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This is the first paper to approach the problem of bias in the output of a stochastic simulation due to us- 

ing input distributions whose parameters were estimated from real-world data. We consider, in particular, 

the bias in simulation-based estimators of the expected value (long-run average) of the real-world system 

performance; this bias will be present even if one employs unbiased estimators of the input distribution 

parameters due to the (typically) nonlinear relationship between these parameters and the output re- 

sponse. To date this bias has been assumed to be negligible because it decreases rapidly as the quantity 

of real-world input data increases. While true asymptotically, this property does not imply that the bias 

is actually small when, as is always the case, data are finite. We present a delta-method approach to bias 

estimation that evaluates the nonlinearity of the expected-value performance surface as a function of the 

input-model parameters. Since this response surface is unknown, we propose an innovative experimental 

design to fit a response-surface model that facilitates a test for detecting a bias of a relevant size with 

specified power. We evaluate the method using controlled experiments, and demonstrate it through a 

realistic case study concerning a healthcare call centre. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In stochastic simulation the “stochastic” element of the simu-

ation comes from the input models that drive it. In this paper

e focus on parametric input models, probability distributions or

tochastic processes that are estimated from observations of the

eal-world system of interest. Since we can only ever collect a fi-

ite number of observations, error, with respect to what the simu-

ation says about the real-world system performance, is inevitable. 

In this paper ‘response’ means the expected value of a simu-

ated output performance measure. Error caused by input mod-

lling can be broken down as MSE = Variance + Bias 2 ; that is,

he mean squared error (MSE) due to input modelling is made

p of the variability of the simulation response caused by input

odelling, known in the literature as input uncertainty variance

IU variance), and the squared bias due to input modelling. Barton

2012) explains that, even in very reasonable simulation scenarios,

nalysis of the response of interest can be very different when er-

or due to input modelling is included. Barton (2012) was refer-

ing to the IU variance, but the same idea holds for the bias due

o input modelling. In simulation models where a large number
∗ Corresponding author. 
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f replications of the simulation are completed, effectively driving

ut the inherent simulation noise caused by random-variate gen-

ration, ignoring the input modelling uncertainty can lead to over-

onfidence in the simulation results. Underestimating the error of

he simulation response is dangerous, especially when this out-

ut may be used to guide important decisions about a real-world

ystem. 

To date the main focus of research in this area has been on

U variance quantification, while the bias caused by input mod-

lling has been virtually ignored. This was partially justified by the

nowledge that, as the number of real-world observations of the

nput models increases, the bias due to input modelling decreases

aster than the input uncertainty: given m observations of an in-

ut model, it is known that the IU variance is O (1/ m ), whereas the

ias squared due to input modelling is typically O (1 / m 

2 ) ( Nelson,

013 ). Despite this, the bias can still be substantial for finite m .

ince in reality we can never collect an infinite number of obser-

ations, bias should not be ignored. 

To facilitate understanding, we consider the simulation of a

ealthcare call centre. More specifically, we look at the UK Na-

ional Health Service (NHS) 111 system. The NHS 111 system was

esigned to take some of the strain from other healthcare systems

n the UK, for example, emergency departments and doctors’ surg-

ries. Ringing NHS 111 allows a caller to talk to a healthcare pro-

essional who can advise them on what care they need. The NHS

11 call centre can be represented as a stochastic queueing model
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with a non-stationary arrival process and a stationary service dis-

tribution. Since we have only a finite number of observations from

which to estimate these input models, they are not correct; this er-

ror propagates through the NHS 111 simulation model to the per-

formance measures of interest. 

This paper presents a delta-method approach to estimating the

bias caused by input modelling in stochastic simulation. The delta-

method is based on a second-order Taylor series approximation

and therefore requires the quantification of the second-order par-

tial derivatives of the response surface. In simulation, the response

of interest is most often an unknown function of its input models

which means we cannot directly evaluate its derivatives. We there-

fore propose the use of an experimental design to fit a response

surface model from which the second-order partial derivatives can

be estimated. 

As a key feature of this paper, we also present a bias detection

test with controlled power for detecting a bias due to input mod-

elling greater than a pre-chosen value, γ , considered to be a bias

of a relevant size. In this way when the bias is small, and therefore

not of concern to us, we require less computational effort to con-

clude that the bias is not significantly different from zero than to

accurately estimate it. Also, when the bias is large, i.e., greater than

γ , we have a high probability of detecting it. In Section 3.1 we de-

scribe a novel way in which we construct the experimental design

used to estimate the response surface, which allows a practitioner

to easily control the power of the bias detection test. 

The bias detection test also hinges on our choice of a “bias of a

relevant size”. When there is no clear choice for γ from the prob-

lem context, we propose using the estimated value of the IU vari-

ance as a benchmark: if the bias is a small fraction of the IU vari-

ance, then it contributes little to the overall MSE, while if it is a

large fraction of the IU variance then it should not be ignored. In

Section 4.2 the IU variance is used to guide the choice of the rele-

vant bias, γ , for the NHS 111 system. 

We begin this paper with a discussion of the current literature

in Section 2 . In Section 3 we present our delta-method approach to

bias estimation and the diagnostic test along with an algorithm to

aid implementation. In Section 4.1 we complete a controlled exper-

iment to evaluate the diagnostic test for response functions with

different forms, under varying numbers of observations and repli-

cations; and in Section 4.2 a realistic application of the method in

the NHS 111 system is given. We conclude in Section 5 . All proofs

are left to the appendix. 

A preliminary proposal of the ideas presented here appeared

in Morgan, Titman, Worthington, and Nelson (2017) , but it did not

contain the key supporting theory: the proof that asymptotically

the delta approximation of bias, scaled by the number of observa-

tions, converges to the scaled true bias; the proof that, under cer-

tain assumptions, the scaled estimate of the delta approximation

of bias converges to the scaled delta approximation of bias; or the

proof that, without significant simulation effort, the variability of

the jackknife estimator of bias can easily be obscured by simula-

tion noise. 

2. Background 

To date, estimating the IU variance has been the main focus of

research in quantifying error caused by input modelling. See Song,

Nelson, and Pegden (2014) for a careful definition and discussion

of IU variance quantification techniques. A number of methods

for quantifying the IU variance in simulation models exist cover-

ing both frequentist and Bayesian methodologies ( Barton, 2012 ). Of

these, Cheng and Holland (1997) present a delta-method approach

for simulation models with time-homogeneous parametric input

distributions; this was extended by Morgan, Titman, Worthington,

and Nelson (2016) for simulation models with piecewise-constant
on-stationary Poisson arrival processes. In Section 4 these two

ethods will be used to estimate the IU variance and thus guide

ur choice of a relevant bias. 

When one refers to quantifying the ‘bias’ it is typically the

ias of an estimator of a population parameter given a sample of

ata, averaged over the distribution of possible samples. In our

omputer-simulation context this bias is also averaged over the

atural noise due to generating samples of the stochastic inputs.

tated differently, our estimator is a function of both real-world

nd simulated sampling. Standard methods for bias quantification

re the jackknife and the bootstrap ( Efron, 1982 ), with the jack-

nife often considered the go-to choice. However, for bias estima-

ion without simulation noise, Withers and Nadarajah (2014) found

oth the jackknife and the bootstrap are inferior to the delta-

ethod in terms of computational efficiency in all but a few spe-

ial cases where it could be said the jackknife method was com-

arable. When there is also simulation noise, the number of sim-

lation replications required to mitigate it for the jackknife grows

s O ( m 

2 ), meaning that the simulation effort could become pro-

ibitive or an estimate of the bias could be obscured by the

imulation noise when m is large; for a proof of this result see

ppendix A . For a review of the conditions under which the delta-

ethod approximation is accurate see Oehlert (1992) . 

The delta-method requires the second-order partial derivatives

f the expected value of the simulation response. Since the ex-

ected value of the simulation response is not known, we propose

sing an experimental design to fit a response surface model of

t. To allow estimation of the derivatives of the response surface,

e assume a simple type of meta-model, namely, a second-order

olynomial. To estimate its second-order terms, we use a central

omposite design (CCD), which includes a Resolution V, or higher,

xperimental design; see Montgomery (2013) . 

The CCD is easy to understand and meets the design resolution

equirement, but does suffer in terms of scalability, requiring an

xponentially increasing number of design points as the number of

nput parameters increases. Fractional factorial designs are one way

f reducing the number of design points required to fit a response

urface. However, few efficient generators exist for creating Reso-

ution V fractional factorial designs with a large number of inputs.

n exception is the method of Sanchez and Sanchez (2005) which

e use to reduce the number of design points needed to sup-

ort the quadratic response surface. This method can generate de-

igns with over 120 inputs. Methods for generating Resolution V

ractional designs are also discussed by Montgomery (2013) and

ox, Hunter, and Hunter (1978) but the allowable number of in-

uts within these design generators is limited. 

Neither quantification nor detection of the bias due to input

odelling have previously been considered. In the following sec-

ion we present the methodology behind our delta-method esti-

ate of the bias due to input modelling and our bias detection

est. 

. Detecting bias of a relevant size 

Let there be L parametric input distributions that drive the sim-

lation with, k ≥ L , true input parameters, θθθ c = { θ c 
1 
, θ c 

2 
, . . . , θ c 

k 
} . For

ny set of parameters θθθ = { θ1 , θ2 , . . . , θk } , we denote the output of

he j th replication of the simulation as Y j ( θθθ ) = η( θθθ ) + ε j , where

( θθθ ) is the expected value of the simulation output of interest;

his could be, for example, the expected fraction of callers that

ave to wait more than 1 minute to be served. 

