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ABSTRACT

M, /G/Infinity queueing systems have been widely used to analyse complex systems, such as telephone call
centres, software testing systems, and telecommunication systems. Statistical inferences of performance
measures, such as the expected cumulative numbers of arrivals and departures, are indispensable for
decision makers in analysing the current scenario, predicting future scenarios, and making cost-effective
decisions. In most scenarios, we only obtain interval censored data, namely, counts in fixed time intervals,
instead of complete data because we either do not want or are not able to monitor arrivals and depar-
tures. We provide a general framework for statistical inference in M;/G/Infinity queueing systems given
interval censored data. A maximum-likelihood estimation (MLE) method is proposed for inferring the ar-
rival rate and service duration. This method is applicable to general forms of the arrival rate functions
and general service duration distributions. More importantly, we propose a combination of the bootstrap
method and the delta method for inferring the expected cumulative numbers of arrivals and departures.
The results of the simulation study demonstrate that the point and interval estimates of the proposed
MLE method are satisfactory overall. As the number of intervals increases, the estimates based on the
proposed MLE approach the estimates based on MLE with complete data. Our procedure enables esti-
mates to be obtained without the need to keep track of each item, thereby substantially reducing re-
source consumption for monitoring items and storing data. An application in a software testing system

demonstrates that the goodness-of-fit performance of the proposed MLE method is satisfactory.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An M;/G/oo queueing system is a relatively simple queueing
system that has a nonhomogeneous Poisson arrival process with
a time-dependent deterministic arrival rate function Ay = Aq(t),
independent and identically distributed (i.i.d.) service durations
that are independent of the arrival process, and infinitely many
servers. Time-varying queueing models, including M;/G/oco models,
are standard models for describing the dynamics of large-scale ser-
vice systems, such as telecommunication systems, call centres, and
healthcare systems, e.g., hospitals (Pender, 2016). Researchers have
applied M;/G/oo models to service systems, such as telemarketing,
police patrol, fire fighting, hospitals, copy machine repairs, and au-
tomatic teller machine operations. In these applications, an oper-
ating policy was to keep customer delays close to zero—a scenario
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that is consistent with the use of an infinite-server model (Green &
Kolesar, 1998). M;/G/oo models have been applied to storage sys-
tems to assess the day-by-day adequacy of stock (Crawford, 1977),
to analyse stock requirements (Hillestad & Carrillo, 1980), and to
evaluate war-readiness spare requirements for aircraft (Crawford,
1981). They also have been applied to software testing programs
(Vizarreta et al., 2018; Yang, 1996) and internet traffic systems (Fay,
Roueff & Soulier, 2007). The M;/G/oc model is the offered load
model for wireless and packet network systems, which describes
the total packet carrying capacity of the channels or links in a
packet network (Malhotra, Dey, van Doorn & Koonen, 2001; Palm,
1943; Singhai, Joshi & Bhatt, 2009). M;/G/oo models have been
used to describe the time-dependent variations in traffic at a base
station in a nomadic computing, wireless environment (Malhotra
et al,, 2001). Risk measures have been studied to assess the perfor-
mance of M;/G/oo queueing systems and the measures can be used
in staffing procedures, especially in healthcare systems (Pender,
2016). By considering the births and deaths of items as the arrival
and departure processes, we can also analyse the births and deaths
in a population with M;/G/oco models.
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Although, in practice, systems do not have an infinitely many
servers, various properties of an infinite server model are ap-
proximately (in an appropriate sense) true for finite-channel (and
even single-channel) servers if the arrival rate is sufficiently low
to yield a negligible probability that a customer will arrive to
find the service full (Newell, 1966). The model also provides a
reasonable description of congestion in actual operations under
similar circumstances (Green & Kolesar, 1998). In addition, the
number of busy servers in an infinite server model provides
insight about the number of servers that are required in practical
scenarios. Satisfactory analytical results are available for M;/G/co
queueing systems. Compared with finite-server queueing systems,
the number of busy servers, which is denoted as N(t), and the
departure rate, which is denoted as A4(t), of an M;/G/oo queueing
system are relatively simple to determine. The theory for infinite-
server models with time-dependent arrival rates is a useful frame
of reference for examining more difficult finite-server models with
time-dependent arrival rates (Massey & Whitt, 1993). Infinite-
server models are of interest both in their own right (Eick, Massey
& Whitt, 1993; Fay et al., 2007; Yang, 1996) and as approximations
for lightly to moderately loaded multiserver models (Eick et al.,
1993; Green & Kolesar, 1998; Massey & Whitt, 1993).

Research on queueing theory has provided important insights
into the behavioural, operational, and statistical problems in
queueing systems (Bhat, 1969). One key problem of queueing
theory has been statistical inference given information regard-
ing queueing systems such that we can analyse the current sce-
nario, predict future scenarios, and make cost-effective decisions
accordingly. In practical queueing scenarios, we often obtain large
amounts of data regarding queueing systems through observation,
such as the moments at which customers place calls to a call
centre and the moments at which they hang up. Call centre ser-
vice distribution behaviour has been analysed using Bayesian para-
metric and semi-parametric mixture models that can exhibit non-
standard behaviour and are based on real call centre data (Aktekin,
2014). Inter-dependent, heterogeneous, and time-varying service-
time distributions have been proposed that are based on a large-
scale data-based investigation of service durations in a call centre
with many heterogeneous agents and multiple call types (Ibrahim,
L'Ecuyer, Shen & Thiongane, 2016). Information in the form of ob-
served service durations was used to derive predictive probabil-
ity results for the waiting times of customers in a queue. The
results can be used in a multi-queue problem to assign arriving
customers to queues with the objective of minimizing the wait-
ing times (Coolen & Coolen-Schrijner, 2003). In M;/G/oco queueing
systems, we wish to infer the arrival rate function A4(t); the cu-
mulative distribution function (cdf), which is denoted by G, of the
service duration S; and, consequently, the performance measures
of interest, such as the expected cumulative numbers of arrivals
and departures, which are denoted as mgq(t) and my(t), respec-
tively, and the expected number of busy servers, which is denoted
as m(t). These measures give insight to service providers about
the number of servers that are required. Given complete data on
the queueing system, i.e., the arrival epoch and departure epoch of
each item, it is simple to infer A4(t) and G. However, in most sce-
narios, we can only obtain incomplete data since it is often difficult
or impossible to keep track of each item from arrival to departure
(Blanghaps, Nov & Weiss, 2013). Despite its substantial practical
value in practical scenarios, statistical inference with incomplete
data remains a major challenge, which is mainly due to the high
complexity of time-dependent queueing systems with incomplete
data.

Researchers have extensively studied statistical inference ap-
proaches given incomplete data in the M/G/co queueing system,
which is a simple and special case of the M;/G/oo queueing sys-
tem. An M;/G/oo queueing system is an M/G/oo queueing system

if the arrival process is a homogeneous Poisson process, i.e., if Aq
is a constant. Researchers mainly focus on three types of incom-
plete data: (1) the arrival and departure epochs without identifica-
tion of items (Blanghaps et al., 2013; Brown, 1970; Goldenshluger,
2018); (2) the queue-length process {N(t)} (Bingham & Pitts, 1999;
Goldenshluger, 2016; Pickands & Stine, 1997); and (3) the “busy-
period” process {I(N(t)) > 0}, which indicates only whether the
system is empty or not (Bingham & Pitts, 1999; Hall & Park, 2004;
Park, 2007). Due to the similarity between M/G/co queueing sys-
tems and M;/G/oo queueing systems, many approaches and results
in M/G/oco queueing systems can be extended to M;/G/oo queue-
ing systems. However, in M/G/co queueing systems, researchers fo-
cus on the steady state of the systems, in contrast to the tran-
sient behaviour in M;/G/oo queueing systems. Common relations
for steady-state queueing systems, such as Little’s law, must be
reformulated in M;/G/co queueing systems (Schwarz, Selinka &
Stolletz, 2016). Since the arrival and departure rate functions are
time-dependent in M;/G/oo queueing systems, many properties in
M/G/oo queueing systems do not hold in M;/G/oco queueing sys-
tems. To examine the dynamics of real systems (Andersen, Nielsen,
Reinhardt & Stidsen, 2019; Dhingra, Kumawat, Roy & de Koster,
2018; Liu, 2018; Massey, 2002, Parker; Pender, 2016; Schwarz et
al., 2016), it is essential to study M;/G/co queueing systems.

We are interested in one type of incomplete data that is com-
monly used, interval censored data, which are also known as
grouped data and panel count data and are specified as counts that
occur in fixed time intervals, as opposed to the exact times be-
cause we cannot perform continuous observations in many cases.
Interval censored data are similar but more complicated than data
type (1) above since neither the correspondence between the ar-
rivals and departures nor the exact arrival and departure times
are known. Yang (1996) inferred the parameters regarding the ar-
rival process and service duration separately: the arrival process
parameters were estimated using the Laplace trend statistic and
the service duration parameters were estimated based on the es-
timated arrival process parameters. The least-squares estimation
(LSE) method is a convenient and efficient method for parame-
ter estimation (Xie, Hu, Wu & Ng, 2007); however, the maximum-
likelihood estimation (MLE) method is preferable due to its numer-
ous asymptotic optimality properties. A likelihood function for the
arrival and departure process was formulated with the hidden as-
sumption that the combined distribution of any future cumulative
numbers of arrivals and departures depends solely on the present
values (Wu, Hu, Xie & Ng, 2007). Then, the hidden assumption was
relaxed and an MLE method for the joint process was proposed,
which can be applied to more general scenarios and can provide
more accurate results (Wang, Hu & Liu, 2016). Since we occasion-
ally encounter several difficulties in solving the likelihood func-
tion, an alternative parameter estimation algorithm that is based
on the EM principle was developed (Wang, 2016). Algorithms that
are based on the Bayesian framework were also presented (Wang,
Hu & Xie, 2015). In all the research that is discussed above, point
estimation and interval estimation are proposed for model param-
eters of the fault detection process and the correction process in
software testing projects, which can be viewed as M;/G/co queue-
ing systems. However, we are more concerned with the perfor-
mance measures of queueing systems in practical queueing sce-
narios, such as the expected cumulative numbers of arrivals mg(t)
and departures m,(t). Statistical inference on these measures has
not yet been studied.

