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a b s t r a c t 

We use distributionally robust optimization (DRO) to model a general class of newsvendor problems with 

unknown demand distribution. The goal is to find an order quantity that minimizes the worst-case ex- 

pected cost among an ambiguity set of distributions. The ambiguity set consists of those distributions 

that are not far—in the sense of the total variation distance—from a nominal distribution. The maximum 

distance allowed in the ambiguity set (called level of robustness ) places the DRO between the risk-neutral 

stochastic programming and robust optimization models. An important problem a decision maker faces 

is how to determine the level of robustness—or, equivalently, how to find an appropriate level of risk- 

aversion. We answer this question in two ways. Our first approach relates the level of robustness and 

risk to the regions of demand that are critical (in a precise sense we introduce) to the optimal cost. 

Our second approach establishes new quantitative relationships between the DRO model and the corre- 

sponding risk-neutral and classical robust optimization models. To achieve these goals, we first focus on 

a single-product setting and derive explicit formulas and properties of the optimal solution as a function 

of the level of robustness. Then, we demonstrate the practical and managerial relevance of our results by 

applying our findings to a healthcare problem to reserve operating room time for cardiovascular surgeries. 

Finally, we extend some of our results to the multi-product setting and illustrate them numerically. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The newsvendor problem is fundamental to many operations

anagement models. It has been used, for instance, in production

f influenza vaccines ( Chick, Mamani, & Simchi-Levi, 2008 ), staffing

roblems ( Harrison & Zeevi, 2005 ), reservation of operating room

ime ( Olivares, Terwiesch, & Cassorla, 2008 ), and the classical seat

llocation model in revenue management ( Littlewood, 1972 ). The

ewsvendor decides on how many units of a product should be

roduced before the uncertain demand is revealed. Because the

emand is uncertain, the newsvendor must balance the costs of

nder- and over-production to determine an optimal quantity. For

 review on the newsvendor problem, we refer the readers to Qin,

ang, Vakharia, Chen, and Seref (2011) . 

There are multiple ways of formulating a newsvendor problem.

or instance, one could consider “classical” stochastic program-
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ing (SP) or robust optimization (RO) approaches 1 . In the classi-

al SP-based newsvendor model, the decision maker (i) has com-

lete knowledge of the underlying demand distribution, and (ii) is

isk neutral—i.e., (s)he minimizes the expected cost with respect

o that demand distribution. In the classical RO-based newsvendor

roblem, on the other hand, the decision maker (i) does not have

ny knowledge of the demand except for its range of possible val-

es, and (ii) is very risk averse—i.e., (s)he minimizes the worst-case

ost among all values of demand within that range of values. 

In practice, the expectation might not be an adequate way to

apture risk. Moreover, the decision maker might have some (albeit

ncomplete) knowledge about the underlying demand distribution.

or instance, consider determining the number of influenza vac-

ines to produce before the influenza season. The manufacturer is

ikely to be risk averse because the lack of vaccines can cause mor-

alities. Also, only partial information is known about the influenza

iruses before the season starts. Using the classical SP model—

hich ignores risk aversion and assumes the probability distribu-

ion of demand is known—may result in a suboptimal production
1 There are, of course, many other ways of formulating the problem using 

tochastic programming and/or robust optimization techniques; we use the quali- 

er “classical” to refer to the particular formulations described in the text. 
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product setting and illustrate them numerically. 
quantity that leads to shortages, which is clearly an undesirable

outcome in this setting. On the other hand, because the classical

RO model ignores any knowledge gained about demand distribu-

tion, it may yield a suboptimal production quantity that is overly

conservative, and therefore results in a large waste (since unused

vaccines must be discarded). This is also problematic given the re-

ality of limited budgets. 

In cases where the decision maker is risk averse and/or there is

some—but not full—knowledge about the underlying demand dis-

tribution, an alternative modeling approach is to use distribution-

ally robust optimization (DRO for short). In such models, the goal

is to find a decision that minimizes the worst-case expected cost ,

where “worst-case” is taken with respect to a set of distributions,

called the ambiguity set . The classical SP and RO models can be

viewed as special cases of DRO: When the ambiguity set of DRO

contains only one distribution, we obtain the classical SP model,

whereas when the ambiguity set contains all demand distributions

with the same support, we obtain the classical RO model. Thus,

DRO lies between the two approaches. 

Under mild conditions (e.g., real-valued costs, convex ambiguity

sets), DRO is equivalent to a risk-averse stochastic program with a

coherent measure of risk (see, e.g., Artzner, Delbaen, Eber, & Heath

1999 ). Our setting satisfies this equivalence relation; we will dis-

cuss this in more detail in Section 3 . In these cases, there is a di-

rect correspondence between the level of robustness —which can be

viewed as the size of the ambiguity set—and the desired level of

risk-aversion . 

The motivation for our study arises from the following observa-

tions. First, a decision maker is concerned about the possibility of

having too little or too much demand, which translate respectively

into excess inventory and excess backlog and hence high costs. We

call such undesirable values of demand critical regions . Our goal is

then to quantify exactly what the critical regions of demand are, by

relating them directly to the level of risk-aversion of the decision

maker, which has a one-to-one correspondence with the level of

robustness. Establishing such a direct relationship yields multiple

benefits. For example, this paper proposes to use critical regions

of demand to determine an appropriate level of robustness. Such

analysis may also help decision makers understand their risk atti-

tude better and encourage them to collect more accurate informa-

tion surrounding critical demands since the tails of distributions

are often neglected in standard statistical methods for distribution

fitting. 

Second, in many practical applications—including the one stud-

ied in this paper—available data is not independently and identi-

cally distributed (i.i.d.), or might be confounded by other variables,

thereby rendering many of the data-driven methods to determine

the level of robustness unsuitable. In these cases, in addition to

using critical regions, we propose to calibrate the level of robust-

ness by balancing the regrets and prices—to be defined precisely in

Section 6 —of DRO relative to SP and RO. To be able to achieve these

two goals, we first characterize the optimal solution as a function

of the level of robustness. 

1.1. The setting 

We study a distributionally robust newsvendor model (DRNV

for short) with the following characteristics. The decision maker (i)

has some “belief” about the demand distribution (based perhaps

on available data), termed the nominal distribution , (ii) reckons the

underlying demand distribution is close enough, in the sense of the

total variation distance , to the nominal distribution (thereby forms

the ambiguity set as the set of distributions whose total variation

distances from the nominal distribution are bounded above by a

level-of-robustness parameter), and (iii) minimizes the worst-case

expected cost with respect to this ambiguity set. We present a for-
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
al definition and assumptions in Section 3 for the single-product,

ingle-period newsvendor. We refer to this problem as DRNV-V.

e then study the multi-product setting in Section 8 . 

Using total variation distance to form DRNV has several advan-

ages. The first one is the intuitive meaning of the total variation

istance, which gives a direct value to how close the distributions

re. From the perspective of a decision maker, an important ad-

antage is the risk interpretation: As we shall see shortly, DRNV-V

s equivalent to minimizing a convex combination of Conditional

alue-at-Risk (CVaR) and worst case of the cost function under

he nominal demand distribution. This relationship also helps de-

ision makers relate the results to their level of risk-aversion. A

hird advantage of using the total variation distance is its tractabil-

ty. DRNV-V admits a closed-form expression for the optimal order

uantity, which can be analyzed under different levels of robust-

ess. Finally, the special structure of the total variation distance

nables us to fully characterize the regions of demand that are

ost critical to the problem and obtain prices and regrets. 

.2. Contributions and summary of main results 

The contributions of this work and its main results are summa-

ized as follows: 

(i) Analysis of the optimal solution. We derive closed-form ex-

pressions for the optimal order quantity to DRNV-V as a

function of the level of robustness and show some of its

properties. 

(ii) Characterization of maximal effective demand regions. We in-

troduce the notion of maximal effective subsets of demand re-

alizations for DRNV-V. In short, a subset is maximal effective

if it is the largest set such that the removal of that set or any

of its subsets causes a change in the optimal value. 

We analytically characterize these subsets at different levels

of robustness and discuss their interpretations. 

(iii) Calibration of the level of robustness. We propose two meth-

ods to calibrate the level of robustness. One is based on the

maximal effective subsets and the other one is based on

the optimal order quantities’ performance in the DRNV-V, SP,

and RO settings. 

We discuss the measures price of optimism/pessimism ,

nominal/worst-case regret , and further propose the

indifferent-to-solution/indifferent-to-distribution level of ro-

bustness to balance the performance of DRNV-V relative to

SP and RO. 

(iv) Application to operating room time reservation. We illus-

trate the practical relevance of our results by applying

them to a real-world healthcare problem, where a hospital

has to reserve a certain amount of operating room (OR) time

to specific cardiac surgeries ( Olivares et al., 2008 ). Reserv-

ing too much OR time to a surgery is likely to incur exces-

sive idle time for the hospital staff and capacity. Reserving

too little OR time, however, leads to more frequent sched-

ule overruns and overtime hours for the hospital staff and

decreased service quality. Reserving OR time can be mod-

eled as a newsvendor problem, where the hospital balances

under- and over-utilization costs. As we shall see, the tools

discussed in this paper allow the hospital managers to un-

derstand their tolerance to risk according to their evaluation

of critical lengths of surgeries (in terms of cost). Such under-

standing, in turn, guides the choice of a proper OR reserva-

tion time. 