Let r denote the total number of replications; here we assume

j , for j = 1 , 2 , . . . , r, are i.i.d. random variables, with mean zero

nd variance σ 2 , that represent the stochastic estimation error

rising within each replication of the simulation, ε j ∼ i.i.d. (0, σ 2 ). 
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In this contribution we assume that ε j is unaffected by the

hoice of θθθ, i.e. the simulation noise is homogeneous. In reality

his is likely to be false, but note that the Hessian estimator in-

roduced later to estimate and detect the bias remains valid even

iven a failure of this assumption. A lower variance estimator could

e achieved by taking into account the heterogeneous simulation

oise in the experiment design, but this would add significant ad-

itional complexity to the method. Also note that the experiment

esign is used to construct a local (not global) response surface

odel. We therefore expect the mean response surface and the

utput variance around it to vary less as the experimental design

ets tighter around θθθmle . 

For each of the l = 1 , 2 , . . . , L input distributions we have

 l real-world observations from which we find the maximum

ikelihood estimators (MLEs) of the input parameters, θθθmle =
 θmle 

1 
, θmle 

2 
. . . , θmle 

k 
} . By averaging over the r replications of the

imulation, driven by θθθmle , we gain an estimate of the output per-

ormance measure of interest. We call this the nominal experiment .

e can reduce the stochastic estimation error about our response

f interest through further replications of the simulation, but this

as no effect on the error due to input modelling which is only

ffected by m 1 , m 2 , . . . , m L . 

For the NHS 111 system let θθθ c be the unknown parameters de-

cribing the true arrival process and service distribution, and θθθmle 

e the MLEs of these parameters. The MLEs are estimated from

ervice time and arrival count observations. In total there are m

rrivals, and assuming a service time is recorded for each arrival,

 service time observations. For any set of parameters θθθ, the per-

ormance measure of interest in the NHS 111 system, η( θθθ ) , is the

xpected waiting time of callers. For each replication Y j ( θθθ ) is the

verage of the waiting times observed in that replication. 

The bias due to input modelling arises because we only have a

nite number of observations of the real-world system from which

o estimate θθθ c . This type of bias describes how far, on average, our

imulation response is from the real-world performance given the

rror that arises from estimating the input models. Specifically 

 = E [ η( θθθmle )] − η( θθθ c ) (1)

here the expectation is with respect to the sampling distribution

f θθθmle . When the simulation response is non-linear in θθθ, as is usu-

lly the case, this bias will always arise; we now approximate it

sing the delta-method in an innovative way. 

Assuming the expected simulation response, η( · ), is at least

wice continuously differentiable about θθθ c it can be expanded as

 Taylor series to second-order 

( θθθmle ) ≈ η( θθθ c ) + d( θθθmle ) T ∇η( θθθ c ) + 

1 

2! 
d ( θθθmle ) T H( θθθ c ) d ( θθθmle ) , 

(2) 

here d( θθθmle ) = ( θθθmle − θθθ c ) is the difference between the MLEs

nd the true parameters, ∇η( θθθ c ) is the ( k × 1) gradient vector

nd H( θθθ c ) is the ( k × k ) Hessian matrix of the response func-

ion. Note that the Hessian matrix, H( θθθ c ) , is composed of the

econd-order partial derivatives with respect to the k input pa-

ameters, and approximates the curvature of the response sur-

ace. To ease explanation, let m be the common number of ob-

ervations collected from each of the L input models. The follow-

ng results hold in slightly modified form for m 1 � = m 2 � = ��� � = m L ,

rovided m i / 
∑ L 

j=1 m j → c i > 0 for some fixed value c i as m → ∞ .

aking the expectation of (2) , whilst noting that, under mild

onditions, E [ d( θθθmle )] = E [( θθθmle − θθθ c )] → 0 as m → ∞ , we get the

elta-method approximation of bias, 

 ≈ 1 

E [ d ( θθθmle ) T H( θθθ c ) d ( θθθmle )] = b approx . 

2 
fter some matrix manipulation, this simplifies to 

 

approx = 

1 

2 

tr (� H( θθθ c )) (3) 

here tr() denotes the trace of a matrix and � = Var ( θθθmle ) de-

otes the variance-covariance matrix of the MLEs. For a proof

f the asymptotic equivalence of b and b approx as m → ∞ see

ppendix B . 

As previously noted θθθ c is unknown; if it were known then there

ould be no error due to input modelling. In simulation studies

t is also most often the case that the systems we simulate are

omplex, and thus no tractable form of our response of interest

xists; we will therefore also treat the response function, η( · ), as

nknown. This means the delta approximation of bias, b approx , can-

ot be evaluated directly; we therefore estimate it by 

 

 = 

1 

2 

tr ( ̂  � ̂ H ( θθθmle )) . (4) 

valuation of ̂  b requires estimates of both the variance-covariance

atrix of the input parameters and the Hessian matrix of second-

rder partial derivatives. In practice we estimate � using ̂ � =
 0 ( θθθ

mle ) −1 /m the inverse Fisher information evaluated at θθθmle .

rom this point on, ̂ � will refer to this plug-in estimate for

ar ( θθθmle ) . Notice that using ̂ � rather that � introduces additional

rror into ̂  b , but this error was insignificant in the experiment re-

orted in Morgan et al. (2017) . 

In brief, Morgan et al. (2017) found that in controlled experi-

ents with a truly quadratic η( · ) and homogeneous variance, the

elative error of ˆ b to b using ˆ � was shown to be less than 1%. 

Estimating the Hessian is more difficult. For this we choose a

esponse surface modelling approach, quantifying the non-linearity

f the response surface by investigating the behaviour of η( · ) close

o θθθmle , our estimate of θθθ c , see Section 3.1 . 

Based on our estimate of the bias, we present a bias detec-

ion test with high power when | b | ≥γ . In Section 3.2 we illus-

rate the use of an experimental design for estimating the Hessian,

nd therefore the bias. We also present a novel way to construct

his experimental design that allows a practitioner to control the

ower of the bias detection test. 

.1. Estimating the Hessian 

To estimate the Hessian we make the further assumption that

ur response surface is locally quadratic; that is, if we are near

nough to θθθ c 

( θθθ ) = β0 + θθθ
T 
βββ + 

1 

2 

θθθ
T 
B 

B B θθθ, (5)

here βββ is the vector of coefficients belonging to the linear terms,

 

 

 is the ( k × k ) matrix of coefficients belonging to the interaction

nd quadratic terms and θθθ is any vector of input parameter values

ear θθθ c . Note that, if η( · ) is twice continuously differentiable at θθθ c ,

s assumed in (2) , then this is approximately true using Taylor se-

ies. In Section 3.3 we suggest a test for lack-of-fit of the quadratic

esponse surface; then in Section 4.1 we evaluate this assumption

y considering responses with different functional forms. For now

e will assume (5) holds. 

By fitting model (5) we can estimate the Hessian matrix of

econd-order partial derivatives, allowing the evaluation of ̂  b . It is

lear that taking the second-order partial derivatives of (5) with re-

pect to θθθ is equivalent to estimating B 

B B . As θθθ c is unknown, we will

se a central composite design (CCD), centred at θθθmle , to fit this

odel. The CCD is well known and has at least Resolution V, al-

owing the estimation of quadratic and interaction effects without

onfounding. Fig. 1 illustrates a CCD design in k = 2 dimensions;

actorial (purple) and axial (yellow) design points are positioned

elative to θθθmle , the central (red) design point. 
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Fig. 1. A CCD design with dimension k = 2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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To fit model (5) , we complete r replications of the simulation

model at each design point. Let n F denote the number of facto-

rial design points and n A the number of axial design points. As

suggested by Montgomery (2013) , we will carry out more replica-

tions of the experiment at the centre point allowing more infor-

mation collection at θθθmle , the point at which we wish to estimate

the Hessian. We let this number be a multiple of r , which allows

us to treat the multiple replications at centre point as multiple de-

sign points, n C > 1. The total number of design points n is there-

fore n = n F + n A + n C = 2 k + 2 k + n C , and depends on the number

of input parameters, k . The total number of simulation replications

is n × r . 

Clearly, the total number of design points, n , grows exponen-

tially with the number of input parameters, k . For k = 10 , the num-

ber of factorial design points is n F = 2 10 = 1024 , even without con-

sidering the axial and centre points of the design. To reduce the

size of the design, we therefore propose the use of fractional fac-

torial designs, with the addition of axial and centre points. The key

to this is to select a Resolution V, or higher, fractional factorial de-

sign to ensure no main effects or two-factor interactions are con-

founded ( Montgomery, 2013 ). 

Sanchez and Sanchez (2005) provide an efficient algorithm for

generating Resolution V CCDs with a greatly reduced number of

design points using discrete-valued Hadamard–Walsh functions to

describe and generate the design. Their method focuses on spec-

ifying highly-fractionated Resolution V fractional factorial designs.

