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Data envelopment analysis (DEA) is a technique for identifying the best practices of a given set of 

decision-making units (DMUs) whose performance is categorized by multiple performance metrics that 

are classified as inputs and outputs. Although DEA is regarded as non-parametric, the sample size can 

be an issue of great importance in determining the efficiency scores for the evaluated units, empirically, 

when the use of too many inputs and outputs may result in a significant number of DMUs being rated as 

efficient. In the DEA literature, empirical rules have been established to avoid too many DMUs being rated 

as efficient. These empirical thresholds relate the number of variables with the number of observations. 

When the number of DMUs is below the empirical threshold levels, the discriminatory power among the 

DMUs may weaken, which leads to the data set not being suitable to apply traditional DEA models. In 

the literature, the lack of discrimination is often referred to as the “curse of dimensionality”. To overcome 

this drawback, we provide a simple approach to increase the discriminatory power between efficient and 

inefficient DMUs using the well-known pure DEA model, which considers either inputs only or outputs 

only. Three real cases, namely printed circuit boards, Greek banks, and quality of life in Fortune’s best 

cities, have been discussed to illustrate the proposed approach. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Data envelopment analysis (DEA) is an excellent management

cience tool that measures the relative performance of a set of en-

ities or decision-making units (DMUs) with multiple performance

easures that are classified as inputs and outputs. Nevertheless,

roblems of discrimination between efficient and inefficient DMUs

ften arise when there is a relatively large number of performance

easures (variables) when compared to the number of DMUs; this

ay lead to efficient units being incorrectly classified as ineffi-

ient and inefficient units being misclassified as efficient. As Adler

nd Yazhemsky (2010 , p. 283) showed, “the latter occurs particu-

arly frequently with small data sets under the assumption of vari-

ble returns-to-scale”. In the literature, the lack of discrimination

s often referred to as the “curse of dimensionality” (e.g., Adler

 Golany, 2007; Daraio & Simar, 2007 ). The lack of discriminat-

ng power has important implications, as in practice it can limit
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he managerial insights that can be drawn ( Ghasemi, Ignatius, &

ezaee, 2019 ). 

In this sense, regarding the number of DMUs (sample size), it is

uite clear that there are advantages to having larger data sets, as

t a given number of DMUs, the efficiency score of each DMU can

ely heavily on the number of variables (inputs and outputs) ( Cinca

 Molinero, 2004 ) – as such, the greater the number of variables,

he less discerning the DEA analysis is ( Jenkins & Anderson, 2003 ).

evertheless, the literature indicates some empirical rules regard-

ng the number of DMUs versus the number of inputs and outputs.

or example, Golany and Roll (1989) and Homburg (2001) suggest

hat the number of DMUs should be at least twice the number of

nputs and outputs. Nunamaker (1985) , Banker, Charnes, Cooper,

warts, and Thomas (1989) , Friedman and Sinuany-Stern (1998) ,

nd Raab and Lichty (2002) suggest that the number of DMUs

hould be at least three times the number of inputs and outputs;

nd Dyson et al. (2001) suggest that the number of DMUs should

e at least twice the product of the number of inputs and the

umber of outputs. Yet, another empirical rule of thumb which can
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Fig. 1. Comparison of the empirical rules of thumb. 
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provide guidance is, in line with Cooper, Seiford, and Tone (2007) ,

n ≥ max( m × s , 3( m + s )), where n is the number of DMUs, m is

the number of inputs, and s is the number of outputs. 

Fig. 1 shows the number of DMUs that would be required in the

case of each empirical rule of thumb mentioned above. The obser-

vation to be made is that, even for the case of 12 inputs and 12

outputs, the number of DMUs required becomes very high, rang-

ing between 48 and 288, depending on the rule of thumb used.

This may turn out to be a problem in real-life applications, where

a high number of DMUs may simply just not be available. 

It should be noted that Cook, Tone, and Zhu (2014) stated that,

whereas in statistical regression analysis the sample size is a vital

issue, as it tries to estimate the average behavior of a set of DMUs,

when used as a benchmarking tool, DEA focuses on the perfor-

mance of each DMU, and as such, the sample size or the number

of DMUs being evaluated may be immaterial. The issue remains,

however, that when the number of DMUs goes below the threshold

levels, the discriminatory power among the DMUs may weaken. 

Despite the above-mentioned thumb rules, there are many

studies in performance measurement that do not meet them, but

which, nevertheless, apply DEA methods (for examples, the inter-

ested reader is referred to the studies by Adler & Golany, 2001;

Liang, Li, & Li, 20 09; Ragsdale, 20 06; Sarkis, 20 0 0; Wagner &

Shimshak, 2007; Wong & Beasley, 1990 , among others). The ratio-

nale behind “breaking” the empirical rules is that there are prac-

tical conditions that may lead the analyst to choose as many vari-

ables as possible ( Xie, Dai, Li, & Jiang, 2014 ) – among these, the

fact that any resource used in the process should be treated as an

input ( Wagner & Shimshak, 2007 ) or that even if the analyst would

consider reducing the number or omitting some of the variables

( Pastor, Ruiz, & Sirvent, 2002 ), given the complexity and the in-

terrelationships among the variables, this may turn out to be very

difficult to carry out. Naturally, the question that arises under these

circumstances is: How can the discriminatory power of DEA be in-

creased? In light of the above discussion, the potential practical

implications of asking such a question are rather obvious. 

The research studies in the existent literature that were de-

voted to improving the discriminatory power of DEA between ef-

ficient and inefficient DMUs can be classified into two categories:

(a) the ones that are aimed at increasing the number of DMUs,

while maintaining the same number of variables; and (b) the ones
hat are aimed at reducing the number of variables used. The first

ategory generally uses pooled cross section and time series data;

evertheless, this approach has a major drawback in the sense

hat it assumes no technological change over the sample periods

 Hughes & Yaisawarng, 2004 ). The second category generally uses

ariable reduction based on a partial covariance analysis (see for

xample, Jenkins & Anderson, 2003 ) or principal component anal-

sis combined with DEA (see, for example, Adler & Golany, 2001;

dler & Golany, 2002; Adler & Yazhemsky, 2010 ); nevertheless, this

pproach suffers from a major drawback surfaced from the loss of

ariable information and negative numbers. 