(v) Extension to multi-product setting. Finally, we extend some

of our results for the single-product setting to the multi-
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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.3. Organization 

The rest of the paper is organized as follows. The next sec-

ion reviews the literature. We formally define the problem set-

ing and list the assumptions and conditions used throughout the

aper in Section 3 . We also provide examples of different vari-

nts covered by our setting. Section 4 characterizes the optimal

rder quantity, and Section 5 introduces the maximal effective sub-

ets of demand. Section 6 introduces the concepts of the price of

ptimism/pessimism and nominal/worst-case regrets for a general

RO. In Section 7 , we apply the ideas set forth in the paper to the

R reservation time problem described in Olivares et al. (2008) .

e also present further insights on how to choose a level of ro-

ustness based on our analysis of maximal effective subsets and

he indifference levels. In Section 8 , we extend some of our results

n Sections 4 –6 to the multi-product setting and illustrate them

umerically. Finally, we end the paper with conclusions and future

esearch directions in Section 9 . All omitted results and proofs are

rovided in the Online Supplement. 

. Literature review 

Because the majority of the paper focuses on a single-period,

ingle-product newsvendor problem, we review this class of prob-

ems in this section. We provide a review of the class of multi-

roduct newsvendor problems in Section 8 , where we present an

xtension to the multi-product setting. Within this class, we high-

ight related works on (i) DRNV formed via moment-based ambi-

uity sets, (ii) DRNV formed via distance-based ambiguity sets, and

iii) risk-averse newsvendor problems. We point to similarities and

ifferences of this work to others in this group. 

Most studies on DRNV form the ambiguity set by all proba-

ility distributions with sufficiently close moments (typically up

o second-order moments). Scarf (1958) proposed the first such

odel; for other studies, see, e.g., Gallego and Moon (1993) ,

ostard, de Koster, and Teunter (2005) , and Natarajan, Sim, and

ichanco (2018) . Among these studies, some papers consider cost

unctionals other than the expectation. For instance, Perakis and

oels (2008) use regret-based cost functionals, and Han, Du, and

uluaga (2014) and Yu, Zhai, and Chen (2016) use risk functionals. 

Compared to moment-based ambiguity sets, there is relatively

ittle work on DRNV formed via distance-based ambiguity sets.

hese models consider probability distributions whose distances

o a nominal distribution are sufficiently small. By adjusting the

ound on the distance, the model can be made more or less con-

ervative (i.e., risk averse). Burg entropy ( Wang, Glynn, & Ye, 2016 ),

ariation distance ( Jiang & Guan, 2018 ), ζ -structure probability

etrics ( Zhao & Guan, 2015 ), and Kolmogorov–Smirnov distance

 Bertsimas, Gupta, & Kallus, 2018 ) have been used as “distances”

etween probability distributions. Our work belongs to this cate-

ory and subsumes the specific newsvendor model in Jiang and

uan (2018) as a special case (see Section 3.2 for details). It also

rovides a significantly more detailed study, including the critical

emand regions and various novel ways to calibrate the model. 

Our work is also relevant to the literature on risk-averse

ewsvendor. Most research in this area studies the optimal solu-

ion’s behavior with respect to the level of risk. Gotoh and Takano

2007) obtain a closed-form expression of the optimal solution

or the CVaR objective and provide a numerical procedure for the

ean-CVaR objective. Ahmed, Çakmak, and Shapiro (2007) study

ean-risk objective functions, where risk is either the p th semide-

iation or CVaR. Choi and Ruszczy ́nski (2008) derive an equivalent

ean-risk model for risk-averse newsvendor with a law invariant

oherent measure of risk. Wu, Zhu, and Teunter (2013b) study two

ewsvendor problems with the CVaR objective and a Value-at-Risk

VaR) constraint, where the production capacity and demand are
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
andom. Wu, Zhu, and Teunter (2013a) address similar problems as

he ones studied in Wu et al. (2013b) , but they assume the short-

ge cost and demand are random. Chen, Xu, and Zhang (2009) and

u, Zhu, and Teunter (2014) study both ordering and pricing de-

isions with the CVaR objective. For an earlier detailed overview

f risk-averse newsvendor problems, we refer to Choi, Ruszczy ́nski,

nd Zhao (2011) . 

We now contrast our work with those in the literature. Our

aper studies the optimal order quantity of DRNV-V at different

evels of robustness, similar to the works on the risk-averse

ewsvendor. However, unlike most of these works, we present

n interpretation of this optimal order quantity in terms of the

olutions to the classical SP- and RO-based newsvendor problems.

urthermore, we show a critical level of robustness , where the

ptimal order quantity stabilizes at the RO solution. Furthermore,

he newsvendor model considered here is comprehensive in the

ense that it encompasses virtually all parameter combinations

hat have appeared in the literature (see Section 3.2 for details). 

Another contribution of our work to the literature is the study

f critical demand regions. Building on the work of Rahimian,

ayraksan, and Homem-de Mello (2019) , we introduce the notion

f maximal effective subsets. We expand upon Rahimian et al.

2019) in several other ways. First, in this paper we have contin-

ous support of the random variable (instead of discrete), which

s a nontrivial extension. Second, by exploiting the properties of

he newsvendor problem, we are able to fully characterize the ef-

ective subsets of DRNV-V (unlike previous work). Importantly, we

elate the maximal effective sets to the level of robustness, which

llows us to use this new notion to determine an appropriate level

f robustness based on the decision maker’s preferences. We be-

ieve using maximal effective subsets for this purpose may have

ndependent interest. 

Because price of optimism/pessimism and nominal/worst-case

egrets are defined for a general DRO problem, we contrast our in-

estigation on these notions to other works beyond the newsven-

or model. Price of optimism has been used in the context of

RO ( Analui & Pflug, 2014 ) and risk-averse optimization ( Zhang,

ahimian, & Bayraksan, 2016 ). Nominal regret has also been used

n the literature in various contexts: e.g., DRO ( Analui & Pflug,

014; Gallego & Moon, 1993; Perakis & Roels, 2008 ), RO ( Averbakh,

001 ), and risk-averse optimization ( Shapiro, Tekaya, da Costa, &

oares, 2013; Zhang et al., 2016 ). However, to the best of our

nowledge, the price of pessimism and worst-case regret are new.

urthermore, this is the first paper to propose indifference levels

f robustness for DRO that balance prices and regrets with respect

o the SP and RO models. Again, we believe this may have inde-

endent interest beyond the class of problems considered here. 

Finally, we contrast our approaches to calibrate the level of

obustness with those in the literature, again going beyond the

ewsvendor model. Data-driven DROs typically propose a level of

obustness that is inversely proportional to the number of observa-

ions, assuming i.i.d. data. One common approach is to choose the

evel of robustness based on the large-sample analysis of the corre-

ponding distance; see, e.g., Jiang and Guan (2018) , and Zhao and

uan (2015) . Hypothesis test-based DROs, e.g., Ben-Tal, Den Her-

og, De Waegenaere, Melenberg, and Rennen (2013) , Bayraksan and

ove (2015) , and Bertsimas et al. (2018) , on the other hand, pro-

ose to choose the level of robustness based on the critical thresh-

ld of the corresponding hypothesis test. In a recent work, Gotoh,

im, and Lim (2017) propose to choose the level of robustness by

rading off between the mean and variance of the out-of-sample

bjective function value. We refer the readers to that paper for

 review of calibration approaches in DRO. A common feature of

any of these calibration methods is the assumption of i.i.d. data.

owever, in many real-life applications this assumption is violated,

hereby rendering these approaches unsuitable. So, we do not rely
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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2 It can be shown with the Minkowski inequality that the total variation dis- 

tance between any two distributions is bounded above by 1 as follows: 1 
2 

∫ 
� | p(s ) −

p 0 (s ) | ds ≤ 1 
2 
( 
∫ 
� | p(s ) | ds + 

∫ 
� | p 0 (s ) | ds ) = 

1 
2 
( 
∫ 
� p(s ) ds + 

∫ 
� p 0 (s ) ds ) = 1 . 
on this assumption. Instead, we use the notions of maximal effec-

tive subsets and prices of optimism/pessimism and nominal/worst-

case regrets to calibrate the level of robustness. Thus, our work can

be valuable in many practical applications where the observations

are not independent, the distribution of data changes over time,

and other cases where data-driven methods may be unsuitable. 

3. Problem formulation and assumptions 

3.1. Problem setup 

Consider the classical stochastic programming model for the

single-product newsvendor problem 

min 

x ∈ X 
E P 0 [ h (x, ξ ) ] , (Risk Neutral)

where 

h (x, ξ ) := W (x − ξ ) + + U(ξ − x ) + − V ξ (1)

represents the total net loss of the newsvendor for a fixed or-

der quantity x ∈ R and uncertain demand realization ξ ∈ R . In the

above formulation, (·) + := max { 0 , ·} , and X denotes the feasibility

set for the decision variable x . Moreover, W and U can be inter-

preted as “overage” and “underage” costs, respectively, whereas V

can be interpreted as the income resulting from the realized de-

mand. 

Throughout the paper, we make the following assumption on

the problem parameters: 

( A1 ) U > 0 and W > 0. 

We do not impose any restriction on the sign of V . Assump-

tion (A1) ensures two important features. First, it implies that h is

jointly convex in x and ξ on R × R , so we have a convex optimiza-

tion problem in all problem settings studied in this paper. Second,

it ensures that the critical ratio Q := 

U 
U+ W 

satisfies 0 < Q < 1, so we

have a well-defined solution to ( Risk Neutral ). We will recall the

solution to ( Risk Neutral ) shortly. 

In problem ( Risk Neutral ), the decision maker assumes that de-

mand ξ follows the continuous distribution P 0 . We adopt the fol-

lowing notation: � denotes the support of ξ , ξ := inf { ̂  ξ : ˆ ξ ∈ �} ,
and ξ := sup { ̂  ξ : ˆ ξ ∈ �} with 0 ≤ ξ < ξ . We assume � is closed

and bounded. We also assume X := � for theoretical convenience,

since it is never optimal to order less than the lowest demand or

more than the highest demand. 