Our major contribution in this paper is that we provide a gen-
eral framework for handling the statistical inference problem in
M;/G/oo queueing systems given interval censored data. In many
cases, we may either not want or not be able to monitor arrivals
and departures; in such cases, only the count of items in the queue
is observed (Pickands & Stine, 1997). In addition, observers may
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only record data at fixed time points instead of observing continu-
ously to maintain cost-effectiveness, among other reasons. As a re-
sult, interval censored data are commonly used in practical scenar-
ios (Brown et al., 2005; Deng & Mark, 1993; Mandelbaum, Sakov
& Zeltyn, 2000; Massey et al.,, 1996). Although extensive studies
have been conducted on statistical inference approaches in similar
scenarios for the homogeneous cases, M/G/oco queueing systems,
the dynamics of real systems (Andersen et al., 2019; Dhingra et al.,
2018; Liu, 2018; Massey, 2002; Massey et al., 1996; Pender, 2016;
Schwarz et al., 2016) have not been considered. In this paper, we
study the transient behaviour in the nonhomogeneous cases, the
M;/G/oo queueing systems, which better accord with practical sce-
narios. We provide a general MLE method for inferring the arrival
rate and service duration in M;/G/oo queueing models given inter-
val censored data; this method is applicable to a general service
duration distribution G. More importantly, we propose a combi-
nation of the bootstrap method and the delta method for infer-
ring the expected cumulative numbers of arrivals and departures,
which are indispensable for decision makers in determining the
number of required servers. The remainder of the paper is orga-
nized as follows: In Section 2, we formulate the problem, describe
the maximume-likelihood estimation method and propose a combi-
nation of the bootstrap method and the delta method for approxi-
mating the confidence intervals of m,(t) and my(t). In Section 3, a
simulation study is conducted to study the goodness-of-fit perfor-
mance of our proposed MLE method. We study the impact of the
number of intervals on M;/G/oo queueing models with exponen-
tial and log-normal service durations. In Section 4, we apply our
proposed MLE method on a software testing system. In Section 5,
we present the conclusions of this work and discuss possible di-
rections for future study.

2. Maximum-likelihood estimation in M;/G/co queueing
systems given interval censored data

In M;/G/oo queueing systems, we wish to infer the arrival rate
function A, (t); the cdf G of the service duration given interval
censored data; and, consequently, other performance measures of
interest, namely, the cumulative numbers of arrivals and depar-
tures. In Section 2.1, we review the essential properties of M;/G/oo
queueing systems, which are vital to the estimation of the per-
formance measures in Section 2.3, and approaches for identifying
these properties, which shed light on the formulation of the likeli-
hood function in Section 2.2.

2.1. Performance analysis of M¢/G/oo queueing systems

In M:/G/oo queueing systems, customers do not interact. Be-
cause there are infinitely many servers, customers do not interfere
with one another; due to the Poisson arrivals, the arrival time of a
customer carries no information about the arrival time of the other
customers (Eick et al., 1993). Thus, satisfactory analytical results
are available for M;/G/co queueing systems. If a system is initially
empty, the number of busy servers at time t, namely, N(t), has a
Poisson distribution with mean

m(t) = /Ot Aa(W)[1 = G(t —u)]du

and the departure process is also a nonhomogeneous Poisson pro-
cess with mean

my(t) = /Ot Aa(U)G(t —u)du.

If the system is not initially empty, we can calculate the value
of m(t) via the probability generating function (pgf) of N(t); see
Keilson and Servi (1994).

(2.1)

(2.2)

The properties above can be obtained via several approaches.
A simple approach is to take advantage of a property of Poisson
processes: a censored Poisson process is Poisson and the sum of
Poisson random variables is a Poisson random variable (Crawford,
1981). In addition, an item departs after it has arrived and its
service has been completed; hence, the departure process can be
modelled as a delayed arrival process (Xie et al., 2007). In addi-
tion to direct approaches for evaluating the probabilities, the rel-
evant theory for infinite-server models is well established in the
theory of stochastic point processes and random measures (Massey
& Whitt, 1993). The arrival epoch and service duration generate a
Poisson random measure on Euclidean space; see Daley and Vere-
Jones (1988), Foley (1982), Foley (1986), Prekopa (1958), Rényi
(1967) and pp. 26-31 of Serfozo (1990).

The most direct approach is to evaluate the probabilities for
various events directly from the properties of the arrival and ser-
vice duration distributions. This method sheds light on the formu-
lation of the likelihood function given interval censored data. To
obtain the distribution of N(t), Hillestad and Carrillo (1980) ini-
tially evaluated the conditional probability. Denote by N,(t) the
number of arrivals by time t. The conditional probability P(N(t) =
n|Nqg(t) = a) can be viewed as the probability of n successes and
a — n failures in a independent trials with a success probability of
p on each trial, i.e., P(N(t) = n|Ng(t) = a) is a binomial distribution
probability, where p denotes the probability that an arbitrary item
that arrived prior to time t is still in the system at time t. By the
total probability theorem,

_ ‘ _ _ Aa(u)
p= [ 1-Ge-uzes
where

mga(t) = /Ot Aa(T)dT

denotes the mean value function of the arrival process. Thus,

du, (2.3)

(2.4)

P(N(t) = n|Na(t) = a) = <g>p"(l “p*" n=01,....a

(2.5)
Unconditioning on Ng(t) yields

> —mg(t) k
P(N(t) =n) = Z <z>pn(] _ p)a—n%
k=n :
_ e PmOfp-ma()]"

n!
Therefore, formula (2.1), which is presented at the beginning
of this section, is obtained: N(t) has a Poisson distribution with
mean

m(t) =pma(t)=/0 Da(W[1 = G(t — u)]du.

The property of the departure process can be obtained via a
similar approach to the evaluation of the conditional probability
(Yang, 1996). The main strategy of this approach is to evaluate the
probability by first obtaining the conditional probability, which is
a binomial distribution probability. In addition, the probability of
success p is obtained via the total probability theorem. The ap-
proach of evaluating the conditional probability first can be ex-
tended to evaluate the probabilities of more complicated events. In
the following section, in which we formulate the likelihood func-
tion given interval censored data, we obtain the likelihood func-
tion by partitioning it into a series of conditional probabilities,
which are Poisson distribution probabilities and binomial distri-
bution probabilities. In addition, the probabilities of successes can
be obtained via similar approaches that utilize the total probability
theorem.
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to=0 t;=1 t,=2 t;=3 ty=4 ts=5 t,=6 t,=7 t3=8 t4=9 t;p=10
item1 0.3°0.5 0.8
item 2 13 2 3.3
item 3 2.8 1.6 4.4
item 4 4.1 0.9 5
item 5 53708 6.1
item 6 6 1.5 7.5
item 7 8.1 11 9.2
item 8 9.4 0.4 9.8
nl=0 nt=1 n2=1 n3=1 nt=0 n3=1 nf=2 nl=0 n8=0 nl=1 nl’=1
ny=0 ni=1 n2=0 n3=0 ni=1 n5=2 n§=0 nj=1 n8=1 n)=0 n’=2
Fig. 1. Illustration of interval censored data. We observe at time points ty,...,t;o and obtain interval censored data n,...,nd,.nd, ..., n%. The start point and end point of

each bar represent the arrival and departure epochs, respectively, of each item. The length of each bar represents the service duration of each item.

2.2. Problem formulation

Suppose the system is initially empty. We wish to infer the ar-
rival rate function A4(t); the cumulative distribution function (cdf)
G of the service duration; and, consequently, the expected cumu-
lative numbers of arrivals and departures, mq(t) and my(t), in
the M;/G/oo queueing system given interval censored data. Sup-
pose the form of the arrival rate function Aq(t), and the fam-
ily of distributions of the service duration S are known. We wish
to infer all the unknown parameters, denoted by parameter vec-
tor ¥ € ® c R™, which contains all the parameters in Aq(t) and
cdf G. We only observe at fixed time points, which are denoted
as t; (i=1,2,...,k), and obtain the interval censored data D =
{(t;.n% nd),i=1,2,... .k}, where n¢ and n{ denote the numbers
of arrivals and departures, respectively, in time interval (t;_, t;] for
i=1,2,....k For simplicity, we define t, =0, nj = ng =0. Fig. 1
shows the interval censored data schematically.

Since both the arrival and departure processes are nonhomoge-
neous Poisson processes, we can infer A4(t) from the arrival pro-
cess and G from the departure process via the approaches of sta-
tistical inference for nonhomogeneous Poisson processes with in-
terval censored data. We can also infer both Aq(t) and G from
the departure process; however, we do not make full use of the
data via this approach. Despite the complexity of the problem, by
considering the arrival and departure processes together, we can
make more effective use of all the interval censored data. There-
fore, we formulate the likelihood function for the joint process of
arrival and departure and apply the maximum-likelihood estima-
tion method to infer model parameter vector W.