Some studies have further incorporated value judgments of

ecision-makers into DEA models via weights restrictions ( Allen,

thanassopoulos, Dyson, & Thanassoulis, 1997 ) or preference

hange methods ( Meng, Zhang, Qi, & Liu, 2008; Zhang, Li, Meng, &

iu, 2009 ; nevertheless, these approaches rely on expert opinion,

hich is not always easy or feasible to obtain ( Doyle & Green,

994 ). Others have used cross-efficiency ( Doyle & Green, 1994 ),

ut this method suffers from non-uniqueness of the DEA optimal

nput–output weights; also, it can generate negative efficiencies

 Wu, Liang, & Chen, 2009 ). There are also research studies that

ere devoted to discriminating among the efficient DMUs and

hese employed super-efficiency models ( Andersen & Petersen,

993 ), wherein the DMU under evaluation is excluded from the

ample and is then evaluated with respect to the new production

ossibility set created by other DMUs. Super-efficiency, however,

ay result in infeasibility of envelopment models or unbounded-

ess of multiplier models ( Seiford & Zhu, 1999 ). Other approaches

o increasing the discrimination of DEA include the use of the

istances to both the efficient frontier and the anti-efficient

rontier ( Shen, Zhang, Liu, & Yang, 2016 ), reference frontier share

 Rezaeiani & Foroughi, 2018 ), and deviation variables framework

 Ghasemi et al., 2019 ), among others. In this paper, we explore

nother idea to enhance the discriminatory power of DEA, more

pecifically between efficient and inefficient DMUs, using variable

eduction based on the pure DEA model. It should be mentioned

hat, by definition, DEA models have both inputs and outputs; and

ure DEA refers to a class of models wherein either inputs only

r outputs only are considered (see, for example, Lovell & Pastor,

999; Seiford & Zhu, 1998 ). There is yet another approach that

lso considers only inputs or only outputs, which is widely known
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Fig. 2. Input versus every single output. 
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Table 1 

Original sub-indexes. 

DMU x 1 y 1 y 2 y 3 θ Super-eff. 

A 10 10 20 30 1 Infeasible 

B 10 10 30 20 1 Infeasible 

C 30 30 10 20 1 Infeasible 

D 30 30 20 10 1 Infeasible 

E 10 10 10 10 1 1 
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s the Benefit-of-the-Doubt (BoD), proposed by Cherchye, Moesen,

nd Van Puyenbroeck (2004) and Cherchye, Lovell, Moesen, and

an Puyenbroeck (2007) for building composite indicators from

 set of subindicators. The BoD model tries to summarize all

ubindicators in an overall aggregated indicator (the DEA score).

he pure DEA model and the BoD are equivalent models. 

In this paper, we consider the empirical thresholds proposed in

he literature that relate the number of variables with the number

f observations. As previously mentioned, when the number of

MUs is below the empirical threshold levels, the discriminatory

ower among the DMUs may weaken, which can lead to catego-

izing a large number of DMUs as best practice or efficient. We

re thus interested in investigating the situation wherein a large

umber of DMUs are deemed as efficient, when this may not

ecessarily be the case ( Adler & Yazhemsky, 2010 ). Furthermore,

uch a situation is also not desirable by the user, and is caused

y the relatively large number of performance measures (I/O

ariables) when compared to the number of DMUs. To overcome

his drawback, we propose a simple approach wherein we use an

utput-oriented envelopment model without explicit inputs to col-

apse the output variables in an input-oriented envelopment model

nd the input variables in an output-oriented envelopment model. 

The remainder of the paper is organized as follows. In the next

ection, we build upon the introduction section and showcase the

otivation of the study with an example. We then propose a sim-

le approach using the well-known pure DEA model to increase

he discriminatory power between efficient and inefficient DMUs;

e investigate the cases of the output variable reduction for the

nput-oriented envelopment model and the input variable reduc-

ion for the output-oriented envelopment model. Subsequently, we

iscuss three real cases to illustrate the proposed approach. The

nal section concludes the paper. 

. Motivating example 

A simple example will provide context for our proposed ap-

roach. It will also help justify the key elements of our approach

nd motivate the main steps in the analysis. 

Consider a set of n DMUs, which has m inputs and s outputs,

here the input and output vector of each DMU j ( j = 1 , . . . , n ) is

 j = ( x 1 j , . . . , x m j ) and Y j = ( y 1 j , . . . , y s j ), respectively. The perfor-

ance of the DMUs is measured based on the given inputs and

utputs, through the following linear programming model, which

s widely known as the envelopment form of the input-oriented

EA model under variable returns to scale (VRS) ( Banker, Charnes,

 Cooper, 1984 ): 

min θ

subject to 
D  
n ∑ 

j=1 

x i j λ j � θx io , i = 1 , 2 , . . . , m, 

n ∑ 

j=1 

y r j λ j � y ro , r = 1 , 2 , . . . , s, 

n ∑ 

j=1 

λ j = 1 , 

λ j � 0 , j = 1 , 2 , . . . , n, (1) 

here λj is the j th intensity variable and θ is the measure of per-

ormance, which ranges from zero to one. 

For a better understanding of the previous discussion on the

iscriminatory power problem, let us work out the following sim-

le example. Assume that we are interested in measuring the per-

ormance of five DMUs, namely A, B, C, D, and E, which have one

ingle input, x 1 , and three outputs, y 1 , y 2 , and y 3 (see Table 1 ). 

According to Model (1) , all the five DMUs are efficient, which

an be seen in the penultimate column of Table 1 . It is also

o be clearly noted that the sample size of 5 DMUs is smaller

han the empirical threshold levels discussed in the literature (see

ection 1 ). 

Fig. 2 provides a snapshot of the frontiers based on the given

nput x 1 versus every single output y r , ∀ r . The three figures (a)–(c)

n Fig. 2 represent the frontiers for ( x 1 , y 1 ), ( x 1 , y 2 ), and ( x 1 , y 3 ),

espectively; from the figures, one can infer that the DMUs that are

ot on the frontier are deemed to be inefficient. In other words, we

an say that it is the total number of outputs (i.e., 3) that causes

ll of the DMUs to be efficient in Table 1 . 

In particular, it is worth mentioning that units C and D could be

een as “partially” inefficient since they appear in the interior of

he technology in Fig. 2 (b) and (c). Regarding unit E, this is Pareto-

ominated by units A and B in Fig. 2 (b) and (c). As we will show

ater in the paper, once a new discriminant score is introduced,

nits C, D, and E in this example will be identified as inefficient. 

