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We consider the facility location problem of installing a refueling and recharging infrastructure for vehi- 

cles with a strongly limited driving range. For this purpose, a novel problem formulation is introduced 

that is based on an analogy to the well-known duality relationship of Max Flow and Min Cut. In order to 

optimally solve this problem, a decomposition-based Branch&Cut approach is developed that iteratively 

generates violated inequalities and so-called zero-half-cuts as specific cutting planes. A comprehensive 

computational study on two real-world road networks reveals that this considerable tightening of partial 

problems in each node enables an efficient enumeration process whereby even large scale instances are 

solved to optimality for the first time. 
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1. Introduction 

This study deals with the planning of a refueling and recharg-

ing infrastructure for vehicles with a strongly limited driving

range. While such networks exist for vehicles with traditional fuel

combustion engines that have a substantially larger driving range,

comparable infrastructures are still lacking in most countries for

electric or alternative fuel vehicles. Hence, substantial efforts

are being made to reduce these deficits and to establish these

vehicles in the market ( Upchurch, Kuby, & Lim, 2009 ). Primarily,

these efforts relate to the establishment of a competitive refueling

and recharging infrastructure on a nationwide basis ( Chung &

Kwon, 2015; Lim & Kuby, 2010 ). From this perspective, the present

study considers a specific facility location problem that pursues

a maximal coverage of the expected travel demands of potential

customers by opening a limited number of refueling or recharging

stations (henceforth referred to as stations ) in the network. The

quality of a found network structure is measured by the attained

fulfillment degree of the total demand of all customers, in what

follows denoted as the service level . Alternatively, one may seek to

develop a network structure that attains a predetermined service

level with a minimum number of opened stations. The model

defines the demand to be covered by OD-pairs, i.e., combinations

of an origin and a destination of travel, weighted by an estimated

number of corresponding customers. 
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.1. Literature review 

The modeling and solving of facility location planning problems

or the design of a refueling and recharging infrastructure is a vital

esearch area in the recent literature. In order to provide a flexible

easure of demand satisfaction, an increasing number of papers

dopted the concept of covering OD-pairs. Among them, the Flow

apturing Location Model (FCLM) originally proposed by Hodgson

1990) defines for every demand a fixed set of covering stations,

here at least one of them has to be opened to assure a feasible

overage. However, the strongly limited range of electric and al-

ernative fuel vehicles frequently requires more than one stoppage

or recharging for a considered OD-pair. Consequently, Kuby and

im (2005) propose an extension of the model by defining for each

emand a set of feasible station combinations while a chosen cov-

rage requires the assignment of one of these combinations. Since

ll predefined combinations contain solely stations that are located

n the shortest path from origin to destination, the flexibility of

he network design is strongly limited. In order to overcome this

imitation, the approach of Kim and Kuby (2012) allows predefined

eviations from the respective shortest path. However, these devi-

tions are restricted to some predetermined routes. In contrast to

his, a more flexible determination of covering stations in a net-

ork design is integrated in the approaches and models of Lim

nd Kuby (2010) , MirHassani and Ebrazi (2013) , and Kim and Kuby

2013) . Most recently, Yıldız, Arslan, and Kara ̧s an (2016) propose

he Refueling Station Location Problem (RSLP) with routing. In order

o solve the problem, the authors design a Branch&Price approach

hat is based on an explicit enumeration of variables. 

https://doi.org/10.1016/j.ejor.2019.06.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.06.031&domain=pdf
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Table 1 

Literature overview: 

Article Variant a Coverage criterion Method b 

Hodgson (1990) Max Single station from fixed set M, H 

Kuby and Lim (2005) Max Fixed sets on shortest paths M 

Lim and Kuby (2010) Max Flexible on shortest paths H 

Kim and Kuby (2012) Max Fixed sets on deviation paths M 

Capar and Kuby (2012) Max Flexible on single path M 

Kim and Kuby (2013) Max Flexible on deviation paths H 

Capar et al. (2013) Max/Min Flexible on single path M 

MirHassani and Ebrazi (2013) Max/Min Flexible on shortest paths M 

Li and Huang (2014) Min Fixed sets on deviation paths M, H 

Yıldız et al. (2016) Max (Min) Flexible on deviation paths M, B&P 

This article Max (Min) Flexible on deviation paths B&C 

a Max = RSLP-Max, Min = RSLP-Min 
b M = IP-Model, H = Heuristic, B&P = Branch&Price, B&C = Branch&Cut 
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A further distinction of the approaches in the literature results

rom the pursued objective functions, i.e., the considered optimiza-

ion variant . RSLP-Min seeks to guarantee a given service level with

 minimum amount of resources. On the contrary, RSLP-Max de-

otes models that apply a given set of resources in order to cover

 maximally weighted set of demands. For both types of opti-

ization variant, various model formulations, construction and im-

rovement heuristics are proposed in the literature. 

Table 1 provides a brief overview of the approaches in the liter-

ture categorized by the optimization variant, the criterion used to

tate coverage of demand and the applied solution methodology.

urthermore, the literature additionally proposes specific exten-

ions to the aforementioned location models in order to strengthen

heir applicability. For instance, Upchurch et al. (2009) develop the

apacitated flow refueling location model (CFRLM) that addition-

lly integrates limited capacities for stations in order to limit the

umber of vehicles refueled at the same station. The approach of

hung and Kwon (2015) considers the fact that the installation of

 network of stations is a long-term process that usually requires

everal periods to be completed. Hence, the model restricts the

umber of newly established stations per period while pursuing

 maximization of possible traffic over all periods. 

The literature cited thus far and the new approach presented in

his contribution focus on the appropriate placement of stations in

 network. However, there is also an emerging stream in the lit-

rature, in which this facility location aspect is embedded in the

ontext of the Vehicle Routing Problem. In addition to the deter-

ination of feasible vehicle routes that cover all customers, the set

f opened recharging stations is planned simultaneously - see, e.g.,

chiffer and Walther (2017, 2018) ; Yang and Sun (2015) . 

.2. Contribution and paper structure 

This paper provides the following main contributions: 

• We develop a new model for RSLP-Max which originates in the

extension of the well-known duality relationship of Max Flow

and Min Cut to the concepts of OD-covers and OD-cuts. By en-

abling a suitable decomposition, this modeling yields a consid-

erably tighter problem definition: We determine the selection

of stations to be opened by solving an LP-Relaxation that is

based on so-called OD-cut inequalities, whereas an iteratively

applied graph-algorithmic component derives necessary condi-

tions for the coverage of demands. 
• We propose a novel fast separation algorithm for the determi-

nation of violated OD-cut inequalities. It is based on shortest

path computations in a transformed network and column gen-

eration. 
• We design a specific separation and selection mechanism for

zero-half-cuts (originally proposed by Caprara & Fischetti, 1996 )
that significantly reduces the remaining integrality gap of the

applied LP-relaxation. 
• We integrate all components into a Branch&Cut approach that,

for the first time, optimally solves considerably-sized, real-

world instances of RSLP-Max. 
• We conduct a computational study that evaluates the perfor-

mance of the new Branch&Cut procedure in direct comparison

with the well-known recent approach of Yıldız et al. (2016) in

selected real-world Californian and German road networks. For

this purpose, the study covers a broad variety of experiments

with up to five settings for the vehicle range, up to four de-

viation thresholds (including the case of no deviation) and up

to three sets of candidate sites per network. This study under-

lines that the new approach overcomes previous limitations by

enabling a flexible location planning of stations and attains op-

timal solutions even in networks of considerable size. 

The remainder of the paper is structured as follows: Basic

athematical instruments for formalizing the coverage of de-

and by using OD-covers and the novel OD-cuts are introduced

n Section 2 . Section 3 applies the concept of OD-cuts in order

o derive a more suitable formulation of RSLP-Max. Subsequently,

ection 4 introduces the main components of the proposed

ranch&Cut approach. Computational results that were obtained

or two real-world road networks are presented in Section 5 .

ection 6 concludes the article and opens perspectives for further

esearch. 

. Basic concepts 

Each opening of a station in the considered basic road network

 

′ ( P , R ) aims at extending the coverage of existing demands Q of

otential customers. The basic road network G 

′ ( P , R ) comprises

 set of nodes P and a set of road segments R and is assumed

o be a connected and directed graph with possibly asymmetric

dge lengths. A demand q ∈ Q is modeled by an ordered tuple ( o q ,

 q ) ∈ P × P , commonly denoted as an OD-pair . It represents a set of

ustomers that demand to travel from an origin o q ∈ P to a desti-

ation d q ∈ P in the network. The size of this customer set deter-

ines the weight w q of demand q . The set of origins O ⊆P is given

y O := { o q | q ∈ Q } and the set of destinations D ⊆P by D := { d q | q ∈ Q }.

urthermore, the set V ⊆P comprises all locations that can be used

o set up a station, i.e., the candidate set. Due to the limited driving

ange of the utilized vehicles, the possible coverage of a demand

ith a significant travel distance requires the installation of one or

ore stations along the driving tour. In order to attain a reason-

ble compromise between investment costs and customer incon-

enience, stations enabling the coverage of an OD-pair do not have

o belong to a shortest path between origin and destination, but

ave to be positioned such that a predetermined maximum length
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Table 2 

Notation. 

Q Set of demands 

λ≥ 1 Deviation factor (setting λ = 1 forbids any deviation) 

G ′ ( P , R ) Basic (i.e., original) road network 

G ( N , E ) Transformed (i.e., condensed) network 

V ⊆P Set of candidate sites to set up a station 

O Set of demand origins 

D Set of demand destinations 

o q Origin of demand q ∈ Q 
d q Destination of demand q ∈ Q 
δmin / δmax Min./max. distance between used stations on a trip 

δmax 
o Max. distance of used station from o ∈ O 

δmax 
d 

Max. distance of used station to d ∈ D 
δv ,w Shortest distance between v and w 

δq Shortest distance from o q to d q ( q ∈ Q ) 
δmax 

q := λ · δq Maximal feasible distance for fulfilling demand q ∈ Q 
�(v ) , �(o) , �(d) Neighbors of v ∈ V, o ∈ O, d ∈ D 
δu,w (S) Shortest distance between u and w in G ( N , E ) with respect to S ⊆V 

κ Total number of stations to be opened. 

F(q ) Set of OD-covers for q ∈ Q (see Definition 2 ). 

C(q ) Set of OD-cuts for q ∈ Q (see Definition 8 ). 
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∀

of a feasible trip for this demand is not exceeded. This threshold

models the customizable deviation tolerance of customers, in what

follows calculated by a corresponding deviation factor λ≥ 1. Table 2

provides an overview of the notations used. 

2.1. Deviation and range restrictions 

We denote by δv ,w 

the length of a shortest path between v ∈ P 

and w ∈ P in G 

′ ( P , R ), whereby the abbreviation δq := δo q ,d q gives

the length of the shortest path for demand q ∈ Q . Due to the devi-

ation factor λ, the maximum length of a trip that covers a demand

q ∈ Q and therefore connects o q with d q amounts to δmax 
q := λ · δq .

Moreover, we introduce the parameters δmin and δmax that restrict

the minimum and maximum allowed distance between two consec-

utively visited stations. While δmax results from technical restric-

tions, δmin aims at reducing customer inconvenience as it avoids

unwanted iterative stops within a short distance. While δmin = 0

deactivates this restriction, setting δmin to strictly positive values

does not rule out the possibility of opening two stations v ∈ V and

w ∈ V within a distance of 0 < δv ,w 

< δmin . However, in this case,

stations v and w can not be used consecutively on a feasible trip

for any demand q ∈ Q . As it may happen that recharging is not pos-

sible at an origin o q or at an destination d q of a demand q ∈ Q , ad-

ditional range thresholds δmax 
o ≤ δmax and δmax 

d 
≤ δmax are imposed

for the first and final charging stops on a trip. 

In what follows, we consider only non-trivial demands q ∈ Q that

require at least one recharging stop due to δq > min { δmax 
o , δmax 

d 
} .

For each v ∈ V, we introduce the set 

�(v ) := { w ∈ V | δmin ≤ δv ,w 

≤ δmax } (1)

as the set of adjacent candidate sites. For o ∈ O and d ∈ D , we define

in the same manner 

�(o) := { v ∈ V | δo, v ≤ δmax 
o } and 

�(d) := { v ∈ V | δv ,d ≤ δmax 
d } . (2)

2.2. Transformed network 

Based on this notion of adjacency, we convert the network G 

′ ( P ,
R ) into the transformed network G ( N , E ) that is considered in the

following. This transformation is well known in the literature, see,

e.g., MirHassani and Ebrazi (2013) , Adler, Mirchandani, Xue, and

Xia (2016) , and Yıldız et al. (2016) . The node set N of G is given

by 

N := V ∪ O ∪ D. (3)
lease note that a node of the basic road network may be doubled

r even tripled in the transformed network if it takes the roles of

 candidate site, an origin and a destination at the same time. The

dge set E of G is given by 

 := { (v , w ) ∈ V × V | w ∈ �(v ) } 
∪{ (o, v ) ∈ O × V | v ∈ �(o) } 
∪{ (v , d) ∈ V × D | v ∈ �(d) } . (4)

ach edge (u, w ) ∈ E obtains the weight δu,w 

that coincides with

he shortest distance between u and w in the basic road network

 

′ . Therefore, any path in G corresponds to a walk (repetitive visits

f nodes in P may occur) in G 

′ that complies with the distance re-

trictions imposed by the values δmin , δmax , δmax 
o for o ∈ O , and δmax 

d 
or d ∈ D . In what follows, shortest path computations are mainly

onducted in the transformed network G ( N , E ). Therefore, we de-

ne: 

efinition 1. For a transformed network G ( N , E ), S ⊆V , u ∈ O ∪ V and

 ∈ V ∪ D, we define δu,w 

(S) to be the length of the shortest path

rom u to w in G ( N , E ) if only nodes v ∈ S are allowed as interme-

iate stops. Let δu,w 

(S) := ∞ , if no such path exists. Furthermore,

et δu,u (S) = δw,w 

(S) := 0 . 