Similar to the approach that was reviewed in Section 2.1, we
wish to obtain the joint likelihood function of the arrival and de-
parture process via conditional probability density functions that
are simpler to obtain. Inspired by the partition of a joint density
function f(xq,x>,...,Xg), which is expressed as

fa, %2, x0) = ) f(alx) f (sl %) - f (ki
K
= [[f&ilx. ... xi20),

i=1

o XK-1)

(2.6)

we can partition the likelihood function in the same way by repre-
senting the joint density function as the product of a series of con-

ditional density functions. Substituting n¢,ng, ..., nf, n{,ng, ... nd
for x1, X5, ..., X in formula (2.6) yields
L(D, %) = f(n$) f(nsIn{) f(§Ing, n3) ... f(niIng, ... ni_,)
x f(n‘{|n“,...,nﬁ71,nﬁ) x f(ngln“,..l,nﬁ,n‘f)
d d d
x f(n§Ing, ... ng,n{,ng). ..
x f(n[ng,....ng,n{,ng,....ng_,)
k
=[1f(nfIns.....nf) f(ndIng, ... nf.nd,ng, ... nf,).
i1
2.7)

Since the arrival process is a nonhomogeneous Poisson process,
the number of arrivals in time interval (t;_q,¢;] is independent of
the number of arrivals prior to time t;_;. Thus,

F(nfing.....onf ) = f(nf). i=1.2.....k

Since nl?i denotes the number of departures in time interval
(ti_1, t;], it is independent of the number of arrivals after time t;.

(2.8)

Thus,
f(nfing, ... ng,n{,ng, ... nl)
:f(nfln“,...,nf’,nd,ng,...,n?_1) i=1,2,... k. (2.9)
Therefore, the likelihood function can be simplified to
k
L(D, W) = l_[f(nf’)f(nﬂn“, ...,nd nd nd, ...,n?_l). (2.10)

i=1
For simplicity, we use poi(-; m) to represent a Poisson mass
function with mean m:

J
poi(j :m) = e

From the properties of Poisson processes, we obtain

f(nf) = poi(n? ; ma(ty) —ma(tiy))  i=1.2,... .k (2.11)
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We obtain f(nd|ng,....n% nd.nd, ... .n¢ ) next.

To obtain

d d nd d .
f(nfng,....nf.nd.ng....nl ), i=1.2.. k

we classify items that departed in time interval (t;_;,¢t;] into two
types: Items of the first type are items that arrived prior to time
t;_1, the number of which is denoted as n;“. Items of the second
type are items that arrived in time interval (t;_q, t;], the number of
which is denoted as n?Z. It follows that

nd=n®4+n®? i=1,2.. .k (2.12)
The ranges of nf! and nd? are (Appendix A):
i1 i1
0<nf'<min (Y nf-> "nfnf) . i=12._ k (2.13)
=1 =1
0<nf <min(nf,nf) ,i=12.. k (2.14)

Based on the properties of Poisson processes, the items of these
two types are independent. Since n¢! and nf? are both unknown,

we can partition f(nd[n¢,....n% nd nd ... nd. ) as
f(nfln‘l’,...,nf,n‘f,ng,...,n,{])
= f(n{" +nng, ... nf.n{,ng, ... nl,)
h;
=Y f(n" =nf - jnf=jn{,....n{,n{.ng, ... nf)
J=8
h;
=Y [f(n" =n!—jn§,....n¢nd,ng, ... nf,)
J=gi
xf(nf?=jng,....nf.nd.ng, ... nl )].i=1,2,... k (215)

where j represents all the possible values of n;ﬂ, which range from
g; to h;. From (2.13) and (2.14), which express the ranges of n;.“ and
n;’z, we obtain the minimum of j:

i-1 i-1

g=max(0nf - "nf+> nl|. i=12 .k (2.16)
1=1 I=1

and the maximum of j:

hi =min (nf,nf) ,i=1,2,....k (217)

Whether an item that arrived in time interval (t;_,t;] departed
in time interval (t;_1,t;] depends entirely on its exact arrival epoch
and its service duration; the arrivals and departures prior to time
t;_1 are not relevant. Thus,

f(nfﬂn‘{,...,n?,n‘{,n%, ...,n?_l) = f(n?zln?) i=1,2,... k.
(2.18)
Therefore, formula (2.15) simplifies to
f(nfng, ... .n¢,ng,ng, ... .nl,)
h;
=Y f(n{'=n—jlng,....nf,n{.ng, ... .nl,)
j:gx
x f(nf?=jn?) .i=1,2,....k (2.19)
First, we obtain f(né2|n%) (i=1.2,....k). Similar to formula

(2.5) in Section 2.1, f(nf2|nl?) are binomial distribution probabil-
ities. In time interval (¢_q,t], n{ items arrived and nfz of these
items departed. f(n?2|n?) can be viewed as the probability of n?z
successes and n{ — n?z failures in n{ independent trials with a suc-
cess probability of pl? on each trial. Similar to formula (2.3) in

Section 2.1, pi2 can be formulated using the total probability the-
orem (Appendix B):
t
P = ma(e) = ma(t0)]” [ G=y)ha)dy Li=1.2k,
i-1
(2.20)

For simplicity, we use bin(-; p,n) to represent a binomial mass
function with parameters p and n:

bin(j ; p.n) = (';) (P -p".

We have
f(nf® = jinf) =bin(j ; pf.nf) i=1,2,... k. (2.21)
Next, we obtain f(nd!(ng,....n%, nd.nd, ... nd ) (i=12,.k),
which are also binomial distribution probabilities, sim-
ilar to fqrmula (2.5) in  Section 2.1. We define tig =
max(t;: Y1 nt =Y nd j=1,..i-1).For time tj, which is

before time t;_;, the number of arrivals is equal to the number
of departures prior to time t;y; hence, items that arrived prior to
time tjp all departed prior to time t;; and they will not depart
in time interval (tj_q,¢t;]. Therefore, we only need to consider
items that arrived in time interval (tio. t;_1]. Yj_} nf — Y71 né of
them did not depart prior to t;_; and n‘]“ of them departed in
time interval (t;_1.t;]. Thus, f(n®'|n9,... . nd n¢,nd, ... nd ) is the
probability of nf'successes and Yj_} n¢ — Y"i_} nf — nd! failures in
YiZin® — >~} nd independent trials with a success probability of
p} on each trial. p} denotes the probability that an item departed
in time interval (t;_q, t;] conditioned on its arrival in time interval
(tio, t;_1] and its departure after time t;_;. Define p; as the proba-
bility that an item departed prior to time t;_; conditioned on its
arrival in time interval (tjg,t;_1] and g; as the probability that an
item departed in time interval (t;_q,t;] conditioned on its arrival
in time interval (tjo, t;_1]. We have

1 di
=10

We obtain via the total probability theorem (Appendix B)

i=1,2,...,k

(2.22)

i1
P = [Ma(ti1)—Ma(tio)] " ft Gty — Vha®)dy .i=1.2.. ...k,
(2.23)

Gi = [Ma(tir) — Ma(ti)]”" / VGt~ ) — Gty — ) ha()dy.

tio
i=1,2,...,k (2.24)
and, consequently, p}. Thus,
f(nf“ =n¢ —j|n‘1’,.4.,n?,n‘{,ng,...,n?_l)
i-1 i-1
=bin(nf —j:p}. > nf - "n)i=12.k (2.25)
I=1 I=1

When i = 1, there was no arrival prior to time t;_;. Thus, n‘1“ =
0, f(nﬁ"|na, nd) = f(n4? = nf|n%). We can simply deﬁne.f(n‘l” In$) =
1, which does not affect the value of the likelihood func-
tion. Similarly, if t=t;_;, then Z};{ nf = Z;;} nl. No item
that arrived prior to t;_; departed after t;_;; hence, n;“ =0.

Thus, f(n¢ng,....n%. nd.nd. ... .nd )= fnd?=ndn?. For sim-
plicity, we set f(nd![n¢,....n% nd. nd, ... nd ) =1. Therefore, the

joint likelihood function of the arrival and departure process is
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k hi
LD. %) =[] { [Zbin(j  pionf)

i=1 J=g
i1 i-1
: d .| a d
xbln(ni —j ,pi,Zn, —Zn,)]
=1 =1

xpoi(n{ ; mq(t;) — ma(til))} (2.26)
To obtain the maximum-likelihood estimate of parameter vector
v,

a

W = argmaxy.oL(D, V), (2.27)

several optimization methods, such as the Newton-Raphson algo-
rithm and the Nelder-Mead simplex algorithm, can be used. The
maximum-likelihood estimate of the departure process may pro-
vide appropriate initial parameters in the iterative methods to en-
sure a globally optimum solution.

The MLE approach is applicable to the general form of the ar-
rival rate function A,(t), and the general service duration distri-
bution G. The most frequently used parametric model of service
is that of exponentially distributed durations (Bertsimas & Doan,
2010):

G(s)=1—e", (2.28)

where % represents the mean of the exponential distribution. In
practice, the main “theoretical” justification for its use has been
analytical tractability, along with a lack of empirical evidence to
the contrary (Gans, Koole & Mandelbaum, 2003). Given formulas
(2.20) and (2.22)-(2.24), the expressions of p! and p? can be sim-
plified if the forms of A4(t) and G are simple. Since the exponen-
tial service duration has a cdf with a comparatively simple form,
the expressions of p} and pi2 can be simplified for special forms of
the arrival rate function A4(t), such as the log-linear arrival rate.
The log-linear arrival rate, which is expressed as

Aa(t) = eooroat,

is commonly used in practical scenarios. The log-linear arrival rate
represents a scenario in which the arrival rate is monotonically in-
creasing or decreasing and is preferred over a linear model because
it is positive for all values of oy and &, while the linear rate func-
tion can be kept positive only by imposing nonlinearity restrictions
on «y and o and leads to simple statistical procedure (Lewis &
Shedler, 1976). When the arrival process has a log-linear arrival
rate and the service duration is exponentially distributed, we can
obtain the analytical solutions of the integrals in formulas (2.20),
(2.23) & (2.24). Via formulas (2.23) & (2.24), p; and g; are obtained
as

6
pi = [Ma(ti-1) *mu(tio)]q/[ ' G(tii1 =Y ra(y)dy
i0

-1 £
= ﬂ(e‘”lfifl - 1) - eio(euﬂio - 1) /H [1 _ e’v(ti—l’y):|e°‘0+°‘1ydy
oy o tio

o 1—elatv)(tiotig)
o1+ U

-1+

(tio1 #tip) i=1,2,... k.

e (tio—tiz1) _q

G = [Ma(tir) — Mati)]”" / VG~ ) - Gt — ) ha@)dy

tig

-1
— [%(eaﬁm _ ]) _ %(ealtio _ ])]
tiq
_e V&M _[1 — e~ vtisa—y) Qo+0t1y
/ [[1-e o] [1-evrn] | eroragy

I:] a.lev(ti—l_ti) 1— e(‘11+U)(fio—fi1)i|

o+ v e (tio—ti-1) — 1

o 1 —etv)to=tii)
-1+
a1 +v  evlto—tia) — 1
_ (eU(fH*fi) 1 o; 1 —e@tv)(to—ti1)
- )o(1 + v e¥ltio—ti1) — 1

(ti—1 # tio),
i=1,2,....k

Therefore, via formula (2.22), pl.2 are obtained as

T—

. — ela1+v)(tig—ti-1)
p! = a4  _ (eU(ri—l_[i) _ 1) o 1—e™ 0—"ti-1
1-p; o1 +v  evltio—tia) — 1
I PO P a; 1-— el1+v)(tio—ti-1)
: a1 +v  evlto-ti) —1
=1—eVli1-t) (tiq # tig) Ji=1,2,... k.