Super-efficiency models were introduced in DEA in order to

iscriminate the performance among efficient DMUs ( Andersen

 Petersen, 1993 ). In traditional super-efficiency DEA models, the

MU under evaluation is excluded from the reference set in the
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constraints of Model (1) . Notice that, in our example, if we apply

the super-efficiency model for discriminating among the efficient

units (all the DMUs in this instance), we get infeasibility for units

A, B, C and D, whereas unit E keeps being efficient (see last

column in Table 1 ) – something that is usual under VRS. So, super-

efficiency seems not to be the solution for this type of situations

where the sample size and the number of variables is unbalanced.

3. Modeling 

In this section, we carry on to show the steps involved in our

proposed approach, assuming that the model under evaluation

suffers from the curse of dimensionality. First, we introduce Model

(2) , which represents the base model that we will further use

to collapse the inputs and/or outputs. We will also provide a

discussion of the input and output grouping rationale. 

Since the aim of this paper is more of a pragmatic nature,

we approach the matter as a design problem (see, for example,

Wieringa, 2014 ), wherein we propose a simple artifact (model) that

better contributes to the achievement of a goal. Design science re-

search produces artifacts ( Geerts, 2011 ), wherein artifacts, in the

regular common understanding of the term, are defined as human-

made objects, usually for practical purposes. 

Design science artifacts should possess two essential character-

istics: relevance and novelty ( Geerts, 2011; Hevner, March, Park, &

Ram, 2004 ); the artifact that we proceed to introduce in this paper

has both. On the one hand, it is relevant, as it solves the ongoing

problem of the lack of discriminatory power that can arise when

using DEA models on particular data sets. On the other hand, it

is novel in the sense that although previous attempts have been

made to increase the discriminatory power of DEA, these have var-

ious shortcomings (as discussed in Section 1 ) and so it can be said

that the present artifact addresses a solved problem in a more ef-

fective way. In line with the above discussion, the design prob-

lem can be formulated as follows: increase the discriminatory power

among the DMUs by designing an approach that yields a ranking with

more discriminant ability for individual DMUs in order to measure

performance. 

Peffers, Tuunanen, Rothenber ger, and Chatterjee (2008) intro-

duced the Design Science Research Methodology (DSRM), consist-

ing of a nominal sequence of activities to be followed in the pro-

cess of creating an artifact; in Table 2 , we discuss the activities

that are relevant in the context of the present study. The first col-

umn lists the DSRM activities and the second column describes

each of these activities; finally, the third column indicates the ma-
Table 2 

Design Science Research Methodology (DSRM) applied to the c

DSRM activities Activity description 

Problem identification 

and motivation 

Failure to evaluate performance co

of discrimination among efficien

DMUs because of the relatively 

variables when compared to the

Define the objectives 

of a solution 

Design of an approach that yields 

more discriminant ability for ind

Design and 

development 

Design of an approach (use of an 

that is able to collapse the inpu

a single input (or fewer inputs) 

(or fewer outputs), respectively;

the collapse to take place simul

the inputs and outputs side. 

Demonstration Case study demonstration. The pro

used to collapse the inputs and/

different data sets. 

Evaluation Comparative analysis. 
erials from and through which the activities are executed, such

s models, methods, and foundational theories, instruments and

rameworks, among others ( Hevner et al., 2004 ). 

.1. An envelopment model without explicit inputs 

An output-oriented envelopment problem without explicit in-

uts can be formulated, in line with Lovell and Pastor (1999) , as

ollows: 

δ∗ = min 

n ∑ 

j=1 

δ j 

subject to 

n ∑ 

j=1 

ϒl j δ j � ϒlo , l = 1 , 2 , . . . , k, 

δ j � 0 , j = 1 , 2 , . . . , n, (2)

here ϒ lo is the l th output of the unit being evaluated, ϒ lj is the

 th output of the j th unit, δj is the j th intensity variable, δ∗ is the

ptimal value of Model (2) , and k is the number of variables un-

er study. Note that Model (2) has one less variable (the radial ef-

ciency score) and one less constraint (the convexity constraint)

hen compared to the following standard output-oriented envel-

pment problem without explicit inputs: 

max α

subject to 

n ∑ 

j=1 

ϒl j γ j � αϒlo , l = 1 , 2 , . . . , k, 

n ∑ 

j=1 

γ j = 1 , 

γ j � 0 , j = 1 , 2 , . . . , n. (3)

here γ j is the j th intensity variable. 

The formulation of Models (2) and (3) show that, from a math-

matical point of view, they do not consider inputs at all; hence,

hey are referred to as pure output-oriented envelopment models.

ne could derive the value of the efficiency score as α∗ = δ∗−1 =
( 
∑ n 

j=1 δ j ) 
−1 . 

The geometrical interpretation of Model (2) , in line with

ovell and Pastor (1999) , could be done as follows: for all

 < δ j , ∀ j ∈ { 1 , 2 , . . . , n } , α∗ being the efficiency score, in the

bsence of slacks, we can state that ϒlo = 

∑ n 
j=1 ϒl j δ j , ∀ l ∈
urrent study. 

Knowledge base 

rrectly due to lack 

t and inefficient 

large number of 

 number of DMUs. 

Literature review. 

Understanding of weaknesses 

of traditional DEA models. 

Real world problem. 

a ranking with 

ividual DMUs. 

Literature review. 

Knowledge of existing tools. 

existing DEA model) 

ts and outputs into 

and single output 

 or which can allow 

taneously in both 

Pure DEA model. 

posed approach is 

or outputs for 3 

Applying the proposed 

approach to three real-world 

cases. 

Understanding of current 

solution and its advantages. 
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Fig. 3. Collapsing all outputs into a single output. 
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Table 3 

Discriminatory power among DMUs. 

DMU x 1 y 1 y 2 y 3 θ δ∗ φ D S 

A 10 10 20 30 1 1 1 1 

B 10 10 30 20 1 1 1 1 

C 30 30 10 20 1 1 0.33 0.33 

D 30 30 20 10 1 1 0.33 0.33 

E 10 10 10 10 1 0.5 1 0.5 
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 1 , 2 , . . . , k } , and consequently that ϒlo α
∗ = ϒlo δ

∗−1 =
 n 
j=1 ϒl j δ j δ

∗−1 , ∀ l ∈ { 1 , 2 , . . . , k } , which clearly indicates that

he projection of ϒo onto the efficient frontier, ϒo α∗, is a convex

ombination of ϒ j ’s. The optimization of Model (2) leads to the

election of the rays defined by the efficient units which are

ointly as close as possible to the ray defined by ϒo . In other

ords, optimizing Model (2) allows us to search for the smallest

one defined by the rays associated with efficient units that is

apable to generate the ray associated with the DMU of interest;

he generating rays of the cone correspond to the peers for the

MU of interest. 