Note that we have δo, v (S) = δo, v for v ∈ �(o) and δv ,d (S) = δv ,d 
or v ∈ �(d) for any choice of d ∈ D and o ∈ O , respectively. This in-

ludes the case S = ∅ . Moreover, it holds that δo, v (S) = δo, v (S \ { v } )
nd δv ,d (S) = δv ,d (S \ { v } ) even for v ∈ S. 

.3. OD-covers 

The set S ⊆V of stations to be opened unambiguously defines

 solution of the considered location problem ( Yıldız et al., 2016 ).

owever, in order to assess the quality of the solution, we need to

dentify the set of covered demands. For this purpose, the follow-

ng definition now prepares a first possibility to state the coverage

f a demand q ∈ Q . 

efinition 2. The set F ⊆V is an OD-cover for demand q ∈ Q , if 

o q ,d q (F ) ≤ δmax 
q . 

n OD-cover F for demand q ∈ Q is denoted as minimal if and only

f there is no F ′ �F that is an OD-cover for q . F(q ) is the set of all

D-covers for q . 

As we consider only non-trivial demands, we conclude that

 q ∈ Q : ∅ �∈ F(q ) . 
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Fig. 1. Example network. 
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efinition 3. We denote a demand q ∈ Q as covered by a set S ⊆V

f stations if S ∈ F(q ) holds, i.e., S is an OD-cover for q ∈ Q . We

enote by 

(S) := { q ∈ Q | S ∈ F(q ) } 
he set of all demands covered by S . 

Each combination of candidate sites which is calculated in ad-

ance in the studies of Kuby and Lim (2005) and Kim and Kuby

2012) can now be interpreted as a minimal OD-cover. However,

efinition 3 also incorporates some notational flexibility as OD-

overs are not necessarily minimal. The following observation in-

estigates the structure of OD-covers: 

emma 4. For any non-trivial q ∈ Q it holds that: 

 ∈ F(q ) ⇔ ∃ v ∈ F : δo q , v (F ) + δv ,d q (F ) ≤ δmax 
q . 

e denote v ∈ F as a certificate for the OD-cover property of F. 

roof. ”⇒ ”: We assume that for F ∈ F(q ) there is no such v ∈ F .

ence, it holds: ∀ v ∈ F : δo q , v (F ) + δv ,d q (F ) > δmax 
q ≥ δo q ,d q (F ) . But

his implies ∅ ∈ F(q ) and we have a contradiction. 

”⇐ ”: As v ∈ F , it holds that δmax 
q ≥ δo q , v (F ) + δv ,d q (F ) ≥

o q ,d q (F ) . �

The newly introduced concept of certifying nodes v ∈ F will be-

ome an important aspect in Section 4.1 and can also be used to

est whether the addition of a candidate site v / ∈ F can make F to

n OD-cover for q ∈ Q . 

emma 5. In a minimal OD-cover F , every v ∈ F is a certificate for

he OD-cover property of F. 

roof. We assume that there exists a non-certifying v ∈ F . Hence,

t holds that 

o q , v (F ) + δv ,d q (F ) > δmax 
q . 

s F is an OD-cover, there exists another node v ′ ∈ F , with v ′ � = v
ulfilling δo q , v ′ (F ) + δv ′ ,d q (F ) ≤ δmax 

q . Thus, we conclude that 

o q , v ′ (F \ { v } ) + δv ′ ,d q (F \ { v } ) ≤ δmax 
q . 

onsequently, F \ { v } is an OD-cover. Since this contradicts the

inimality of F , we can rule out the existence of v . �

The reverse of Lemma 5 does not hold, i.e., if we have an OD-

over F with all v ∈ F certifying the OD-cover property of F , we

annot conclude that F is minimal. 

xample 6. Consider a demand q ∈ Q with origin o , destination

 , a set of stations V = { v 1 , v 2 , v 3 , v 4 } , and vehicle ranges δmax =
max 
o = δmax 

d 
= 3 . The transformed network with respect to q is

iven in Fig. 1 . We assume δq = 7 and set δmax 
q = 8 . Then, { v 1 , v 2 }

s well as { v 3 , v 4 } are minimal OD-covers for q . { v 1 , v 4 } does not

onstitute an OD-cover, as the path o − v 1 − v 4 − d with length 9

ould not fulfill the deviation restriction. Note that set V (o,d) :=
 v 1 , v 2 , v 3 , v 4 } is a non-minimal OD-cover although every v ∈ V (o,d) 

ertifies the OD-cover property of V ( o , d ) . 

In order to validate the OD-cover property for a station set

 , Lemma 4 requires the finding of a certifying station v ∈ F . We
herefore introduce for every demand q ∈ Q the set V q ⊆V as the set

f stations that may certify the OD-cover property for q , i.e., we

efine 

 q := { v ∈ V | δo q , v (V ) + δv ,d q (V ) ≤ δmax 
q } . (5)

ote that any demand q ∈ Q with V q = ∅ cannot be covered accord-

ng to the imposed range and deviation restrictions by V nor any

 ⊆V . Otherwise, the (non-empty) set V q is an OD-cover for q ∈ Q ,

nd every OD-cover F ∈ F(q ) contains an OD-cover F ′ ⊆F ∩ V q . By

harpening a criterion originated in Yıldız et al. (2016) , we define

 q as the set of all edges that are useful for the coverage of a de-

and q ∈ Q : 

 q := { (v , w ) ∈ E | δo q , v (V ) + δv ,w 

+ δw,d q (V ) ≤ δmax 
q } . (6)

he graph G q ( V q , E q ) is the transformed network of demand q ∈ Q .

ote that the edges E q of G q are the path segments used in the

ranch&Price approach of Yıldız et al. (2016) . 

In order to reduce the size of the sets V q , and therefore of the

ransformed network G q for all q ∈ Q , we apply the following rule: 

emma 7. A node v ∈ V q ⊆ V can be removed from V q if at least one

f the following two conditions is fulfilled: 

1. v ∈ �o q ∧ { w ∈ V | (v , w ) ∈ E q } ⊆ �o q 

2. v ∈ �d q ∧ { w ∈ V | (w, v ) ∈ E q } ⊆ �d q 

roof. In both cases, given an arbitrary OD-cover F ∈ F(q ) with

 ∈ F , the set F \ { v } still defines an OD-cover, as the first or last

top at station v is not necessary. So v can be removed from V q . �

Note that if the maximum number of stations to be

pened is limited by κ , we can neglect all demands q ∈ Q

ith min F ∈F(q ) | F | > κ as well as all nodes v ∈ V q , q ∈ Q, with

in F ∈F(q ) , v ∈ F | F | > κ . 

.4. OD-cuts 

In what follows, we prepare a new definition of demand cov-

rage that allows for the generation of more efficient solution ap-

roaches. The basic idea stems from a dual point of view that is

riginated in the following Definition: 

efinition 8. The set C ⊆V q is an OD-cut for demand q ∈ Q , if 

 ∩ C � = ∅ ∀ F ∈ F(q ) , 

.e., every OD-cover is intercepted by C . An OD-cut C is denoted as

inimal (w. r. t. inclusion), if there is no set C ′ �C , that is an OD-

ut. The set of all OD-cuts for demand q ∈ Q is denoted by C(q ) . 

In order to fulfill the OD-cut property, it is obviously sufficient

o have a non-empty intersection with every minimal OD-cover.

he set V q itself is an OD-cut for demand q ∈ Q by Definition 8 .

urthermore, we conclude that the sets �o q ∩ V q and �d q ∩ V q are

inimal OD-cuts for q ∈ Q after application of Lemma 7 . Note that

ur novel definition of OD-cuts substantially generalizes the basic

dea of Capar, Kuby, Leon, and Tsai (2013) , which is restricted to a

ingle path, to arbitrary deviation paths. 

xample 9. In Example 6 , { v 2 , v 3 } is a minimal OD-cut for q as the

nly possible path via v 1 and v 4 is too long and, therefore, { v 1 , v 4 }
s not an OD-cover that has to be intersected by an OD-cut. Hence,

urther minimal OD-cuts are { v 1 , v 3 } , { v 1 , v 4 } and { v 2 , v 4 } . 
As the main result of this section, we state demand coverage by

D-cuts: 

heorem 10. Given any set V 

′ ⊆V , demand q ∈ Q is covered by V 

′ if

nd only if V 

′ ∩ C � = ∅ for all C ∈ C(q ) . 

roof. ”⇒ ”: We have V ′ ∈ F(q ) . Therefore, for any C ∈ C(q ) it holds

 ∩ V 

′ � = ∅ by Definition 8 . For the “⇐ ” part it remains to be shown
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that the non-empty intersection with every OD-cut guarantees that

V 

′ is an OD-cover. We assume the opposite, i.e., we assume for

q ∈ Q that there does not exist an OD-cover F ∈ F(q ) with F ⊆V 

′ .
Then, the set V q �V 

′ is an OD-cut by Definition 8 and it holds

 

′ ∩ (V q \ V ′ ) = ∅ , which contradicts the assumed non-empty inter-

section of V 

′ with every OD-cut. �

3. A new formulation for the Refueling Station Location 

Problem 

At first, we formally define RSLP-Max on the basis of

Definition 3 : 

Definition 11 (RSLP-Max) . A set of stations S ⊆V with | S | ≤κ is

sought that maximizes the total weight of covered demands, i.e., 

max 
∑ 

q ∈ Q(S) 

w q 

s . t . | S| ≤ κ. 

Besides providing an IP-Model (see Section 3.1 ), Yıldız et al.

(2016) prove that RSLP-Max is strongly N P -hard. Different variants

of RSLP-Max as RSLP-Min or a formulation with budget constraint

can be found in the literature (see, e.g., Capar et al., 2013; MirHas-

sani & Ebrazi, 2013 ). 

3.1. The model of Yıldız et al. (2016) for RSLP-Max 

Yıldız et al. (2016) provide the state of the art model for RSLP-

Max. Therefore, in what follows, we restate this model by using the

notation introduced in Section 2 . The authors model the opening of

a station v ∈ V by a binary variable x v ∈ { 0 , 1 } , while the coverage

of a demand q ∈ Q is indicated by a binary variable y q ∈ {0, 1}. The

total weighted coverage to be maximized is defined by 

max 
∑ 

q ∈ Q 
w q · y q . (7)

At most κ stations are allowed to be opened: ∑ 

v ∈ V 
x v ≤ κ. (8)

In order to feasibly state the demands that are covered by the cho-

sen set of opened stations, Yıldız et al. (2016) introduce a further

set of variables z 
q 
v ,w 

∈ { 0 , 1 } for each edge (v , w ) ∈ E q , q ∈ Q . These

are used to enforce the flow conditions of a feasible path leading

from o q to d q in the transformed network if and only if y q = 1 for

all q ∈ Q : ∑ 

v :(o q , v ) ∈ E q 
z q o q , v = y q ∀ q ∈ Q 

∑ 

w :(v ,w ) ∈ E q 
z q v ,w 

= 

∑ 

w :(w, v ) ∈ E q 
z q w, v ∀ v ∈ V q , q ∈ Q 

∑ 

v :(v ,d q ) ∈ E q 
z q v ,d q 

= y q ∀ q ∈ Q 

∑ 

(v ,w ) ∈ E q 
δv ,w 

· z q v ,w 

≤ δmax 
q · y q ∀ q ∈ Q (9)

Any flow on the edges also enforces an opening of the respective

stations: ∑ 

w :(w, v ) ∈ E q 
z q w, v ≤ x v ∀ v ∈ V q , q ∈ Q (10)

Although the number of constraints and variables of the model

is polynomially bounded, it may become significantly high. This

results from using the sets V q for all demands q ∈ Q in the con-

straints (9) and (10) in combination with the triple indexed vari-

ables z 
q 
v ,w 

. Hence, Yıldız et al. (2016) apply a Branch&Price ap-

proach that prices out the z 
q 
v ,w 

variables on demand. 
Since the coverage of a demand q ∈ Q and the opening of a

tation v ∈ V are not directly linked in the definition but indi-

ectly combined through the z 
q 
v ,w 

-variables, one might be tempted

o price out minimal OD-covers instead of path segments in or-

er to get rid of the constraints given by (9) . However, please note

hat this does not eliminate the primal degeneracy inherent in the

odel due to the constraint set (10) . 