Similarly, via formula (2.20), p? are obtained as
ti
P = Ima(t) = ma(tin)]”" [ GGG~ )2 )iy
i-1
e% e% -1,
= | Z— (et 1) = Z—(e%1ti1 —_ 1 :I / 1 — e~ V=Y |20ty q
(G- -Gre -] [ Jeedy

o 1 —e@tV)(tia-t)
e (tia—t) — 1

=1+ i=1,2,... k.

o +v

In this case (log-linear arrival rates paired with exponential ser-
vice durations), p} and pi2 are converted to simpler forms:

pl=1-evl= (1 #t), i=12,.. k. (2.29)
- a; 1 —e@tv)tia-t) o
% _1+w1 YR e i=1,2,....k (2.30)

According to formulas (2.29) & (2.30), p! and p? do not depend
on the starting point or the end point of each interval; they only
depend on the length of each interval. When t;_; # tjo, p} does not
depend on t;; or parameters oy and ¢4 in the arrival rate function;
it only depends on parameter v of the service duration. pl? does
not depend on parameter «g; it depends only on parameter «; in
the arrival rate function. When each interval has the same length
At, p! and p? can be further simplified as:

pl=1-eVA (i #tp) ,i=1,2,... .k (2.31)
1-— e—(a1+U)At

2149 =1,2,...,k 2.32

b +a1+v e~uAl 1 =Sk (2.32)

If t;_1 # tip, p} and p? do not depend on i, i.e, p} is the same
in every interval, as is p?.

In addition to the exponential distribution, the log-normal dis-
tribution has been shown to be a remarkably good fit for the ser-
vice duration distribution (Brown et al., 2005). The cumulative dis-
tribution function (cdf) G(s) of the log-normal distribution is

G(s) = <D<lr1 (S(),_M)

where @ denotes the cumulative distribution function of the
standard normal distribution and u and o denote the mean and
standard deviation of the variable’s natural logarithm. Note that u
denotes the mean of the variable’s natural logarithm; u does not
denote the meanzof the service duration. The mean of the service
duration is e*% . Unlike the exponential distribution, the log-
normal distribution does not have a closed-form expression for cdf
G and there are no closed-form expressions for p} and pl?. If the
arrival process has a log-linear arrival rate and the service duration
has a log-normal distribution, p} and pl? are expressed as

1_ G
pi—l_pi,

(2.33)
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t.
2 _ o i In(ti—y)—u .

pi= e (eiti — eili-1) - CI)< o g0ty dy,

i=1,2,...,k, (2.34)
where

_ o1 tiq In (t,‘,] —y) - ary
pi_m‘/ﬂo d)(o_ e%o+ dy,

(2.35)

_ oq fiq In (ti—y)—
U= oog (eantir —eort) /t i [<D<G

- (W)}“"“"y dy. (2.36)

The analytical solutions of the integrals in formulas (2.34)-
(2.36) cannot be obtained as in the exponential service duration
case; however, the values of ®(s) and Aq(y) = e%+¥1Y are avail-
able for all values of s and y. Therefore, the integrals can be solved
via numerical integration methods and we can obtain the values
of p! and p?. In Sections 3 & 4, in which the simulation study
and the application example will be presented, we will focus on
exponentially and log-normally distributed service durations as
representatives since these service durations are the two most
commonly used service durations for modelling real-life queueing
systems. However, our proposed MLE method is applicable to
general parametric models and models with other service duration
distributions can be analysed via this approach.

2.3. Statistical inference on mq and my

We consider the expected cumulative numbers of arrivals and
departures, my and my, in addition to the parameter vector ¥, in
practical scenarios since the performance measures m; and my
provide information about the current scenario. The mean num-
ber of busy servers at time t, which is denoted as m(t) and pro-
vides information to service providers about the current server uti-
lization and the number of required servers, can be obtained from
mq(t) and my(t):

m(t) = mq(t) —my(t).

Point estimates of mq(t) and my(t) at any fixed time t are ob-
tained via formulas (2.4) & (2.2):

(2.37)

t)\
o (t) = /0 ha(T)dT, (2.38)

t
g (t) :/ Ra()G(t — u)du, (2.39)
0
where estimates Aq (u) and G(u) are the values of function Aq (1)
and G(u) that satisfy W = W. For instance, if the arrival process has
a log-linear arrival rate with parameters o9 and o7 and the ser-
vice duration has a log-normal distribution with parameters @ and
o, then the maximum-likelihood estimate is W = (d@q, G1. it. 6)T.
Point estimates of my(t) and my(t) are obtained as follows:

g (t) = fot ha(T)dT

t
= / et Ty
0

edo

Fe-).

(2.40)

t'\ A
my(t) = fo Aa(UW)G(t — u)du

= /te‘%*‘il“d)(ln ¢-w- ﬂ)du.
0 o

However, to obtain the confidence intervals of mg(t) and my(t),
it is unreasonable to simply substitute the upper and lower con-
fidence limits of each parameter. When mg(t) and my(t) are not
monotonic, the upper confidence limit may be even smaller than
the lower confidence limit. Therefore, we propose a combination
of the bootstrap method and the delta method for obtaining the
approximate confidence intervals.

First, the covariance matrix, which is denoted by V, of ¥ is
needed. The asymptotic property of MLE has been used in previ-
ous studies to obtain V. The asymptotic property still holds under
appropriate regularity conditions because L(D, ¥) is a special case
of the marginal and conditional likelihood (Wu et al., 2007). Sup-
pose n — oco. We have

-1
(\iln—\I’) — N<O, I(‘I;) ), n— oo,

where (W) is the Fisher information matrix of W. The covariance
10w~
n

(2.41)

(2.42)

matrix V is obtained as . I(W) is typically estimated by the
observed Fisher information matrix. However, the form of the
likelihood function L is too complex for us to obtain the second
derivative of logl analytically. We could obtain the observed
Fisher information matrix numerically; however, we would still
face difficulties implementing numerical methods and obtaining
the estimation error due to the high complexity of L. Therefore,
we propose a parametric bootstrap method for estimating the
covariance matrix V.

R sets of interval censored data are generated from estimate
¥ and R maximum-likelihood estimates, which are denoted as
¥* (i=1,2,...,R), are obtained from each set of the generated
interval censored data. The sample covariance matrix of the R es-
timates can be used as an estimate of V. The empirical approxi-
mation is justified by the law of large numbers. If confidence lev-
els of 0.95 and 0.99 are to be used, then it is advisable to set
R =999 or higher (Davison & Hinkley, 1997). To generate inter-
val censored data from W, complete data are generated first. We
generate the exact arrival epoch of each item and the service du-
ration of each item separately and obtain the departure epoch of
each item accordingly. The generation of the exact epochs from the
nonhomogeneous Poisson arrival process in fixed interval (0, t;]
can be reduced to the generation of a Poisson number of order
statistics from a fixed density function according to the following
result (Lewis & Shedler, 1976, 1979): If Tq,...,Ty; denote the ar-
rival epochs of the nonhomogeneous Poisson arrival process and if
mq(ty) = M, then conditional on having observed M(> 0) events in
(0, t;], the T;s are distributed as the order statistics from a sample
of size M from the distribution function
Mg (t) — mq(0)
Mg (ty) — Mq(0)

The proof is presented in Chapter 2 of Cox and Lewis (1966).
The steps that are carried out to estimate the covariance matrix V
are as follows:

Step 1. Set i =1 and R = 1000.

Step 2. Generate the total number of arrivals M in time interval
(0, t] based on mean g (t;).

Step 3. Generate M order statistics t}, t2, ..

Mg (t) — mq(0)
Mg () — Mq(0)

as the exact arrival epochs of the items in time interval (0, t;].

F(t) = 0 <t<t). (2.43)

., tM from cdf

F(t) = 0 <t<t),
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Step 4. Generate service durations sq,S;,..
based on cdf G(s) of the service duration.

Step 5. Obtain the departure epochs of the item t},tZ, ... tM,
where

.,Sy of the items

j j ;
ty=tat+s;, Jj=12,....M

Step 6. Convert the complete data t&,tg,...,té"',tc},tg,...,té"’
into interval censored data ng,n$,....nd,n¢.nd,.... nd, and obtain

the MLE W based on this interval censored data.

Step 7. Set i =i+ 1 and return to Step 2. When i = R, proceed
to Step 8.