After the fractional-factorial design has been generated the centre

and axial points can then be added just as in the full CCD. When

k = 10 , Sanchez and Sanchez (2005) recommend n F = 128 facto-

rial design points, resulting in n = 148 + n C design points in total
ithout specifying n C . This is computationally much cheaper than

he n F = 1024 factorial design points, in total n = 1044 + n C points,

eeded in the full CCD experiment. In Section 4.2 we implement

hese reduced designs alongside the full-factorial CCDs in the NHS

11 setting for comparison. 

In Fig. 1 , we position the factorial and axial points relative to

he centre point, θθθmle . Let 	i be the distance to a factorial point

rom the centre point in the i th direction, i = 1 , 2 , . . . , k, and simi-

arly let τ i be the distance to the axial points. Experimental designs

re often used to investigate the operational range of systems. It is

herefore common to work with standardised variables, transform-

ng the original quantitative factors to the values +1 and −1, rep-

esenting the high and low levels of each factor at the edge of the

perational space. We use experimental design quite differently.

e are not interested in looking at the behaviour of η( · ) over the

ntire range of each input variable. Instead, we are interested in

ssessing the Hessian of the response surface at the unknown θθθ c .

y using the standard deviation of the MLEs, 

√ 

Var (θmle 
i 

) for i =
 , 2 , . . . , k, to scale the experimental design in each direction, we

ave a reasonable chance of covering θθθ c without having to spread

ur design points so wide that we risk violating the quadratic as-

umption over our design space. Note that, based on similar rea-

oning we might have chosen to use the variance-covariance ma-

rix of the MLEs, Var ( θθθmle ) , to scale the design. This would take

nto account dependencies among the input parameters, but would

ave introduced substantial additional complexity to the method.

iven that we cannot prove that either method leads to the opti-

al design scaling we opt for the simpler option. That is, we set

i = a 

√ 

Var (θmle 
i 

) and τi = ω	i = aω 

√ 

Var (θmle 
i 

) where a is the
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umber of standard deviations the factorial points are from the

entre point in the i th direction. Here ω is the scaled distance from

he centre to the axial points; we set ω = 

√ 

( 
√ 

n F n − n F ) / 2 as sug-

ested by Dean and Voss (1999) for creating orthogonal designs,

lthough we note here that due to the assumed quadratic nature

f the response surface, orthogonality does not hold. 

At the i th design point we run r replications of the simula-

ion returning the averaged output of the simulation, Ȳ ( θθθ i ) for

 = 1 , 2 , . . . , n . Given the averaged outputs we use least-squares re-

ression to fit the response surface model and therefore evaluate

he Hessian, 

ˆ 
 ( θθθmle ) = 

⎡ ⎢ ⎢ ⎣ 

2 ̂

 B 11 
̂ B 12 . . . ̂ B 1 k ̂ B 21 2 ̂

 B 22 

. . . 
. . . ̂ B k 1 2 ̂

 B kk 

⎤ ⎥ ⎥ ⎦ 

. 

iven 

̂ � and 

ˆ H ( θθθmle ) , we can now estimate the bias, using ̂  b , as in

q. (4) . 

We can also estimate Var ( ̂  b ) . Conditional on the value of ̂ �, the

lug-in estimate of Var ( θθθmle ) , Var ( ̂  b ) is 

ar ( ̂  b ) = Var 

[ 
1 

2 

tr ( ̂  �̂ H ( θθθmle )) 
] 

= 

1 

4 

Var 

[ 

2 

k ∑ 

i =1 ̂

 B ii ̂
 �ii + 

k ∑ 

j=1 

k ∑ 

i =1 ,i � = j ̂

 B i j ̂
 �i j 

] 

= 

k ∑ 

i =1 

k ∑ 

i ≤ j 

Var ( ̂  B i j ) ̂  �2 
i j + 2 

k ∑ 

i ≤ j 

k ∑ 

p≤q, i j<pq 

Cov ( ̂  B i j , ̂
 B pq ) ̂  �i j ̂

 �pq .

his requires the calculation of Var ( ̂  B 

B B ) , the variance-covariance

atrix of regression coefficients belonging to the interaction and

uadratic terms. 

Given we estimated ̂

 B 

B B by least-squares regression an estimator

f Var ( ̂  B 

B B ) is easily obtained under the assumption of normally dis-

ributed residuals with homogeneous variance, using standard re-

ression analysis. Note that the assumption of normally distributed

esiduals is reasonable here since the output at each design point

s the average of a large number of replications r . We derived that

ar ( ̂  B 

B B ) has special form 

Var ( ̂  B ii ) = 

σ 2 s 

ra 4 ̂  �2 
ii 

, Var ( ̂  B i j ) = 

σ 2 f 

ra 4 ̂  �ii ̂
 � j j 

and 

ov ( ̂  B ii , ̂
 B j j ) = 

σ 2 g 

ra 4 ̂  �ii ̂
 � j j 

, 

here, s , f and g are constants independent of the scaling factor a

nd 

̂ �. We exploit the common ra 4 scaling in Section 3.2 when it

omes to manipulating the CCD width to control the power of our

ypothesis test. 

Application of our method will always follow a nominal exper-

ment run at θθθmle ; we therefore have a natural estimator of the

imulation noise σ 2 ; we denote this by ̂ σ 2 . In practice we use ̂ σ 2 

s a plug-in estimator in the expressions for Var ( ̂  B ii ) , Var ( ̂  B i j ) and

ov ( ̂  B ii , ̂
 B j j ) . 

We derived that when using a CCD, Cov ( ̂  B i j , ̂
 B lm 

) = 0 when i � = j

r l � = m , therefore after some simplification our estimate of Var ( ̂  b )

as the form 

̂ ar ( ̂  b ) = 

̂ σ 2 

ra 4 

[ 

sk + f 

k ∑ 

i =1 

k ∑ 

j>i 

̂ �2 
i j ̂ �ii ̂
 � j j 

+ gk (k − 1) 

] 

. (6) 

At this point we have presented a method for estimating the

ias of the simulation response caused by input modelling and

ave also provided a variance estimate associated with it. How-

ver, in some cases the bias will be small and therefore hard to
ccurately estimate. When the bias is small, we are not interested

n getting a precise estimate of ̂  b . A bias detection test could there-

ore save us computational effort since we do not require as much

recision to be able to reject a hypothesis as we would perhaps

ant to use ̂ b as a point estimate of the error about our perfor-

ance measure. Let γ denote the size of the smallest bias due to

nput modelling that would concern us. We will now present our

ey idea, a diagnostic test for detecting the bias with controlled

ower of rejecting the null when | b | ≥γ . 

.2. A bias detection test 

We begin by considering the hypothesis test H 0 : b = 0 vs . H 1 :

 � = 0 with test statistic T = ̂

 b / 
√ ̂ Var ( ̂ b ) . Let the size of the test be

enoted by α1 and the power by 1 − α2 . We shall assume that 

ˆ b − b √ ̂ Var ( ̂ b ) 
∼ N(0 , 1) = Z , (7) 

hich is a reasonable approximation since ̂  b is a linear combina-

ion of asymptotically normally distributed least-squares regression

stimators, and we expect ̂ Var ( ̂ b ) to be a good estimate of Var ( ̂  b )

ince we have many observations. The key to this test is in con-

rolling the power at a pre-specified level 1 − α2 so that, when

he absolute bias is truly greater than or equal to γ , we have a

igh probability of rejecting the null hypothesis. We therefore re-

uire an experimental design where the following significance and

ower constraints hold given γ , 

[ | T | > Z 1 −α1 / 2 | b = 0 ] = α1 (8) 

[ | T | > Z 1 −α1 / 2 | | b| ≥ γ ] ≥ 1 − α2 . (9) 

Let the true IU variance of the response of interest be denoted

y κ = Var (η( θθθmle )) . Using IU variance quantification techniques

e can estimate κ by ̂ κ . We propose that, when the practitioner

oes not have an obvious value in mind for γ , ̂ κ can be used to

uide this choice. This is a natural suggestion as it looks at the

ias within the context of the total MSE due to input modelling. If

he bias is very small compared to ̂ κ it may not be worth taking

nto account. On the other hand if the bias is large compared to κ̂
t would be important, and using ̂ κ to guide our choice of γ will

ive us high power of rejecting the null. 

We know that Eq. (8) is guaranteed by (7) . Constraint (9) holds

hen 

 ̂ Var ( ̂ b ) ≤ γ

Z 1 −α2 
− Z α1 / 2 

. (10) 

his says that the estimate of the variance of our bias estimator,̂ ar ( ̂ b ) , can be used to control the power of our test. From Eq. (6) it

an be seen that, of the components that make up 

̂ Var ( ̂ b ) , only the

idth of the CCD, controlled via a , and the number of replications

t each design point, controlled via r , can be influenced by the

ractitioner. In many simulation scenarios we are constrained by

ome fixed simulation budget. When this is the case, and we have

 set total simulation budget n × r that we are willing to spend, we

an set a , the scaling parameter of the experimental design, to be

he smallest value such that 

 ≥
[ ̂ σ 2 t 2 

rγ 2 

( 

sk + f 

k ∑ 

i =1 

k ∑ 

j>i 

̂ �2 
i j ̂ �ii ̂
 � j j 

+ gk (k − 1) 

) ] 

1 
4 

, (11) 

here t = Z 1 −α2 
− Z α1 / 2 

, the difference of the critical values given

ur size and power requirements. Alternatively, we may wish to

hoose a just large enough so that we can be confident that θθθ c has

een covered within the CCD design space and set r appropriate
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to it; recall that a was defined in units of the standard deviation

of the MLEs. Notice that we can easily rewrite (11) to yield the

number of replications as a function of a . Some caution is advised

as r = O (1 /a 4 ) , which means that a small decrease in the width

of the design leads to a great increase in the number of replica-

tions required at each design point to estimate the change in the

response surface in the smaller region. 