.2. RSLP-Max with OD-cuts 

We propose the following novel mathematical definition of

SLP-Max. Herein, coverage of a demand is checked through OD-

uts (see Definition 8 ): 

ax 
∑ 

q ∈ Q 
w q · y q (11)

 q ≤
∑ 

v ∈ C 
x v ∀ C ∈ C(q ) , q ∈ Q . (12)

 

v ∈ V 
x v ≤ κ (13)

 v ∈ { 0 , 1 } , v ∈ V and 0 ≤ y q ≤ 1 , q ∈ Q (14)

heorem 12. The optimization model given by (11) –(14) is an IP-

ormulation that is equivalent to RSLP-Max. 

roof. The objective function (11) and the limitation of opened

tations (Restriction 13 ) are also part of the model of Yıldız et al.

2016) . Moreover, the coverage of a demand q ∈ Q with y q = 1 is

orced by the constraints (12) . This results from Theorem 10 that

tates that the coverage of demand q ∈ Q is established by the set

f opened stations V ′ = { v ∈ V | x v = 1 } ⊆ V if and only if V 

′ has a

on-empty intersection with every OD-cut C ∈ C(q ) . �

The new formulation of RSLP-Max contains only a variable for

very candidate site v ∈ V together with a variable for every de-

and q ∈ Q . As there is usually more than one OD-cut for every

emand q ∈ Q , it is an extended version of the Flow Capturing Loca-

ion Model (FCLM) of Hodgson (1990) . The FCLM itself is a reinter-

retation of the Maximal Covering Location Problem (MCLP) pro-

osed by Church and Velle (1974) . Note that the new formulation

ooks similar to the formulation of Capar et al. (2013) . This is not

urprising as OD-cuts generalize the concept of station sets pro-

osed by Capar et al. (2013) . In accordance with Church and Velle

1974) , we invert the y q -variables by introducing ȳ q := 1 − y q in or-

er to make the model more suitable for IP/LP solvers. The model

hen reads as follows: 

in 

∑ 

q ∈ Q 
w q · ȳ q (15)

 

v ∈ V 
x v ≤ κ (16)

 

v ∈ C 
x v + ȳ q ≥ 1 ∀ C ∈ C(q ) , q ∈ Q . (17)

 v ∈ { 0 , 1 } , v ∈ V and ȳ q ≥ 0 , q ∈ Q (18)

ue to the non-zero right-hand side of the constraints (17) in the

odified model, primal degeneracy may get reduced. Moreover,

he ȳ q -variables introduced no longer require upper bound restric-

ions. The modified objective function pursues the minimization of

he total weight of uncovered demands. The LP-relaxation of this

roblem is then given by the replacement of (18) with 

 ≤ x v ≤ 1 , v ∈ V and 0 ≤ ȳ q ≤ 1 , q ∈ Q . (19)

ote that here the upper bounds on the demand variables are re-

ained, as otherwise the introduction of further Integer Program-

ing cutting planes may lead to violations of these upper bounds.
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Fig. 2. The processing steps conducted by each node of the Branch&Cut approach. 
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C

. The Branch&Cut approach 

The new model for RSLP-Max possesses a moderate number of

nteger variables, but requires a significant number of constraints.

n order to tackle such problems, Branch&Cut seems to be a suit-

ble solution technique. It adds only violated inequalities to a row

estricted model built for the LP-relaxation of the problem. The

ntegrality of iteratively chosen decision variables is then ensured

y conducting branching steps that generate the enumeration tree

see, e.g., Mitchell, 2009 for a general overview of Branch&Cut). In

hat follows, we introduce the problem-specific instruments re-

uired by our Branch&Cut approach (an overview of all steps con-

ucted in each node of the enumeration process is given in Fig. 2 ):

n Section 4.1 we describe the separation process for finding vio-

ated inequalities of type (12) or (17) for every q ∈ Q , i.e., violated

nequalities that are not included in the current LP-relaxation. Due

o Theorem 12 , the determination of such a violated OD-cut in-

quality is sufficient to disprove the feasibility of a found solution

f RSLP-Max. Hence, the integration of this restriction tightens the

urrent LP-relaxation. Moreover, in order to exclude fractional so-

utions while keeping all feasible integer solutions, we combine

nequalities of type (17) to obtain a well-known class of Integer

rogramming cutting planes, the so-called zero-half-cuts ( Caprara

 Fischetti, 1996 ). We describe this process in Section 4.2 . How-

ver, if these cuts do not force the LP-relaxation to become in-

egral, we apply a specific heuristic that attains an integral solu-

ion. This heuristic is illustrated in Section 4.3 . Eventually, if the

bjective function value that is yielded by the optimal solution

f the final LP-relaxation of the current node does not rule out

he existence of an improved integral solution, the current node is

ranched. Subsequently, the enumeration is continued by choosing

 new node from the priority list. We provide detailed information

oncerning these branching steps and the handling of the priority

ist in Section 4.4 . 

The subsequent Definition 13 categorizes stations and demands

epending on the values of a considered solution of the LP-

elaxation. 

efinition 13. Given a fractional solution (x ∗, ̄y ∗) , we define the

ollowing sets of stations and demands: 

1. V ∗
0 

:= { v ∈ V | x ∗v = 0 } (closed stations) 

2. V ∗1 := { v ∈ V | x ∗v = 1 } (opened stations) 

3. V ∗
f 

:= { v ∈ V | 0 < x ∗v < 1 } (fractional stations) 

4. Q 

∗
0 

:= { q ∈ Q | ȳ ∗q = 0 } (covered demands) 

5. Q 

∗
1 := { q ∈ Q | ȳ ∗q = 1 } (lost demands) 
∗ ∗
6. Q 

f 
:= { q ∈ Q | 0 < ȳ q < 1 } (partially covered demands) F
Consequently, we denote a covered demand q ∈ Q 

∗
0 as split cov-

red , if V ∗1 / ∈ F(q ) . 

xample 14. Consider the following setting with Q = { q 1 , q 2 } ,
 q 1 = w q 2 = 1 and a set of candidate sites V = { v 1 , v 2 , v 3 } . The

ets of OD-cuts for demands q 1 and q 2 are given by C(q 1 ) =
{ v 1 , v 2 } , { v 1 , v 3 }} and C(q 2 ) = {{ v 2 , v 3 }} , respectively. In order to

over q 1 , we have to open either v 1 , or v 2 and v 3 simultaneously.

emand q 2 does not benefit from opening v 1 . Therefore, we have

o additionally open v 2 or v 3 to cover it. Thus, at least two sta-

ions are necessary to attain an objective value of 2. However, if

e have only one station left for potentially covering these two

emands, q 2 is split covered in order to allow a partial coverage

f q 1 . Specifically, by setting x ∗v 1 = 0 and x ∗v 2 = x ∗v 3 = 1 / 2 as well

s y q 1 = 1 / 2 and y q 2 = 1 , a single open station attains an objec-

ive value of 3/2. Note that optimal solutions of the LP-relaxation

or our model frequently possess combinations of split and partial

overages. 

.1. Separation of OD-cut inequalities 

The finding of a violated inequality of type (12) or type

17) caused by a given solution ( x ∗, y ∗) for a demand q ∈ Q with

 

∗
q > 0 can be addressed by the following violated OD-cut separa-

ion problem : 

 

∗
q 

! 
> min μq (x ∗, y ∗) = 

∑ 

v ∈ V q 
x ∗v · s v (20)

 

v ∈ F 
s v ≥ 1 ∀ F ∈ F(q ) (21)

 v ∈ { 0 , 1 } ∀ v ∈ V q (22)

he binary variables s v indicate the set of stations v ∈ V q constitut-

ng the violated OD-cut. Constraint (21) enforces the intersection

ith each OD-cover F ∈ F(q ) that is required by Definition 8 . In

rder to identify a violated OD-cut, we pursue the finding of an

D-cut with minimal weight. Thus, the problem turns out to be a

eighted Hitting Set Problem that is in general N P -hard ( Garey &

ohnson, 1979 ). 

While the above formulation contains a polynomial number of

ariables, it may possess an exponential number of constraints

aused by a large number of OD-covers potentially existing for a

onsidered demand. This problem is related to the length bounded

in cut problem that is N P -hard even in the fractional case ( Baier,

003 ). However, in our case, the cut is not defined on the edges E q ,

ut on the vertices V q of the transformed network G q . 

In order to obtain a fast separation algorithm , we abstain from

ptimally solving the model defined by (20) –(22) in all cases since

he finding of the most violated OD-cut inequality is not neces-

ary, but rather the generation of a heuristic solution that violates

onstraint (12) (or (17) ) is sufficient. Alternatively, the process ter-

inates if the existence of a violated OD-cut is disproved. In order

o systematically check both possibilities, we start trying to dis-

rove the existence of a violated OD-cut inequality ( Section 4.1.1 ).

f this is not possible, we try to construct such a violated OD-cut

nequality by an assignment procedure ( Section 4.1.2 ). However, if

oth attempts fail, a column generation heuristic is finally applied

 Section 4.1.3 ). This process is sketched in Fig. 3 . Furthermore, the

andling of the separated inequalities in the current LP-relaxation

s addressed in Section 4.1.4 . 

.1.1. Disproving step 

We start with a partitioning of V q into two disjoint sets F ∗q and

 

∗
q . The set 

 

∗
q := { v ∈ V q | x ∗v ≥ y ∗q } 
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Fig. 3. Overview of the stages of the separation procedure and their possible out- 

comes. 
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Algorithm 1 OD-cut Construction 

Input: N 

∗
q , F 

∗
q , C 

∗
q for q ∈ Q with F ∗q / ∈ F(q ) 

Output: Partition of N 

∗
q into E F (F ∗q ) and E C (C ∗q ) ,such that C ∗q ∪ 

E C (C ∗q ) ∈ C(q ) and F ∗q ∪ E F (F ∗q ) / ∈ F(q ) . 

E F (F ∗q ) ← ∅ 
E C (C ∗q ) ← ∅ 
while N 

∗
q � = ∅ do 

Select an arbitrary v ∈ N 

∗
q 

N 

∗
q ← N 

∗
q \{ v } 

if δo q , v (F ∗q ∪ E F (F ∗q )) + δv ,d q (F ∗q ∪ E F (F ∗q )) ≤ δmax 
q then 

E C (C ∗q ) ← E C (C ∗q ) ∪ { v } 
else 

E F (F ∗q ) ← E F (F ∗q ) ∪ { v } 
end if 

end while 
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is the set of all candidate stations that cannot be included in any

violated OD-cut inequality. As one objective, we try to augment

this set to an OD-cover, such that F ∗q ∈ F(q ) . Note that such an OD-

cover would disprove the existence of a violated OD-cut inequality

as at least one element of this OD-cover has to be in each OD-cut.

Simultaneously, we try to build a violated OD-cut by constituting

the set 

 

∗
q := V q ∩ V 

∗
0 . 

It contains all stations v that, due to x ∗v = 0 , can be inserted into

any violated OD-cut inequality. Given F ∗q and C ∗q , we introduce the

set of unassigned stations through 

N 

∗
q := V q \ (F ∗q ∪ C ∗q ) . 

Hence, F ∗q , C ∗q and N 

∗
q build a partition of V q . We iteratively try to

extend the two sets C ∗q and F ∗q by applying the following two oper-

ations: 

 

∗
q ← C ∗q ∪ { v ∈ N 

∗
q | δo q , v (F ∗q ) + δv ,d q (F ∗q ) ≤ δmax 

q } . 
This first operation adds all stations v ∈ N 

∗
q to C ∗q that, together

with set F ∗q , build an OD-cover. Consequently, due to C ∗q ∩ F ∗q = ∅ ,
v has to be inserted into C ∗q in order to guarantee a non-empty

intersection of C ∗q with each OD-cover. The second operation that

augments the set F ∗q is given by 

F ∗q ← F ∗q ∪ { v ∈ N 

∗
q | 

∑ 

w ∈ C ∗q 
x ∗w 

+ x ∗v ≥ y ∗q } . 

This operation adds stations to set F ∗q that cannot be inserted into

set C ∗q since this would abolish any possible existing violation of

Constraint (12) (or (17) ). 

This process of extending the sets C ∗q and F ∗q is repeated until

there is no station assignable or we obtain 

F ∗q ∈ F(q ) ∨ 

∑ 

v ∈ C ∗q 
x ∗v ≥ y ∗q . (23)

If condition (23) is fulfilled, we disproved the existence of a vio-

lated OD-cut inequality for q . 