Step 8. Estimate V as

7 1 . s NT * T
V=32 (9 - 0) (¥ - ¥) . (2.44)
i=1

where

. 1Kk

v = R Z v (2.45)
i=1

Using the parametric bootstrap method, we obtain
(¥, —¥) > N(0.V). n- oo (2.46)

Then, the delta method (Cramer, 1999; Davison, 2003) can be
applied to obtain the approximate distributions of mq(t) and my(t)
at any fixed time t. The delta method is as follows: If
(¥ — W) - N(O, %) n— oo, (2.47)

where % represents the variance of W,, then the function f of pa-
rameter vector ¥ has a similar asymptotic property,

[f (%) - F(0)] - N(o, [Vf(‘P)]T%Vf(‘I’)) n— oo,
(2.48)

where V f(W¥) denotes the gradient of f with respect to parameter
vector W. Since M, and 1, are the values of functions mg and my
given estimate W, via formula (2.46), where V is equivalent to %
in formula (2.47), we can obtain

Ma(t) — ma(t) - N(0, [Vma ()] V[Vma(0)]). n— oo, (249)

Mg(t) —mg(t) — N(0. [Vmg(D)]'V[Vmy(t)]). n— oo, (2.50)

where Vmg(t) and Vmy(t) denote the gradients of m,; and my
with respect to parameter vector W at any fixed time t. Since the
expressions of Vmg(t) and Vmy(t) still contain parameter vec-
tor ¥, when n is large, the approximate covariances can be esti-
mated as [V (t)]TV[Vifig(t)] and [Viig (t)]TV[ Vg (t)], respec-
tively, where Vi, (t) and Vi (t) denote the values of Vmg(t)
and Vmy(t) that satisfy ¥ = ¥ at any fixed time t. Therefore, we
can obtain the approximate 1—« confidence intervals for mq(t)
and my(t):

[ma(t) - 21_%\/[Vma )] V[ Vifa(©)] a(t)

+Z1_%\/[Vﬁ1a(t)]T\7[Vﬁ10(t)] } (2.51)
[md ) - 21_%\/ [Viia(©)] V[ Vihg ()], ha(©)
+zl_%\/ [de(t)]TV[de(t)]] (2.52)

where Zl_aj denotes quantile 1 — § of the standard normal distri-
bution.

3. Simulation study

To study the goodness-of-fit performance of the proposed MLE
method in queueing systems, a simulation study was conducted.
We simulate cyclic arrivals since many service facilities, such as
call centres and hospitals, follow periodic patterns. For simplicity,
we consider the following arrival rate function:

ha(t) = A+Asin(@), 31)
To

where A is the overall mean arrival rate, A is the amplitude of the
arrival function and Ty is its period. Motivated by the many practi-
cal cases in which a daily cycle is evident, we set A =10, A =5 and
To = 24 hours. Our proposed MLE method is applicable to general
service duration distributions; here, we study the exponential ser-
vice duration distribution and the log-normal service duration dis-
tribution, which are the two most commonly used service duration
distributions for modelling queueing systems in practice (Bertsimas
& Doan, 2010; Brown et al., 2005; Gans et al., 2003). For an expo-
nential service duration with cdf

G(s)=1-¢e7",

we set v = 2. For a log-normal service duration with cdf

In(s) —n
G(s):<D< o )

we set © = —1.2 and o = 1. Note that u here does not denote the
mean of the service duration. For comparative purpose, we set the
parameters as described above so that the exponential service du-
ration and the log-normal service duration have the same mean
of half an hour. We set the total time to T =48 and simulate the
complete data in time interval (0,48] via the same method as
in Step 2-Step 5 in the bootstrap method that was proposed in
Section 2.3. The exact arrival epochs of the items in time inter-
val (0, t;], which are denoted as t},¢Z,...,tM, are generated as M
order statistics from cdf

27t
2t +ATp[ 1 — cos(Z)] <t<T). (3.2)

Fo = 2 AT +ATy[ 1 — cos(%L) | o

tht2, ... tM can be generated via inverse transform sampling. Af-
ter obtaining the complete data, we convert them into interval
censored data by dividing the total time T into N equal intervals.
The impact of the number of intervals on the arrival process for in-
terval censored data has been studied (Massey et al., 1996). We ob-
tain results via point estimation and interval estimation for study-
ing the impact of the number of intervals on the whole queueing
system.

3.1. Point estimation

We compare the maximum-likelihood estimates of model pa-
rameters for various numbers of intervals with the same total time
of T =48. For both the exponential service duration distribution
and the log-normal service duration distribution, we simulate 1000
sets of complete data. We divide each set of complete data into N
equal intervals and obtain a single set of interval censored data.

Given the interval censored data, the MLE method that was pro-
posed in Section 2.2 is used to obtain the maximum-likelihood
estimates. The maximum-likelihood estimate ¥ of the parameter
vector can be obtained as the maximizer of likelihood function L,
which is formulated as in formula (2.26). For the exponential ser-
vice duration distribution, p} and pi2 in likelihood function L are
obtained as
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-1
AT, 2wt 27t

- L Alp -1y !

- o) (5]

L
x / (l - e*“(‘i*y))[k +Asin(2ﬂ>]dy, i=1,2,... k,

fig To
(3.3)
where
-1
- ot ATy 27Tti0 _ 21t
pi= {A(tm tio) + ﬂ[cos( n ) cos( T )]}
ti
X / ! (‘1 — e*ﬂ(fpl*J’)) |:)L +Asin(2n—y)]dy, (3.4)
tio To
-1
;= . ) ATO 2m tiO 27Tti71
qi = {)L(tl—] —tio) + E[COS< T ) - COS(T)]
[
« [ e —enen)hasin( ) e 69)
tip To

For the log-normal service duration distribution, p} and pi2 are
obtained as

1 G
pi—l_pi,

-1
AT 27t 21t;

- L 70 i—1 _ !

b= {x(n )t o [“’S< To ) COS( To >]}

5 A _
x/ CID(ln(t’ Uy) M)[A+Asin(2Tm’>]dy,
tis 0
i=1,2,.. .k (3.6)

where

-1
AT 27Tt 2t
ST
G i1—Yy) —
X/ Ty —n [HAgin(zﬂ)]dy, (3.7)
tio o fo

-1
.. AT, 27ty 27t
qi = {)\(l}l —tip) + E[COS( To ) - COS( To )]}

y /“7‘ [q,(ln (ti—y) - M) _ q,(ln (ti1 —Y) —u)]
tio o o

« [A +Asin(2¥—0y)]dy. (3.8)

For computational efficiency, we calculate ¥ as the minimizer
of —logL. Since the form of logL is complex, obtaining the derivative
information of logl, either analytically or numerically, can be un-
reliable or time-consuming. Therefore, we apply the Nelder-Mead
simplex algorithm (Lagarias, Reeds, Wright & Wright, 1998), which
is a derivative-free method that does not use numerical or analytic
gradients, to obtain the minimizer W. In every iteration in the al-
gorithm, the values of the integrals in p;,q; and pl? are obtained
via the adaptive numerical integration algorithm. The absolute er-
ror tolerance is set to 10~8 and the relative error tolerance 10-.

For the 1000 sets of interval censored data, 1000 estimates
are obtained via the proposed MLE method. For any set of in-
terval censored data, given estimate ¥, values of p} and pl? are
between 0 and 1, corresponding with the definitions of p} and
piz—probabilities of events. In the case of log-normal service dura-
tions, the relative errors of the numerical integrations in formulas

(3.6)—(3.8) are all smaller than 9 x 10~7. The numbers of subinter-
vals produced in the subdivision process range from 1 to 12. As
N — oo, the interval censored data become complete data. Given
the complete data, we can infer Aq(t) from the arrival process and
G from the service duration separately via the MLE method. The
sample mean and standard deviation of each parameter over 1000
maximum-likelihood estimates are listed in Table 1 (exponential
service duration) and Table 2 (log-normal service duration). N = co
represents complete data. The means of relative errors (MREs),
which are expressed as

P2 Jamal fonl o)
MRE:Z Tt + T + m , (3.9)
1_)1‘*) A=Al |Ho-T| |a-pnl |6-0|
MRE=g| "t gt Tt |
- (3.10)

are used to evaluate the goodness-of-fit performance for mod-
els with the exponential service duration distribution (formula
(3.9)) and the log-normal service duration distribution (formula
(3.10)), respectively. A lower value of MRE corresponds to higher
goodness-of-fit performance.

Overall, the sample means of each parameter for various num-
bers of intervals are close to the true value of each parameter. All
MREs are less than 5%; hence, the goodness-of-fit performance is
satisfactory. The estimates become more accurate as N increases,
especially for parameters that correspond to the service duration.
The MREs are low (less than 1%) for models with exponential ser-
vice durations, even when the number of intervals N is small (8).
The log-normal service duration distribution has two parameters
and, thus, a more complicated form than the exponential service
duration distribution, which has only one parameter. The larger
parameter space and the more complex form of the log-normal
distribution leads to larger MREs compared to models with expo-
nential service durations. Although the MRE for models with log-
normal service durations given complete data is twice the MRE
for models with exponential service durations given complete data,
our proposed MLE method for models with log-normal service du-
rations still performs well when N is large: almost all MREs for
models with log-normal service durations are less than 1% when
N is large. A small value of N corresponds to limited information.
The smaller N is, the more information is lost. When N =8, we
only obtain data every 6 hours, which is a quarter of the period of
24 hours. A substantial amount of information cannot not be ob-
tained from the data; hence, the comparatively high MRE (4.8%)
for models with log-normal service durations is reasonable. Our
proposed MLE method for models with exponential service dura-
tions still performs well despite the loss of information. The sam-
ple means of each parameter as N increases are shown in Fig. 2
(exponential service duration) and Fig. 3 (log-normal service du-
ration). As N increases, the sample mean of each parameter ap-
proaches the sample mean given complete data.