Due to the limitations on how far we can spread our design

before the quadratic assumption breaks down, we propose fixing

an appropriately large r and letting (11) guide our choice of a . In

Section 3.3 we describe a lack-of-fit test that can be used to test

the quadratic assumption. 

Given a and r that satisfy (11) , we are able to set up the CCD

to ensure that the power holds at the pre-set level, 1 − α2 within

the hypothesis test. We can now carry out the bias detection test

knowing that if the bias is truly greater than or equal to γ we have

a high probability of rejecting the null hypothesis, H 0 . 

On completion of the test, even if we reject H 0 , we cannot say

anything about the size of the bias. We have sufficient evidence to

suggest that the bias is non-zero at the α1 % level, and therefore is

worth considering, but we cannot be sure that it is greater than or

equal to our relevant value of bias, γ . At this point the practitioner

may wish to collect further observations of the real system to re-

duce the error due to input modelling. Another option might be to

spend further simulation effort on improving the precision of the

estimate ̂  b so it can be included in a summary of the total error of

the response. Whichever choice is made we have presented a novel

method for detecting the bias due to input modelling, a source of

error that, before this contribution, had been virtually ignored. 

An algorithm for the bias test is summarised below. 

1. Preliminary Step. From the real-world input data estimate θθθ c 

and � by θθθmle and 

̂ �. From the nominal experiment estimate

σ 2 by ̂ σ 2 . Set γ , a bias we wish to detect, α1 the size, and

1 − α2 the power, of the test. 

2. To ensure the power holds: initially let a = 1 , noting that any

positive value will suffice; create the 

(
n ×

(
1 + 2 k + 

k (k −1) 
2 

))
design matrix X, centred at (0 , 0 , . . . , 0) with 	i = a 

√ 

Var (θmle 
i 

)

and τi = ω	i , for i = 1 , 2 , . . . , k . Given X , evaluate s , f and g as

follows 

s = (X 

T X ) −1 

[ (k +1)(k +2) 
2 , 

(k +1)(k +2) 
2 ] 

	4 
k , f = (X 

T X ) −1 
[ k +2 ,k +2] 

	2 
1 	

2 
2 , 

g = (X 

T X ) −1 

[ (k +1)(k +2) 
2 −1 , (k +1)(k +2) 

2 ] 
	2 

k −1 	
2 
k 

where the subscript [ i , j ] denotes the element in the i th row

and j th column of a matrix. Now use (11) to set a and r , to

ensure the power holds. 

3. Re-build the design matrix X , centred at (θmle 
1 

, θmle 
2 

, . . . , θmle 
k 

) ,

given a . 

4. For each design point i = 1 , 2 , . . . , n, run r replications of the

simulation at θθθ i , corresponding to row i of the design matrix;

average over the r replications to find Ȳ ( θθθ i ) . 

5. Using the simulation output from each design point Ȳ ( θθθ i ) ,

for i = 1 , 2 , . . . , n, estimate the regression coefficients

( ̂  β0 , ̂
 β1 , ̂

 β2 , . . . , ̂
 βk , ̂

 B 11 , ̂
 B 12 , . . . , ̂

 B (k −1) k , ̂
 B kk ) 

T = (X 

T X) −1 X 

T Ȳ Y Y ( θθθ ) , 

giving ̂  B 11 , ̂
 B 12 , . . . , ̂

 B (k −1) k , ̂
 B kk . 

6. Evaluate ̂ H ( θθθmle ) ; thus, estimate b and Var ( ̂  b ) by ̂  b and 

̂ Var ( ̂  b ) . 

7. Calculate the test statistic, T = ̂

 b / 
√ ̂ Var ( ̂  b ) . If | T | ≥ Z 1 −α1 / 2 

reject

the null hypothesis. 

3.3. Validating the bias test 

Up to this point we have made the assumption that our re-

sponse surface, η( · ), is truly quadratic near θθθ c . In reality we know
hat this does not hold in all cases. Take for example a single-

erver Markovian queue with capacity, C . For this system the ex-

ected number of customers in the system in steady state, η( · ),

an be expressed in closed form 

( θθθ ) = 

θ1 

θ2 − θ1 

− (C + 1) θC+1 
1 

θC+1 
2 

− θC+1 
1 

, 

here θ1 is the arrival rate and θ2 the service rate. This global

not local) response function is clearly not quadratic. Detection of

he bias due to input modelling in this system was empirically ex-

lored by Morgan et al. (2017) . They found that when the traffic

ntensity θ1 / θ2 was close to 1, centring the CCD close to θθθ c was of

reat importance to ensure power held at 1 − α2 when γ was set

o equal the true bias, b . This was particularly evident in models

ith high capacity, C , where η( · ) was sensitive to changes in θ1 

nd θ2 . 

Although the expected response surface is unlikely to be truly

uadratic, as long as the quadratic assumption holds locally within

ur CCD, we will get a good approximation of the non-linearity of

he response surface at θθθmle . We therefore propose using a lack-

f-fit test to check the quadratic assumption on the response. The

classical” lack-of-fit test, as described by Myers, Montgomery, and

nderson-Cook (1995) , compares the error caused by lack-of-fit to

he pure error estimated from replications made at the centre of

he experiment design. This test assumes homogeneous variance

cross the design space; Kleijnen (1983) provides a lack-of-fit test

ased on cross validation if this assumption does not hold. 

The “classical” lack-of-fit test comes with certain advantages.

irstly, no additional simulation effort is required to incorporate

he lack-of-fit test within the bias detection method since we repli-

ate the centre point in the experimental design, n C > 1; this al-

ows the calculation of the pure error. Also, we do not have to as-

ume any functional form for our response surface; we could have

ompared the quadratic model to a cubic model for example but

here is no guarantee that the cubic part of the model would be

he problem in all cases. 

Running the lack-of-fit test prior to our bias detection test en-

bles us to examine the quadratic assumption. Of course, a hypoth-

sis is just an assessment of evidence: accepting the null hypoth-

sis does not prove that the approximation of a quadratic surface

ear θθθmle is good enough to provide a trustworthy estimate of bias.

owever, rejecting the quadratic fit is a useful warning that the

esulting bias estimate might not be trustworthy. By the nature

f Taylor series approximation, a smaller-width CCD will tend to

mply better conformance to a quadratic approximation. Therefore,

ne way to react to a significant lack of fit, as long as there is addi-

ional computer budget, is to increase r , the number of replications

t each design point; this leads to a smaller value of a , the width

caling parameter of the design, whilst preserving the power of the

ias test at 1 − α2 (see Section 3.2 and in particular Eq. (11) ). 

That said, repeated application of the lack-of-fit test with dif-

erent sample sizes, the unknown effect of the experiment design

sed to fit the quadratic model, and the power of the lack-of-fit

est all muddy the overall inference. Thus, while we recommend

he lack-of-fit test its conclusions are at best advisory, and standard

egression diagnostics applied to the quadratic model will also be

elpful. 

. Empirical evaluation 

In this section we evaluate the bias detection test presented in

ection 3 . In Section 4.1 we complete a controlled study consider-

ng four tractable response surfaces with different functional forms

hilst controlling the number of input observations, m , and the

umber of simulation replications at each design point, r . We then
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Fig. 2. The true response surfaces plotted over the CCD design space. Top left: lin- 

ear, Eq. (12) ; top right: quadratic, Eq. (13) ; bottom left: cubic, Eq. (14) ; and bottom 

right: cubic, Eq. (15) . The point (θ c 
1 , θ

c 
2 ) is marked in blue. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Table 1 

Bias test results varying the form of η( · ), the amount of input data, m , and 

number of replications, r . Here ̂ p and LOF are the fraction out of G = 10 0 0 

macroreplications that the bias test and lack-of-fit test, respectively, rejected 

their null hypothesis, and b̄ is the average bias estimate. 

m r b b approx b̄ ̂ p LOF 

Linear (12) 

10 50 0.00 0.00 -0.01 0.06 0.04 

100 50 0.00 0.00 0.00 0.05 0.05 

10 0 0 50 0.00 0.00 0.00 0.04 0.06 

10 500 0.00 0.00 0.00 0.05 0.05 

100 500 0.00 0.00 0.00 0.05 0.05 

10 0 0 500 0.00 0.00 0.00 0.04 0.05 

Quadratic (13) 

10 50 1.25 1.25 1.36 0.64 0.05 

100 50 0.13 0.13 0.13 0.71 0.06 

10 0 0 50 0.01 0.01 0.01 0.80 0.05 

10 500 1.25 1.25 1.42 0.63 0.06 

100 500 0.13 0.13 0.13 0.72 0.05 

10 0 0 500 0.01 0.01 0.01 0.80 0.06 

Cubic 1 (14) 

10 50 2.66 2.57 3.01 0.70 0.06 

100 50 0.26 0.26 0.26 0.65 0.06 

10 0 0 50 0.03 0.03 0.03 0.75 0.05 

10 500 2.66 2.57 3.33 0.69 0.06 

100 500 0.23 0.26 0.27 0.70 0.06 

10 0 0 500 0.03 0.03 0.03 0.78 0.06 

Cubic 2 (15) 

10 50 0.48 0.53 0.08 0.96 0.62 

100 50 0.05 0.05 0.05 0.92 0.22 

10 0 0 50 0.01 0.01 0.01 0.74 0.09 

10 500 0.48 0.53 0.90 0.97 0.36 

100 500 0.05 0.05 0.06 0.92 0.10 

10 0 0 500 0.01 0.01 0.01 0.78 0.07 
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emonstrate the use of the bias detection test in the NHS 111 call

entre setting in Section 4.2 . 