4.1.2. OD-cut construction 

Conversely, in what follows, we assume that 
∑ 

v ∈ C ∗q x 
∗
v < y ∗q holds

and apply Algorithm 1 in order to continue the finding of a vi-

olated OD-cut inequality for demand q ∈ Q . Algorithm 1 runs in
olynomial time and assigns all remaining stations v ∈ N 

∗
q in an

rbitrary sequence to either E C (C ∗q ) or E F (F ∗q ) . As the aim of the

lgorithm is the construction of an OD-cut given by C ∗q ∪ E C (C ∗q ) ,
 has to be added to E C (C ∗q ) as soon as F ∗q ∪ E F (F ∗q ) ∪ { v } ∈ F(q ) in

rder to provide a non-empty intersection with every OD-cover ac-

ording to Definition 8 . Otherwise, v can be safely added to E C (F ∗q ) ,
hich allows us to keep the size of the resulting OD-cut as small

s possible. These cognitions are formalized in Lemma 15 . 

emma 15. The set C ∗q ∪ E C (C ∗q ) generated by Algorithm 1 is an OD-

ut for q ∈ Q. 

roof. Assume that C ∗q ∪ E C (C ∗q ) is not an OD-cut for q ∈ Q . Then,

he set F ′ := V q \ (C ∗q ∪ E C (C ∗q )) = F ∗q ∪ E F (F ∗q ) is an OD-cover for

 ∈ Q . We consider a minimal OD-cover F ′′ ⊆F ′ . As F ∗q / ∈ F(q ) , we

onclude that F ′′ ∩ E F (F ∗q ) � = ∅ . Due to Lemma 5 , we know that ev-

ry station of set F ′′ and, therefore, of set F ′′ ∩ E F (F ∗q ) testifies the

D-cover property. Hence, this applies to all stations that were

dded to E F (F ∗q ) during the application of Algorithm 1 . We con-

ider the lastly added station v ∈ E F (F ∗q ) . For this station, we have 

δo q , v ((F ∗q ∪ E F (F ∗q )) \{ v } ) + δv ,d q ((F ∗q ∪ E F (F ∗q )) \{ v } ) 
≤ δo q , v (F ′′ \{ v } ) + δv ,d q (F ′′ \{ v } ) 
= δo q , v (F ′′ ) + δv ,d q (F ′′ ) ≤ δmax 

q . 

herefore, Algorithm 1 would have assigned station v to set E C (C ∗q )
nd not to E F (F ∗q ) . �

Moreover, by applying Algorithm 1 to a given set C ∗q ⊆ V q , we

re able to verify its OD-cut property if and only if E C (C ∗q ) = ∅ : 
emma 16. 

 

∗
q ∈ C(q ) ⇔ E C (C ∗q ) = ∅ 
roof. “⇒ ”: Consider the set V q \ C ∗q . As C ∗q ∈ C(q ) , V q \ C ∗q / ∈ F(q ) .

hus, it holds that for every v ∈ V q \ C ∗q and E F (F ∗q ) ⊆ N 

∗
q 

o q , v (F ∗q ∪ E F (F ∗q )) + δv ,d q (F ∗q ∪ E F (F ∗q )) ≥
δo q , v (V q \ C ∗q ) + δv ,d q (V q \ C ∗q ) > δmax 

q . 

herefore, Algorithm 1 assigns all stations v ∈ V q \ C ∗q to E F (F ∗q ) and

erminates with E C (C ∗q ) = ∅ . 
“⇐ ”: Direct consequence of Lemma 15 . �

In our implementation of Algorithm 1 , the selection of v ∈ N 

∗
q 

s done in non-decreasing order of δo q , v (F ∗q ∪ E F (F ∗q )) or δv ,d q (F ∗q ∪
 

F (F ∗q )) . This enables us to embed the procedure into a slightly

odified variant of Dijkstra’s algorithm. As every node v ∈ E C (C ∗q )
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l  
s necessary for providing the OD-cut property of C ∗q ∪ E C (C ∗q ) ,
lgorithm 1 can also be applied for minimizing a given OD-cut

 ∈ C(q ) according to Definition 8 . For this purpose, we set C ∗q = ∅
nd F ∗q = V q \ C, while the resulting set E C ( ∅ ) ⊆C provides a minimal

D-cut. 

If for the OD-cut C ∗q ∪ E C (C ∗q ) returned by Algorithm 1 it holds

hat ∑ 

 ∈ C ∗q ∪ E C (C ∗q ) 
x ∗v < y ∗q , (24) 

e have found a violated OD-cut inequality and can stop the sep-

ration procedure for q ∈ Q . Otherwise, the existence of a violated

D-cut inequality cannot be ruled out and we employ a column

eneration heuristic as outlined in the following section: 

.1.3. Column generation heuristic 

We consider the dual version of the LP-relaxation of the violated

D-cut separation problem (Formulas (20) to (22) ) for the reduced

et of OD-covers F 

′ (q ) = { F ∈ F(q ) : F ∩ C ∗q = ∅} , i.e., for the set of

D-covers that are not intercepted by C ∗q . The dual problem is de-

ned as 

ax μD 
q (x ∗, y ∗) := 

∑ 

F ∈F ′ (q ) 

ϕ F (25)

∑ 

 ∈F ′ (q ) ∧ v ∈ F 
ϕ F ≤ x ∗v ∀ v ∈ N 

∗
q (s v ) (26)

 F ≥ 0 , F ∈ F 

′ (q ) . (27)

he objective value μD 
q (x ∗, y ∗) of each feasible solution of this

roblem is a lower bound of the optimal primal solution value

q ( x 
∗, y ∗). This provides us with the following upper bound value

f the maximally attainable violation of any OD-cut inequality for

emand q ∈ Q : 

∗
q := y ∗q −

∑ 

v ∈ C ∗q 
x ∗v − μD 

q (x ∗, y ∗) (28)

learly, if we obtain β∗
q ≤ 0 , the existence of a violated OD-cut in-

quality is disproved for q ∈ Q . 

The initial column set F 

′′ ⊆ F 

′ (q ) for problem (25) –(27) is ob-

ained during the execution of Algorithm 1 , as for every v ∈ E C (C ∗q ) ,
t holds that F ∗q ∪ E F (F ∗q ) ∪ { v } ∈ F 

′ (q ) for q ∈ Q . If optimally solving

he problem with respect to F 

′′ returns β∗
q > 0 , we investigate the

ound dual solution s ∗v , which is a not necessarily feasible solution

f the LP-relaxation of the violated OD-cut separation problem (20) –

22) . We sort the set of candidate stations V s = { v ∈ N 

∗
q : s 

∗
v > 0 }

n sequence of non-increasing e ∗v := s ∗v /x ∗v -values. Note that this

fficiency measure is well-defined as we initially inserted all

odes v ∈ V q with x ∗v = 0 into the set C ∗q . The subsequent OD-cut

andidate C ∗q ∪ V ′ s is generated by inserting the stations of set

 s in sequence of non-increasing e v -values into V ′ s as long as
 

v ∈ C ∗q x 
∗
v + 

∑ 

v ∈ V ′ s 
x ∗v < y ∗q holds. 

Hence, if C ∗q ∪ V ′ s is an OD-cut (checked by applying Algorithm

 ), a violated OD-cut inequality is found and the heuristic ter-

inates. Otherwise, we have E C (C ∗q ∪ V ′ s ) � = ∅ due to Lemma 16 .

ence, for each v ∈ E C (C ∗q ∪ V ′ s ) , the set F ∗q ∪ E F (F ∗q ) ∪ { v } defines

gain an OD-cover and, therefore, may provide a new column with

ositive reduced cost. Please note that we do not perform an ex-

licit pricing here. The column generation heuristic is stopped if

o column with positive reduced cost can be constructed from

 

C (C ∗q ∪ V ′ s ) or if a predetermined limit of iterations in our sim-

lex implementation with product form inverse is exceeded. Oth-

rwise, we are able to re-optimize the problem and obtain a hope-

ully smaller value of β∗
q and a new dual solution s ∗v , v ∈ N 

∗
q , which

llows us to repeat the steps from above. 
.1.4. OD-cut pool 

In order to speed up the separation process of violated OD-cut

nequalities, we keep all obtained OD-cuts in a pool. This pool is

eeded with the OD-cuts �o q ∩ V q and �d q ∩ V q for q ∈ Q . Only if

his pool provides less then π c ,min violated OD-cut inequalities, do

e perform the calculations in Sections 4.1.1 to 4.1.3 for those de-

ands q ∈ Q with y ∗q > 0 , which do not have a corresponding vio-

ated OD-cut inequality in the pool. The violated inequalities that

re actually added to the LP-relaxation in one separation round are

iven in sequence of non-increasing value 

∗(C) := (y ∗q −
∑ 

v ∈ C 
x ∗v ) · w q / (| C| + 1) (29)

or C ∈ C(q ) , q ∈ Q until the cut limit π c ,max is reached. This mea-

ure prefers most violated OD-cut inequalities of highly weighted

emands that yield a sparse coefficient matrix. However, if less

han π c ,min violated OD-cut inequalities are still found during the

eparation round, we continue the separation process with the

ossible construction of zero-half-cuts which are described in the

ollowing section: 

.2. Zero-half-cuts 

In order to tighten the LP-relaxation, we combine OD-cut in-

qualities of type (17) together with the lower bound constraints

x v ≤ 0 , v ∈ V and −ȳ q ≤ 0 , q ∈ Q . The aim is to separate so-called

ero-half-cuts ( Caprara & Fischetti, 1996 ) that constitute a subclass

f the well-known Gomory-Chvatal-Cuts. It is worth mentioning

hat there are various further Integer Programming cutting planes

esides zero-half-cuts available that may be useful to tighten the

P-relaxation (see Dey & Molinaro, 2018 for a recent survey). How-

ver, our choice of zero-half-cuts was motivated by the following

acts: First, the respective algorithm turns out to be numerically

table as the current values of the solution (x ∗, ̄y ∗) are only used

o determine a set of relevant OD-cut inequalities. Second, we are

ble to obtain a considerable number of violated inequalities dur-

ng one round. Third, from a theoretical point of view, the convex

ull of all integral solutions can be obtained under very mild con-

itions by an exclusive (possibly iterative) application of zero-half-

uts (see Gentile, Ventura, & Weismantel, 2006 ). 

efinition 17. Given a fractional solution (x ∗, ̄y ∗) of the problem

efined by (15) –(18) , we define 

C ∗ := 

⋃ 

q ∈ Q 

{ 

− ∑ 

v ∈ C x v − ȳ q ≤ −1 | 
C ∈ C(q ) ∧ C ∩ V 

∗
f 

� = ∅ ∧ 

∑ 

v ∈ C x 
∗
v + ȳ ∗q = 1 

} 

, 

s the set of all OD-cut inequalities of type (17) written in “ ≤ -

orm” without slack that belong to the partially or split covered

emands. Furthermore, the set of lower bound constraints without

lack is given by 

 

∗ := {−x v ≤ 0 : v ∈ V 

∗
0 } ∪ {−ȳ q ≤ 0 : q ∈ Q 

∗
0 } . 

Note that for every constraint in C ∗, there is no variable repre-

enting a station v ∈ V ∗
1 

or a demand q ∈ Q 

∗
1 

included. The pool of

D-cuts (see Section 4.1.4 ) provides a subset of C ∗, namely, OD-cut

nequalities, that are now fulfilled without slack, but were usually

iolated in a former separation round. 

In our implementation, we scan the pool of OD-cuts (see

ection 4.1.4 ) in order to obtain a subset of C ∗, as it stores all OD-

uts whose corresponding OD-cut inequalities were added to the

P-relaxation due to a former violation. 

efinition 18. We consider a set of inequalities A in “ ≤ -form” of

he problem defined by (15) –(18) . Then, adding the aggregation
 

(A ) , i.e., the sum of the inequalities in A , leads to an equiva-

ent problem. For v ∈ V, let ξv (A ) ∈ Z be the coefficient of x v in
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∑ 

(A ) and for q ∈ Q , let υq (A ) ∈ Z be the coefficient of ȳ q in 

∑ 

(A ) .

By ρ(A ) ∈ Z we denote the right hand side of 
∑ 

(A ) . Furthermore,

the sets 

V (A ) := { v ∈ V : ξv (A ) � = 0 } and 

Q(A ) := { q ∈ Q : υq (A ) � = 0 } 
are denoted as the station and demand support of A , respectively. 

Lemma 19. Consider the aggregation 
∑ 

(Z) for Z ⊆ C ∗ ∪ L 

∗ that ful-

fills the following conditions: 

1. ρ(Z) ≡ 1 mod 2 

2. ξv (Z) ≡ 0 mod 2 ∀ v ∈ V (Z) 

3. υq (Z) ≡ 0 mod 2 ∀ q ∈ Q(Z) 

Then, the inequality 

∑ 

v ∈ V (Z) 

ξv (Z) 

2 

· x v + 

∑ 

q ∈ Q(Z) 

υq (Z) 

2 

· ȳ q ≤
⌊

ρ(Z) 

2 

⌋
, (30)

is a zero-half-cut that is fulfilled by all feasible integral solutions and

maximally violated (by 1/2 ). 

Proof. If x v and ȳ q are integrals, the left-hand side becomes inte-

gral. Due to ξv (Z) ≡ υq (Z) ≡ 0 mod 2 , the left-hand side stays in-

tegral after being divided by 2. Hence, the right-hand side, that is

also divided by 2, stays larger or equal even after being rounded

down. However, for fractional solutions, the fulfillment without

slack of all considered constraints in Z leads to the maximum

attainable violation of 1/2 due to the rounding operation on the

right-hand side (for the derivation and maximum violation of zero-

half-cuts see Caprara & Fischetti, 1996 and Caprara, Fischetti, &

Letchford, 20 0 0 ). �

Note that, due to the lacking slack in the inequalities of set Z,

the fractional solution (x ∗, ̄y ∗) used for the determination of C ∗ and

L 

∗ violates the added inequality. Therefore, the zero-half-cut tight-

ens the model. 