From (1) , we see that the compact support assumption of ξ en-

sures that E P 0 
[ | h (x, ξ ) | ] < ∞ for any x ∈ R . Let F be the cumulative

distribution function (cdf) associated with P 0 : F (t) := P 0 { ξ ≤ t} . It
is well known that the optimal solution to ( Risk Neutral ) is ob-

tained at the risk-neutral order quantity x neut := F −1 (Q ) , where Q =
U 

U+ W 

denotes the critical ratio of the classical SP-based newsven-

dor problem. We will use the notation x neut , Q , and F throughout

the paper. 

Consider the distributionally robust version of the newsvendor

problem, following the motivation outlined in Section 1 . In such

a problem, the decision maker has some belief that P 0 is the dis-

tribution of demand but would like to allow for perturbations of

P 0 . Throughout the paper we refer to P 0 as the nominal distribu-

tion and the set of possible perturbations of the nominal distribu-

tion P 0 as the ambiguity set. We assume that all distributions in

the ambiguity set, including P 0 , are absolutely continuous with re-

spect to the Lebesgue measure, which is denoted by ν . Let p = 

dP 
dν

denote the associated density function of P with respect to ν . Sim-

ilarly, p 0 = 

dP 0 
dν

denotes the corresponding density function of P 0 .

We also assume the support of P 0 is �, i.e., p 0 is strictly positive

on [ ξ , ξ ] . Given this setup, recall that the total variation distance

between P and P 0 is defined as 1 
∫ | p(s ) − p 0 (s ) | ds . 
2 �

Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d
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DRNV-V, a distributionally robust version of ( Risk Neutral )

ormed via the total variation distance, can then be formulated as

in 

x ∈ X 

{
f γ (x ) := sup 

P ∈P γ
E P [ h (x, ξ ) ] 

}
, ( DRNV-V )

here 

 γ := 

{ 

p : 
1 

2 

∫ 
�

| p(s ) − p 0 (s ) | ds ≤ γ , 

∫ 
�

p(s ) ds = 1 , p ≥ 0 

} 

. 

(2)

he ambiguity set of distributions P γ contains all probability dis-

ributions P whose total variation distance to the nominal prob-

bility distribution P 0 is limited by the level of robustness γ . The

otal variation distance in (2) has a maximum value of 1; therefore,

 ≤γ ≤ 1 covers the whole spectrum 

2 . In particular, when γ = 0 ,

e recover the classical SO model and when γ = 1 , we recover

he classical RO model. For a given x ∈ X , we refer to the inner

roblem of ( DRNV-V ) as the worst-case expected problem at x . Note

hat the worst-case expected problem is feasible because P 0 ∈ P γ . 

Consider a fixed x ∈ X . The worst-case expected value in

 DRNV-V ) can be written as the following risk measure 

f γ (x ) = γ ess sup ξ∈ �h (x, ξ ) + (1 − γ ) CVaR γ [ h (x, ξ ) ] , (3)

ll with respect to the nominal distribution P 0 ( Jiang and

uan, 2018 , Theorem 2 ). Note that CVaR β [ · ] is defined in

erms of the cumulative probability 0 < β < 1, i.e., we have

VaR β [ h (x, ξ ) ] := 

1 
1 −β

∫ 1 
β VaR ρ [ h (x, ξ ) ] dρ, where VaR ρ [ h (x, ξ ) ] :=

nf { u : P 0 { h (x, ξ ) ≤ u } ≥ ρ} is the Value-at-Risk (VaR) at level

. Per usual convention, we set CVaR 0 [ h (x, ξ ) ] := E P 0 
[ h (x, ξ ) ]

nd CVaR 1 [ h ( x , ξ )] := ess sup ξ ∈ �h ( x , ξ ), where ess sup ξ∈ �h (x, ξ ) =
nf 

{
a ∈ R : P 0 { ξ ∈ � : h (x, ξ ) > a } = 0 

}
. Because of the equivalence

etween the worst-case expected value in ( DRNV-V ) and (3) , we

efer to γ as the level of robustness or level of risk-aversion inter-

hangeably. 

.2. Conditions and examples 

In order to cover various parameter configurations, we investi-

ate ( DRNV-V ) under the following exclusive conditions: 

( C1 ) W + V > 0 and U − V > 0 , 

( C2a ) W + V > 0 and U − V = 0 , 

 C2b ) W + V > 0 and U − V < 0 , 

( C3a ) W + V = 0 and U − V > 0 , 

 C3b ) W + V < 0 and U − V > 0 . 

We refer to Conditions (C2a) and (C2b) collectively as Condition

C2). Similarly, we refer to Conditions (C3a) and (C3b) collectively

s Condition (C3). Fig. 1 depicts the shape of h ( x , · ) under each

ondition. The differences between the shapes of h ( x , · ) affect our

nalysis of ess sup ξ ∈ �h ( x , ξ ) and CVaR γ [ h ( x , ξ )]. These, in turn,

lay a crucial role in characterizing the optimal solution and criti-

al demand regions under each condition. 

Below, we present four examples that are covered by our setup

nd verify which condition their parameters belong to. All exam-

les satisfy Assumption (A1). 

xample 1 (Lot-sizing problem) . Consider a lot-sizing problem

here the goal is to minimize the sum of purchase cost, inventory

ost, and backlog cost, with per-unit costs respectively equal to

 > 0, m > 0, and b > c . Then, h (x, ξ ) := cx + b(ξ − x ) + + m (x − ξ ) + ,
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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Fig. 1. Cost function h ( x , · ) under Conditions (C1)–(C3) for a fixed x ∈ �. Observe that −(W + V ) is the slope of h ( x , · ) when ξ < x and U − V is the slope of h ( x , · ) when 

ξ ≥ x . 
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Table 1 

Expressions for robust order quantity x rob , critical level of robustness γ cr , and parameter θγ under Conditions (C1)–(C3). 

Condition x rob γ cr θγ

(C1) if x neut > x rob W + V 

W + U 
ξ + 

U − V 

W + U 
ξ Q − F 

(
W + U 

W + V 
x rob − U − V 

W + V 
x neut 

)
W + V 

W + U 

(
x neut − F −1 (Q − γ ) 

x neut − x rob 

)
(C1) if x neut < x rob F 

(
W + U 

U − V 
x rob − W + V 

U − V 
x neut 

)
− Q

U − V 

W + U 

(
F −1 (Q + γ ) − x neut 

x rob − x neut 

)
(C1) if x neut = x rob 0 0 

(C2) ξ Q 
x neut − F −1 (Q − γ ) 

x neut − x rob 

(C3) ξ 1 − Q
F −1 (Q + γ ) − x neut 

x rob − x neut 

 

 

 

 

 

 

 

 

 

 

 

 

W  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

s  

i  

0  

b

x

F

 

m  

r

m  

w  

(  

ξ
 

o  

(  

m  

0  

d

 

o  

t  

m  

t  

r

 

t  

t  

5

 

o  

t  

t  

c  

t  

o  

t  

v

 

p  

i  

l  

t  
and one can show W = c + m, U = b − c, and V = −c = U − b. This

problem satisfies Condition (C1). 

Example 2 (Traditional newsvendor) . Consider the traditional

newsvendor problem, where the goal is to maximize profit. There

is a per-unit purchase cost c , and per-unit revenue r and salvage

value s with s < c < r . Then, h (x, ξ ) := cx − r min { x, ξ} − s (x − ξ ) + ,
and one can show W = c − s, U = r − c, and V = r − c. This prob-

lem satisfies Condition (C2a). 

Example 3 (Two-stage newsvendor) . Consider a newsvendor that

can purchase before demand is realized at price c 1 but can also

purchase after the demand is realized at a higher price c 2 . The

per-unit revenue is r > 0, and it is assumed that c 1 < c 2 < r . Thus, if

demand ξ is larger than the stock quantity x , the newsvendor pur-

chases an additional (ξ − x ) same-day units. Then, one can show

 = c 1 , U = c 2 − c 1 , and V = r − c 1 . This problem satisfies Condi-

tion (C2b). 

Example 4 (Lot-sizing with no inventory cost) . Consider a lot-

sizing problem where the inventory cost is negligible ( m = 0 ).

Then, h (x, ξ ) := cx + b(ξ − x ) + and one can show W = c, U = b − c,

and V = −W = U − b. This problem satisfies Condition (C3a). 

As mentioned before, our newsvendor model is comprehensive

in the sense that it allows any parameter combinations that satisfy

any of the Conditions (C1)–(C3). Conditions (C1) and (C2a) (e.g.,

Examples 1 and 2 ) are the most studied instances in the literature,

e.g., Wang et al. (2016) , Jiang and Guan (2018) , Gotoh and Takano

(2007) , and Choi and Ruszczy ́nski (2008) . Example 3 is from Zhao

and Guan (2015) , and it represents commodity markets (e.g., elec-

tricity), where there is a future contract plus a way to purchase in

the spot market. Example 4 applies, for instance, to purchasing a

computer server to store emails. When the amount of data to be

stored is less than the available storage, there is no cost. 

An example of the remaining case of Condition (C3b) can be

found in Ahmed et al. (2007) . 

4. Characterization of optimal solution 

In this section, we characterize the optimal solution to

( DRNV-V ) as a function of the level of robustness 3 , and discuss

some of its properties. We analyze the sensitivity of this solution

with respect to the model parameters in Section O-4 in the Online

Supplement. 

In our theorem below that characterizes the optimal order

quantity x ∗γ to ( DRNV-V ), three values will play an important role:

(i) x rob , referred to as robust order quantity , (ii) γ cr , referred to as

the critical level of robustness , and (iii) θγ that relates x ∗γ to x neut 

and x rob . These values are presented in Table 1 . We state the theo-

rem first; then we explain the role of each quantity. 
3 Note that f γ ( x ), as defined in ( DRNV-V ), is a continuous function on R , and 

X is compact. Thus, by Weierstrass extreme value theorem, ( DRNV-V ) has a finite 

optimal solution. 

u  

a

 

p  
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heorem 1. Consider ( DRNV-V ) with cost function defined in (1) ,

atisfying Assumption (A1). Let x rob , γ cr , and θγ be defined as

n Table 1 according to Conditions (C1), (C2), and (C3). Then, for

 ≤γ < γ cr , there exists a unique optimal solution to ( DRNV-V ) given

y 

 

∗
γ = (1 − θγ ) x neut + θγ x rob . 

or γ cr ≤γ ≤ 1, x ∗γ = x rob . 