.1. Monte Carlo evaluation of the method 

Recall that the bias due to input modelling is caused when the

rror in the estimation of the input models that drive the simula-

ion is passed through a non-linear response function. We there-

ore evaluate how well our bias detection test works when there

s no bias due to input modelling i.e., the response is linear; when

he response surface is truly quadratic; and finally when the un-

erlying quadratic assumption does not hold. 

We consider a stochastic simulation model with two unknown

nput parameters, θθθ c = { θ c 
1 
, θ c 

2 
} = { 3 , 2 } . These input parameters

re the means of two independent exponentially distributed ran-

om variables, W 1 ∼ Exp (1 /θ c 
1 
) , W 2 ∼ Exp (1 /θ c 

2 
) . 

Within this setting we consider the following functional forms

or the response surface η( θθθ ) : linear, Eq. (12) ; quadratic, Eq. (13) ;

nd two cubic functions, Eqs. (14) and (15) , as displayed in Fig. 2 , 

( θθθ ) = 3 − 10 θ1 + 4 θ2 (12) 

( θθθ ) = 3 − 10 θ1 + 4 θ2 + 8 θ1 θ2 + 2 . 5 θ2 
1 − 2 . 5 θ2 

2 (13) 

( θθθ ) = 3 − 10 θ1 + 4 θ2 + 8 θ1 θ2 + 2 . 5 θ2 
1 − 2 . 5 θ2 

2 + 0 . 4 θ3 
1 − 0 . 8 θ3 

2 

(14) 

( θθθ ) = 3 − 10 θ1 + 4 θ2 + 8 θ1 θ2 + 2 . 5 θ2 
1 − 2 . 5 θ2 

2 + 0 . 8 θ3 
1 − 3 θ3 

2 . 

(15) 

In this carefully constructed experiment the input parameters

nd the response functions are known. We also chose our input

istributions so that the third moment of the MLE could be cal-

ulated exactly and we were therefore able to quantify, b , the bias

ue to input modelling from each function as well as the delta ap-

roximation of bias, b approx ; see Table 1 . We set the size of the bias
etection test to α1 = 0 . 05 and the power to 1 − α2 = 0 . 8 ; the size

or the lack-of-fit test is also 0.05. 

To evaluate the bias detection test the value of the relevant bias

is set equal to the delta approximation of bias b approx in both the

uadratic and cubic scenarios. In choosing γ = b approx we expect

he power to hold at the pre-set value 1 − α2 . In the linear ex-

eriment b = b approx = 0 , so we use ̂  κ, the estimate of IU variance,

ound using the method of Cheng and Holland (1997) , to guide the

hoice of γ where γ = 

√ 

0 . 3 ̂  κ . 

Since the true bias, b , is known in these examples we set σ 2 / r

o be 5 times larger than b in the quadratic and cubic experiments,

mplying that there is still significant simulation noise in the eval-

ation of each design point. In all of the linear experiments σ 2 

as set to 0.1. Given σ 2 and the response functions, we simulated

y adding normally distributed noise, N (0, σ 2 ), to Eqs. (12) –(15) .

rom here on we assume the response functions are unknown and

equire estimation for the bias detection test. 

We complete G = 10 0 0 macro-replications of the bias detec-

ion test. To do this we collect m observations from each input

istribution by generating observations, { w 11 , w 12 , . . . , w 1 m 

} and

 w 21 , w 22 , . . . , w 2 m 

} from the true input distributions. This is our

real-world” data from which we estimate the input parameters

sing maximum likelihood. Given these estimates we run the nom-

nal experiment, and in the linear case estimate the IU variance in

he model. We then apply the bias detection test. 

To quantify how well the bias detection test performs we esti-

ate the power of the test by recording the empirical power, the

roportion of times we reject the null hypotheses over G = 10 0 0

acro-replications; we call this estimate ̂ p . We then observe how

lose the empirical estimate ̂ p gets to the nominal power, 1 − α2 =
 . 8 , for γ = b approx , given the functional form of η( · ), m and r . We

lso record the average of the estimates of the bias due to input

odelling, ̂ b , over the G replications, b̄ , for comparison with the

rue bias, b . The results are presented in Table 1 . 
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In the linear system, Eq. (12) , there is no bias. In Table 1 it can

be seen that we reject the null hypothesis of no bias and the lack-

of-fit test in approximately 5% of all the linear cases corresponding

to the pre-set size of the tests, 0.05, as required. 

In the quadratic system, Eq. (13) , the delta approximation of

bias is exact, so b approx = b, and centering the CCD at θθθmle rather

the θθθ c does not matter since the response is globally quadratic. We

would therefore expect the power hold at 1 − α2 plus or minus

sampling error. In Table 1 we see this for m = 10 0 0 and it is close

for m = 100 where the error in 

̂ p is roughly ± 0.04. When m = 10

however, we see a lower power than expected and a discrepancy

between b = b approx and b̄ . When the quantity of real-world input

data is so exceptionally small, use of the plug-in estimate ̂ � with-

out accounting for its variance is likely the cause. 

Two cubic functions were also considered. When the response

surface is cubic the locally quadratic assumption of our response

surface not strictly correct, but it may be reasonable depending

on the cubic function. Here b , the true bias due to input mod-

elling, contains the third moment of the MLEs of the input distri-

butions, E [( θθθmle ) 3 ] ; these can be calculated using the skewness of

the MLEs: Skew (θmle 
i 

) = 2 / 
√ 

m , for i = 1 , 2 . The delta approxima-

tion of the bias due to input modelling, b approx , is a second-order

approximation and therefore does not take the higher moments

into account. However, in results Table 1 it can be seen that as

m increases b approx → b since 2 / 
√ 

m → 0 as m → ∞ . 

The first cubic function, Eq. (14) , was selected such that the

quadratic approximation was reasonable over the space covered by

the CCD design. In Table 1 we see that, when the smallest values

of m and r were used, the lack-of-fit test is passed approximately

the same proportion of times as the quadratic function, and we see

similar results to the quadratic experiment. As m and r increase we

see the power get increasingly close to 0.8 and the delta approxi-

mation, b approx , converges to b . Overall our method works well for

this example. 

The second cubic function, Eq. (15) , was chosen so that the

quadratic assumption was a poor approximation over the CCD

space for the smallest values of m and r considered. When m = 10

and r = 50 the lack-of-fit test rejected the the quadratic model in

approximately 60% of the G = 10 0 0 macro replications; this was

the best case, but overall this test was not very sensitive to the

lack of fit. In Table 1 we see that the power of the bias test is often

higher than our nominal value of 0.8 for small values of m and r

even when the average estimated bias, b̄ , differs substantially from

b and b approx ; this is good, but we should not expect it to be a gen-

eral phenomenon. Increasing m or r has the effect of shrinking the

width of the CCD making the quadratic assumption over our CCD

space a better approximation. 

This experiment shows the importance of the locally quadratic

assumption over the CCD space. When the quadratic assumption

does not hold our estimate of the bias, ̂ b , can be quite different

from b when m is small. Using the lack-of-fit test to validate the

quadratic assumption is therefore advised, but is not a panacea;

recall this requires no additional simulation effort. Another prob-

lem is that, for small m , the distance between θθθmle and θθθ c may be

quite large, implying that we estimate the Hessian of the response

surface at the wrong point which could impact both the estimate

of the bias and the power of the test. 

4.2. A realistic example - NHS 111 healthcare call centre 

We now illustrate our bias detection diagnostic on the sim-

ulation of a real-world system with a non-stationary input pro-

cess. The nominal experiment is based on observations of arrival

counts over 96, 15-minute intervals, from an NHS 111 healthcare

call centre in the UK. As previously described, the NHS 111 system

was designed to remove some of the strain from other healthcare
ervices, for example emergency departments, by advising callers

n which service they should access. Of the 6 months of data we

ad we decided to consider Wednesdays only as UK public holi-

ays mid-week are rare and therefore we would expect no outliers

n the arrival rates. 

After checking the Poisson assumptions were satisfied by the

rrival data, this system was simulated as an M ( t )/ G / S ( t ) queue-

ng model with a non-stationary Poisson arrival process having

 piecewise-constant rate. Based on data from the NHS 111 sys-

em we conducted two experiments with different levels of input

ata. Let s denote the number of days of observations of the ar-

ival process. Figs. 3 a and 3 b show the average rates over s = 10

nd s = 26 days of arrival count data, respectively. In both scenar-

os change-point analysis for Poisson data, as discussed in Chen

nd Gupta (2011) , was used to distinguish between intervals with

ignificantly different arrival counts. This pre-processing technique

as used because the IU variance in each small interval may be

arge, especially in intervals with low arrival rates where we would

ot expect to observe many arrivals. The change-point analysis re-

uced the arrival rate process to 7 and 8 intervals of varied length

or the two scenarios; see the blue intervals in Figs. 3 a and 3 b. Us-

ng the methods discussed by Morgan et al. (2016) we were then

ble to estimate the total IU variance, ̂ κ, of the expected waiting

ime of callers, E ( WTime ) , in both cases. 