.2. Output variable reduction in an input-oriented envelopment 

odel 

Consider that Model (1) suffers from the curse of dimension-

lity, which results in a weakened discriminatory power between

fficient and inefficient DMUs. To avoid such a problem, let us use

he knowledge obtained from Model (2) (by considering ϒ ≡ Y and

 = s in Model (2) ) to obtain the following Model (4) . Fig. 3 graph-

cally summarizes the said concept. 

min φ

subject to 

n ∑ 

j=1 

x i j λ
′ 
j � φx io , i = 1 , 2 , . . . , m, 

n ∑ 

j=1 

δ∗
j λ

′ 
j � δ∗

o , 

n ∑ 

j=1 

λ′ 
j = 1 , 

λ′ 
j � 0 , j = 1 , 2 , . . . , n. (4) 
It is to be noted that the s outputs have been collapsed into one

ingle output score, δ∗, which is obtained from Model (2) . The last

ut one constraint in Model (4) is formed based on this single out-

ut score. Model (4) is a modified version of Model (1) , wherein

 output constraints have been replaced with one single output

onstraint. Now, the input-oriented envelopment Model (4) counts

ith m + 2 constraints, along with the set of all n non-negativity

onditions on λ′ 
j 
, ∀ j. The discriminant score ( D S ) of the j th DMU

s defined as follows: 

D S = 

{ 

φ j δ
∗
j 
, if max { φ j δ

∗
j 
, ∀ j} = 1 ;

φ j δ
∗
j 

max { φ j δ
∗
j 
, ∀ j} , otherwise. 

(5) 

Consider the input and outputs data provided in Table 3 . Since

ll θs are equal to 1, this means that all DMUs are considered to

e efficient. Let us first collapse the outputs y 1 , y 2 , and y 3 into
∗ using Model (2) . Then, we can use the obtained δ∗ in the out-

ut constraint of Model (4) . Subsequently, by solving Model (4) ,

e can obtain the penultimate column in Table 3 . The last column

f Table 3 shows the discriminant score and we can quickly ob-

erve that DMUs C, D, and E are inefficient; in conclusion, we have

een able to increase the discriminatory power among the individ-

al DMUs. 

Output grouping rationale : The previous discussion in this

ection considered that all the outputs could be grouped together
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Fig. 4. Collapsing outputs into fewer outputs. 
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into a single output; however, in reality such an assumption may

be crude: some of the outputs might group together while some

others might not. It is to be noted, nonetheless, that the process

of grouping the outputs is based on some rationale, such as an

expert opinion or based on the literature reviewed. Let S be the

set that consists of the sets of grouped and un-grouped outputs.

Let ϒg ≡ Y g , ∀ g ∈ G �{}, where G is the set that consists of the

sets of grouped outputs only. For example, let there be nine

outputs and let us say that as per the experts’ opinion, the nine

outputs could be grouped into S = {{ 1 } , {2, 4}, {3}, {5, 6, 7}, {8, 9}},

then G = {{ 2 , 4 } , { 5 , 6 , 7 } , { 8 , 9 }} and S \ G = {{ 1 } , { 3 }} . In order to

collapse every subset of G , one has to use Model (2) repeatedly as

many times as the number of subsets in G �{}, considering k = | g|
for every g , where | | represents the cardinality of the set. Fig. 4

graphically summarizes the discussed concept. 

The following Model (6) is the variant of Model (4) . Model

(4) has one output constraint, whereas Model (6) has | S | output

constraints, out of which | G �{}| are grouped constraints obtained

based on Model (2) and | S �G | are un-grouped constraints. 

min φ

subject to 

n ∑ 

j=1 

x i j λ
′ 
j � φx io , i = 1 , 2 , . . . , m, 

n ∑ 

j=1 

y ′ r j λ
′ 
j � y ′ ro , r = 1 , 2 , . . . , | S \ G | , 

n ∑ 

j=1 

δ∗
g ′ j λ

′ 
j � δ∗

g ′ o , g ′ = 1 , 2 , . . . , | G \ {}| , 
n ∑ 

j=1 

λ′ 
j = 1 , 
λ′ 
j � 0 , j = 1 , 2 , . . . , n, (6)

here y ′ 
r j 

is the r th un-grouped output of the j th DMU and λ′ 
j 

is

he j th intensity variable. 

Now, the input-oriented envelopment Model (6) counts with

 + | S| + 1 constraints along with n non-negativity conditions.

ote that since Model (6) is a variant of Model (4) , then Model

6) may not yield identical scores. The scores of Model (6) de-

end on the grouping of the outputs, so the scores are depen-

ent on the experts’ strategy of grouping the outputs. The dis-

riminant score of the j th DMU is obtained by Eq. (5) , wherein
∗
j 

= max (δ∗
g ′ j , g 

′ = 1 , 2 , . . . , | G \ {}| ) , ∀ j. 

.3. Input variable reduction in an output-oriented envelopment 

odel 

First, let us consider the output-oriented envelopment model

or VRS, as follows: 

max ψ 

subject to 

n ∑ 

j=1 

x i j λ j � x io , i = 1 , 2 , . . . , m, 

n ∑ 

j=1 

y r j λ j � ψy ro , r = 1 , 2 , . . . , s, 

n ∑ 

j=1 

λ j = 1 , 

λ j � 0 , j = 1 , 2 , . . . , n. (7)

Consider that Model (7) suffers from the curse of dimension-

lity, which results in a weakened discriminatory power between

fficient and inefficient DMUs. We can once again use the knowl-

dge obtained from Model (2) (by considering ϒ ≡ X and k = m
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Fig. 5. Collapsing all inputs into a single input. 
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Table 4 

Discriminatory power among DMUs. 