Example 20 (cont. Example 14) . Setting Z = C ∗ ∪ {−ȳ q 2 ≤ 0 } for

the fractional solution x ∗v 1 = 0 , x ∗v 2 = x ∗v 3 = 1 / 2 , ̄y q 1 = 1 − y q 1 = 1 / 2 ,

and ȳ q 2 = 1 − y q 2 = 0 , we obtain for 
∑ 

(Z) : 

−2 · x v 1 − 2 · x v 2 − 2 · x v 3 − 2 · ȳ q 1 − 2 · ȳ q 2 ≤ −3 

The zero-half-cut according to (30) is given by 

−x v 1 − x v 2 − x v 3 − ȳ q 1 − ȳ q 2 ≤ −2 , 

i.e., to satisfy both demands, at least two stations have to be

opened, and the fractional solution (x ∗, ̄y ∗) violates the constraint

by 1/2. 

For our problem, the cuts are quite dense as all variables ap-

pearing in at least one constraint of Z possess a non-zero coeffi-

cient in the resulting zero-half-cut. 

If existing, a set Z ⊆ C ∗ ∪ L 

∗ of constraints leading to a max-

imally violated zero-half-cut can be determined by the solution

of an equation system over the field GF (2) in polynomial time

( Caprara et al., 20 0 0 ). Herein, every OD-cut inequality in C ∗ is as-

sociated with a variable indicating its choice for Z . The restric-

tions result from the conditions 1–3 of Lemma 19 , which have only

to be fulfilled for variables x v , v ∈ V ∗
f 

and ȳ q , q ∈ Q 

∗
f 
, respectively.

Subsequently, the further variables x v , v ∈ V ∗0 and ȳ q , q ∈ Q 

∗
0 are ad-

dressed by including the lower bound inequalities in L 

∗ in a post-

processing phase. We refer to Reinelt and Wenger (2006) for more

details. Note that the general version of the zero-half-cut separa-

tion problem that is not focused on maximally violated zero-half-

cuts is strongly N P -hard ( Caprara & Fischetti, 1996 ). 

If the equation system for the determination of maximally vi-

olated zero-half-cuts is solvable, we usually obtain a high number
f valid zero-half-cuts due to the free variables (that correspond to

ertain OD-cut inequalities (17) ) in the equation system. Therefore,

n this case, after solving the equation system and subsequently

xing all free variables to zero, we obtain a first zero-half-cut. Sub-

equently, additional zero-half-cuts are generated by setting each

ree variable to one (i.e., inserting the corresponding OD-cut in-

quality (17) into the zero-half-cut) while keeping the others at

ero and updating the solution of the equation system (cf. Reinelt

 Wenger, 2006 ). The density of the resulting zero-half-cuts forces

s to carefully select those cuts that should enter the current LP-

elaxation, as otherwise increasing LP solution times might vitiate

he positive effect of a sharper bound attained by zero-half-cuts

 Andreello, Caprara, & Fischetti, 2007 ). For this purpose, we iden-

ify for each zero-half-cut Z the minimum weight of an included

emand by q (Z) := arg min q ∈ Q(Z) w q , while for two zero-half-cuts

 and Z 

′ with q ( Z 

′ ) = q (Z) , we delete the one with a larger num-

er of non-zero coefficients (ties are broken arbitrarily). Finally, the

emaining zero-half-cuts are iteratively added to the LP-relaxation

n sequence of non-increasing w q (Z) -values if the demands occur-

ing in this cut do not occur in all previously added cuts. Note that

his zero-half-cut filtering pursues finding a larger variety of higher

eighted demands that are violated by the current fractional solu-

ion. Moreover, the focus on limiting the number of non-zero co-

fficients improves the numerical solvability of the resulting LP-

elaxation. 

Furthermore, in order to additionally enable the insertion of de-

ands q ∈ Q for which the current solution (x ∗, ̄y ∗) provides only a

ingle OD-cut inequality without slack (17) , we explore combina-

ions with a single domain constraint with slack (18) for all q ∈ Q 

∗
f 
.

pecifically, if it holds that ȳ ∗q < 0 . 5 , we try to generate a zero-half-

ut Z with Z ⊆ C ∗ ∪ L 

∗ ∪ {−ȳ q ≤ 0 } that fulfills the conditions 1–

 of Lemma 19 . In the opposite case, i.e., if we have ȳ ∗q ≥ 0 . 5 , a

ero-half-cut Z is sought with Z ⊆ C ∗ ∪ L 

∗ ∪ { ̄y q ≤ 1 } . Note that in

his second case, the opposite signs of the coefficients remove vari-

ble ȳ q from the zero-half-cut. Furthermore, in both cases, due to

 maximum slack of 0.5, a violation of at least 0.25 occurs for the

olution (x ∗, ̄y ∗) if a zero-half-cut can be generated by solving the

orresponding equation system. 

.3. A primal greedy Heuristic 

In order to obtain lower bounds based on a feasible integral

olution of RSLP-Max, we apply a greedy heuristic denoted as

lgorithm 2 . Note that a solution S ⊆V is uniquely defined by the

lgorithm 2 Greedy algorithm. 

nput: V ∗
1 

⊂ V as opened stations, V ′ ⊆ V ∗
f 

∪ V ∗
0 

as the candidate set

utput: A solution S ⊆ V ′ ∪ V ∗
1 

S ← V ∗1 
while | S| < κ do 

w = arg max v ∈ V ′ \ S θv (S) 

S ← S ∪ { w } 
end while 

et of opened stations, as the set of covered demands is then given

y the set Q ( S ) (see Definition 3 ). Algorithm 2 iteratively comple-

ents the set V ∗1 of stations opened by the fractional LP-Solution

(x ∗, ̄y ∗) by adding further stations out of set V 

′ until κ stations are

pened. For this purpose, stations v ∈ V ′ are selected in sequence

f non-increasing θv (S) -values that depend on the current solution

 . Note that we remove candidate stations from V that are already

xed to zero in the current node of the Branch&Cut tree. Such

 zero-fixation may either result from a branching decision or is

aused by a reduced cost fixing at the current node. 
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Our heuristic slightly extends the greedy approach by Lim and

uby (2010) and Kim and Kuby (2013) who propose to define

v (S) for v ∈ V \ S as the attained increase of the objective func-

ion value if station v is opened, i.e., added to the current set S (cf.

efinitions 1 and 3 ): 

v (S) := 

∑ 

q ∈ Q v (S) 

w q , (31) 

here Q v (S) is given as 

 v (S) := { q ∈ Q \ Q (S) : δo q , v (S) + δv ,d q (S) ≤ δmax 
q } (32)

owever, taking only the immediate improvement into account

eems to be inappropriate in cases where more than one station

s needed for covering a demand. Those demands q ∈ Q are only

onsidered by the given measure if the respective stations in V q 

appen to have been opened in previous iterations due to their

ontributions to the coverage of other demands. In order to reduce

his shortcoming, we extend the measure θv (S) by including a dis-

ount factor μv ,q (S) . For the current set S , μv ,q (S) estimates the

umber of additionally needed stations (including v ) for covering

emand q ∈ Q \ Q ( S ). It holds that 

v ,q (S) := 

{
1 ⇔ q ∈ Q v (S) 
μ′ 

v ,q (S) > 1 otherwise. 
(33) 

n this calculation, for current set S , μ′ 
v ,q (S) is an estimate of the

umber of additional stations needed such that v can certify the

xistence of an OD-cover for q according to Definition 2 . Using

his estimate as a discount factor, we apply the following θv (S) -

easure: 

v (S) := 

∑ 

q ∈ Q \ Q (S) ∧ v ∈{ v ′ ∈ V q | μv ′ ,q (S)+ | S|≤κ} 
w q /μv ,q (S) . (34)

.4. Branching scheme 

Since each solution is unambiguously defined by the set of

pened stations ( Yıldız et al., 2016 ), we conduct branching by fix-

ng respective station variables x v for v ∈ V . For a given fractional

olution (x ∗, ̄y ∗) , a branching candidate is determined by 

 

′ = arg max 
v ∈ V ∗

f 

θv (V 

∗
1 ) . (35)

erein, we define θv (V ∗1 ) as in Formula 34 . Ties are broken arbi-

rarily except for the case when it holds that ∀ v ∈ V ∗
f 

: θv (V ∗1 ) = 0 .

 

′ is then chosen from V ∗
f 

by applying the non-cannibalizing selec-

ion criterion of Hodgson (1990) . After choosing v ′ , we create two

hild nodes with the additional constraints x v ′ = 0 (down child)

nd x v ′ = 1 (up child). 

The choice of the next node of the Branch&Cut tree to be con-

idered in the enumeration process is based on a combination

f its bound and the fractionality of the corresponding LP-Solution .

he fractionality of an LP-Solution (x ∗, ̄y ∗) is determined by the

atio 
| V ∗

f 
| 

| V ∗
f 
| + | V ∗

1 
| . The lower bound z LB at a given time results from

he attained objective function value of the best feasible solution

hat is found during the elapsed enumeration process. We denote

he largest upper bound over all nodes (i.e., currently, one of the

ost promising partial solutions) generated at a given time as z UB ,

hile z UB ( ν) gives the upper bound of node ν . In order to continue

he enumeration process, we select the node ν ′ with lowest frac-

ionality that fulfills (z UB − z UB (ν)) ≤ σ s · (z UB − z LB ) . The parame-

er 0 ≤σ s ≤ 1 defines a threshold on the accepted deviation of the

ound z UB ( ν) of the selected node ν from the maximum bound

ith respect to the current optimality gap z UB − z LB . 

However, instead of always selecting a new node from the tree,

e continue the evaluation of the children nodes of the up child
′ , as long as (z UB − z UB (ν′ )) ≤ σ c · (z UB − z LB ) is fulfilled. For this

urpose, the parameter 0 ≤σ c ≤ 1 defines a (different) threshold on

he continuation of the branching at the up child. This allows us to

peed up the enumeration process since the LP-relaxation is fre-

uently easier to solve at a direct successor node. 

Note that our implementation allows a multi-threaded explo-

ation of the solution space that is based on an opportunistic se-

ection of nodes to be branched. 

. Computational results 

In what follows, we evaluate the efficiency of the proposed

ranch&Cut algorithm by means of a computational study that is

ased on two real-world road networks. The first road network

omprises motorways and national roads in Germany with | P | =
642 and | R | = 8017 . Every vertex of this network is either a mo-

orway junction or a crossing point of two or more national roads.

he set of considered demands for this network is given by a se-

ection of the highest weighted county to county ( | O | = | D | = 430 )

emands based on traffic data from the year 2010 ( BMVI, 2014 ). 

The second real-world road network is the representation of

he Californian road network as given in Li, Cheng, Hadjielefthe-

iou, Kollios, and Teng (2005) with | P | = 21 , 693 and | R | = 21 , 048 .

or the demands, we use the 2010 Census Data ( Bureau, 2010 ) in

rder to identify 208 urbanized areas and urban clusters used as

rigins and destinations. The weights of the demands are deter-

ined using the gravity model approach of Hodgson (1990) . In all

xperiments, the parameter setting δmin = 0 , δmax 
o = δmax 

d 
= δmax / 2

s applied. It implements the so-called half tank assumption that

odels that people want to leave the origin and reach the des-

ination of a demand with, at least, a half-full tank. In order to

olely consider unrelated demands, we combine all demands q 1 ,

 2 ∈ Q with o q 1 = d q 2 and vice versa into a new demand q ′ with

eight w q ′ = w q 1 + w q 2 , as the basic road networks considered in

he experiments are undirected and symmetric. Therefore, all listed

esults are based on unrelated demands. 

As increasing vehicle ranges (i.e., larger values of δmax ) also

ugment the set of demands, that are considered as trivial during

he solution process, we introduce the following notation: 

 

δUB 

δLB := { q ∈ Q | δLB < δq ≤ δUB } . (36)

The demand structure can be found in Table 3 . It lists, for differ-

nt range criteria with respect of δmax , the corresponding number

f demands q ∈ Q , whose values δq fulfill the given distance cri-

eria. Additionally, the weighted market share is given in percent.

s one can observe, the demand weights of the real data from the

erman network as well as of the gravity model for California have

 strong bias towards short distance demands, which is addition-

lly emphasized with an increasing value of δmax . Please note that

n the following, the set of considered demands always depends on

he range setting of the corresponding instance. For the first set of

ests, we employ all demands q ∈ Q with δq > δmax /2, i.e., we con-

ider the set Q 

∞ 

δmax / 2 
. 

Our computational study extends existing analyses in the litera-

ure by considering a further dimension that determines a conden-

ation degree of the set of stations V ⊆P in the basic road network

hat are being examined to be opened. We obtain these candidate

ets by applying the following filtering procedure: 

efinition 21. Given a distance δf and a parameter 0 ≤ ε ≤ 1, we

enote a station v ∈ V as dominating compared to w ∈ V, whenever

1. δv ,w 

≤ δ f 

2. 
∑ 

{ q ∈ Q| v ∈ V q } w q > 

∑ 

{ q ∈ Q| w ∈ V q } w q 

3. 
∑ 

{ q ∈ Q| w ∈ V q ∧ v / ∈ V q } w q ≤ ε · ∑ 

{ q ∈ Q| w ∈ V q } w q 

All dominated stations are excluded from V and we obtain V 

′ ⊆V

s the condensed set of stations. We determine the condensation
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Table 3 

Demand structure. 