From two months of service-time data the mean service time

as 8.00 minutes and the standard deviation was 4.33 minutes. A

oment matching approach was used to fit a Gamma distribution

ith shape parameter φ1 = 3 . 408 and scale parameter φ2 = 2 . 347 .

ince we wanted to mimic having observed a service time for each

rrival, we created a synthetic “observed” data set of service-time

bservations of size m , corresponding to the expected number of

rrivals in each scenario, and treated this as the real-world service

ime data. 

To generate a realistic scenario we used approximately propor-

ional staffing to meet the NHS target level of service, P( WTime >

 min ute ) < 0 . 05 . This corresponded to server utilisation of 62% in

he model with s = 10 days of arrival data and 65% in the sys-

em with s = 26 days of arrival data. In the nominal experiment

stimates of the expected waiting time of callers were found to

e E(WTime) = 0 . 0756 minutes and E (WTime) = 0 . 0674 minutes,

espectively; this is our performance measure of interest. 

For both systems we carry out the bias diagnostic test, as de-

cribed in Section 3 , and within this we run the lack-of-fit diag-

ostic test to investigate our quadratic approximation. An estimate
 of IU variance is used to guide our choice of the relevant bias,

. Note that, γ will therefore reduce with m , the amount of input

ata, because IU variance is also reduced. We want a high power of

ejecting the null if the true bias is larger than γ = 

√ 

υ ×̂ κ where

 < υ < 1 . This gives us a threshold of the bias deemed to have an

mportant effect on the MSE. Estimates of θθθ c and � were obtained

rom the input data, and σ 2 from the nominal experiment. 

The desired power of the bias detection test was set equal to

 − α2 = 0 . 8 and the size to α1 = 0 . 05 ; the size for the lack-of-fit

est is also 0.05. For these experiments the relevant bias, γ , was

et using υ = 0 . 3 , meaning we consider bias squared higher than

0% of the value of IU variance to be relevant. 

For the two scenarios the number of input parameters driving

he simulations are k = 9 and k = 10 , respectively. This comes from

he piecewise-constant arrival rate process having 7 or 8 distinct

ntervals, which are treated as independent input distributions; the

nal two parameters describe the service-time distribution. We

onducted experiments employing both the full-factorial CCD and

he reduced fraction CCD design proposed by Sanchez and Sanchez

2005) . The latter design reduced the number of factorial points

n both experiments to n F = 128 from n F = 512 and n F = 1024 , re-

pectively. Note that in all experiments we repeat the centre point
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Fig. 3. The average arrival counts over 96, 15 minutes, intervals given s days of arrival data. Intervals post pre-processing of the data using change-point analysis are shown 

in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

The bias detection test in a NHS 111 system considering the expected waiting time of callers, E ( WTime ) , 

with s = 10 and s = 26 days of arrival data. Results for both the bias and the lack-of-fit tests are pre- 

sented. 

Design Exp s m n r γ a ̂ b Bias LOF 

Full 1 10 20068 550 500 0.0035 0.577 0.0014 Accept Reject 

550 10 0 0 0.0035 0.485 0.0019 Accept Accept 

Frac 2 10 20068 166 500 0.0035 0.603 0.0013 Accept Reject 

166 10 0 0 0.0035 0.507 0.0 0 05 Accept Accept 

Full 3 26 52711 1064 500 0.0024 0.699 0.015 Reject Reject 

1064 10 0 0 0.0024 0.588 0.011 Reject Reject 

Frac 4 26 52711 168 500 0.0024 0.737 0.005 Reject Accept 
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 C = 20 times. The results of the bias detection test are displayed

n Table 2 . 

Before we analyse the results of our bias detection test note

hat in Table 2 for experiments 1, 2 and 3 the result of the lack-of-

t test in the initial experiment with r = 500 replications at each

esign point was to reject the quadratic model. For this reason

e repeated these experiments, increasing the number of replica-

ions at each design point from r = 500 to r = 10 0 0 . This did not

hange the conclusion of the bias detection test, but did result in

xperiments 1 and 2 passing the lack-of-fit test. Thus, in these two

xperiments with r = 10 0 0 we have no strong evidence that our

uadratic approximation is inadequate. In experiment 3, even with

 = 10 0 0 , the lack-of-fit test rejects the null, suggesting a more

omplicated model is required to describe the response surface.

ote that, although we doubled the number of replications at each

esign point the scaling factor of the design, a , only decreased by

 small amount. Acquiring a scaling factor small enough for the

uadratic approximation to hold may take a much larger number

f replications; recall that r = O (1 /a 4 ) . 

In experiments 1 and 3 we use the full-factorial CCD and in ex-

eriments 2 and 4 we use the reduced fractional CCD by Sanchez

nd Sanchez (2005) . In Table 2 we see that the conclusion of the

ias detection test given the full CCD agrees with the conclusion

hen the reduced fractional design is used for both levels of ar-

ival data. The scalability of our method was an issue of concern to

s. Here we see a great reduction in the number of design points,

 , and thus computational effort, required to estimate the bias due

o input modelling when using the reduced experimental design,

et we are still able to gain an estimate ̂  b reasonably close to the

stimate from the full CCD and make the same conclusion using

he bias detection test. 
In Table 2 we also see that, given a larger number of days of

bservations of the NHS 111 system γ , our relevant value of the

ias, decreases from γ = 0 . 0034 to γ = 0 . 0024 . This is because we

sed IU variance to guide our value of γ and the estimate of IU

ariance, ̂  κ, is smaller in the system with more days of input data.

ur bias detection test is set up so that when | b | ≥γ we have high

ower of detecting the bias. Since γ is higher in experiments 1 and

 with s = 10 days of observations we require a larger departure

rom H 0 than we do in the experiments where s = 26 to have a

igh probability of rejecting the null. Further, given a large amount

f input data the variability of the MLE’s will be small. With our

ethod this causes a smaller variance about the bias due to input

odelling, Var ( ̂  b ) , which in turn increases the power of our bias

etection test. 

Turning our attention to the conclusions of the bias detection

ests in Table 2 , we see that in experiments 1 and 2, with s = 10

ays of arrival data, we accept the null hypothesis, so there is in-

ufficient evidence to suggest b � = 0 in these experiments. Since we

et our threshold for relevant b 2 to 30% of the input uncertainty

ariance, and controlled the power to detect a bias larger than this

ize, our conclusion is more practically stated as the bias is making

 small contribution to overall MSE due to input modelling. 

In experiments 3 and 4, with s = 26 days of observations, we

eject the null hypothesis; that is, we have sufficient evidence to

uggest that b � = 0. At this point we may wish to spend additional

omputational effort on estimating ̂ b , to get a more precise esti-

ate of the bias due to input modelling about our performance

easure estimate. Alternatively, at this point the practitioner may

ish to reduce the bias to a level that does not concern them

y collecting more input data and repeating the bias detection

est. 
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We have now illustrated our bias detection test on a realis-

tic example. This example had a non-stationary piecewise-constant

rate Poisson arrival process that we pre-processed using change-

point analysis. Note that the location of the change-points will

have had an effect on the bias due to input modelling. Change-

point analysis aids the choice of arrival intervals but does not guar-

antee an arrival function that represents the true arrival process

perfectly propagating minimal error due to input modelling to our

simulation output. 

5. Conclusion 

This paper presents a test with controlled power for detecting

a bias of a relevant size caused by input distributions with param-

eters estimated from real-world data. Previously this form of error

has been virtually ignored. The test is built on the assumption that

close to θθθ c the true response can be approximated by a quadratic

model. We fit the quadratic response surface using a CCD experi-

mental design, which is constructed in a novel way allowing the

practitioner to control the power of the bias detection test through

the scaling of CCD width or the number of replications at each de-

sign point. 

We explored and evaluated the bias detection test using a con-

trolled experiment investigating the functional form of the re-

sponse surface, the amount of input data and the number of repli-

cations completed at each design point. This experiment high-

lighted the importance of the validity of our quadratic assumption

over the CCD space for our power to hold. We were also able to

show that by increasing the number of replications of the exper-

iment at each design point or the number of observations used

to estimate our input models we achieved our target power. Also

influential was the distance between the estimated input model

parameters, θθθmle , and the true input model parameters, θθθ c , which

was seen to affect both the estimate of the power and the esti-

mate of the bias. We also demonstrated the bias detection test in

a realistic NHS 111 system example. This included the use of the

IU variance to guide our choice of the relevant value of the bias. 

From our exploration of quantifying and detecting the bias due

to input modelling there still remain open questions that may be of

interest. One of these is the study of other performance measures

beyond the mean response. In this contribution our focus was on

detecting the bias caused by input modelling in the expected value

of a performance measure of interest; in future this could be ex-

tended to other measures such as the variance or the quantiles.

Another question is how we might optimally set n C the number of

centre points in our model. Currently n C is set in an ad hoc man-

ner dependent on the number of factorial and axial points in the

CCD. Also of interest is how we might optimally set r , the number

of replications of the simulation at each design point. Recall that r

controls a , the scaling factor for the width of the CCD. 