3.2. Interval estimation

For T =48, we simulate a set of complete data for exponential
and log-normal service durations and compare the interval esti-
mates of mg and my for various numbers of intervals N. For each
fixed value of N, a set of interval censored data is obtained from
the complete data. From the interval censored data, the estimate

W is obtained via the proposed MLE method. In the cases of expo-
nential service duration distribution, point estimates of my(t) and
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Table 1
Comparison of parameter estimates using various numbers of intervals N (exponential service duration). SD represents the sample standard deviation.
Number of X A i o] MRE (%)
intervals N
Mean SD Mean SD Mean SD Mean SD
8 10.00 0.45 5.06 0.71 24.04 0.44 2.02 0.31 0.61
16 10.00 0.45 5.05 0.66 24.04 0.42 2.01 0.21 0.40
24 10.00 0.45 5.05 0.65 24.04 0.41 2.01 0.16 0.39
48 9.99 0.45 5.05 0.65 24.02 0.41 2.00 0.12 0.33
96 10.01 0.44 5.06 0.62 24.01 0.41 2.00 0.10 0.37
120 9.98 0.46 5.03 0.62 24.01 0.39 2.01 0.09 0.36
160 9.98 0.46 5.03 0.61 24.01 0.41 2.01 0.09 0.35
240 9.98 0.45 5.03 0.62 24.01 0.39 2.01 0.09 0.35
320 9.98 0.46 5.03 0.61 24.01 0.39 2.00 0.09 0.26
480 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.23
600 9.99 0.45 5.03 0.60 24.00 0.42 2.00 0.09 0.24
960 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.23
3] 10.00 0.45 5.04 0.61 24.00 0.42 2.00 0.09 0.24
Table 2
Comparison of parameter estimates using various numbers of intervals N (log-normal service duration). SD represents the sample standard deviation.
Number of x A T i & MRE (%)
intervals N
Mean SD Mean SD Mean SD Mean SD Mean SD
8 10.00 0.46 5.09 0.69 24.05 0.46 —-1.44 0.90 1.02 0.71 4.78
16 10.00 0.46 5.07 0.62 24.04 0.43 -1.21 0.53 0.87 0.54 3.09
24 10.00 0.46 5.06 0.61 24.04 0.42 -1.16 0.41 0.84 0.48 4.20
48 10.01 0.48 5.05 0.61 24.03 0.42 -1.16 0.23 0.92 0.27 2.47
96 10.00 0.46 5.02 0.62 24.02 0.39 -1.19 0.14 0.98 0.14 0.62
120 9.99 0.45 5.02 0.63 24.02 0.40 -1.18 0.12 0.98 0.12 0.81
160 10.02 0.45 5.06 0.63 24.03 0.41 -1.19 0.11 0.99 0.11 0.81
240 9.99 0.45 5.02 0.62 24.02 0.40 -1.18 0.11 0.98 0.11 0.84
320 9.99 0.46 5.03 0.62 24.02 0.41 -1.18 0.12 0.98 0.13 0.88
480 10.01 0.45 5.09 0.62 24.02 0.42 -1.18 0.13 0.98 0.15 1.17
600 10.01 0.45 5.05 0.62 24.03 0.42 -1.18 0.13 0.98 0.16 0.98
960 10.01 0.45 5.09 0.62 24.02 0.42 -1.19 0.14 0.99 0.16 0.64
00 10.01 0.45 5.09 0.62 24.02 0.42 -1.20 0.05 1.00 0.03 0.48
my(t) at any fixed time ¢ given estimate W = (X, A, Ty, 0)T are ob- T
ta(ijlgez:l as fOXIIIOWS' ¢ ( o) Vifa(t) = Bma(t)’ Bma(t)’ 9rma (£)
: ar 9A 0T, o
A=AA=ATo=To
. N AT, 2mt
a(6) = At + 52 1—cos | == ) |/ (3.11) . L
T To = 2% [1 - cos (%) . (315)
o A1 _ 2mt
= {At+ 521 -cos (3]} AR T
o 2mu 5
2 ; —0(t— T
my(t) = A+ Asin| —— [1 — e 0 “)]du. (3.12) . Img(t) dmg(t) dmg(t) dmy(t)
0 To Vi (t) = R .
EJ) A 9T, ov o
A=A.A=A Ty=Ty.v=0
Similarly, in the cases of log-normal service duration distribu- (3.16)
tion, point estimates of mq(t) and my(t) at any fixed time t given ma(0)
-~ ~ A A ~ ~ . a 1 1 .
estimate W = (3, A, Ty, 2, 6)T are obtained as follows: 3T, can also be obtained analytically; we do not present the

ma(t)ziu’;‘ﬁj[lcos(z;t)], (3.13)

0

g () = /Ot [J\ +Asin(2’Tf“>} [@(W)]du. (3.14)
0

Given estimate W, the parametric bootstrap method in
Section 2.3 is applied to obtain the covariance matrix estimate V,
and we obtain the 95% confidence intervals for mq(t) and my(t) at
any fixed time t via formulas (2.51) & (2.52). In the cases of expo-
nential service duration distribution, Vi, (t) and Vi, (t) at any
fixed time t in formulas (2.51) & (2.52) are obtained as

analytical result due to its length. The gradient of m,(t) is difficult
to obtain since the form of my(t) is complex. Therefore, Vii,(t)
is obtained via numerical differentiation. In the cases with log-
normal service duration distribution, Vi, (t) and Vi, (t) are ob-
tained via similar approaches.

We compare the differences between the upper and lower
confidence limits at time t =48, which are the lengths of the
confidence intervals and are denoted as LCs, among various values
of N; the results are listed in Table 3. For any value of N, the con-
fidence interval of m,(48) is slightly longer than that of m,(48)
for both exponential and log-normal service durations. In this sim-
ulation study, exponential and log-normal service durations with
the same mean value are paired with the same arrival rate. The
models with exponential service durations and log-normal service
durations do not show substantial differences in terms of LC. The
lengths of the confidence intervals as N increases are shown in
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Fig. 2. Sample means of model parameters using various numbers of intervals N (exponential service duration).
Table 3
Lengths of confidence interval for various numbers of intervals N,
Number of intervals N 8 16 24 48 96 120 160
mq(48) exponential 85.39 83.91 88.36 86.39 82.21 86.28 86.15
log-normal 90.61 87.74 87.01 90.92 88.38 84.94 84.86
my(48) exponential 84.53 83.13 87.39 85.38 81.35 85.37 85.21
log-normal 90.36 87.23 86.06 89.74 87.40 83.99 83.81
Number of intervals N 240 320 480 600 960 00
mq(48) exponential 86.24 88.74 86.60 85.70 86.60 86.56
log-normal 85.24 87.13 85.67 85.99 85.67 85.61
my(48) exponential 85.31 87.81 85.64 84.72 85.65 85.61
log-normal 84.28 86.09 84.76 85.03 84.75 84.67

Fig. 4 (exponential service duration) and Fig. 5 (log-normal service
duration). As N increases, the LC trends of m,(48) and m,(48)
are the same, for both exponential and log-normal service dura-
tions. LC does not change substantially with N. Since no previous
study is available for comparison, we compare the LCs for various
numbers of intervals N with the LC for complete data. All LCs
are in the 95%-105% range of the LC for complete data for the
model with exponential service duration and in the 93%-107%

range of the LC for complete data for the model with log-normal
service duration. The LCs of both m,(48) and m,;(48) approach
the LC for complete data as N increases. These results demonstrate
that the confidence intervals that are obtained via our procedure
are close to those that are obtained via MLE for complete data,
regardless of the number of intervals. Different service duration
distributions that have the same mean result in similar confidence
intervals; hence, we can obtain similar confidence intervals using
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Fig. 3. Sample means of model parameters using various numbers of intervals N (log-normal service duration).
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Fig. 4. Lengths of confidence intervals of m,(48) and m,(48) for various numbers of intervals N (exponential service duration).

92 T T T T T T T T T

a

@®
@
T
1

@

D
T
L

b

Length of confidence interval of m

——o— Length of confidence interval given N

82+ Length of confidence interval given complete data .

80 Il 1 L 1 1 L | | 1
0 100 200 300 400 500 600 700 800 900 1000

Number of intervals N

92 T T | E— T L T | E—

d

88 1

Length of confidence interval of m
[+
[}
T

——eo—— Length of confidence interval given N

82

Length of confidence interval given complete data |

80 1 L | L L ! 1 ) L
0 100 200 300 400 500 600 700 800 900 1000

Number of intervals N

Fig. 5. Lengths of confidence intervals of mg4(48) and m,(48) for various numbers of intervals N (log-normal service duration).

different service duration distributions to fit against data in
practical scenarios.

Our proposed MLE method is applicable to general service du-
ration distributions. The simulation results for models with both
exponential and log-normal service durations demonstrate that our
proposed MLE method realizes satisfactory goodness-of-fit perfor-
mance. In the simulation study, the sample size is not large. We
only generalize data in time interval (0, 48], which is a realization
of only two periods, and the results are already satisfactory; there-
fore, our proposed MLE method performs well even with a small
sample that has limited information. Our procedure enables the es-
timation of model parameters m, and my; without having to keep
track of each item from arrival to departure, which reduces the
amount of resources that are expended monitoring items and stor-
ing data. The point and interval estimations of our proposed MLE
method for models with exponential service durations perform ex-
tremely well with small MREs and LCs that are similar to the LC

for complete data, regardless of the number of intervals. For mod-
els with log-normal service durations, the MREs are small overall
and more accurate results can be obtained when the number of in-
tervals is large. The LC is also similar to that for complete data, re-
gardless of the number of intervals. These results demonstrate that
in practical scenarios, we need not continuously monitor items to
obtain complete data; we can observe at fixed time points and ob-
tain interval censored data instead.

4. Application example

We apply our method to a large-scale software testing system
(Yang, 1996) to evaluate the goodness-of-fit performance. In a soft-
ware system, developers assess the system and detect and correct
the faults inside before it can be released. Faults are detected when
software is executed according to specified test cases. The fault
detection process is assumed to be a nonhomogeneous Poisson
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Table 4
Fault counts of the P1 system.