δmax (kilometres) California Germany 

| Q ∞ 
δmax / 2 

| | Q δmax 

δmax / 2 
| | Q ∞ 

δmax | | Q ∞ 
δmax / 2 

| | Q δmax 

δmax / 2 
| | Q ∞ 

δmax | 
75 19,490 493 (15%) 18,997 (85%) 15,290 139 (7%) 15,151 (93%) 

100 19,362 855 (40%) 18,507 (60%) 15,290 993 (45%) 14,297 (55%) 

125 19,124 1,183 (44%) 17,941 (56%) 15,290 2,081 (67%) 13,209 (33%) 

150 18,997 1,715 (55%) 17,282 (45%) 15,151 3,171 (76%) 11,980 (24%) 

175 18,747 2,191 (55%) 16,556 (45%) 14,745 4,101 (77%) 10,644 (23%) 

Table 4 

Instance properties with respect to different range and deviation settings. 

δmax λ V easy V medium V hard 

| V | �q | V q | Max% | V | �q | V q | Max% | V | �q | V q | Max% 

Germany 

75 kilometres 1 727 2.48 · 10 4 52.22 982 6.51 · 10 4 73.07 1,318 1.28 · 10 5 90.06 

1.05 774 1.37 · 10 5 65.55 1,009 2.78 · 10 5 82.50 1,338 4.32 · 10 5 93.67 

1.1 785 2.61 · 10 5 71.61 1,020 4.53 · 10 5 86.78 1,375 6.61 · 10 5 95.09 

1.2 803 4.74 · 10 5 80.22 1,037 7.36 · 10 5 91.16 1,393 1.04 · 10 6 96.99 

100 kilometres 1 784 6.85 · 10 4 84.55 1,005 1.07 · 10 5 93.53 1,331 1.51 · 10 5 98.01 

1.05 791 2.47 · 10 5 89.94 1,013 3.41 · 10 5 96.25 1,348 4.6 · 10 5 98.78 

1.1 796 3.82 · 10 5 92.62 1,027 5.12 · 10 5 97.42 1,378 6.86 · 10 5 99.12 

1.2 814 6.01 · 10 5 96.33 1,041 7.95 · 10 5 98.27 1,392 1.07 · 10 6 99.55 

125 kilometres 1 788 8.67 · 10 4 93.54 1,006 1.15 · 10 5 97.69 1,332 1.53 · 10 5 99.55 

1.05 794 2.66 · 10 5 95.83 1,015 3.49 · 10 5 98.94 1,348 4.63 · 10 5 99.71 

1.1 803 4 · 10 5 96.91 1,029 5.2 · 10 5 99.51 1,378 6.91 · 10 5 99.84 

1.2 815 6.19 · 10 5 98.55 1,041 8.03 · 10 5 99.75 1,392 1.07 · 10 6 99.92 

150 kilometres 1 789 8.91 · 10 4 96.17 1,006 1.16 · 10 5 99.03 1,332 1.53 · 10 5 99.77 

1.05 794 2.69 · 10 5 97.61 1,015 3.5 · 10 5 99.41 1,349 4.63 · 10 5 99.82 

1.1 803 4.03 · 10 5 98.32 1,029 5.22 · 10 5 99.77 1,379 6.91 · 10 5 99.91 

1.2 816 6.22 · 10 5 99.14 1,043 8.04 · 10 5 99.90 1,394 1.07 · 10 6 99.97 

175 kilometres 1 789 8.99 · 10 4 98.11 1,006 1.15 · 10 5 99.44 1,332 1.51 · 10 5 99.81 

1.05 794 2.7 · 10 5 98.93 1,015 3.49 · 10 5 99.74 1,349 4.61 · 10 5 99.84 

1.1 804 4.04 · 10 5 99.26 1,029 5.2 · 10 5 99.89 1,379 6.89 · 10 5 99.94 

1.2 816 6.22 · 10 5 99.79 1,043 8.02 · 10 5 99.95 1,394 1.07 · 10 6 100.00 

California 

75 kilometres 1 257 1.31 · 10 4 29.68 377 8.08 · 10 4 76.15 515 2.13 · 10 5 88.84 

1.05 299 2.36 · 10 5 56.35 427 5.83 · 10 5 88.86 614 9.19 · 10 5 89.99 

1.1 325 5.31 · 10 5 79.66 476 9.89 · 10 5 93.29 665 1.46 · 10 6 90.33 

1.2 368 9.6 · 10 5 94.07 497 1.61 · 10 6 99.20 681 2.3 · 10 6 94.47 

100 kilometres 1 309 1.14 · 10 5 90.05 387 1.76 · 10 5 98.08 516 2.32 · 10 5 98.73 

1.05 340 5.77 · 10 5 93.06 443 7.35 · 10 5 98.53 618 9.49 · 10 5 98.89 

1.1 372 8.79 · 10 5 98.57 482 1.13 · 10 6 98.74 665 1.49 · 10 6 98.97 

1.2 385 1.33 · 10 6 99.27 497 1.73 · 10 6 99.77 681 2.31 · 10 6 99.11 

125 kilometres 1 314 1.33 · 10 5 91.81 390 1.83 · 10 5 99.02 516 2.33 · 10 5 99.82 

1.05 343 5.98 · 10 5 93.50 442 7.47 · 10 5 99.35 619 9.5 · 10 5 99.95 

1.1 370 8.99 · 10 5 98.83 482 1.14 · 10 6 99.38 663 1.49 · 10 6 100.00 

1.2 384 1.35 · 10 6 99.97 496 1.74 · 10 6 100.00 680 2.31 · 10 6 100.00 

150 kilometres 1 316 1.4 · 10 5 93.05 390 1.85 · 10 5 99.95 516 2.35 · 10 5 100.00 

1.05 343 6.04 · 10 5 94.12 444 7.48 · 10 5 100.00 621 9.5 · 10 5 100.00 

1.1 369 9.05 · 10 5 99.55 482 1.14 · 10 6 100.00 664 1.49 · 10 6 100.00 

1.2 383 1.36 · 10 6 100.00 496 1.74 · 10 6 100.00 681 2.32 · 10 6 100.00 

175 kilometres 1 315 1.43 · 10 5 99.44 390 1.86 · 10 5 99.99 516 2.34 · 10 5 100.00 

1.05 343 6.06 · 10 5 99.98 444 7.48 · 10 5 100.00 621 9.49 · 10 5 100.00 

1.1 373 9.06 · 10 5 100.00 486 1.14 · 10 6 100.00 666 1.49 · 10 6 100.00 

1.2 385 1.36 · 10 6 100.00 497 1.74 · 10 6 100.00 681 2.32 · 10 6 100.00 
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degree by setting the parameters δf and ε: By being set to mod-

erate values, the parameter δf ensures that a station may domi-

nate only stations in its direct vicinity that are contributing less to

the covering of demands. However, the parameter ε allows to keep

those alternatives located nearby if these stations are assumed to

be useful in satisfying different demands to a certain extent. 

By applying a deviation factor of λ = 1 . 0 , a vehicle range of

100 kilometres and a minimum distance of 100 kilometres for all

considered demands, we create the following three candidate sets

per network by individual degrees of condensation: The set V 

easy 

results from applying ε = 0 . 4 and δ f = 50 kilometres , V 

medium is

obtained by setting ε = 0 . 3 and δ f = 40 kilometres , whereas V 

hard 

possesses the parameter values ε = 0 . 2 and δ f = 30 kilometres .
ince complexity is driven by network density, a more restrictive

ltering reduces the resulting complexity. 

Throughout the computational tests, we apply up to five vehicle

anges with δmax ∈ [75 kilometres , 175 kilometres ] and up to four

eviation factors λ∈ [1, 1.2]. The characteristics of the instances

ith respect to their range and deviation settings as well as the

hoice of the candidate set are given in Table 4 . The columns | V |

ndicate the number of stations that enable the coverage of at least

ne demand in the considered candidate sets. The complexity im-

act of a larger allowed deviation λ becomes obvious by consider-

ng the value �q ∈ Q | V q |. Note that this value drives the number of

onstraints in the model of Yıldız et al. (2016) (defined by (9) and

10) ). The maximum objective value that is attained by the opening
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Table 5 

Attained results for the model of Yıldız et al. (2016) on Q ∞ 
δmax / 2 

solved with Gurobi 8.1. 

λ κ δmax = 75 kilometres δmax = 100 kilometres δmax = 125 kilometres δmax = 150 kilometres δmax = 175 kilometres 

Germany 

1 5 3.51 seconds 6.02 seconds 6.06 seconds 5.29 seconds 6.67 seconds 

10 4.32 seconds 7.78 seconds 8.49 seconds 15.15 seconds 7.94 seconds 

20 1.96 seconds 5.66 seconds 9.93 seconds 14.55 seconds 17.91 seconds 

50 2.20 seconds 16.94 seconds 38.24 seconds 105.09 seconds 140.01 seconds 

1.05 5 28.78 seconds 38.41 seconds 21.82 seconds 35.34 seconds 48.61 seconds 

10 44.13 seconds 180.48 seconds 78.49 seconds 111.21 seconds 80.42 seconds 

20 31.01 seconds 673.19 seconds 169.58 seconds 635.21 seconds 2,220.90 seconds 

50 53.82 seconds 23.19% – 23.3% 29.26% – 30.12% 34.1% – 34.41% 38.33% – 38.66% 

1.1 5 275.83 seconds 225.97 seconds 48.04 seconds 84.63 seconds 202.17 seconds 

10 522.33 seconds 885.32 seconds 517.76 seconds 344.78 seconds 1,440.86 seconds 

20 87.24 seconds 8,551.11 seconds 17.76% – 18.21% 20.55% – 20.76% 23.77% – 24.18% 

50 2,757.60 seconds 25.31% – 26.93% 32.37% – 33.82% 37.85% – 38.82% 43.88% – 44.59% 

California 

1 5 0.32 seconds 1.42 seconds 5.16 seconds 6.77 seconds 6.76 seconds 

10 0.79 seconds 7.31 seconds 14.33 seconds 14.61 seconds 13.12 seconds 

20 0.70 seconds 10.07 seconds 15.95 seconds 19.94 seconds 28.40 seconds 

50 0.60 seconds 11.12 seconds 24.51 seconds 32.36 seconds 51.10 seconds 

1.05 5 1.37 seconds 6.13 seconds 19.21 seconds 36.00 seconds 145.48 seconds 

10 8.57 seconds 62.85 seconds 139.88 seconds 498.84 seconds 2,970.52 seconds 

20 39.87 seconds 8,828.36 seconds 5,186.80 seconds 72.01% – 72.22% 79.55% – 80.88% 

50 371.26 seconds 82.35% – 83.06% 87.36% – 87.71% 89.36% – 90.2% 0% – 147.51% 

1.1 5 2.39 seconds 10.53 seconds 43.04 seconds 80.27 seconds 212.06 seconds 

10 16.99 seconds 5,699.80 seconds 758.08 seconds 1,228.05 seconds 0% – 145.43% 

20 433.84 seconds 68.92% – 70.01% 76.47% – 76.93% 0% – 154.47% 0% – 145.43% 

50 67.38% – 67.61% 0% – 125.07% 0% – 134.33% 0% – 154.47% 0% – 145.43% 
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f all stations is given in the “Max%”-column. Clearly, since more

emands may be covered by an identical set of stations, this value

oes not decrease with an ascending deviation level. 

All tests of the following analysis are conducted on Personal

omputers operated under Linux and equipped with an Intel Core

7-5820 K CPU running with 3.3 gigahertz and 64 gigabytes work-

ng memory. The algorithms are coded in C ++ and use up to six

hreads simultaneously. None of the running times given include

ny preprocessing steps that are necessary for the application of

oth approaches (e.g., the calculation of V q , ∀ q ∈ Q ). 

.1. Results for the Model of Yıldız et al. (2016) 

In order to validate the new Branch&Cut approach, we directly

ompare its performance with the solving of the model of Yıldız

t al. (2016) that can be seen as the state of the art approach for

SLP-Max. As the model of Yıldız et al. (2016) extends the model

f MirHassani and Ebrazi (2013) , which does not allow any devia-

ion (i.e. λ = 1 ) to the case with deviation (i.e. λ> 1), the follow-

ng computational tests also provide a comparison with the model

f MirHassani and Ebrazi (2013) for all instances with λ = 1 . For

his purpose, we implement the entire model definition (includ-

ng all path segments) in Gurobi 8.1 and use the IP-Solver mode

ith default settings and a predetermined time limit of three

ours, i.e., 10,800 seconds. Due to an unmanageable complexity for

maller condensation degrees (leading to the substantially larger

tation sets V 

medium and V 

hard ), the model of Yıldız et al. (2016) is

nly solved with the smallest station set V 

easy for both networks

ombined with three deviation settings ( λ∈ {1.0, 1.05, 1.1}) and

our limits for the maximal number of stations to be opened κ .

herefore, this first test bed comprises altogether 120 instances.

he attained results are presented in Table 5 . 