We need r large enough to ensure our quadratic assumption

holds sufficiently closely but do not wish to waste unnecessary

simulation budget. In the experiments in this paper we chose r to

be suitably large to satisfy our quadratic assumption. 

In the NHS 111 example we used change-point analysis to form

the arrival-process input model, which introduces its own error,

but more generally input model misspecification is a source of

model risk not captured here (e.g., if the arrival process is not ac-

tually Poisson). Similarly, we found that the lack-of-fit test was not

as strong an indicator as one might like of approximation error.

This could be due to the assumption of constant variances over

the CCD, or the assumption of normally distributed simulation re-

sponses. This is an important problem for future study. 

Note that our method can be used alongside current IU vari-

ance quantification techniques, allowing us to express the total

error due to input modelling of our performance measures of
nterest. Current techniques allow IU variance quantification for

imulation models with time-homogeneous distributions and

iecewise-constant rate non-stationary Poisson processes. Estima-

ion and detection of error due to input modelling in simulation

ith more complex arrival processes is something we leave for fu-

ure work. 

In conclusion, this paper offers the first method for estimation

nd detection of the bias due to input modelling. In doing so it

llows a practitioner to consider the total error due to input mod-

lling that may impact their performance measures of interest. 
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ppendix A. Variability of the Jackknife estimator of bias 

The jackknife method is an alternative to the delta-method that

an be used for bias estimation. Usually when quantifying the bias

e refer to the bias of a statistic of interest, for example a pop-

lation parameter given a sample of data; in this case let us de-

ote the jackknife estimator of bias ̂ b JK . In stochastic simulation

he statistic we would like to examine is the expected value of the

imulation response, η( · ). However, we can only observe this in

he presence of simulation noise. In this appendix we investigate

he effect of simulation noise on the variability of the jackknife es-

imator of the bias. 

As a simplification, consider a stochastic simulation model with

 single input parameter, θ c from a single input model. Let θmle 

e the maximum likelihood estimator (MLE) of θ c based on m ob-

ervations of the input distribution and θmle 
(i ) 

is the “reduced infor-

ation” MLE based on all but the i th observation. The jackknife

stimate of the bias is 

 

 JK = (m − 1) 

[ 

1 

m 

m ∑ 

i =1 

η(θmle 
(i ) ) − η(θmle ) 

] 

. 

ince we cannot evaluate η( · ) directly, the natural extension to

imulation output is, 

 

 JK+ noise = (m − 1) 

[ 

1 

m 

m ∑ 

i =1 

1 

r 

r ∑ 

j=1 

Y j (θ
mle 
(i ) ) −

1 

r 

r ∑ 

k =1 

Y k (θ
mle ) 

] 

(16)

hich requires r independent replications of the simulation at each

educed information MLE, θmle 
(i ) 

, and independent of this r replica-

ions of the simulation at the MLE, θmle . Within (16) the output

f a replication of the simulation can be decomposed into the ex-

ected simulation response plus simulation noise 

 

 JK+ noise 

= (m − 1) 

[ 

1 

m 

m ∑ 

i =1 

1 

r 

r ∑ 

j=1 

(η(θmle 
(i ) ) + εi j ) −

1 

r 

r ∑ 

k =1 

(η(θmle ) + εk ) 

] 

= (m − 1) 

[ 

1 

rm 

r ∑ 

j=1 

m ∑ 

i =1 

η(θmle 
(i ) ) −

1 

r 

r ∑ 

k =1 

η(θmle ) 

+ 

1 

rm 

r ∑ 

j=1 

m ∑ 

i =1 

εi j − 1 

r 

r ∑ 

k =1 

εk 

] 

, (17)

https://doi.org/10.13039/501100000266
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here ε ij ∼ i.i.d(0, σ 2 ) and εk ∼ i.i.d (0, σ 2 ). Here (17) can be

hought of as breaking ̂  b JK+ noise into ̂  b JK , the jackknife estimator of

he bias without simulation noise, and ̂

 b noise , the additional vari-

bility in the estimator of the bias caused by simulation noise. 

The key to this investigation is the variance of ̂  b noise 

ar ( ̂  b noise ) = Var 

(
(m − 1) 

[
1 

rm 

r ∑ 

j=1 

m ∑ 

i =1 

εi j − 1 

r 

r ∑ 

k =1 

εk 

])

= (m − 1) 2 

[ 

1 

r 2 m 

2 

r ∑ 

j=1 

m ∑ 

i =1 

Var (εi j ) + 

1 

r 2 

r ∑ 

k =1 

Var (εk ) 

] 

= (m − 1) 2 
[

σ 2 

rm 

+ 

σ 2 

r 

]
= (m − 1) 2 

(m + 1) σ 2 

rm 

(18) 

hich is, for large m , approximately equal to m 

2 σ 2 / r . This says

hat, in the presence of simulation noise, the number of simulation

eplications per reduced information MLE, r , required to maintain a

onstant level of error as m grows is r = O (m 

2 ) , and the total num-

er of simulation replications to compute the jackknife with con-

tant error grows as O ( m 

3 ). For stochastic simulation models with

ore than one input parameter this effect would be even greater.

hus, it is clear that significant simulation effort may be required;

therwise the jackknife estimate of this bias could be obscured by

he presence of simulation noise. 

ppendix B. Asymptotics of b and b approx 

Using Taylor series we show that, under certain assumptions, as

 → ∞ the bias, b = E [ η( θθθmle )] − η( θθθ c ) , coincides with the delta

pproximation of the bias, b approx . 

ssumption B.1. Let the expected simulation response, η : R 

k →
 , 

1. Be three times continuously differentiable in a closed ball G

centred at θθθ c . 

2. Have bounded above, third-order partial derivatives such that

in the closed ball G , there exists some M > 0, for all s s s ∈ G,
∂ 3 η( s s s ) 

∂ θi ∂ θ j ∂ θp 
≤ M for i, j, p = 1 , 2 , . . . , k . 

ssumption B.2. Let the simulation be driven by L independent,

arametric input distributions, with k ≥ L input parameters. As-

ume we have m observations for each of the L distributions. Now

et θθθmle ∈ R 

k be the vector of MLEs given the m observations of

ach input distribution. We assume the MLEs satisfy standard con-

itions implying that 

1. The MLEs converge in mean, E (θmle 
i 

− θ c 
i 
) → 0 as m → ∞ for i =

1 , 2 , . . . , k . 

2. The MLEs are asymptotically normal, 
√ 

m ( θθθmle − θθθ c ) 
D →

MVN k ( 0 0 0 , I 0 ( θθθ
c ) −1 ) = Z Z Z . 

3. For some ε > 0, | θmle 
i 

− θ c 
i 
| 3+ ε are uniformly integrable for all

m ∈ N , and i = 1 , 2 , . . . , k . 

heorem B.1. Let Assumptions B.1 and B.2 hold. Then as m → ∞ the

caled bias, mb , and the scaled delta approximation, mb approx , both

onverge to 

1 

2 

tr (I 0 ( θθθ
c ) −1 H( θθθ c )) . 

roof. Convergence of the MLEs implies that for m large enough

e will have θθθmle ∈ G . Therefore, under Assumption B.1 .1, the ex-

ected simulation response at θθθmle ∈ G can be expanded via a Tay-

or series as 
( θθθmle ) = η( θθθ c ) + ∇η( θθθ c ) T ( θθθmle − θθθ c ) 

+ 

1 

2 

( θθθmle − θθθ c ) T H( θθθ c )( θθθmle − θθθ c ) + ϒ3 ( θθθ
mle ) , (19) 

here ϒ3 ( θθθ
mle ) is the remainder, made up of higher-order terms

f the Taylor series. For k ≥ 3 there exists ρρρ ∈ G such that 

3 ( θθθ
mle ) = 

1 

6 

k ∑ 

i =1 

(θmle 
i − θ c 

i ) 
3 ∂ 

3 η( ρρρ) 

∂ θi 
3 

+ 

1 

2 

k ∑ 

i =1 

k ∑ 

j =1 , j � = i 
(θmle 

i − θ c 
i ) 

2 (θmle 
j − θ c 

j ) 
∂ 3 η( ρρρ) 

∂ θi 
2 ∂ θ j 

+ 

1 

6 

k ∑ 

i =1 

k ∑ 

j =1 , j � = i 

k ∑ 

p=1 ,p� = i, j 
(θmle 

i − θ c 
i )(θ

mle 
j 

− θ c 
j )(θ

mle 
p − θ c 

p ) 
∂ 3 η( ρρρ) 

∂ θi ∂ θ j ∂ θp 
. 

y taking the expectation of (19) we may write bias due to input

odelling as 

 = E [ η( θθθmle )] − η( θθθ c ) = ∇η( θθθ c ) T E ( θθθmle − θθθ c ) 

+ 

1 

2 

E 

[
( θθθmle − θθθ c ) T H( θθθ c )( θθθmle − θθθ c ) 

]
+ E [ϒ3 ( θθθ

mle )] . 

ote that, the delta approximation of bias only takes into account

he second-order term in this expansion 

 

approx = 

1 

2 

E 

[
( θθθmle − θθθ c ) T H( θθθ c )( θθθmle − θθθ c ) 

]
= 

1 

2 

tr 
(
�H( θθθ c ) 

)
here � = Var ( θθθmle ) , and under Assumption B.2 .2, lim 

m →∞ 

m � =
 0 ( θθθ

c ) −1 the inverse Fisher information matrix. We can therefore

rite b = b approx + c( θθθmle ) ; that is, the bias due to input mod-

lling is equal to the delta approximation of bias, b approx , plus a

unction c ( · ) containing the expectation of the additional terms

f the Taylor expansion evaluated at θθθmle . Clearly mb approx →
r (I 0 ( θθθ

c ) −1 H( θθθ c )) / 2 ; we will show that mc( θθθmle ) → 0 . 