To explain the theorem, first consider the case that the decision

aker is extremely conservative, i.e., γ = 1 . In this case, ( DRNV-V )

educes to the following classical robust optimization model 

in 

x ∈ X 
ess sup ξ∈ � h (x, ξ ) (Robust)

ith optimal solution x rob , provided in Table 1 . Under either (C1),

C2a), or (C3a), x rob is the order quantity where the costs at ξ and

equalize. 

Second, the critical level of robustness γ cr is the smallest level

f robustness 0 ≤γ ≤ 1 at which the optimal order quantity x ∗γ to

 DRNV-V ) becomes the robust order quantity, x ∗γ = x rob , and it re-

ains optimal for larger values of γ . Note that γ cr < 1 because

 < Q < 1. Finally, θγ , which connects x ∗γ to x neut and x rob , is a non-

ecreasing, continuous, and not necessarily linear function in γ . 

Putting these together, Theorem 1 implies that as the level

f robustness increases, the optimal order quantity moves from

he risk-neutral order quantity to the robust order quantity, either

onotonically decreasing (if x neut > x rob , e.g., under (C2)) or mono-

onically increasing (if x neut < x rob , e.g., under (C3)). It eventually

eaches x rob at γ = γ cr and stabilizes at x rob for γ > γ cr . 

In addition to optimal solution, we have also derived the op-

imal worst-case probability distribution. For brevity, we relegate

his result and its proof to Section O-3.1 in the Online Supplement.

. Characterization of maximal effective subsets 

The ( DRNV-V ) yields the optimal order quantity for a given level

f robustness γ , as studied in the previous section. But, how can

he decision maker define a proper value for γ ? It is intuitive that,

he more risk-averse the decision maker is, the more (s)he is con-

erned about the values further in the tails of the demand distribu-

ion. Thus, our goal in this section is to precisely define the notion

f “to be concerned about,” which will allow us to directly express

he critical regions in terms of the level of robustness γ , and vice

ersa. 

The motivation for this study is twofold. First, this analysis can

rovide a deeper understanding of how risk and demand ambigu-

ty affect the decisions. Second, it can provide a way to choose the

evel of robustness γ . In this section and the next one, we inves-

igate two ways to achieve the second goal, both of which may be

seful in situations where the assumption of data-driven methods

re violated. 

Data-driven approaches typically assume a set of i.i.d. sam-

le data is available from the unknown distribution. In many
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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4 With respect to Lebesgue measure. 
ituations, however, there is no guarantee that the future uncer-

ainty is drawn from the same distribution. For instance, when a

ew product is launched, one can use historical data on similar

roducts to construct the ambiguity set. The new product’s de-

and, however, is unlikely to be distributed identically from this

istorical data. Similarly, in an influenza vaccine production prob-

em, one can use historical data from previous years to form the

mbiguity set. But, again, because influenza viruses mutate in un-

xpected ways from year to year, this data may violate the i.i.d

ssumption for the current year. These and many other important

pplications violate the typical assumptions of data-driven meth-

ds to choose γ . 

In this section, we introduce the concept of critical regions of

emand and interpret it as a way to choose the level of robust-

ess γ . Here and in Section 6 , we present our main results and

emonstrate their applications in Section 7 . 

To be more focused on our goal, we present the results only un-

er Condition (C1) in this section. All the results and proofs under

onditions (C2) and (C3) are relegated to the Online Supplement. 

.1. Definitions 

Effective sets were first introduced in Rahimian et al. (2019) for

nite �. Here, we generalize that definition for the setting of con-

inuous distributions in ( DRNV-V ) and introduce maximal effective

ubsets. As we shall see shortly, this requires dealing with new

echnical issues. 

The idea behind effective subsets is to examine whether the op-

imal value of ( DRNV-V ) changes when a non-empty subset of de-

and F ⊂ � is removed from the problem. That is, if, for a given

alue of γ , the removal of F changes the optimal value, this means

hat the demand values in F are indeed critical for the problem at

he decision maker’s level of risk-aversion. 

Let us first define what we mean by “removing” a subset of de-

and from the problem. 

We remove a subset F by restricting the ambiguity set P γ to

hose probability distributions P for which P {F} = 0 , i.e., dP 
dν

= p =
 on F Lebesgue-almost surely. 

This ensures that F is not in the support of the optimal worst-

ase probability distribution Lebesgue-almost surely. 

We call the resulting problem the assessment problem of F . 

More formally, the assessment problem of F can be formulated

s 

in 

x ∈ X 

{ 

f A γ (x ;F ) := sup 

p∈P A γ (F ) 

∫ 
F c 

h (x, s ) p(s ) ds 

} 

, (4) 

here 

 

A 
γ (F ) := 

{
p : 

1 

2 

∫ 
F c 

| p(s ) − p 0 (s ) | ds ≤ γ − 1 

2 

∫ 
F 

p 0 (s ) ds, 

∫ 
F c 

p(s ) ds = 1 , p ≥ 0 

}
(5) 

s the ambiguity set of probability distributions for the assessment

roblem, and F 

c denotes the complement of set F . We adopt the

onvention that the optimal value of the inner problem in (4) is

qual to −∞ if the set P 

A 
γ (F ) is empty. The ambiguity set P 

A 
γ (F )

f the assessment problem is a rearrangement of P γ ∩ { p : p =
 on F Lebesgue-almost surely } . Compare (5) to (2) and observe

he adjustments to the variation distance constraint and the next

onstraint that ensure p to be a probability density on F 

c . 

It is worthwhile noting that, since P 

A 
γ (F ) ⊆ P γ , then for any

 ∈ X the optimal value of the inner problem in (4) is less than or

qual to the optimal value of the inner problem in ( DRNV-V ). Thus,

he optimal value of (4) is less than or equal to that of ( DRNV-V ). 
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d
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We recall now the definition of effective sets for ( DRNV-V ) from

ahimian et al. (2019) . 

efinition 1. A subset F ⊂ � is effective for ( DRNV-V ) if the opti-

al value of the corresponding assessment problem (4) is strictly

maller than the optimal value of ( DRNV-V ). A subset F ⊂ � is

alled ineffective if it is not effective. 

Intuitively, if the decision maker would not change their deci-

ion even if they were told that demand cannot lie within a certain

ange of values, then that range is ineffective. 

Observe that when Lebesgue measure of F is zero (i.e., ν(F ) =
 ), the problem essentially remains the same, and the optimal val-

es of both (4) and ( DRNV-V ) are equal. Therefore, such F is in-

ffective according to Definition 1 . For example, a singleton set F
i.e., F = { ξ} ) is ineffective. To adequately handle subsets F with

ero Lebesgue measure, we define the notion of effective-in-limit ,

hich is a set that can be written as the limit of effective sets. All

efinitions from this point on are new. 

To define effective-in-limit and maximal effective subsets pre-

isely, we first narrow our focus to intervals. Let 

 := 

{ 

F ⊂ � : F = ∪ 

N 
n =1 [ a n , b n ] , for some N ∈ N 

and a n < b n , n = 1 , . . . , N 

} 

. 

In other words, S contains all finite unions of closed intervals

n �. 

Note that any set in S has positive Lebesgue measure. In the

ollowing definition, we tie the effectiveness of a singleton subset

to the effectiveness of members of S . 

efinition 2. A singleton subset F ⊂ � is called effective-in-limit

or ( DRNV-V ) if it can be written as a countably infinite intersec-

ion of effective subsets F n ∈ § , n ∈ N , i.e., F = 

⋂ 

n ∈ N F n . 

In this paper, we aim to characterize a subset of � that is max-

mal effective. Roughly speaking, it is the largest 4 set such that any

f its subsets is effective. 

efinition 3. A subset F ⊂ � is called maximal effective for

 DRNV-V ) if it is the largest set such that (i) any subset of F
hat belongs to S is effective and (ii) any singleton subset of F
s effective-in-limit. 

Note that a maximal effective subset can be a singleton set. In

articular, it can be effective-in-limit (see Section 5.2 ). 

.2. Maximal effective subsets of DRNV-V 

In this section, we first identify the maximal effective subsets

f ( DRNV-V ) under Condition (C1). Then, we study the properties

f these subsets in terms of the level of robustness. 

To ease our presentation, we use the set E γ to denote the max-

mal effective subset of ( DRNV-V ) for a given value of γ . 

Also, for any B ⊂�, we use the shorthand notation [ ξ ∈ B ] to

epresent the set { ξ ∈ �: ξ ∈ B }. 