For all instances in Table 5 , we give either the computation time

eeded to solve the instance to optimality, or the corresponding

ower and upper bounds in percent of weighted total coverage of

ll demands in cases where the time limit of 10,800 seconds was

xceeded. By analyzing the measured results in Table 5 , it becomes

bvious that, even with a limited set of candidate sites, a practical
pplication of the approach of Yıldız et al. (2016) is strongly lim-

ted. For instance, by applying the larger deviation factor λ := 1.1,

n some instances even the initial LP cannot be solved by the dual

implex within the given time limit. Hence, in these cases, a large

pper bound is attained from the current dual solution whereas

he lower bound results from the trivial solution that does not

pen any station at all. 

.2. Results for the Branch&Cut approach 

In contrast to the application of the approach of Yıldız et al.

2016) , the new Branch&Cut approach attains useful results dur-

ng the predetermined time limit for all tested condensation de-

rees, i.e., for all resulting station sets. Hence, the second test bed

s considerably extended by combining each of the three station

ets with four limits for the maximum number of stations to be

pened ( κ ∈ {5, 10, 20, 50}) and four different deviation factors λ.

his results in 480 instances. Analogous to the first test bed, a time

imit of three hours is imposed while Gurobi 8.1 is applied for solv-

ng each LP-relaxation of the RSLP-Max formulation that is gener-

ted by the approach. Furthermore, the maximal number of vio-

ated OD-cuts added to the LP-relaxation in one separation round

s limited to π c, max = 200 . Zero-half-cuts are additionally separated

n every node of the enumeration tree whenever a minimum num-

er of π c, min = 100 violated OD-cut inequalities could not be gen-

rated in the current separation round. However, if the total num-

er of zero-half-cuts and violated OD-cuts together still does not

each π c, min = 100 and the obtained solution is not integral, the

earch for additional violated inequalities is stopped. If the last

olution is integral, feasibility has to be subsequently checked by

ontinuing the separation process. Note that, in contrast to this, in

he root node the separation process is stopped only if no violated

nequality is found. 

The enumeration process is performed by using up to six

hreads in parallel. Note that this is equivalent to the automatic

etting of Gurobi applied to test the approach of Yıldız et al. (2016) .

uring the enumeration process, the parameter setting σ s = 0 . 1

nd σ c = 0 . 5 is applied (see Section 4.4 ). 
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Table 6 

Results of the Branch&Cut approach attained for the road network of California. 

Q ∞ 
δmax / 2 

δmax = 7 kilometres δmax = 100 kilometres δmax = 125 kilometres δmax = 150 kilometres δmax = 175 kilometres 

λ κ T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) 

V easy 

1 5 < 0.1 † 9.37 < 0.1 † 24.93 0.27 25.97 0.29 † 30.03 0.42 ‡ 30.30 

10 0.10 13.54 0.26 † 39.63 0.44 † 42.51 0.82 46.99 0.55 † 49.69 

20 < 0.1 19.69 0.42 † 56.12 0.52 † 59.61 0.67 64.13 0.92 70.65 

50 < 0.1 26.37 0.55 † 75.29 0.62 ‡ 81.06 0.86 84.78 0.64 ‡ 92.66 

1.05 5 < 0.1 13.32 0.18 † 25.36 0.48 27.85 0.48 ‡ 31.79 0.81 35.95 

10 0.78 22.79 0.54 † 42.07 0.77 † 45.62 2.64 49.58 2.27 57.17 

20 0.66 31.08 6.21 60.69 5.22 66.19 7.49 72.08 12.89 80.12 

50 1.40 44.33 11.02 82.79 33.78 87.46 23.95 89.98 10.81 97.33 

1.1 5 < 0.1 19.77 0.21 † 30.33 0.64 33.17 0.47 † 41.40 0.77 † 41.55 

10 0.17 † 34.05 0.75 47.02 1.22 51.33 1.69 † 60.07 9.73 62.28 

20 0.94 49.31 31.75 69.14 2.79 ‡ 76.56 33.45 82.92 90.49 85.90 

50 11.50 67.42 29.89 91.41 42.32 94.98 35.92 97.23 12.89 98.71 

1.2 5 < 0.1 † 22.82 0.22 † 30.66 0.35 † 38.50 0.59 ‡ 43.44 1.32 ‡ 49.02 

10 0.41 37.60 1.45 48.94 3.24 58.94 26.79 66.26 2.67 ‡ 74.05 

20 0.83 † 59.93 51.34 75.00 5.81 84.27 29.52 89.52 74.72 91.24 

50 1.76 84.99 2.60 ‡ 94.82 23.97 97.87 18.34 99.06 13.30 99.56 

V medium 

1 5 < 0.1 19.96 0.24 26.24 0.29 ‡ 36.38 0.41 ‡ 39.83 0.66 36.57 

10 0.13 † 32.25 0.37 ‡ 42.49 0.62 ‡ 49.48 0.71 † 55.54 0.79 54.56 

20 0.31 46.45 0.59 ‡ 60.89 2.51 65.21 3.44 70.25 2.73 71.86 

50 0.26 ‡ 61.42 1.12 82.13 0.77 ‡ 88.66 0.85 ‡ 92.25 0.64 ‡ 94.59 

1.05 5 0.15 21.58 0.21 † 28.28 0.33 † 37.75 0.55 ‡ 41.53 1.32 40.26 

10 0.65 35.14 0.60 ‡ 44.38 1.66 53.13 1.77 † 59.92 2.81 ‡ 60.43 

20 0.56 ‡ 51.98 15.93 64.79 1.67 † 74.13 19.10 79.55 76.30 81.84 

50 6.24 71.50 16.15 88.62 18.65 94.00 22.93 96.36 35.44 97.65 

1.1 5 0.21 21.72 0.26 † 30.33 0.36 † 37.96 0.55 ‡ 43.44 1.69 44.65 

10 0.74 36.74 1.03 47.00 1.37 † 55.88 10.47 63.43 22.75 66.96 

20 0.78 † 55.60 44.08 69.14 28.50 79.74 54.48 85.06 180.14 87.40 

50 12.12 79.07 72.12 92.14 49.19 95.87 36.92 97.97 32.49 98.93 

1.2 5 < 0.1 † 26.09 0.26 † 30.66 0.49 † 38.95 0.69 ‡ 47.08 1.48 † 55.12 

10 0.40 † 42.04 1.67 48.87 2.06 ‡ 59.52 71.96 68.38 2.99 † 78.10 

20 3.46 ‡ 62.95 8.89 ‡ 75.81 11.53 85.63 5.92 90.59 104.94 92.39 

50 29.94 88.74 24.11 95.46 128.57 98.24 24.81 99.23 75.49 99.61 

V hard 

1 5 0.21 17.04 0.31 26.08 0.30 ‡ 32.19 0.39 † 41.44 0.85 36.73 

10 0.49 26.88 0.49 ‡ 42.05 0.63 ‡ 50.01 0.69 † 57.95 1.33 55.92 

20 0.47 † 43.82 0.73 ‡ 60.61 0.89 † 67.14 15.83 71.30 2.83 73.35 

50 2.73 64.17 1.97 83.84 1.11 ‡ 90.10 1.59 ‡ 92.84 1.84 95.24 

1.05 5 0.11 ‡ 19.89 0.52 26.70 0.55 33.48 0.51 † 42.87 0.83 † 39.92 

10 1.58 31.27 0.70 ‡ 44.29 1.02 † 51.85 1.32 ‡ 60.74 7.74 59.73 

20 1.01 48.83 4.12 ‡ 66.23 3.04 ‡ 74.76 72.70 78.95 103.59 81.78 

50 23.36 71.49 7.01 89.82 71.68 94.72 82.16 96.79 94.84 97.95 

1.1 5 0.12 ‡ 20.65 0.92 27.25 0.88 34.01 0.62 † 45.60 2.38 45.03 

10 0.48 ‡ 33.46 0.80 † 46.47 1.63 † 53.66 36.03 63.92 24.65 66.87 

20 2.56 51.57 244.20 69.39 42.75 77.35 377.46 83.44 409.86 87.41 

50 37.51 75.82 96.74 92.54 160.37 96.43 145.40 98.14 149.78 99.01 

1.2 5 0.14 † 23.77 0.33 ‡ 30.82 0.44 † 38.98 0.78 † 47.76 4.20 50.61 

10 0.93 37.54 1.39 † 52.13 5.54 59.67 941.14 67.57 54.11 76.79 

20 98.87 59.69 4.20 † 78.56 40.49 84.66 153.65 89.92 528.16 92.76 

50 9.63 84.37 52.77 95.52 261.87 98.28 110.88 99.32 67.58 99.67 
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The results attained for both networks on 480 (in total) in-

stances, which are depicted in Tables 6 and 7 , clearly underline

that the proposed Branch&Cut approach significantly outperforms

the approach of Yıldız et al. (2016) in terms of computation times

in seconds (column T(s)). This can mainly be ascribed to the mod-

ified problem definition and, as a consequence, to the insights that

are gained from the introduction of OD-cuts. These improvements

become particularly obvious by analyzing the results attained for

the Californian network (see Table 6 ). Herein, the conducted de-

composition defers the complex path finding task on this dense

network to the faster working OD-cut separation process. As a con-

sequence, all 240 instances are solved to optimality far below the

predetermined time limit of 10,800 seconds. Not surprisingly, the

optimal coverage (column C(%)) increases with ascending deviation

levels λ as well as with an increasing number of placed stations
. However, as the underlying demand set changes, the market

hare of covered demands can also decrease if range settings in-

rease (see optimal values for δmax = 150 and δmax = 175 in the

alifornian network on candidate sets V 

medium and V 

hard ). Note fur-

her that many instances can be optimally solved within the root

ode, which is indicated by a † , or a ‡ in the case that zero-half-

uts were separated and might have helped to find the integral

olution. 

The yielded results of the Branch&Cut approach for the German

oad network are given in Table 7 . Although the computation times

re higher in comparison to the measured results for the Califor-

ian network, the maximum computation time of 2035 seconds

s still far below the time limit of 10,800 seconds. Note that this

igher complexity mainly results from the fact that in the Ger-

an road network, the sets of alternative stations are considerably
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Table 7 

Results of the Branch&Cut approach attained for the road network of Germany. 

Q ∞ 
δmax / 2 

δmax = 75 kilometres δmax = 100 kilometres δmax = 125 kilometres δmax = 150 kilometres δmax = 175 kilometres 

λ κ T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) T(seconds) C(%) 