DMU x 1 x 2 x 3 y 1 ψ δ∗ ϕ −1 D S 

a 30 10 20 10 1 1 0.33 0.33 

b 20 10 30 10 1 1 0.33 0.33 

c 20 30 10 30 1 1 1 1 

d 10 30 20 30 1 1 1 1 

e 10 10 10 10 1 0.5 1 0.5 

b  

p  

p

 

n  

o  

c  

e  

b  

p  

s  

p  

i  

F  

e  

a  

F

 

(  

c  

b

n Model (2) ) to obtain the following Model (8) . Fig. 5 graphically

ummarizes the said concept. 

max ϕ 

subject to 

n ∑ 

j=1 

δ∗
j λ

′ 
j � δ∗

o , 

n ∑ 

j=1 

y r j λ
′ 
j � ϕy ro , r = 1 , 2 , . . . , s, 

n ∑ 

j=1 

λ′ 
j = 1 , 

λ′ 
j � 0 , j = 1 , 2 , . . . , n. (8) 

Using Model (2) , the m inputs have been collapsed into one sin-

le input score, δ∗. This single input score is further reflected in the

rst constraint of Model (8) . As such, Model (8) is a modified ver-

ion of Model (7) , wherein m input constraints have been replaced

ith one single input constraint. Now, the output-oriented envel-

pment Model (8) counts with s + 2 constraints, along with the set

f all n non-negativity conditions on λ′ 
j 
, ∀ j. The discriminant score

f the j th DMU is defined as follows: 

D S = 

{ 

ϕ 

−1 
j 

δ∗
j 
, if max { ϕ 

−1 
j 

δ∗
j 
, ∀ j} = 1 ;

ϕ −1 
j 

δ∗
j 

max { ϕ −1 
j 

δ∗
j 
, ∀ j} , otherwise. 

(9) 

To exemplify, let us consider the inputs and output data for five

MUs in Table 4 . An analysis of the performance of the five DMUs,

sing Model (7) , indicates that all the DMUs are efficient, since all

he ψs are equal to 1 (see the 6th column in Table 4 ). We proceed

o collapse the inputs x 1 , x 2 , and x 3 into δ∗ using Model (2) . Then,

e feed the obtained δ∗ in the input constraint of Model (8) . We

olve Model (8) , the results of which are displayed in the penul-

imate column of Table 4 . Finally, the discriminant score is calcu-

ated (see the last column of Table 4 ), which reveals that DMUs a,
, and e are actually inefficient. In other words, the proposed ap-

roach has been successfully applied to increase the discriminatory

ower among the individual DMUs. 

Input grouping rationale : Similarly to the output grouping ratio-

ale discussed in the previous section, one could also collapse all

r some of the inputs into fewer groups. In this case, also, the pro-

ess of grouping the inputs is based on some rationale, such as an

xpert opinion or based on a review of existing literature. Let M

e the set that consists of the sets of grouped and un-grouped in-

uts. Let ϒ f ≡ X f , ∀ f ∈ F �{}, where F is the set that consists of the

ets of grouped inputs only. For example, let there be seven in-

uts and let us say that as per the experts’ opinion, the seven

nputs could be grouped into M = {{ 1 , 2 , 3 } , {4, 6}, {5}, {7}}, then

 = {{ 1 , 2 , 3 } , { 4 , 6 }} and M \ F = {{ 5 } , { 7 }} . In order to collapse ev-

ry subset of F , one has to use Model (2) repeatedly as many times

s the number of subsets in F �{}, considering k = | f | for every f .

ig. 6 graphically summarizes the discussed concept. 

The following Model (10) is the variant of Model (8) . Model

8) has one input constraint, whereas Model (10) has | M | input

onstraints, out of which | F �{}| are grouped constraints obtained

ased on Model (2) and | M �F | are un-grouped constraints. 

max ϕ 

subject to 

n ∑ 

j=1 

x ′ i j λ
′ 
j � x ′ io , i = 1 , 2 , . . . , | M \ F | , 
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Fig. 6. Collapsing inputs into fewer inputs. 
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n ∑ 

j=1 

δ∗
f ′ j λ

′ 
j � δ∗

f ′ o , f ′ = 1 , 2 , . . . , | F \ {}| , 
n ∑ 

j=1 

y r j λ
′ 
j � ϕy ro , r = 1 , 2 , . . . , s, 

n ∑ 

j=1 

λ′ 
j = 1 , 

λ′ 
j � 0 , j = 1 , 2 , . . . , n. (10)

where x ′ 
i j 

is the i th un-grouped input of the j th DMU and λ′ 
j 

is the

j th intensity variable. 

Now, the output-oriented envelopment Model (10) counts with

| M| + s + 1 constraints along with n non-negativity conditions.

Note that since Model (10) is a variant of Model (8) , then Model

(10) may not yield identical scores. The scores of Model (10) de-

pend on the grouping of the inputs, so the scores are dependent on

the experts’ strategy of grouping the inputs. The discriminant score

of the j th DMU is obtained by Eq. (9) , wherein δ∗
j 

= max (δ∗
f ′ j , f 

′ =
1 , 2 , . . . , | F \ {}| ) , ∀ j. 

3.4. Input and output variable reduction in an input- or 

output-oriented envelopment model 

The previous sections showed how the collapse can take place

either on the input side or on the output side only. The following

Models (11) and (12) are the input-oriented model and the output-

oriented model, respectively, that allow for the collapse to take

place in both the input and the output sides. The reader is referred

to the models introduced previously for notational explanations. 

min φ

subject to 

n ∑ 

j=1 

x ′ i j λ
′ 
j � φx ′ io , i = 1 , 2 , . . . , | M \ F | , 
n ∑ 

j=1 

δ∗
f ′ j λ

′ 
j � φδ∗

f ′ o , f ′ = 1 , 2 , . . . , | F \ {}| , 
n ∑ 

j=1 

y ′ r j λ
′ 
j � y ′ ro , r = 1 , 2 , . . . , | S \ G | , 

n ∑ 

j=1 

δ∗
g ′ j λ

′ 
j � δ∗

g ′ o , g ′ = 1 , 2 , . . . , | G \ {}| , 
n ∑ 

j=1 

λ′ 
j = 1 , 

λ′ 
j � 0 , j = 1 , 2 , . . . , n. (11)