First, observe that when γ = 0 , the maximal effective subset is

iven by E 0 = �. This is because the ambiguity set (5) is empty

or any subset F of � that belongs to S . Hence, the optimal

alue of the corresponding assessment problem (4) is −∞ and, of

ourse, smaller than f γ (x ∗γ ) . By Definition 1 , all such F are effec-

ive. Therefore, we assume γ > 0 in Theorem 2 presented below. 

heorem 2. Consider ( DRNV-V ) with cost function defined in (1) ,
cr defined in Table 1 , and x ∗γ defined in Theorem 1 as the optimal
e-Mello, Controlling risk and demand ambiguity in newsvendor 

16/j.ejor.2019.06.036 

https://doi.org/10.1016/j.ejor.2019.06.036


8 H. Rahimian, G. Bayraksan and T. Homem-de-Mello / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 8, 2019;13:52 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d  

o  

m  

t  

a  

W  

e  

a

 

F

 

 

I  

e  

p  

e  

w  

c  

t  

fi

 

0

P  

N  

T  

w  

u  

r  

e  

b  

t

 

d  

a

w  

i  

u  

s  

w  

m

 

a  

2  

m  

i  

d

P  

S  

m  

s  

T  

t  

(  

e  

a

N  
solution to ( DRNV-V ). Suppose Assumption (A1) holds. Then, for prob-

lem ( DRNV-V ) under Condition (C1), for all 0 < γ ≤ 1, we have: 

• if x neut > x rob and 0 < γ < γ cr , then E γ = 

[
ξ ≤ F −1 (Q − γ ) 

]
∪ [ ξ ≥ F −1 (Q )] , 

• if x neut < x rob and 0 < γ < γ cr , then E γ = [ ξ ≤ F −1 (Q )] ∪ [ ξ ≥
F −1 (Q + γ )] , 

• if γ ≥γ cr , then E γ = [ ξ ≤ W x rob −VaR γ [ h (x rob ,ξ )] 

W + V ] 
⋃ 

[ ξ ≥
Ux rob + VaR γ [ h (x rob ,ξ )] 

U−V ] . 

Theorem 2 indicates that under (C1), both “low” and “high” de-

mand regions are critical, and we see a different behavior once

γ crosses γ cr . For instance, for 0 < γ < γ cr , the critical demand

regions are determined by the Q -quantile on one side and an

adjusted ( Q ±γ )-quantile on the other (the sign of the adjust-

ment depends on the relationship between x neut and x rob ). For

γ ≥γ cr , the critical demand regions behave differently, chang-

ing with γ according to the VaR of costs at stabilized solution

x rob , VaR γ [ h ( x rob , ξ )]. In particular, at γ = 1 , VaR γ

[
h (x rob , ξ ) 

]
=

ess sup ξ∈ �h (x rob , ξ ) , and we have E γ = { ξ , ξ} . 
Maximal effective subsets can also be interpreted in terms of

the optimal worst-case probability distribution for a given level of

robustness γ . In fact, as shown in Proposition O-7 in the Online

Supplement, under certain conditions, the critical regions of de-

mand given by the maximal effective subsets constitute the sup-

port of the worst-case probability distributions. Thus, values of de-

mand outside the critical region are deemed unimportant because

the worst-case probability assigns zero mass to such values. 

Our final result shows that the sequence of maximal effective

subsets E γ are nested and monotonically non-increasing as γ → 1.

The nestedness of E γ implies if a subset of realizations switches

from effective to ineffective at some level of robustness, it will

keep its status the same and will not change anymore as the level

of robustness increases. Rahimian et al. (2019) show that such

monotonicity and nestedness of effective subsets are not true in

general (cf. Section 5.4 of that paper for a counterexample of a

newsvendor problem with a finite support). However, we are able

to obtain these properties for ( DRNV-V ). 

Theorem 3. Consider ( DRNV-V ) with cost function defined in (1) ,

satisfying Assumption (A1). Then, 

(i) E γ1 
⊇ E γ2 

for any 0 ≤γ 1 < γ 2 ≤ 1 . 

(ii) As γ → 1, under Condition (C1), E γ converges to { ξ , ξ} . 
Theorem 3 shows that the more risk-averse the decision maker,

the smaller the size of the critical demand region. When γ = 0, the

maximal effective subset is �. 

As the level of risk-aversion increases, the critical demand re-

gion becomes smaller. This is because as the problem becomes

more robust, it focuses more and more on the worst-case costs.

When γ = 1 , the maximal effective subset only contains the ex-

treme points of �. Using Theorems 2 and 3 , the decision maker

can then choose a value for the level of robustness γ based on

his/her perception of what the actual critical regions are. We illus-

trate this approach in Section 7 in the context of our application. In

Section 8 , we present how to use these ideas in the multi-product

setting. 

6. Price of optimism/pessimism and regrets 

We now propose another way to choose the level of robustness

γ by quantifying the relationships between DRO and the classi-

cal SP and RO models. In particular, we propose measures to eval-

uate the performance of optimal solution to DRO in the classical

SP and the classical RO models and vice versa. The motivation for

this approach is as follows. In case of full trust in the nominal
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
istribution, one may pick γ = 0 (the SP model), and in the case

f no trust (and most conservatism), one may pick γ = 1 (the RO

odel). In the absence of full trust—but some trust—and knowing

hat data-driven assumptions are violated, one may choose to bal-

nce regrets and prices relative to the full- and no-trust models.

e shall see shortly that these measures may help decision mak-

rs understand how valuable these different optimal solutions are

nd choose an appropriate level of robustness. 

Recall the function f γ ( x ) for a fixed x ∈ X and γ in ( DRNV-V ).

or 0 ≤γ ≤ 1, the following two sets of inequalities hold: 

f γ (x neut ) ≥ f γ (x ∗γ ) ≥ f 0 (x ∗γ ) ≥ f 0 (x neut ) , (6)

f γ (x ∗γ ) ≤ f γ (x rob ) ≤ f 1 (x rob ) ≤ f 1 (x ∗γ ) . (7)

n (6) , f γ (x ∗γ ) ≥ f 0 (x ∗γ ) because for any 0 < γ ≤ 1, the worst-case

xpected problem at x ∈ X is a relaxation of the worst-case ex-

ected problem at x for γ = 0 . At γ = 0 , all quantities in (6) are

qual. Similarly in (7) , f 1 ( x 
rob ) ≥ f γ ( x rob ) because, for γ = 1 , the

orst-case expected problem at x ∈ X is a relaxation of the worst-

ase expected problem at x for any 0 ≤γ < 1. At γ = 1 , all quanti-

ies in (7) are equal. The other inequalities in (6) and (7) are justi-

ed by suboptimality. 

To conduct our analysis, we define the following measures for

 ≤γ ≤ 1: 

O γ := f γ (x neut ) − f γ (x ∗γ ) , PP γ := f γ (x rob ) − f γ (x ∗γ ) , (8)

R γ := f 0 (x ∗γ ) − f 0 (x neut ) , WR γ := f 1 (x ∗γ ) − f 1 (x rob ) . (9)

he first equation in (8) measures the Price of Optimism (PO) —what

e lose by believing that the true distribution is P 0 (and therefore

sing the risk-neutral order quantity) when ( DRNV-V ) accurately

epresents the ambiguity in the distribution. Similarly, the second

quation in (8) measures the Price of Pessimism (PP) —what we lose

y being overly conservative when ( DRNV-V ) accurately represents

he ambiguity in the distribution. 

The price of optimism and pessimism help decision makers un-

erstand how valuable the risk-neutral and robust order quantities

re in the distributionally robust setting. 

The first equation in (9) measures the Nominal Regret (NR) —

hat we lose compared to the classical SP model when the nom-

nal distribution is indeed the true underlying distribution, but we

se ( DRNV-V ) with γ > 0. Finally, the second equation in (9) mea-

ures the Worst-case Regret (WR) —what we lose by using ( DRNV-V )

ith γ < 1 when in reality the true distribution puts a probability

ass of one on the worst-case cost. 

Nominal regret has been referred to as the “expected value of

dditional information” ( Gallego & Moon, 1993; Perakis & Roels,

008 ). It can also be interpreted as the largest value that decision

aker would be willing to pay for the knowledge of the underly-

ng distribution, when the underlying distribution is the nominal

istribution. 

Observe that 

O γ − PP γ = f γ (x neut ) − f γ (x rob ) . (10)

o, the difference between the price of optimism and pessimism

easures the difference in quality between the optimistic and pes-

imistic order quantities when ( DRNV-V ) is an accurate model.

hat is, when the price of optimism and pessimism equalize, both

he risk-neutral and robust order solutions yield the same cost in

 DRNV-V ). We call the smallest level of robustness at which this

quivalence occurs as the indifferent-to-solution level of robustness

nd denote it as γ S . 

Similarly, 

R γ − WR γ = 

(
f 0 (x ∗γ ) − f 0 (x neut ) 

)
−

(
f 1 (x ∗γ ) − f 1 (x rob ) 

)
. (11)
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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Fig. 2. The pdf and cdf of the nominal distribution of an average surgery duration, 

supported between (2.25, 12.25). 

Table 2 

Problem parameters. 

W U V ρ Condition Distribution 

0.5 1 0 0.5 (C1) 2 . 25 + log N (1 . 303 , 0 . 0922 , 0 , 10) 
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5 Olivares et al. (2008) study an inverse optimization approach to estimate the 

unobserved ratio between the overage and underage costs based on 258 cardiac 

surgery cases and their characteristics. To conduct our experiments, we estimated 

necessary parameters from their results. 
6 This is the distribution of an average surgery duration obtained from models 

N1 and N2 in Olivares et al. (2008) . 
7 Model N4 in Olivares et al. (2008) . 
o, the difference between the nominal and worst-case regret mea-

ures the difference between losses in the optimistic and pes-

imistic scenarios due to an ill-calibrated ( DRNV-V ). That is, when

he nominal and worst-case regrets equalize, the costs of being un-

ecessarily ambiguous and of not being ambiguous enough are the

ame. We call the smallest level of robustness at which this equiva-

ence occurs as the indifferent-to-distribution level of robustness and

enote it as γ D . 

In the following theorem, we show that the indifference lev-

ls of robustness are well defined for ( DRNV-V ). We further elab-

rate on these notions and comment on how they can be used to

hoose an appropriate level of robustness in Section 7 . In Section 8 ,

e present a partial extension and numerically illustrate how to

se these notions in the multi-product setting. 

heorem 4. Consider ( DRNV-V ) with cost function defined in (1) and

he price of optimism, price of pessimism, nominal and worst-case

egrets defined in (8) –(9) . Let γ S = min { γ ∈ [0 , 1] : PO γ − PP γ = 0 }
e the indifferent-to-solution level of robustness and γ D = min { γ ∈
0 , 1] : NR γ − WR γ = 0 } be the indifferent-to-distribution level of ro-

ustness. Suppose Assumption (A1) holds. Then, γ S and γ D are well

efined for problem ( DRNV-V ), and both are smaller than or equal to

he critical level of robustness γ cr . 