Time t; Number of detected faults n{ Number of removed faults n? Time t; Number of detected faults n Number of removed faults n;‘
1 2 2 44 79 119
2 0 0 45 183 60
3 0 0 46 129 108
4 1 0 47 176 196
5 2 0 48 106 129
6 2 0 49 62 65
7 3 2 50 49 57
8 12 4 51 99 105
9 8 2 52 43 42
10 2 1 53 47 96
11 11 2 54 174 109
12 2 4 55 179 75
13 0 0 56 229 328
14 1 1 57 65 30
15 0 1 58 66 121
16 6 2 59 40 105
17 4 4 60 54 128
18 0 7 61 31 74
19 5 0 62 103 41
20 3 1 63 63 33
21 2 0 64 107 83
22 2 1 65 59 80
23 6 0 66 69 47
24 7 0 67 78 90
25 5 5 68 62 98
26 20 21 69 97 69
27 34 12 70 58 48
28 46 17 71 65 50
29 21 11 72 53 49
30 55 31 73 139 136
31 61 42 74 60 57
32 58 24 75 50 58
33 60 30 76 70 119
34 60 46 77 31 52
35 109 34 78 44 131
36 76 35 79 63 28
37 110 55 80 36 82
38 86 117 81 38 51
39 73 65 82 28 38
40 63 59 83 18 49
41 36 18 84 17 104
42 120 54 85 25 6
43 112 47 86 8 9

process, which is commonly used and has successfully measured
the fault detection process (Okamura, Dohi & Osaki, 2013; Pham,
2000; Schneidewind, 2003; Xie, 1991). After each fault has been
detected, a corrective action is performed immediately. Then, the
detected fault is removed after developers spend time making the
correction. The whole software testing system can be considered
as an M;/G/oo queueing system, where the fault detection process
can be viewed as the arrival process and the fault removal pro-
cess as the departure process. In practice, it is difficult to specify
the exact number of servers for the fault detection and removal
process in a large software development environment, where ac-
tivities are usually carried out in parallel. For example, a mem-
ber of a fault-removal team may be resolving several faults at the
same time. Therefore, one team member can be counted as more
than one server from a service perspective. This scenario is prac-
tically equivalent to an infinite-server scenario, especially for large
systems that involve many team members (Yang, 1996). Although
this software testing system does not have infinite servers, our fit-
ting results below demonstrate that the M;/G/oco queueing system
serves as an efficient model.

In the software testing system P1, the number of faults that are
detected and removed in each fixed time interval is available. The
data set is listed in Table 4.

The cumulative numbers of arrivals and departures by time ¢;
are plotted in Fig. 6. Given the shape of the curve for the ar-

rival process in Fig. 6, we apply the inflection S-shaped arrival rate
(Ohba, 1984), which is expressed as

ab(1+c)e b
(1+ ce*bt)2 ’

paired with exponential service duration and log-normal service
duration to fit against the real data.

The maximum-likelihood estimate ¥ is obtained via the MLE
method that was proposed above. In the case of an exponential
service duration distribution, p} and p,? in likelihood function L,
which is presented as formula (2.26), are obtained as

Aa(t) = (4.1)

1 9 a(1—e™) a(1-er)
PP T | Tdce ™ ~ 1tce s
N /fi (_l _ e—M(fi—Y))Mdy’ (42)
ti_q (‘l +Cefby)
where
a(‘l _ e*bfp]) a(‘l _ e*bfu‘o)
b= 1 + ce—Dtis - 1 + ce—btio

y /fffl (1 B e*““ﬂ*”) ab(1 + c)e*iy d
tio (1 + Ce*by)
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Fig. 6. Cumulative numbers of arrivals and departures in system P1.
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_e—bti _ebti ti

qi= a(l ¢ 1) _a(l ¢ 0) / ! (e‘/‘(ti—l_J’)_e—ﬂ(ti—Y))
1+ ce it 14 cebho to

—by
y ab(1+c)e d
(1 + ce*by)
i=1,2,... k. (4.4)

)

In the case of a log-normal service duration distribution,
p} and pl? are obtained as

1_ 4
i =1 o
-1
2 a(l - e‘bff) ~ a(l - e‘bfffl)
! 1+ cebti 1 + cebtizr
t _v) ~by
N / q)<1n ti—y) M) ab(1+c)e " dy. (4.5)
it o (1 + Ce—by)
where
-1
a(l - e—bfffl) a(l - e—bffO)
Pi= e T 1t cethe
ti A _ —by
§ / . q)(ln (tii1—Y) u) ab(1+c)e " &, (4.6)
tio o (1+cet)

0 |:a(l — e i) ~

1 + cebtisa

5 /f [q,(ln ti—y) —M) - ¢<ln (ti1—y) - u)}
tio o o

—by
N ab(1+c)e 4

(1 + ce*by)
i=1,2,... .k (4.7)

a(1 - e-bto) i|]

1 + ce—btio

)

Via the same approach as in Section 3.1, we obtain ¥ as the
minimizer of —logl and apply the Nelder-Mead simplex algorithm

to obtain minimizer W since the form of L is complex. The val-
ues of the integrals in p;,q; and p,? are obtained via the adap-
tive numerical integration algorithm. The estimates of the model
parameters that were obtained via the proposed MLE method are
listed in Table 5. In the case of exponential service durations, given
estimate W, the values of p} are all 0.1563 for i=5,6,..., 86,
and the values of pi2 range from 0.0791 to 0.0816. In the case

of log-normal service durations, given estimate W, the values of
p} range from 0.1091 to 0.2099, and the values of p,.2 range from
0.0688 to 0.0718. The relative errors of the numerical integrations
in formulas (4.5)-(4.7) are all smaller than 9 x 10~7. The numbers
of subintervals produced in the subdivision process range from
1to09.

In the case of the exponential service duration distribution,
given estimate W = (4, b, ¢, 0)7, the point estimates of mg(t) and
my(t) at any fixed time t are obtained as

a(1 —ebt)

1+ Ce-bt

¢ [ ab(1 + ¢)ebu X

md(t):/ (7)2 [1—e-“<f—“>]du. (4.9)
0 | (1+cCebn)

In the case of the log-normal service duration distribu-

tion, given estimate W = (4,b,¢ f,6)7, the point estimates of
mgq(t) and my(t) at any fixed time t are obtained as

o) = d(l - e‘[’[)’

1+ Cebt

A 613(1 +€)e*z’” In(t—u)—f
1y (t) _fo |:(1+6€_bu)2:| |:®<&)}du. (4.11)

In both cases, given estimate W, the parametric bootstrap
method is applied to obtain the covariance matrix estimate ¥, and
we calculate the 95% confidence intervals for mq(t) and my(t) at
any fixed time t via formulas (2.51) & (2.52). In the case of the
exponential service duration distribution, Vi, (t) and Vi, (t) at
any fixed time t in formulas (2.51) & (2.52) are obtained as

_ o (ome(t) dma(t) dma(t)
V’""(t)_< 3a ' ab ' ac )

1-— e—bt
1+ cebt

9 | a(1—e™)
= | 3b| 1+cetr ;
ae b (et — 1)

(1 +cetr)’

e (t) = (4.8)

(4.10)

u=ﬁ,b=5,c=c

(4.12)

a=d,b=b,c=¢t

)

o (amg(t) dmg(t) dmy(t) amy(®)'
de(t)_< 3a " 9b ' ac ' av )

a=d,b=b,c=¢,v=0

(4.13)

% can also be obtained analytically; we do not present
the analytical result due to its length. As in the cases in the
simulation study, Vii,(t) is obtained via numerical differen-
tiation since the form of my(t) is complex. In the case of a
log-normal service duration distribution, Vi, (t) and Vii,(t)
are obtained via similar approaches. The point and interval esti-
mates of mg(t;) and my(t;) (i=1,2,...,86) versus the observed
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Table 5
Comparison of estimates and goodness-of-fit between the proposed MLE method and Yang’s method.
Method Parameter estimates MSE
Yang Inflection S-shaped + Exponential service duration i=4713.33 b=0.10 MSE, = 10002
t= 21026 U =017 MSE; = 9203
MSE = 9603
Proposed MLE Inflection S-shaped + Exponential service duration 4=472117 b=0.10 MSE, = 9648
t= 19417 7v =017 MSE,; = 8866
MSE = 9257
Proposed MLE Inflection S-shaped + Log-normal service duration d=4733.11 b=0.10 MSE, = 9596
¢= 183.10 MSE,; = 7672
=116 6 =122 MSE = 8634
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Fig. 7. Goodness-of-fit for inflection S-shaped arrival paired with exponential service duration.

data of both models are plotted in Fig. 7 (exponential service
duration) and Fig. 8 (log-normal service duration). The proposed
inflection S-shaped model, paired with both exponential service
duration and log-normal service duration, fit the data set well
for both the arrival process and the departure process. The confi-
dence intervals of mq(86) and m,(86) are [4403.47,4672.53] and
[4203.47,4484.26], respectively, for the model with exponential
service duration and [4406.41,4668.38] and [4144.89,4399.48],
respectively, for the model with log-normal service duration. The
interval estimates for the two models do not differ significantly,
which accords with the results and conclusions of the simulation
study.

Since my and my are the means of the cumulative numbers of
arrivals and departures, we use the mean-squared error between
mean mq(t;) and actual cumulative number of arrivals };_; nf,
which is expressed as

. 2
1 k i
MSEq = ¢ ; ma(t;) — ; n |, (4.14)

to evaluate the goodness-of-fit performance of the arrival process
and

2

k i
1
MSEq = ¢ S matt) = nf (4.15)
i=1 1=1

to evaluate the goodness-of-fit performance of the departure pro-
cess. In this case, k = 86. We use the goodness-of-fit criterion,

2 2
k i i
1
MSE = ﬁz ma(t) =Y nf | +|mat) =D ni) |,
i1 =1 =1
(4.16)

to evaluate the performances of the proposed models, where a
lower value of MSE corresponds to a higher goodness-of-fit perfor-
mance. The estimates of the model parameters that were obtained
via Yang's (1996) method and our proposed MLE method are listed
in Table 5 and the MSEs are compared.

