

ence cycles, and LBr based on a relaxation of the original prob-

em. The results of the computational experiments indicate that

he branch-and-bound algorithm with LBr is capable of solving

mall- and medium-sized instances to optimality in a reasonable

omputation time. However, LBr is not easy to compute, which

eads to the ineffectiveness of the branch-and-bound algorithm

or large-sized instances. It would be interesting to develop faster

ower bounds as well as better algorithms for LBr. It would also be
orthwhile to construct tree search-based metaheuristics such as

 beam search algorithm. These topics are left for future research. 

ppendix A. Brief proofs of dominance rules 

.1. Proof of Lemma 3 

From Condition 2, container c 1 is not relocated by the sequence

 c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) . From Condition 4, container c 1 
oes not block any retrieval from yard stack s 1 even if it is not re-

ocated. Furthermore, from Condition 3, container c 1 does not in-

erfere any relocation in the sequence even if it is not relocated.

herefore, we can move ( c 1 , s 1 , d 1 ) just before ( c n , s n , d n ) and com-

ine ( c 1 , s 1 , d 1 ) and ( c n , s n , d n ) into ( c 1 , s 1 , d n ) from Condition

. In other words, there exists a better sequence ( c 2 , s 2 , d 2 ), . . . ,

(c n −1 , s n −1 , d n −1 ) , ( c 1 , s 1 , d n ). Strictly speaking, it can be infeasible.

ontainer c 1 may block some retrieval from yard stack d 1 when it

s relocated by ( c 1 , s 1 , d 1 ). In this case, it is possible that container

 1 is retrieved by the sequence ( c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) .

owever, it does not matter at all because it merely means that

 further better sequence ( c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) exists.

he same situation also arises in the other dominance rules, but it

s ignored for the sake of brevity in the following proofs. For more

etailed discussions, please refer to Tanaka and Mizuno (2018) . 

.2. Proof of Lemma 4 

From Condition 2, container c 1 is not relocated by the sequence

 c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) . From Condition 4, container



780 S. Tanaka and S. Voß / European Journal of Operational Research 279 (2019) 767–781 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

 

C  

 

C  

 

 

C  

 

 

C  

 

E  

 

 

 

E  

 

E  

 

F  

G  

 

 

H  

 

H  

J  

 

 

 

J  

 

J  

 

J  

J  

 

 

K  

 

L  

 

L  

 

L  

L  

 

P  

 

 

 

S  
c 1 does not block any retrieval from yard stack d n even if it is

relocated not to yard stack d 1 but to d n . From Condition 3, con-

tainer c 1 does not interfere any relocation in the sequence even if

it is relocated to d n . Therefore, a better sequence ( c 1 , s 1 , d n ), . . . ,

(c n −1 , s n −1 , d n −1 ) exists. 

A.3. Proof of Lemma 5 

From Condition 2, container c 1 is not relocated by the sequence

( c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) . From Condition 4, container c 1
does not block any retrieval from yard stack d ′ 

1 
even if it is re-

located not to yard stack d 1 but to d ′ 
1 
. From Condition 3, con-

tainer c 1 does not interfere any relocation in the sequence even

if it is relocated to d ′ 1 . Therefore, there exists another sequence

(c 1 , s 1 , d 
′ 
1 
) , . . . , (c n −1 , s n −1 , d n −1 ) , (c n , d 

′ 
1 
, d n ) where container c 1

is first relocated to d ′ 
1 

and then to d n , which is at least as good as

the original sequence. Condition 5 is for tie-breaking. 

A.4. Proof of Lemma 6 

From Condition 1, container c 1 is not relocated by the sequence

( c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) . It also ensures that the sequence

does not relocate any container from or to yard stacks s 1 and d 1 .

From Condition 2, container c 1 does not block any retrieval from

yard stack s 1 by the sequence even if it is not relocated to d 1 .

Therefore, we can move ( c 1 , s 1 , d 1 ) just before ( c n , s n , d n ). Again

from Condition 1, { s 1 , d 1 } ∩ { s n , d n } = ∅ and thus c 1 
 = c n . If ( c 1 , s 1 ,

d 1 ) is moved further after ( c n , s n , d n ), some retrieval from yard

stack s 1 and successive retrievals enabled by ( c n , s n , d n ) may be

blocked by container c 1 . However, they are enabled anyway by ( c 1 ,

s 1 , d 1 ). Thus, the sequence ( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ), ( c 1 , s 1 , d 1 )

is as good as the original sequence. Condition 3 is for tie-breaking.

A.5. Proof of Lemma 7 

From Condition 1, container c 1 is not relocated by the sequence

( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ). It is retrieved after ( c n , s n , d n ) from

Condition 2. From Condition 4, container c 1 does not block any re-

trieval from yard stack s 1 even if it is not relocated from there.

From Condition 3, container c 1 does not interfere any relocation in

the sequence even if it is not relocated. Furthermore, container c 1 
is on top of s 1 in this case when container c n is relocated, so that

container c 1 is retrieved by this sequence. Therefore, there exists a

better sequence ( c 2 , s 2 , d 2 ), . . . , (c n −1 , s n −1 , d n −1 ) , ( c n , s n , d n ). 

A.6. Proof of Lemma 8 

From Condition 1, container c 1 is not relocated by the sequence

( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ). It is retrieved after ( c n , s n , d n ) from

Condition 2. From Condition 4, container c 1 does not block any re-

trieval from yard stack d ′ 
1 

even if it is relocated not to yard stack d 1 
but to d ′ 

1 
. From Condition 3, container c 1 does not interfere any re-

location in the sequence even if it is relocated to d ′ 1 . Furthermore,

container c 1 is on top of d ′ 
1 

in this case when container c n is relo-

cated, so that container c 1 is retrieved by the sequence (c 1 , s 1 , d 
′ 
1 
) ,

( c 2 , s 2 , d 2 ), . . . , ( c n , s n , d n ). Therefore, it is as good as the original

sequence. Condition 5 is for tie-breaking. 
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