Observe that the prices and regrets can be calculated using the

nalytical expressions in Theorem 1 and numerical evaluation of f

ased on (3) . Hence, the indifference levels of robustness can be

btained fairly easily by a numerical (root-finding) method. 

. Application to operating room time reservation 

We now apply the ideas set forth in the paper to an operating

oom (OR) time reservation problem, motivated by Olivares et al.

2008) . 

Reserving OR time for each surgery case is a task performed as

art of the OR management problem, typically during the preoper-

tive planning phase ( Gupta, 2007; May, Spangler, Strum, & Vargas,

011; Samudra et al., 2016 ). Reserving OR time involves balancing

he under- and over-utilization costs of a hospital’s surgical capac-

ties. Thus, the newsvendor model can be used for this purpose,

nd there exists significant evidence in the medical literature that

his model is often used in practice to reserve OR time; see, e.g.,

ehtonen, Torkki, Peltokorpi, and Moilanen (2013) , Olivares et al.

2008) , and Wachtel and Dexter (2010) . 

When deciding how much OR time to reserve for a surgery

ase, the decision maker can use historical data in combination

ith surgeons’ estimate of surgery duration. These estimations,

owever, may not be reliable due to two reasons: (i) data scarcity

nd (ii) data mistrust. First, too few relevant historical cases may

e available ( Dexter, Traub, Fleisher, & Rock, 2002 ). When surgical

rocedure and surgeon—the two most important factors that de-

ermine surgery duration ( Strum, Sampson, May, & Vargas, 20 0 0b;

hou, Dexter, Macario, & Lubarsky, 1999 )—are fixed, only 5 or

ewer data points are available in approximately half of the surg-

ries performed in the U.S. ( Macario, 2009 ). It is well known in the

edical literature that pooling data from several hospitals, mul-

iple years, and similar procedures usually does not improve the

stimation because they pose the risk that surgical durations are

onfounded by other variables ( Macario, 2010; Zhou et al., 1999 ).

ven when such data is available, the sample is not necessarily

dentically distributed due to patient characteristics and case sever-

ty ( Olivares et al., 2008 ), thereby violating data-driven assump-

ions. 

On the data mistrust issues, some papers have reported that

urgical services deviate from acting according to economic incen-

ives and show systematic biases in estimating surgery durations
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
 Dexter, Macario, Epstein, & Ledolter, 2005; Fügener, Schiffels, &

olisch, 2017; Macario, 2009; Olivares et al., 2008 ). For instance,

ome surgeons systematically underestimate their case durations

o get their cases to fit into their allocated OR time. Similarly, some

urgeons intentionally overestimate their case durations to keep

ontrol of their allocated OR time. 

The lack of data and lack of trust in data imply there is am-

iguity about the underlying distribution of surgery duration. As

 result, DRNV is a more realistic approach to study the OR time

eservation problem. In this paper, we use ( DRNV-V ) to model this

roblem. 

.1. Problem parameters 

We conducted our numerical experiments based on the OR time

eservation problem described in Olivares et al. (2008) for cardiac

urgery cases 5 . There is one OR with regular time from 7:30 A.M.

o 7 P.M. (11.5 hours). This application is modeled as a newsven-

or satisfying (C1) with V = 0 . We will discuss specific parameters

ext. 

It is commonly believed in the medical literature that log-

ormal distribution provides a good statistical fit for the surgery

uration; see, e.g., Strum, May, and Vargas (20 0 0a) . However,

livares et al. (2008) conclude cardiovascular surgery procedures

re not well fitted by the standard log-normal distribution because

hey are much longer than general surgery cases. To remedy this

tatistical issue they use a shift parameter of δ � 2.25 hours, so that

− δ follows a log-normal distribution. We estimated 

6 the param-

ters of this log-normal to be μ = 1 . 303 and σ 2 = 0 . 0922 . 

Because our model requires bounded distributions, we trun-

ated this distribution at VaR 0 . 9995 [ ξ − δ] 
 10 hours. As a result,

e obtain ξ − δ ∼ log N (1 . 303 , 0 . 0922 , 0 , 10) . 

For reference, we plot the probability density function (pdf) and

df of the nominal distribution of surgery duration in Fig. 2 . This

istribution is a shifted, truncated log-normal supported on the in-

erval (2.25, 12.25) hours. 

Next, we need to choose parameters U and W . Let us denote

he cost ratio W by ρ . Olivares et al. (2008) estimate 7 an average
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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Fig. 3. Maximal effective subsets. 
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cost ratio ρ for a surgery case to be 0.5; so, we use ρ = 0 . 5 for our

analysis. It can be verified that with a fixed ρ , our main results are

insensitive to the magnitudes of U and W when V = 0 . So, without

loss of generality, we assume U = 1 and W = 0 . 5 . Given our choice

of the nominal distribution P 0 and the cost ratio ρ , this application

satisfies (C1) with x neut = 6 . 44 < x rob = 8 . 91 . Table 2 summarizes

the problem parameters. 

We now remark on why x neut < x rob for this application. One can

interpret x rob = 

ρξ+ ξ
1+ ρ as U 

−1 

[ ξ , ξ ] 
( 1 

1+ ρ ) , where U 

[ ξ , ξ ] 
(·) denotes the

cdf of a uniform distribution on [ ξ , ξ ] (as opposed to the nomi-

nal distribution F ). On the other hand, because Q = 

1 
1+ ρ , it follows

that x neut = F −1 (Q ) is greater than the median of the surgery du-

ration for all ρ < 1, including ρ = 0 . 5 . Observe from Fig. 2 that the

right-skewed nominal distribution of surgery duration is (strictly)

stochastically dominated by a uniform distribution on [2.25,12.25]

for values greater than the median. Consequently, F −1 ( 1 
1+ ρ ) <

 

−1 

[ ξ , ξ ] 
( 1 

1+ ρ ) , i.e., x neut < x rob , holds for all ρ < 1, including ρ = 0 . 5 .

Intuitively, this is a consequence of longer surgery durations be-

ing more costly than shorter durations (i.e., ρ < 1) plus the right-

skewness of the nominal distribution toward longer surgeries. 

7.2. Maximal effective subsets 

The shaded area in Fig. 3 depicts the maximal effective sub-

sets for 0 ≤γ ≤ 1. This figure reveals several interesting properties.

First, the region of maximal effective subset moves away from x neut 

as γ increases. This is predicted by Theorem 2 , but it can be inter-

preted as follows. For the studied problem, the goal of the decision

maker is to find a trade-off between the costs of under- and over-

utilization so as to balance the costs of surgery durations that are

too low or too high. Of course, “too low” and “too high” are relative

terms, which depend on the decision maker’s level of risk-aversion

(or, equivalently, level of robustness). The less conservative the de-

cision maker is, the farther such thresholds are from the lowest

and highest surgery durations, until of course they coincide—which

is precisely where x neut is attained. 

Second, for almost all levels of robustness, surgery durations

approximately smaller than 4 hours and greater than 11.5 hours

are in the maximal effective subset for the available data. 

This can be explained as follows. Surgery durations less than

4 hours or longer than 11.5 for this application are rare according

to the nominal distribution (see Fig. 2 ). Moreover, we know from
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
heorem 2 that, for larger values of γ (more specifically, γ ≥ γ cr ),

he critical region is dictated by VaR γ [ h ( x rob , ξ )]. Since h is piece-

ise linear in ξ , it follows that this region is largely determined by

he tails of the distribution of surgery durations ξ . This means that

are events in the tails of h ( x rob , ξ )—and therefore, of ξ—will be in

he maximal effective subset for almost all values of γ , except for

hose very close to 1. 

Third, recall from Theorem 3 that the size of maximal effective

ubsets is inversely related to the level of risk-aversion. 

As predicted by Theorem 2 , for all 0 < γ < γ cr , the model’s risk

ttitude toward surgery durations below x neut is the same. That is,

s Fig. 3 depicts, for this range of γ ’s, the left piece of the max-

mal effective subsets are the same. However, the model increas-

ngly adjusts the optimal solution—and hence the critical regions

hrough (Q + γ ) -quantile adjustment—by being more risk averse

gainst longer surgeries. In other words, surgery durations in the

ight tail are more critical than the surgery durations in the left

ail for the decision maker’s level of risk-aversion and costs. 

In this sense, our results on maximal effective subsets are con-

istent with the OR management literature that suggests schedule

verrun and long working hours are more critical to reserving OR

ime than idle capacity; see, e.g., Strum, Vargas, and May (1999) .

hese results imply predictable work hours and schedule stabil-

ty are key drivers of employees’ satisfaction and wellness in the

ealthcare industry. 

Let us now discuss how to use maximal effective subsets to

etermine γ . Decision makers can infer their risk attitude by

hoosing a value of γ for which the corresponding maximal

ffective subset is closest to their evaluation of critical surgery

urations. Because the optimal solution stabilizes after γ cr , we rec-

mmend a value below γ cr . Also, because large surgery durations

re relatively more costly and the model is equally risk-averse to

urations below x neut for 0 < γ < γ cr , we ask the decision maker

hat durations on the right of x neut are critical. If, for instance, the

ecision maker deems surgeries longer than 8 hours as critical,

hen we recommend γ � 0.31 from Fig. 3 . Once γ is chosen, the

ecision maker can then use x ∗γ for the OR reservation time; for

xample, with γ = 0 . 31 we have x ∗
0 . 31 

= 8 . 12 . 

.3. Price of optimism/pessimism and regrets 

Fig. 4 shows the price of optimism, price of pessimism, and re-

rets for the studied problem. Several properties can be seen from

his figure. 