Fig. 7 graphically summarizes the input and output grouping

ationale for an input-oriented model. For example, let there be

even inputs and nine outputs and let us say that as per the

xperts’ opinion, the seven inputs could be grouped into M =
{ 1 , 2 , 3 } , {4, 6}, {5}, {7} }, then F = {{ 1 , 2 , 3 } , { 4 , 6 }} and M \ F =
{ 5 } , { 7 }} . Similarly, the nine outputs could be grouped into S =
{ 1 } , {2, 4}, {3}, {5, 6, 7}, {8, 9}}, then G = {{ 2 , 4 } , { 5 , 6 , 7 } , { 8 , 9 }}
nd S \ G = {{ 1 } , { 3 }} . In this case, also, in order to collapse every

ubset of F and G , one has to use Model (2) repeatedly as many

imes as the number of subsets in F �{} and G �{}, respectively. 

max ϕ 

subject to 

n ∑ 

j=1 

x ′ i j λ
′ 
j � x ′ io , i = 1 , 2 , . . . , | M \ F | , 

n ∑ 

j=1 

δ∗
f ′ j λ

′ 
j � δ∗

f ′ o , f ′ = 1 , 2 , . . . , | F \ {}| , 
n ∑ 

j=1 

y ′ r j λ
′ 
j � ϕy ′ ro , r = 1 , 2 , . . . , | S \ G | , 
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Fig. 7. Collapsing inputs and outputs into fewer inputs and outputs. 

 

o  

g  

t  

p  

i  

{  

m  

c  

δ

 

b  

o  

t  

p  

t  

w  

T  

t  

b  

r  

w

4

4

 

p  

d  

t  

t  

s  

v  

s  

n  

c

 

a  

r  

d  

(  

(  

1  

c  

P

 

t  

c  

t  

P  

3  

t  

W  

c  

s  

a  

c  

a  

g  

a

 

s  

n  

a  
n ∑ 

j=1 

δ∗
g ′ j λ

′ 
j � ϕδ∗

g ′ o , g ′ = 1 , 2 , . . . , | G \ {}| , 
n ∑ 

j=1 

λ′ 
j = 1 , 

λ′ 
j � 0 , j = 1 , 2 , . . . , n. (12) 

Both Models (11) and (12) have | M| + | S| + 1 constraints, out

f which | M | input constraints, | S | output constrains, | F �{}| input

rouping constraints, and | G �{}| output grouping constraints. For

he input-oriented envelopment model with both input and out-

ut grouping (Model (11) ), the discriminant score of the j th DMU

s obtained by Eq. (5) , wherein δ∗
j 
= max (δ∗

g ′ j , g 
′ = 1 , 2 , . . . , | G \

}| ) , ∀ j. On the other hand, for the output-oriented envelopment

odel with both input and output grouping (Model (12) ), the dis-

riminant score of the j th DMU is obtained by Eq. (9) , wherein
∗
j 

= max (δ∗
f ′ j , f 

′ = 1 , 2 , . . . , | F \ {}| ) , ∀ j. 

We shall now examine three real cases to illustrate the applica-

ility of the proposed approach. In the first case, we collapse the

utputs; in the second case, we collapse the inputs; and finally, in

he third case, we collapse the number of variables in both the in-

uts and outputs side. In all the three cases, at least one of the

humb rules identified in the introduction section is not complied

ith, which indicates the existence of the dimensionality curse.

his further translates into a weakened discriminatory power be-

ween efficient and inefficient DMUs, evidenced, as we shall see,

y the classification of most of the DMUs as efficient. Just as a

eminder, Model (2) represents the base model in our approach,

hich we use to collapse the inputs and/or outputs. 

. Cases 

.1. Case I: Printed circuit boards 

Let us consider the case of a teleprinter-manufacturing com-

any that assembles printed circuit boards (PCBs). A PCB is a
evice that mechanically supports and electrically connects elec-

ronic components using conductive tracks, pads, and other fea-

ures etched from copper sheets laminated onto a non-conductive

ubstrate. Components such as capacitors, resistors, or active de-

ices are generally soldered on the raw PCB. In general, the as-

embly of PCBs can be a very long process, as it involves a high

umber of components and solder joints in the products, which

an result in several errors. 

There are 11 types of defects that can contribute to a defective

ssembled PCB. These are: wrong component assembled (WCA),

eversal component (RC), component missing (CM), wrong cut

one/cut not done (WCD/CND), pattern cut (PC), pin bend in ICs

PB), dry soldering (DS), not cleaned (NC), wrong strapping done

WSD), not mounted properly (NMP), and solder short (SS). These

1 defects can be classified into three kinds of errors, that is, ma-

hine errors (DS and SS), manual errors (WCA, RC, CM, WCD/CND,

B, and WSD), and other errors (PC, NC, and NMP). 

Given the high demands placed on quality, the company is in-

erested in evaluating the efficiency of its assembled PCBs, which

ould further help the management in working out appropriate in-

erventions to prevent failures. The company processes 38 types of

CBs, which are being assembled in four different assembly units:

5 types of PCBs are processed in one single assembly unit and

hree types of PCBs are assembled in more than one assembly unit.

hen a PCB passes through more than one assembly unit, it is

onsidered as a different PCB in each of the respective units. As

uch, the company manages a total of 43 types of PCBs, as follows:

ssembly unit 1 processes 21 types of PCBs, assembly unit 2 pro-

esses 13 types of PCBs, assembly unit 3 processes 8 types of PCBs,

nd assembly unit 4 processes 1 type of PCB. For further details re-

arding the data set, please refer to the paper by Charles, Kumar,

nd Irene Kavitha (2012) . 

We have one input and four outputs, out of which one is de-

irable and three are undesirable. The input is represented by the

umber of raw PCBs ( x 1 ); the desirable output by the number of

ssembled PCBs free from all errors ( y d ); and the three undesirable
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Table 5 

Discriminatory power among various types of PCB. 

DMU x 1 y d y u 1 y u 2 y u 3 θ δ∗ φ D S θw φw D w S 

LCC 49 32 11 10 2 0.9416 0.5543 0.8945 0.4958 1.0000 0.9927 0.5502 

TSC 553 478 13 37 28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

PSUI 47 23 18 2 3 1.0000 0.7343 0.7285 0.5349 1.0000 1.0000 0.7343 

PSUII 69 42 26 1 1 1.0000 1.0000 0.7896 0.7896 1.0000 1.0000 1.0000 

TTC 20 8 2 10 2 1.0000 0.2703 1.0000 0.2703 1.0000 1.0000 0.2703 

TUC 54 31 9 21 1 1.0000 0.6291 0.7919 0.4982 1.0000 0.9118 0.5736 

TUI 275 249 6 16 2 1.0000 0.4468 1.0000 0.4468 1.0000 1.0000 0.4468 

VCP 14 4 3 7 9 1.0000 0.3214 1.0000 0.3214 1.0000 1.0000 0.3214 
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outputs by the number of machine errors ( y u 1 ), manual errors

( y u 2 ), and other errors ( y u 3 ). 