Consider the expectation of the first order term of the Taylor

eries expansion. By Assumption B.2 .1, E ( θθθmle − θθθ c ) → 0 as m → ∞
nd therefore ∇η( θθθ c ) E ( θθθmle − θθθ c ) → 0 as m → ∞ . 

Next consider the expectation of the remainder term,

 [ϒ3 ( θθθ
mle )] . Under Assumption B.1 .2 the third-order par-

ial derivatives are bounded above at ρρρ ∈ G by M > 0 for

, j, p = 1 , 2 , . . . , k . Thus by linearity of expectation we have, 

 

[
ϒ3 ( θθθ

mle ) 
]

≤ 1 

6 

k ∑ 

i =1 

E [(θmle 
i − θ c 

i ) 
3 ] M 

+ 

1 

2 

k ∑ 

i =1 

k ∑ 

j =1 , j � = i 
E [(θmle 

i − θ c 
i ) 

2 (θmle 
j − θ c 

j )] M 

+ 

1 

6 

k ∑ 

i =1 

k ∑ 

j =1 , j � = i 

k ∑ 

p=1 ,p� = i, j 
E [(θmle 

i 

− θ c 
i )(θ

mle 
j − θ c 

j )(θ
mle 
p − θ c 

p )] M. (20) 

e will now show that m × (20) converges to 0 as m → ∞ and

hus, by sandwich rule, the scaled expectation of the remainder,

 E 

[
ϒ3 ( θθθ

mle ) 
]
, converges to 0. Here the behaviour of the RHS of

20) depends on the behaviour of E [(θmle 
i 

− θ c 
i 
)(θmle 

j 
− θ c 

j 
)(θmle 

p −
c 
p )] for i, j, p = 1 , 2 , . . . , k . Taking the modulus of this expecta-

ion and applying Holder’s inequality, ( Hardy, Littlewood, & Pólya,

952 ), followed by the arithmetic mean - geometric mean inequal-

ty ( Abramowitz & Stegun, 1964 ), we have 
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O  
| E [(θmle 
i − θ c 

i )(θ
mle 
j − θ c 

j )(θ
mle 
p − θ c 

p )] | 
≤ E 

[| (θmle 
i − θ c 

i ) || (θmle 
j − θ c 

j ) || (θmle 
p − θ c 

p ) | 
]

= E 

[ 
3 

√ 

| (θmle 
i 

− θ c 
i 
) | 3 | (θmle 

j 
− θ c 

j 
) | 3 | (θmle 

p − θ c 
p ) | 3 

] 
≤ 1 

3 

E [ | (θmle 
i − θ c 

i ) | 3 ] + 

1 

3 

E [ | (θmle 
j − θ c 

j ) | 3 ] 

+ 

1 

3 

E [ | (θmle 
p − θ c 

p ) | 3 ] . (21)

By Assumption B.2 .2 and B.2 .3, 
√ 

m E [ | ( θθθmle − θθθ c ) | 3 ] → E [ | Z Z Z | 3 ] ;
that is, the third absolute moment of the MLE converges to the

third absolute moment of the multivariate normally distributed

random variable Z Z Z ( Osius, 1989 ). Thus, 

m 

3 
2 E [ | (θmle 

i − θ c 
i ) | 3 ] → 

1 √ 

π

(
2 I 0 ( θθθ

c ) −1 
ii 

) 3 
2 
, 

as m → ∞ for i = 1 , 2 , . . . , k, ( Winkelbauer, 2012 ). Here I 0 ( θθθ
c ) −1

ii 
is the i th diagonal element of the Fisher information matrix of

the joint distribution of the k input parameters. This says that

as m → ∞ , m E [ | (θmle 
i 

− θ c 
i 
) | 3 ] → 0 for i = 1 , 2 , . . . , k and therefore

m × (21) converges to 0 as well. 

By applying the sandwich rule we have m | E [(θmle 
i 

−
θ c 

i 
)(θmle 

j 
− θ c 

j 
)(θmle 

p − θ c 
p )] | → 0 as m → ∞ for i, j, p = 1 , 2 , . . . , k .

Thus, m E [(θmle 
i 

− θ c 
i 
)(θmle 

j 
− θ c 

j 
)(θmle 

p − θ c 
p )] → 0 as m → ∞ for

i, j, p = 1 , 2 , . . . , k . Therefore m × (20) converges to 0 and thus the

scaled remainder m E [ϒ3 ( θθθ
mle )] → 0 as m → ∞ . All components of

mc( θθθmle ) converge to 0 as m → ∞ as required. �

Appendix C. Asymptotics of ̂ b 

Our delta approximation of the bias is b approx = 

1 
2 tr (�H( θθθ c )) ,

where H( θθθ c ) is the Hessian matrix of the second-order par-

tial derivatives of η( · ) evaluated at θθθ c and � = Var ( θθθmle ) , the

variance-covariance matrix of the MLEs. Due to the unknowns

in b approx we estimate it by ̂ b = 

1 
2 tr ( ̂

 �̂ H ( θθθmle )) . We now show

that, under certain assumptions, m ̂

 b converges to mb approx =
1 
2 tr (I 0 ( θθθ

c ) −1 H( θθθ c )) . 

Assumption C.1. The expected simulation response, η : R 

k → R , is

quadratic; i.e., 

η( θθθ ) = β0 + θθθ T βββ + θθθ T B 

B B θθθ. (22)

Assumption C.2. Except for the point at which it is centered, the

CCD is fixed and sufficient to support Model (22) such that ̂  B i j ∈ R ,

the least squares estimator of B ij is a consistent estimator for i, j =
1 , 2 , . . . , k . That is, ̂  B i j 

P → B i j as r → ∞ for i, j = 1 , 2 , . . . , k . 

Assumption C.3. Let the simulation be driven by L independent

parametric input distributions, with k ≥ L input parameters. As-

sume we have m observations from each of the L distributions.

Now let θθθmle ∈ R 

k be the vector of MLEs given the m observations

of each input distribution. We assume that 

1. The MLEs are consistent, θmle 
i 

P → θ c 
i 

as m → ∞ for i = 1 , 2 , . . . , k .

2. The scaled variance of the MLEs m � tends to the inverse

Fisher information at θθθ c , I 0 ( θθθ
c ) −1 , as m → ∞ , m � → I 0 ( θθθ

c ) −1

as m → ∞ . 

3. The inverse Fisher information, I 0 (·) −1 , is continuous. 

Theorem C.1. Let Assumptions C.1 , C.2 and C.3 hold. Then the scaled

estimate of the delta approximation of bias, m ̂

 b , converges to the

scaled delta approximation of bias; that is, as m , r → ∞ 
 ̂

 b 
P → 

1 

2 

tr (I 0 ( θθθ
c ) −1 H( θθθ c )) . 

roof. First consider the Hessian. Under Assumption C.1 the ex-

ected simulation response is globally quadratic; therefore the

essian does not depend on where we evaluate it since 

( θθθ ) = 

⎛ ⎜ ⎜ ⎝ 

2 B 11 B 12 . . . B 1 k 

B 21 2 B 22 

. . . 
. . . 

B k 1 2 B kk 

⎞ ⎟ ⎟ ⎠ 

. 

hus ̂ b = 

1 
2 tr ( ̂

 �H( θθθmle )) and this proof is equivalent to showing

hat m ̂

 �H( θθθmle ) 
P → I 0 ( θθθ

c ) −1 H( θθθ c ) . 

Further, the least-squares estimators of the second-order terms

re unchanged by shifting the center point of the design. Thus,

nder Assumption C.2 , by completing r replications of the simu-

ation at each of the design points of the CCD we gain the con-

istent estimators of the second-order partial derivatives, ̂  B i j 
P → B i j 

or i, j = 1 , 2 , . . . , k, such that H( θθθ ) 
P → H( θθθ c ) as r → ∞ for any θθθ .

herefore, H( θθθmle ) 
P → H( θθθ c ) as r → ∞ . 

Now consider ̂ � = 

̂ Var ( θθθmle ) . In practice we use the plug in es-

imator ̂ � = I 0 ( θθθ
mle ) −1 /m . Under Assumption C.3 .1 and C.3 .3, us-

ng continuous mapping theorem, I 0 ( θθθ
mle ) −1 P → I 0 ( θθθ

c ) −1 as m → ∞
hus m ̂

 �
P → I 0 ( θθθ

c ) −1 as m → ∞ 

Finally, by applying Slutsky’s theorem we have m ̂

 �H( θθθmle ) 
P →

 0 ( θθθ
c ) −1 H( θθθ c ) as m , r → ∞ as required. �

emark 1. The results of Theorem B.1 and Theorem C.1 can be

xtended to the case where m 1 � = m 2 � = · · · � = m L provided that

 i / 
∑ L 

j=1 m j → c i > 0 , for some fixed values c i . 
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