V easy 

1 5 8.90 1.14 0.89 2.50 0.32 † 4.98 0.45 † 5.44 0.39 † 6.16 

10 0.40 2.59 0.85 4.93 0.57 ‡ 8.05 0.87 8.80 0.66 † 9.99 

20 0.39 5.41 0.42 ‡ 9.69 1.02 13.29 0.96 14.43 1.69 16.15 

50 0.47 12.37 2.93 19.25 3.00 25.33 4.31 27.75 2.76 30.76 

1.05 5 1.54 1.98 1.82 3.00 0.50 † 5.82 0.61 † 6.76 0.65 ‡ 7.33 

10 0.88 4.03 2.41 6.02 1.15 † 9.65 1.14 ‡ 11.31 0.99 † 12.91 

20 0.47 7.97 3.10 11.31 3.14 15.62 5.27 18.38 5.94 20.80 

50 1.88 16.30 12.93 23.21 19.64 29.68 11.22 34.17 18.98 38.34 

1.1 5 9.59 1.98 1.95 3.79 0.61 † 6.60 1.14 ‡ 7.50 1.17 ‡ 8.16 

10 1.95 4.27 4.16 7.25 4.27 10.70 1.56 12.46 3.13 14.26 

20 0.75 ‡ 9.01 6.49 13.31 7.14 17.87 8.01 20.65 17.69 23.84 

50 6.40 18.29 28.83 26.34 24.72 33.21 31.14 38.23 30.75 44.13 

1.2 5 4.35 2.40 1.39 4.95 0.96 ‡ 8.11 1.31 ‡ 8.87 2.79 10.20 

10 1.76 5.66 2.70 9.45 10.90 12.78 3.04 ‡ 15.03 22.87 17.38 

20 7.26 10.98 14.23 16.42 12.47 21.47 10.49 25.07 24.47 29.24 

50 151.07 21.66 105.05 31.74 105.17 38.66 85.79 45.44 215.42 51.91 

V medium 

1 5 0.71 1.44 0.37 ‡ 3.08 0.40 † 5.01 0.44 † 5.55 0.60 6.20 

10 1.48 2.89 1.48 5.55 1.14 8.24 1.11 9.33 0.64 † 10.71 

20 1.22 5.88 1.45 10.34 0.80 ‡ 13.88 1.82 15.37 2.26 16.92 

50 1.25 14.21 4.71 20.59 8.12 25.61 4.44 28.63 6.81 31.58 

1.05 5 21.16 2.22 1.33 3.68 0.57 † 5.82 0.64 † 6.76 0.72 ‡ 7.33 

10 2.34 4.32 3.24 6.63 1.58 † 9.77 1.24 ‡ 11.32 1.20 ‡ 12.91 

20 3.49 8.45 3.18 12.20 3.99 15.94 4.14 18.67 7.26 21.01 

50 4.32 18.11 107.21 24.67 31.89 30.65 22.93 34.71 27.60 39.59 

1.1 5 44.18 2.22 1.51 3.94 0.68 † 6.60 1.10 ‡ 7.62 1.01 ‡ 8.24 

10 4.01 4.56 4.20 7.66 3.58 10.82 1.90 12.59 5.91 14.28 

20 3.51 9.50 5.65 14.08 6.21 18.34 12.18 20.90 37.31 23.92 

50 7.03 20.53 55.52 28.38 101.41 34.34 38.19 39.37 76.34 44.81 

1.2 5 8.66 2.53 2.65 5.17 1.86 8.12 1.38 ‡ 9.23 1.62 10.70 

10 4.01 5.80 4.46 9.70 11.55 12.95 5.15 15.48 35.50 17.73 

20 11.92 11.31 15.58 17.12 58.33 21.56 23.23 25.44 72.99 29.60 

50 127.80 23.80 230.08 33.09 264.95 39.37 156.58 46.46 180.26 53.59 

V hard 

1 5 4.74 1.65 1.42 2.82 0.46 † 5.01 0.48 † 5.55 0.88 6.20 

10 2.86 3.23 2.46 5.30 1.63 8.24 1.19 9.33 0.75 † 10.71 

20 4.20 6.49 2.68 10.28 1.24 ‡ 13.88 2.30 15.57 2.08 17.24 

50 8.25 15.22 20.50 21.27 16.14 26.11 11.13 29.07 7.87 32.10 

1.05 5 3.76 2.39 8.02 3.50 0.59 ‡ 5.95 0.58 † 7.23 0.81 ‡ 7.59 

10 4.39 4.32 4.95 6.69 1.86 † 9.91 1.64 ‡ 11.87 2.30 13.05 

20 4.95 8.68 5.51 12.34 6.66 16.05 7.17 19.29 6.97 21.83 

50 11.91 18.95 193.78 25.86 37.88 31.47 62.63 35.79 40.28 40.39 

1.1 5 1.87 2.51 3.71 3.99 0.77 † 6.76 0.90 ‡ 8.06 1.17 ‡ 8.42 

10 5.38 4.89 3.73 8.03 4.10 11.22 5.82 13.34 6.13 14.76 

20 4.09 10.08 9.28 14.41 12.23 18.55 7.68 21.98 25.71 25.57 

50 111.33 21.43 97.11 29.22 120.47 34.86 86.57 40.21 102.42 45.96 

1.2 5 12.36 2.57 1.11 ‡ 5.44 2.00 8.29 1.20 ‡ 9.61 2.18 ‡ 10.65 

10 10.83 5.91 4.87 10.04 14.21 13.32 8.33 15.99 43.76 17.89 

20 26.71 11.74 73.20 17.51 74.78 21.82 40.42 26.51 103.43 30.11 

50 1,474.19 24.72 2,034.87 33.80 1,008.68 39.68 301.95 47.20 688.96 53.82 
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o  
arger, while the basic road network is smaller. Therefore, there is

 greater computational burden on the LP-Solver that has to solve

igger LP-relaxations of the RSLP-Max formulation due to larger

D-cuts. Also the separation algorithms of Section 4.1 are increas-

ngly challenged with a growing number of candidate stations in

n OD-cut. 

.3. Long distance demands 

Table 8 depicts the measured results of the Branch&Cut ap-

roach if we filter out shorter demands by imposing a minimum

istance of δmax . As detailed analyses reveal that the coverage of

emands with a short distance is frequently possible by the open-

ng of a single station, the greedy heuristic is able to provide

seful lower bounds. This can primarily be attributed to the fact

hat the demands with up to 100 kilometres distance account for
etween 40% (California) and 45% (Germany) of all mapped de-

ands (see Table 3 ). Thus, a reasonable preselection of candi-

ates covering various short distance demands attains promising

esults. In contrast to this, the coverage of longer distance demands

 > δmax ) increasingly requires the opening of, at least, two stations.

hus, filtering out shorter demands substantially rises the com-

lexity of the instances to be solved. 

As a consequence, by solely considering the demands in Q 

∞ 

δmax ,

he computation times of the Branch&Cut approach are signifi-

antly increased, while a substantial variance can be observed. But,

espite these deteriorations, the novel algorithm is still able to

olve almost all instances to optimality within the time limit of

0,800 seconds. Since this also applies to the most complex in-

tances with station set V 

hard , the practicability of the proposed

ranch&Cut approach is further underlined. While all 96 instances

f the Californian network are optimally solved, the time limit of



822 P. Göpfert and S. Bock / European Journal of Operational Research 279 (2019) 808–823 

Table 8 

Results of the Branch&Cut approach attained on long distance demands. 

Q ∞ 
δmax Germany California 

λ κ δmax = 100 kilometres δmax = 150 kilometres δmax = 100 kilometres δmax = 150 kilometres 

T(seconds) UB% T(seconds) UB% T(seconds) UB% T(seconds) UB% 

V easy 

1 5 0.38 3.26 10.46 2.42 0.11 17.96 0.36 22.48 

10 0.40 † 5.86 24.17 4.48 0.36 31.25 0.59 † 37.59 

20 1.65 9.65 12.05 8.95 0.53 50.90 0.60 † 57.21 

50 2.23 19.32 11.76 20.86 0.48 † 76.63 0.60 ‡ 86.11 

1.05 5 0.82 3.85 36.99 3.11 0.41 17.98 0.59 † 29.47 

10 3.10 6.54 123.29 6.48 0.69 ‡ 34.13 29.64 43.10 

20 5.33 11.61 68.61 13.56 32.80 55.19 26.91 72.52 

50 33.00 24.22 4,647.99 30.72 9.29 85.66 22.21 94.81 

1.1 5 3.77 3.86 181.77 3.63 0.19 † 21.93 0.64 † 29.87 

10 17.75 6.72 65.97 8.62 0.68 † 41.10 45.76 49.32 

20 12.79 12.42 255.35 17.68 32.67 62.12 64.48 78.95 

50 998.91 27.10 (37.62%) 38.31 47.32 90.81 200.71 97.13 

1.2 5 49.61 4.23 462.77 4.90 0.22 † 23.45 1.62 † 30.80 

10 45.92 7.90 642.18 11.28 0.99 † 45.08 42.09 61.32 

20 146.65 15.08 1,368.88 22.82 111.12 70.77 468.61 86.19 

50 636.00 32.95 (42.8%) 48.27 80.92 94.52 51.68 99.05 

V medium 

1 5 0.23 † 3.69 20.66 2.42 0.20 17.96 0.40 † 25.68 

10 24.35 6.16 20.69 4.59 0.38 † 33.22 1.36 38.32 

20 5.45 10.03 18.63 8.95 1.63 52.01 0.97 ‡ 61.73 

50 9.15 19.63 24.21 21.45 1.34 78.45 0.72 ‡ 89.04 

1.05 5 0.48 † 4.28 84.23 3.13 0.36 18.96 0.82 ‡ 28.87 

10 33.60 6.99 378.27 6.59 1.18 36.94 26.78 45.79 

20 7.60 12.22 297.97 13.93 16.78 57.86 63.64 73.69 

50 790.51 24.90 (31.29%) 31.97 44.58 87.06 91.13 95.43 

1.1 5 1.08 † 4.28 168.74 3.93 0.72 19.38 0.88 † 30.41 

10 65.85 7.24 217.33 8.81 2.43 38.68 32.83 53.90 

20 39.71 13.20 497.59 18.29 83.48 62.92 241.75 80.76 

50 1,817.47 28.50 (36.82%) 39.83 178.91 91.80 74.47 97.74 

1.2 5 19.31 4.37 1,047.11 5.06 1.03 21.06 15.36 31.04 

10 27.57 8.52 1,207.42 11.72 8.48 41.91 94.31 61.88 

20 222.88 15.97 (23.15%) 23.32 25.80 72.35 298.30 87.98 

50 (33.61%) 33.73 (42.75%) 49.77 168.80 95.05 204.36 99.19 

V hard 

1 5 0.32 † 3.69 8.62 2.51 0.32 17.96 0.44 † 26.89 

10 45.88 6.17 29.34 4.64 0.67 33.01 1.37 39.75 

20 27.91 10.04 37.42 9.24 3.44 52.16 2.37 62.57 

50 11.74 20.50 42.45 22.06 1.98 80.66 3.76 89.38 

1.05 5 0.69 † 4.28 95.89 3.33 0.43 19.11 0.68 ‡ 29.80 

10 54.76 7.05 255.52 6.95 1.45 37.09 12.56 48.25 

20 35.57 12.45 111.78 14.83 20.21 58.68 73.49 73.96 

50 4,271.38 26.03 (32.12%) 32.99 60.41 88.50 136.26 95.86 

1.1 5 1.43 † 4.28 201.43 4.22 0.71 20.36 1.33 † 30.41 

10 26.95 7.49 188.86 9.41 4.36 39.82 83.15 52.72 

20 46.14 13.81 1,537.37 18.72 38.21 64.77 625.08 80.31 

50 (29.89%) 29.90 (37.1%) 40.67 618.92 92.30 366.89 97.88 

1.2 5 27.72 4.46 5,147.89 5.08 1.90 22.67 10.57 31.04 

10 104.39 8.76 4,335.57 11.97 32.85 44.31 119.19 62.30 

20 1,524.79 16.48 (24%) 24.12 72.41 75.46 1,419.20 88.42 

50 10,310.10 34.92 (41.56%) 51.04 525.10 95.99 1,794.46 99.31 
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10,800 seconds prevents the finding of an optimal solution or the

proof of optimality in just 12 of 96 cases for the German network.

In these cases, Table 8 reports in brackets the attained lower bound

value. 

As short distance demands may be mainly induced by com-

muters, their exclusion may be reasonable as it leads to practically

relevant subproblems. Frequently, commuters can use an already

existing charging infrastructure at their demand origin (home lo-

cation) as well as at their demand destination (work location),

wherefore the applied aforementioned half tank assumption may

be too pessimistic. In contrast to this, a substantially larger pro-

portion of the long distance demands might actually depend on

the charging infrastructure erected by the stations to be opened.

Hence, covering these demands by a sophisticated infrastructure

may be the crucial part of a real-world application. 
. Conclusion and outlook 

This paper contributes a new approach for the planning of a

echarging and refueling infrastructure. By introducing OD-cuts,

e propose a novel definition of the well-known Refueling Sta-

ion Location Problem (RSLP) and generate a new corresponding

ranch&Cut approach. As a consequence, the computational in-

ractability that mainly results from a considerable increase of bi-

ary variables for instances of realistic size is significantly reduced.

pecifically, by applying the proposed Branch&Cut approach, real-

orld instances of practical size with respect to | V |, | Q |, and κ are

olved to optimality for the first time. 

However, besides these promising results, more detailed anal-

ses of instances with a dominating proportion of long distance

emands also reveal that the attained competitive upper bounds



P. Göpfert and S. Bock / European Journal of Operational Research 279 (2019) 808–823 823 

c  

i  

e  

b  

r  

h  

c  

2  

i  

v

 

p  

h  

U  

w  

i  

g  

t  

t  

R  

o  

c  

f  

H  

t  

o

A

 

t  

m  

s

R

A  

 

A  

 

B
B  

C  

 

C  

 

C  

C  

 

C  

 

C  

D  

G  

 

G  

 

H  

K  

 

K  

 

K  

 

L  

 

 

L  

 

L  

 

M  

 

M  

 

R  

 

S  

 

S  

 

U  

 

U  

 

Y  

 

Y  

 

Z  

 

 

annot readily be converted into lower bounds of comparable qual-

ty. Instead, in order to find an improved incumbent solution, the

numeration process frequently has to evaluate numerous nodes

efore the greedy heuristic is successfully applied. Hence, future

esearch shall be devoted to developing a more sophisticated

euristic. Note that respective state-of-the-art heuristics, which

an be found in the literature ( Kim & Kuby, 2013; Lim & Kuby,

010 ), require a considerable number of solution evaluations. This

s a prohibitive computational burden for instances with realistic

alues for | V |, | Q |, and κ . 

Due to its significant practical relevance, the modeling of ca-

acity restrictions at the recharging stations is another aspect that

as gained increasing interest in the recent literature (see, e.g.,

pchurch et al., 2009; Zhang, Kang, & Kwon, 2017 ). Since long

aiting times for recharging would cause considerable customer

nconvenience and, as a direct consequence, may even endan-

er the market adoption of electric cars, its modeling is essen-

ial. However, it is worth mentioning that this extension substan-

ially changes the basic problem structure. Note that in the original

SLP model, the coverage of a demand depends only on the set of

pened stations, but is not influenced by other demands. In the

apacitated case, however, demands to be covered may compete

or opened stations since their usage on necessary paths is limited.

owever, the development of algorithms that are based on sophis-

icated decompositions may, also in this case, be a promising field

f future research. 
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