We are concerned with assembly unit 3, which fails to discrim-

inate between efficient and inefficient DMUs. The data concerning

the input and outputs of assembly unit 3 are provided in Table 5 .

It can be observed from the θ column that there are lots of DMUs

that are deemed to be efficient (seven out of the eight DMUs). 

All the three types of errors have been used to obtain δ∗ us-

ing Model (2) . The θ column in Table 5 has been obtained using

Model (1) , by means of considering three undesirable outputs as

uncontrollable inputs; hence, Model (1) has been run with one in-

put, three uncontrollable inputs, and one desirable output. φ has

been obtained based on Model (4) , by incorporating a desirable

output constraint. We have also considered the weak disposabil-

ity assumption of the undesirables; hence, θw 

and φw 

have been

obtained and, in line with Eq. (5) , the discriminant score ( D 

w 

S ) is

the product of φw 

and δ∗. Based on column D S ( = φδ∗), it can be

observed that card TSC is the only efficient one, whereas under

the weak disposability assumption, only two cards, that is, TSC and

PSUII, are efficient (see the last column of Table 5 ). In other words,

by means of using our proposed approach we have been able to in-

crease the discriminatory power among the eight individual cards. 

4.2. Case II: Greek banks 

For this second application, let us consider the case of ten com-

mercial non-core Greek banks, for which data has been collected

from the database of the HBA (2011) . Given that the banking in-

dustry plays a vital role in the economy, it is of interest to evaluate

the efficiency of the banks. 

In this case, we have three inputs, namely inputs-operating ex-

penses or OPEX ( x 1 ), loan loss provisions or LLP ( x 2 ), and haircut

on Greek bonds held by the banks or PSI ( x 3 ). We also have one

single output, namely total loans or LOANS ( y 1 ). OPEX is calculated

as the sum of all expenses reported by the banks; LLP is weakly

disposable and is measured as the portion of a bank’s cash or cash-

equivalent holdings set aside as an allowance for uncollected loans

and loan payments; and PSI is an uncontrollable input that repre-

sents the loss incurred by each bank from the exchange of Greek

Government Bonds for a series of new bonds, at a significant price

discount. LOANS, on the other hand, is calculated as the sum of all

loan accounts intermediated by the banks. For more information

regarding the choice and definition of inputs/output, the reader is

referred to the paper by Tsolas and Charles (2015) . 

Let us thus evaluate the efficiency of the ten banks. The data

concerning the inputs and output of banks are provided in Table 6 .

In this case, also, the ψ column indicates that most of the DMUs

are deemed to be efficient (nine out of the ten DMUs). 

ψ has been obtained based on Model (7) ; furthermore, the

three inputs OPEX, LLP, and PSI have been used to obtain δ∗ us-

ing Model (2) . It is to be noted that one has to meaningfully alter

Models (2) and (7) in accordance with the information associated

with the inputs. The ϕ (so as ϕ 

−1 ) is obtained based on Model (8) .

The last column of Table 6 shows that Emporiki bank is efficient,
hile the least efficiency score is associated with the ABB bank.

nce again, our proposed approach was successfully used to dis-

riminate among the efficient and inefficient banks. 

.3. Case III: Quality of life in Fortune’s best cities 

Finally, let us consider a more complex situation, to demon-

trate the grouping of inputs and outputs at the same time; for

his case, we refer to the data set of Fortune Magazine’s 20 best

ities in 1996 (comprising 15 US domestic cities and five interna-

ional cities), as reported in the paper by Zhu (2001) . To select its

est cities, Fortune Magazine uses factors that measure aspects of

he cost of living, demographics, business, and leisure. 

Based on these factors, Zhu (2001) developed 6 inputs and 6

utputs. The 6 inputs are represented by the high-end housing

rice ( x 1 ), lower-end housing monthly rental ( x 2 ), the cost of a loaf

f French bread ( x 3 ), the cost of martini ( x 4 ), Class A office rental

 x 5 ), and the number of violent crimes ( x 6 ). The 6 outputs are the

edian household income ( y 1 ), number of population with bache-

or’s degree ( y 2 ), number of doctors ( y 3 ), number of museums ( y 4 ),

umber of libraries ( y 5 ), and number of 18-hole golf courses ( y 6 ). 

The following Table 7 provides the data for the 6 inputs and 6

utputs. The last but one column E represents the VRS scores θ ∗
o −

( 
∑ m 

i =1 s 
−
i 

+ 

∑ s 
r=1 s 

+ 
r ) , where θ ∗

0 
is the efficiency score of the DMU

f interest, s −
i 

and s + r are the input and output slacks, respectively,

nd ε is the non-Archimedean. The last column E s represents the

lack-adjusted VRS scores, computed based on θ ∗
o − 1 

m 

( 
∑ m 

i =1 

s −
i 

x io 
) . 

We proceed to evaluate the efficiency of the 15 US domestic

ities from the data set under analysis. In this case, also, we find

urselves in a situation in which an immediate efficiency calcula-

ion deems many cities to be efficient, when this may not necessar-

ly be the case (as a matter of fact, 13 cities out of 15 are cased as

fficient, see the last two columns in Table 7 ; also, see Zhu (2001) .

In line with our proposed approach, we could once again

roceed to collapse the inputs or outputs side, to try to re-

uce the number of variables. What we can observe in this

ase, however, is that inputs and outputs can be meaning-

ully collapsed simultaneously. As per the Fortune Magazine’s

ata set presented in Zhu (2001) , the 6 inputs can be logi-

ally grouped into 3 sets, as follows: { x 1 , x 2 , x 3 , x 4 } refer to

ost of Living ( CoL ), { x 5 } refers to Business Leisure ( BL I ), and

 x 6 } refers to Quality of Life ( QoL I ). In a similar fashion, the 6

utputs can also be grouped into 3 sets, as follows: { y 1 , y 2 }

efer to Demographics ( Demo ), { y 3 } refers to Quality of Life

 QoL O ), and { y 4 , y 5 , y 6 } refer to Business Leisure ( BL O ). Hence, let

 = {{ x 1 , x 2 , x 3 , x 4 } , { x 5 } , { x 6 } , { y 1 , y 2 } , { y 3 } , { y 4 , y 5 , y 6 }} = { CoL, BL I , 

oL I , Demo, QoL O , BL O } , G = {{ x 1 , x 2 , x 3 , x 4 } , { y 1 , y 2 } , { y 4 , y 5 , y 6 }} ,
herein CoL , Demo , and BL O have been obtained using Model (2) .

n consequence, we now have a total of 3 + 3 = 6 inputs and

utputs (see columns 2–7 in Table 8 ). 