First, the price of optimism and nominal regret are non-

ecreasing in γ , whereas the price of pessimism and worst-case

egret are non-increasing in γ . 

Second, even the most conservative decision maker has no rea-

on to choose a level of robustness higher than γ cr . For γ ≥γ cr ,

he price of pessimism and worst-case regret are zero because x ∗γ
s stabilized at x rob = x ∗

1 
. On the other hand, the nominal regret is

 constant in these cases because f 0 (x ∗γ ) is a constant. 

Price of optimism/pessimism and regrets can also help the de-

ision maker choose the value of γ based on the indifferent-to-

olution and indifferent-to-distribution levels of robustness (recall

hese notions from Section 6 ). For the studied problem, we have

.25 � γ S < γ D � 0.32, where γ D is very close to γ cr 
 0 . 33 (see

lso Fig. 3 ). If the decision maker wants to be indifferent regard-

ng the error from using either the robust or the risk-neutral or-

er quantities, then (s)he chooses γ S . If the decision maker wants

o be indifferent regarding the error from using an ill-calibrated

 DRNV-V ) in either the optimistic and pessimistic scenarios, then

s)he chooses γ D . In this particular application, the indifference

evels of robustness are close to each other and close to γ cr . This

uggests a small range of choices ( γ ∈ [0.25, 0.33]) for the decision

aker if such criteria are used to find a desired value of γ . 
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Fig. 4. Price of optimism, price pessimism, nominal regret, and worst-case regret. 

Notes : If the magnitude of U (and W ) changes while ρ is kept at 0.5, then all values 

on the y-axis should be scaled by the magnitude of U (or W ), but γ S and γ D remain 

the same. 
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. Extension to the multi-product setting 

In the previous sections, we concentrated on a single-product

etting. In this section, we extend the results in Sections 3 –6

o a multi-product newsvendor problem. Throughout this section,

e denote a vector by a boldface symbol. For example, a vector

 x 1 , . . . , x k ] 
� is denoted by x ∈ R 

k . In order to refer to a particular

roduct i , we use subscript i . For example, x neut 
i 

and x rob 
i 

denote the

isk-neutral and robust order-quantities for product i , i = 1 , . . . , k,

btained by solving the corresponding single-product problems

 Risk Neutral ) and ( Robust ), respectively. On the other hand, we

se superscript M to denote solutions in the multi-product setting.

or instance, x M ∗
γ denotes the optimal order quantity vector in the

ulti-product setting. Otherwise, we use the exact same notation

s before to refer to a joint property of the products. For exam-

le, P 0 and p 0 denote the joint nominal probability distribution of

and its associated density function, respectively. 

To introduce the problem, consider k products, with parameters

 i , U i , and V i . Let 

 ( x , ξ) := 

k ∑ 

i =1 

h i (x i , ξi ) (12)

epresent the total net loss of the newsvendor for a vector of fixed

rder quantities x ∈ R 

k and a vector of uncertain demand realiza-

ions ξ ∈ R 

k , where 

 i (x i , ξi ) := W i (x i − ξi ) + + U i (ξi − x i ) + − V i ξi 

enotes the total net loss of the newsvendor for product i . We let

 denote the feasibility set for the decision vector x . Other con-

traints characterizing problem characteristics can be added to the

roblem through X . 

We make the following assumption on the parameters 

( A2 ) U i > 0 and W i > 0 for i = 1 , . . . , k, 

nd suppose that the support � of ξ has the following property 

( A3 ) � = �1 × · · · × �k , 

here �i is the compact support of ξ i . Then, a distributionally ro-

ust version for the multi-product newsvendor problem formed via

he total variation distance can be formulated as 

in 

x ∈ X 

{
f γ ( x ) := sup 

P ∈P γ
E P 

[
h ( x , ξ) 

]}
, (13) 
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d

models, European Journal of Operational Research, https://doi.org/10.10
here 

 γ := 

{ 

p : 
1 

2 

∫ 
�

| p(s ) − p 0 (s ) | ds ≤ γ , 

∫ 
�

p(s ) ds = 1 , p ≥ 0 

} 

. 

Distributionally robust multi-product newsvendor problems are 

tudied in the literature, see, e.g., Hanasusanto, Kuhn, Wallace, and

ymler (2015) , Ardestani-Jaafari and Delage (2016) , and Natarajan

t al. (2018) for models formed via moment-based ambiguity sets,

nd Bertsimas et al. (2018) for models formed via distance-based

mbiguity sets. These DRO models are usually reformulated or ap-

roximated as a linear program, second-order cone program, or

emi-definite program, depending on the structure of the ambi-

uity set. Risk-averse multi-product newsvendor problems are also

tudied in Tomlin and Wang (2005) , Van Mieghem (2007) , Gotoh

nd Takano (2007) , Chen and Sim (2009) , and Choi et al. (2011) . 

.1. Main results 

We investigate problem (13) in further detail by studying

ts optimal solution, maximal effective subsets, and price of

ptimism/pessimism and regrets. 

As pointed out in the literature, closed-form solutions to the

istributionally robust and/or risk-averse multi-product newsven-

or problems do not exist in general and the solutions to these

roblems are usually obtained numerically ( Choi et al., 2011;

omlin & Wang, 2005 ). Note that (13) has a similar form as

 DRNV-V ). Thus, the result in (3) follows similarly, albeit with the

ost function h ( x , ξ) defined in (12) . Assuming that � is finite

or approximated with finitely many realizations { ξ1 
, . . . , ξ

m } ), one

an reformulate (or approximate) (13) as follows 

min 

 ,α,t, η
γ t + (1 − γ ) α + 

m ∑ 

j=1 

p j 
0 
η j (14a) 

.t. t −
k ∑ 

i =1 

{
W i u 

j 
i 
+ U i v j i 

}
≥ −

k ∑ 

i =1 

V i ξ
j 

i 
, j = 1 , . . . , m, (14b) 

 i − u 

j 
i 
+ v j 

i 
= ξ j 

i 
, i = 1 , . . . , k, j = 1 , . . . , m, (14c) 

j −
k ∑ 

i =1 

{
W i u 

j 
i 
+ U i v j i 

}
+ α ≥ −

k ∑ 

i =1 

V i ξ
j 

i 
, j = 1 , . . . , m, (14d) 

 ∈ X , (14e) 

≥ 0 , (14f) 

here p 
j 
0 

denotes the nominal probability of the event { ξ = ξ
j } ,

j = 1 , . . . , m . The key to the reformulation (14) is to substitute

VaR γ [ h ( x , ξ)] with a univariate convex optimization problem as

ollows due to Rockafellar and Uryasev (2002 , Theorem 10) 

VaR γ

[
h ( x , ξ) 

]
= min 

α

{ 

α + 

1 

1 − γ

m ∑ 

j=1 

p j 
0 

(
h ( x , ξ

j 
) − α

)
+ 

} 

. 

oreover, because h ( x , · ) is continuous in ξ, we replaced

ss sup ξ ∈ �h ( x , ξ) by sup ξ∈ � h ( x , ξ) due to Phu and Hoffmann

1996 , Proposition 3.5). 

If X is a Ployhedral set, the above formulation is a linear pro-

ram, and one can obtain the optimal order quantities x M ∗
γ to

13) efficiently. Alternatively, if the number of realizations is large,

ne can use a variant of the L-shaped method capable of handling

he CVaR function to solve the problem. We refer to Zhang et al.
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(2016) for a survey of different decomposition schemes to handle

the CVaR function. 

We begin our main results by studying the properties of the

optimal solution x M ∗
γ to (13) . We make the following additional as-

sumption 

( A4 ) X is separable in products, e.g., X = { x : x ≥ 0 } . 
Similar to the single-product setting, let x Mneut and x Mrob de-

note the risk-neutral order quantity and robust order quantity to

(13) , when γ = 0 and γ = 1 , respectively. 

Theorem 5. Consider (13) with cost function defined in (12) , satis-

fying Assumptions (A2)–(A4). Let x neut 
i 

denote the risk-neutral order

quantity for product i , i = 1 , . . . , k . Moreover, let x rob 
i 

and γ cr 
i 

be de-

fined as in Table 1 according to Conditions (C1), (C2), and (C3), for

i = 1 , . . . , k . 

Then, 

(i) When γ = 0 , (13) is separable in products and there ex-

ists a unique optimal solution to (13) given by x Mneut =
[ x neut 

1 
, . . . , x neut 

k 
] . 

(ii) When γ = 1 , (13) is separable in products and there ex-

ists a unique optimal solution to (13) given by x Mrob =
[ x rob 

1 
, . . . , x rob 

k 
] . 

Note that (13) is not necessarily separable in products for

0 < γ < 1 even if Assumption (A4) holds. Under Assumption (A3),

sup � h ( x , ξ) is separable in products. However, CVaR γ [ h ( x , ξ)] is

not necessarily separable in products even when we have identi-

cal products with mutually independent demands. Moreover, if X

is not separable in products, e.g., there is a budget constraint of

form 

∑ k 
i =1 x i ≤ b, then problem (13) is not necessarily separable in

products even if γ = 0 or γ = 1 . 

Now, we turn our attention to the maximal effective subsets of

(13) . Definition 1 in Section 5.1 is applicable to (13) and its cor-

responding assessment problem. We do not have closed-form an-

alytical expressions for the maximal effective subsets of (13) as in

Section 5.2 . However, for our numerical analysis in Section 8.2 , we

use a discretization of the support � that satisfies Assumption (A3)

and utilize the techniques in Rahimian et al. (2019) to identify the

effective scenarios. 

Finally, as we mentioned before, the notions of price of

optimism/pessimism and nominal/worst-case regrets, defined in

Section 6 , hold for a general DRO problem. In particular, they hold

for problem (13) and its associated SO and RO models. More-

over, because x Mneut and x Mrob are unique, one can obtain the

indifferent-to-solution level of robustness for problem (13) using

(10) . However, because we do not have a result on the unique-

ness of x M ∗
γ , we cannot guarantee that a unique indifferent-to-

distribution level of robustness can be obtained using (11) . As a

result, a partial analogue of Theorem 4 holds for (13) . 