Yang’s method is limited to models with exponential service
durations, while our proposed MLE method is applicable to gen-
eral service duration distributions and outperforms Yang’s model
in terms of goodness-of-fit. Under the same assumed model (in-
flection S-shaped arrival paired with exponential service duration),
our proposed MLE method realizes higher goodness-of-fit perfor-
mance than Yang’s model for both the arrival and departure pro-
cesses. MSE, MSE,;, and MSE; of our proposed MLE method are
all 4% smaller than those of Yang’s method. In a software testing
system, the remaining faults in the system are more difficult to
detect and correct over time since the simple faults have already
been detected and corrected at an early stage. At the late stage
of fault detection and correction, substantial effort and expendi-
ture are required for detecting or correcting even a single fault and
a 4% increase in the goodness-of-fit performance can save a large
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Fig. 8. Goodness-of-fit for inflection S-shaped arrival paired with log-normal service duration.

amount of money. The model with log-normal service duration fits
the data set even better: the MSE is 10% smaller than that of Yang’s
method. Our proposed MLE method improves the goodness-of-fit
performance; thus, the expenditure can be reduced. Since our pro-
posed MLE method is applicable to general service duration distri-
butions, more complex service duration distributions can be used
to fit real data and higher goodness-of-fit performance can be re-
alized. In this application example, the MSE of the model with log-
normal service durations is 7% smaller than that of the model with
exponential service durations. In contrast to the simulation study,
where models with exponential service durations realize higher
goodness-of-fit performance, the log-normal service duration dis-
tribution with 2 parameters is more flexible for fitting real data
and realizes higher goodness-of-fit performance compared to the
exponential service duration distribution.

The application example demonstrates that the goodness-of-fit
performance of our proposed MLE method is satisfactory. We ob-
tain the confidence intervals of mq, and mg, which have not been
obtained in other studies. Our proposed MLE method improves the
goodness-of-fit performance and, more importantly, is applicable
to general service duration distributions, including the exponential
service duration distribution in the previous study (Yang, 1996).
Models that have more complex service duration distributions can
yield better goodness-of-fit performance than models with the ex-
ponential service duration distribution.

5. Conclusions and discussion

We provide a general framework for dealing with the statistical
inference problem in M;/G/oco queueing systems given interval
censored data. We propose an MLE method for inferring model
parameters. The method is applicable to a general service duration
distribution G. More importantly, we propose a combination of
the bootstrap method and the delta method for inferring the
expected cumulative numbers of arrivals and departures, which
facilitates cost-effective decision-making by service providers. We
study exponential and log-normal service duration distributions in
both a simulation study and an application example. These service

duration distributions are the two most commonly used service
durations for modelling queueing systems in practice and have
been demonstrated to well fit the service duration distribution.
The simulation results for models with both exponential and
log-normal service durations demonstrate that our proposed MLE
method realizes satisfactory goodness-of-fit performance. As the
number of intervals increases, the estimates that are obtained via
our proposed MLE approach the estimates that are obtained via
MLE from complete data. Our procedure enables one to obtain
estimates of model parameters m, and m, without having to keep
track of each item, which reduces the amount of resources that
are expended for monitoring items and storing data. The point
and interval estimation approaches in our proposed MLE method
for models with exponential service durations perform extremely
well, regardless of the number of intervals. For models with
log-normal service durations, the results are satisfactory overall
and the point estimates are more accurate when the number
of intervals is large. The application example demonstrates that
the goodness-of-fit performance of our proposed MLE method
is satisfactory. The model with a log-normal service duration
distribution outperforms the model with an exponential service
duration distribution in terms of goodness-of-fit in the application
example when the actual family of service duration distributions
is unknown. Our proposed MLE method enables more complex
service duration distributions to be fit against real data and can
yield higher goodness-of-fit performance.

However, we may encounter difficulties in obtaining the
maximum-likelihood estimates. The form of the likelihood func-
tion is complex; hence, maximume-likelihood estimation is time-
consuming in parameter estimation and the complement of the
bootstrap method, especially when the number of parameters is
large or the arrival rate and the service duration distributions
are complex. In future studies, reducing the computational burden
could be considered, e.g., by implementing the EM algorithm or
utilizing simpler methods to obtain the estimates. Data imputation
methods could be explored for coping with the interval censored
data. A Bayesian framework could also be utilized to take experi-
ence into account.
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Appendix A. Ranges of nd! and nf2

”?ﬂ denotes the number of items that arrived prior to time
t;_y and departed in time interval (t;_q,t;]. It should not exceed
the number of items that did not depart prior to time t;_; or
the number of items that departed in time interval (t;_q,t;]. Prior
to time tit, Z;;} n? items arrived and Z;;} n¢ items departed;
hence, Z};} nf — Z;;} n¢ items did not depart prior to time t; ;.
Thus,

i-1 i-1
0<nf'<min (Y nf-> "nfnf)i=12_.k
=1 1=1

(A1)

Similarly, n;’z denotes the number of items that arrived in
time interval (f;_q,t;] and departed in time interval (t;_1, t;], which
should not exceed the number of items that arrived in time inter-
val (ti_q,t;] or the number of items that departed in time interval
(ti—l s [,‘]. Thus,

Ofnfz§min(n§',nd),i:1,2,...,k. (A2)

i
Appendix B. Formulations of p! and p?

(a) Formulation of p?

To obtain pi2 (i=1,2,...,k), according to the total probability
theorem,
pi2 = f(departed in time interval (t;_q, t;]|arrived in time
interval (ti_q,t])
t
= f(departed in time interval (t;_1, t;]|arrived at time y
tiq
in time interval (ti_i, t;])
x f(arrived at time y in time interval (t;_;, t;]|arrived in

time interval (t;_i, t;])dy. (B.1)

From the properties of Poisson processes, it follows that
P(arrived prior to time y in time interval (t;_q, t;]
|arrived in time interval (t;_q, t;])

_ P(one arrival in time interval (t_y,y]. no arrival in time interval (y, t;])
- P(one arrival in time interval (t;_q, t;])

_(ma(y) — Ma(ti_1))e” (M0 =ma(ti1)) g=(ma (t;)-ma))
- (Ma(t)) —mq(ti_p))e” (Ma(ti)-ma(ti1))

~ Ma®) —Ma(ti1)
T me(t) —Ma(ti) (B.2)

Hence,

f(arrived at time y in time interval (t;_q, t;]|arrived in time

ra(y)
Mq(t;) — ma(tizq)
To obtain f(departed in time interval (t;_q, t;]|arrived at time
y in time interval (f;_q,t;]), we consider an item that arrived at
time y (ti_1 <y <¢t;). If it departed in time interval (t;_q, t;], its ser-
vice duration should not exceed t; —y, as shown in Fig. 9.
Thus,

interval (ti_q,t]) = (B.3)

f(departed in time interval (t;_i, t;]|arrived at time y in time

interval (ti_q,t;]) = G(t; —y). (B.4)
It follows from (B.1), (B.3), and (B.4) that
£
P = ma(e) = mo(t0))! [ 6= )ha)dy. (B5)
i-1
(a) Formulation of p]
Fori=1,2,..., k, p} is obtained through p; and g;:
1 4
pi = T (B.6)

By total probability theorem, we have

fiq

i = f(departed prior to time t;_;|arrived at time y
tio
in time interval (tjp, t;_1])
x f(arrived at time y in time interval (tjo, t;_q]|arrived
in time interval (tj, ti_1])dy, (B.7)
tiq
qi = f(departed in time interval (t;_q, t;]|arrived at time y

tio
in time interval (tjg, ti_1])
x f(arrived at time y in time interval (tjo, t;_;]|arrived

in time interval (tj, ti_1])dy. (B.8)

Similar as (B.3), we have

f(arrived at time y in time interval (tjo, t;_q]|arrived in time
ra(y)

Mq(ti_1) — Ma(tio)

For an item which arrived at time y (tjg <y <t;_q), if it de-

parted prior to time t;_q, its service duration should be not more
than t;_; —y, as is shown in Fig. 10.

interval (tj,ti_1]) = (B.9)

Maximum service duration if it departed in time interval (t;_,t;]

N

-

ti—1 y

t;

denotes an item that arrived at time y in time interval (t;_q,t;]

Fig. 9. Range of the service duration.
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Maximum service duration if it departed prior to time t;_4

-

k

ti1 y

t;

denotes an item which arrived at time y in time interval (t;y,t;_4]

Fig. 10. The range of service duration.

Maximum service duration if it departed in time interval (t;_4,t;]

A
I N

tio y Y ti_q t;

Minimum service duration if it departed in time interval (t;_q,t;]

denotes an item that arrived at time y in time interval (t;o,t;_4]

Fig. 11. Range of the service duration.

Thus,

f(departed prior to time t;_;|arrived at time y in time

interval (tj, ti_1]) = G(ti_1 — ). (B.10)

If it departed in time interval (t_q,t;], its service duration
should not exceed t; —y and should not be less than t;_; —y, as
shown in Fig. 11.

Thus,

f(departed in time interval (t;_1, t;]|arrived at time y in time

interval (tj, ti_1]) = G(t; —y) — G(ti_1 — ). (B.11)
It follows from (B.7), (B.9), and (B.10) that
tiq
pi=Ima(t) —~ma(to)l! [ G ~pha0)dy,  (B12)

and according to (B.8), (B.9), and (B.11),

tiq
= [mo(ti1) = ma(to)] ™ [ 16 =) = Gt =) ha)dy,

' (B.13)
and, consequently, p} by (B.6).
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