Theorem 6. Consider (13) with cost function defined in (12) , and the

price of optimism and price of pessimism defined in a similar fashion

to (8) . Let γ S = min { γ ∈ [0 , 1] : PO γ − PP γ = 0 } be the indifferent-

to-solution level of robustness. Suppose Assumptions (A2)–(A4) hold.

Then, γ S is well defined for problem (13) , and is smaller than or equal

to the critical level of robustness γ cr . 

8.2. Numerical experiments 

To illustrate the results, we suppose that there are two prod-

ucts, i.e., k = 2 , and we consider two problems. For both problems,

the demand of product 1 and 2 are independent from each other,

and we have V 1 = V 2 = 0 . Similarly to the single-product setting,

our main results are insensitive to the magnitudes of U i and W i 

when V i = 0 . We assume the marginal nominal probability distri-

bution of each product follows a normal distribution, truncated on
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d
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0,4]. We approximated the joint nominal probability distribution

n the grid [0, 4] × [0, 4] by 101 × 101 = 10 , 201 points. Table 3

ummarizes the parameters for both problems. In problem 1, both

roducts have identical parameters and identical marginal nomi-

al distribution, whereas in problem 2, both products have identi-

al parameters and different marginal nominal distributions. Given

ur choice of the nominal distribution P 0 and the parameters, for

roblem 1, we have x neut 
i 

< x rob 
i 

, i = 1 , 2 , and for problem 2, we

ave x neut 
1 

> x rob 
1 

and x neut 
2 

< x rob 
2 

. In this section, we report the

esults for the problems listed in Table 3 , with specific parame-

ers and with independent demands. However, we observed similar

rends for the optimal order quantities, maximal effective subsets,

rices/regrets, and the indifference levels of robustness for other

hoices of the parameters and correlated demands. 

To obtain optimal order quantities x M ∗
γ , γ ∈ [0, 1], we solved

he linear program (14) . We observed that each component of x M ∗
γ

hows a similar behavior to that of the solution to the correspond-

ng single-product ( DRNV-V ). That is, for problem 1, x M ∗
i,γ monoton-

cally increases from x neut 
i 

to x rob 
i 

, i = 1 , 2 . On the other hand, for

roblem 2, x M ∗
1 ,γ monotonically decreases from x neut 

1 
to x rob 

1 
, while

 

M ∗
2 ,γ monotonically increases from x neut 

2 
to x rob 

2 
. As a result, there

xists a critical level of robustness at which the optimal order

uantity x M ∗
γ stabilizes at the robust order quantity x Mrob . For prob-

em 1, the critical level of robustness γ cr � 0.29, whereas for prob-

em 2, the critical level of robustness γ cr � 0.60. It is interesting

o observe that for both problems (and other problems we tested),

he critical level of robustness γ cr is equal to max k 
i =1 

γ cr 
i 

. 

The closure of the colored plots in Fig. 5 depicts the maximal

neffective subsets (i.e., the complement of the maximal effective

ubsets) for selected values of γ ∈ {0.05, 0.2, 0.35, 0.5, 0.65, 0.8,

.95}. In other words, the colored plots form the boundaries be-

ween the maximal effective subsets and maximal ineffective sub-

ets. Several comments are in order about the maximal effective

ubsets. It can be seen that, similar to the single-product setting,

he maximal effective subsets are non-increasing as γ increases.

ore interestingly, a similar behavior to what we predicted in

heorem 2 and depicted in Fig. 3 for the case x neut < x rob happens

or these two problems. Recall that in Fig. 3 , the left piece of the

aximal effective subsets were the same for all 0 < γ < γ cr . As it is

hown in Fig. 5 , for the multi-product setting, there exists a face to

he boundary of the maximal ineffective subsets that remains the

ame for all 0 < γ < γ cr . If γ > γ cr , then the maximal ineffective

ubset starts growing in the direction normal to that face as well. 

Let us now discuss how to use the maximal effective subsets

o determine γ . Similarly to the single-product setting, the deci-

ion makers may infer their risk attitude by choosing a value of γ
or which the corresponding maximal effective subset is closest to

heir evaluation of the critical demand regions. Suppose the deci-

ion maker specifies the regions of demand that are not critical via

 hyperrectangle [ a 1 , b 1 ] × [ a 2 , b 2 ]. Then, we suggest choosing the

mallest γ whose corresponding maximal ineffective subset con-

ains the region [ a 1 , b 1 ] × [ a 2 , b 2 ]. If this γ > γ cr , then we suggest

hoosing γ cr . This approach is applicable to higher-dimensional

paces as well as the single-product setting. 

Fig. 6 shows the price of optimism, price of pessimism, and

egrets for the studied problems. Several properties can be seen

rom this figure. Observe that similarly to the single-product set-

ing, the price of optimism and nominal regret are non-decreasing

n γ , whereas the price of pessimism and worst-case regret are

on-increasing in γ . Also, as before, even the most conserva-

ive decision maker has no reason to choose a level of robust-

ess higher than γ cr . Price of optimism/pessimism and regrets can

lso help the decision maker choose the value of γ based on the

ndifferent-to-solution and indifferent-to-distribution levels of ro-

ustness (recall these notions from Section 6 ). For problem 1, we
e-Mello, Controlling risk and demand ambiguity in newsvendor 
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Table 3 

Problem parameters. 

Problem W U V Q Condition Distribution 

1 [0.5, 0.5] � [1, 1] � [0, 0] � [ 2 
3 
, 2 

3 
] � (C1) ξ1 ∼ N (2 , 0 . 25 , 0 , 4) , ξ2 ∼ N (2 , 0 . 25 , 0 , 4) 

2 [1.5, 1.5] � [1, 1] � [0, 0] � [0.4, 0.4] � (C1) ξ1 ∼ N (2 , 0 . 25 , 0 , 4) , ξ2 ∼ N (1 , 0 . 25 , 0 , 4) 

† N (μ, σ 2 , a, b) denotes a normal distribution with mean μ and variance σ 2 , truncated on [ a , b ]. 

Fig. 5. Maximal effective subsets. 

Fig. 6. Price of optimism, price of pessimism, nominal regret, and worst-case regret. 
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ave we have 0.17 � γ S < γ D � 0.26, whereas for problem 2, we

ave 0.37 � γ S < γ D � 0.55. Note that although we did not present

 theoretical result on the existence of γ D for the multi-product

etting, an indifferent-to-distribution level of robustness exists for

oth problems in Table 3 . We do not however make any claims

bout its uniqueness. 

. Conclusions and future research 

Although the standard newsvendor model is used in a variety

f settings, in many real-world applications the demand distribu-

ion is not known with certainty. In such cases, a distributionally

obust version of the model—which minimizes the expected cost

ith respect to the worst-case demand distribution within an am-

iguity set—is more realistic. There are of course multiple ways to

hoose the ambiguity set; in this paper we have studied one such

ay, formed by distributions which are within a certain variation-

istance γ from a reference distribution. 
Please cite this article as: H. Rahimian, G. Bayraksan and T. Homem-d
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For the single-product setting, our results show that the opti-

al solution monotonically moves from x neut to x rob until a criti-

al level of robustness, at which point the optimal solution stabi-

izes at x rob . Practical use of this type of models requires choosing

 value for γ , which can be interpreted as both the size of the

mbiguity set as well as the level of risk-aversion of the model.

e have introduced two tools to help the decision maker make

hat choice. One is based on the notion of maximal effective sub-

ets for the problem, which correspond to regions of demand that

re critical in the sense that their removal will change the optimal

alue. The other tool balances the price of optimism/pessimism

nd nominal/worst-case regrets resulting from using the distribu-

ionally robust model. 

As we have seen in the OR reservation example, the concepts

ntroduced in this paper can have a meaningful interpretation

nd ultimately help managers understand their risks and protect

gainst the uncertainty in their demand distribution. 
e-Mello, Controlling risk and demand ambiguity in newsvendor 

16/j.ejor.2019.06.036 

https://doi.org/10.1016/j.ejor.2019.06.036


14 H. Rahimian, G. Bayraksan and T. Homem-de-Mello / European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 8, 2019;13:52 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D  

 

F  

 

G  

G  

G  

 

G  

H  

 

H  

 

H  

 

J  

L  

 

L  

 

 

 

 

M  

 

M  

 

 

O  

 

P  

P  

 

Q  

 

R  

 

R  

S  

 

S  

 

S  

 

S  

 

 

 

S  

 

T  

 

The main results in this paper can lay the foundation for

studying other problem settings in the context of DRNV. For

instance, we extended some of our results to the multi-product

setting and showed that similar tools as in the single-product

setting can help the decision maker to choose a level of robust-

ness for their problem. Another direction for future research is

studying multi-period DRNVs; see, e.g., Xin and Goldberg (2013,

2015) . Another line of research would be to study distributionally

robust versions of networks of risk-averse newsvendor models, a

class of models introduced by Van Mieghem (2007) that yields

useful guidelines for risk-pooling and safety capacity in inven-

tory networks. Other future work includes studying other cost

functionals and ambiguity sets, including regret-based cost func-

tionals and moment-based ambiguity sets ( Hanasusanto et al.,

2015 ), possibly in conjunction with more general φ-divergence

based ambiguity sets ( Bayraksan & Love, 2015 ) and Wasserstein-

metric-based ambiguity sets ( Blanchet & Murthy, 2017; Gao &

Kleywegt, 2016; Mohajerin Esfahani & Kuhn, 2018 ). In all these

settings, characterizing the maximal effective subsets and the

price of optimism/pessimism and nominal/worst-case regrets

could provide the decision makers with useful insights about the

underlying uncertainty. 
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