By means of carrying forward with our approach, the ϕ (so

s ϕ 

−1 ) is obtained based on Model (12) . From the last col-

mn of Table 8 , we can observe that actually only 3 cities are
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Table 6 

Discriminatory power among commercial non-core Greek banks. 

DMU x 1 x 2 x 3 y 1 ψ δ∗ ϕ −1 D S 

Emporiki 520.2 1100 592.0 19135 1.0000 1.0000 1.0000 1.0000 

ATE 340.5 1241.8 2163 18450 1.0000 1.0000 0.6546 0.6546 

Millenium 135.0 89.2 173.1 4744.2 1.0000 0.0800 1.0000 0.0800 

Geniki 135.6 462.4 287.6 3172.4 1.0000 0.4170 0.4911 0.2048 

Attica 112.0 253.0 142.1 3579.9 1.0000 0.2295 0.5669 0.1301 

Probank 85.7 59.0 334.4 2721 1.0000 0.1546 0.5156 0.0797 

Nea Proton 11.7 91.6 146.5 923 1.0000 0.0749 0.0925 0.0069 

FFB 29.2 93.3 49.1 1400.3 0.6560 1.0000 0.0561 0.0561 

Panellhnia 21.0 13.8 19.2 588.1 1.0000 0.0115 1.0000 0.0115 

ABB 6.9 0.6 6.7 269.2 1.0000 0.0031 1.0000 0.0031 

Table 7 

Inputs and outputs of Fortune’s best cities with efficiency scores. 

DMU x 1 x 2 x 3 x 4 x 5 x 6 y 1 y 2 y 3 y 4 y 5 y 6 E E s 

Seattle 586,000 581 1.45 4.50 21 542.3 46,928 0.297 4.49 7 117 22 1.00 1.00 

Denver 475,000 558 0.97 4.00 14 595.6 42,879 0.291 2.79 5 60 71 1.00 1.00 

Philadelphia 201,000 600 1.50 4.75 21 693.6 43,576 0.227 3.64 25 216 166 1.00 1.00 

Minneapolis 299,000 609 1.49 4.00 24 496.5 45,673 0.270 2.67 6 131 125 1.00 1.00 

Ral-Durham 318,000 613 0.99 4.50 18 634.7 40,990 0.319 4.94 7 33 47 1.00 1.00 

St. Louis 265,000 558 0.89 3.00 18 263.0 39,079 0.206 3.40 10 104 62 1.00 1.00 

Cincinnati 467,000 580 1.25 3.75 20 551.5 38,455 0.199 2.80 4 71 94 1.00 1.00 

Washington 583,000 625 1.29 3.75 33 714.5 54,291 0.373 3.35 30 148 105 1.00 1.00 

Pittsburgh 347,000 535 0.99 3.75 17 382.1 34,534 0.188 3.66 8 124 112 1.00 1.00 

Dallas-FW 296,000 650 1.50 5.00 18 825.4 41,984 0.271 1.96 3 98 77 1.00 1.00 

Atlanta 600,000 740 1.19 6.75 20 846.6 43,249 0.263 2.23 9 118 102 0.98 0.80 

Baltimore 575,000 775 0.99 3.99 18 1296.3 43,291 0.233 4.02 8 102 45 1.00 1.00 

Boston 351,000 888 1.09 4.25 34 686.6 46,444 0.325 5.69 25 240 55 1.00 1.00 

Milwaukee 283,000 727 1.53 3.50 26 518.9 41,841 0.214 3.11 6 52 50 1.00 1.00 

Nashville 431,000 695 1.19 4.00 26 1132.5 40,221 0.215 3.25 4 37 37 0.81 0.74 

Table 8 

Discriminatory power among Fortune’s best cities. 

DMU CoL BL I QoL I Demo QoL O BL O E δ∗ ϕ −1 D S 

Seattle 1.000 21 542.3 0.864 4.49 0.488 1.00 0.864 1.000 0.864 

Denver 0.794 14 595.6 0.790 2.79 0.428 1.00 0.790 1.000 0.790 

Philadelphia 0.997 21 693.6 0.803 3.64 1.000 1.00 1.000 1.000 1.000 

Minneapolis 0.983 24 496.5 0.841 2.67 0.753 1.00 0.841 1.000 0.841 

Ral.-Durham 0.800 18 634.7 0.855 4.94 0.283 1.00 0.855 1.000 0.855 

St. Louis 0.700 18 263 0.720 3.40 0.466 1.00 0.720 1.000 0.720 

Cincinnati 0.891 20 551.5 0.708 2.80 0.566 1.00 0.708 0.843 0.597 

Washington 0.983 33 714.5 1.000 3.35 1.000 1.00 1.000 1.000 1.000 

Pittsburgh 0.737 17 382.1 0.636 3.66 0.675 1.00 0.675 1.000 0.675 

Dallas-FW 1.000 18 825.4 0.773 1.96 0.464 1.00 0.773 0.802 0.620 

Atlanta 1.000 20 846.6 0.797 2.23 0.614 0.98 0.797 0.851 0.678 

Baltimore 1.000 18 1296.3 0.797 4.02 0.444 1.00 0.797 0.941 0.750 

Boston 1.000 34 686.6 0.871 5.69 1.000 1.00 1.000 1.000 1.000 

Milwaukee 1.000 26 518.9 0.771 3.11 0.301 1.00 0.771 0.742 0.571 

Nashville 0.923 26 1132.5 0.741 3.25 0.223 0.81 0.741 0.775 0.574 
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fficient: Philadelphia, Washington, and Boston; with Nashville,

ilwaukee, and Cincinnati being the least efficient ones. It is thus

hown that our proposed approach can calculate a discriminant

core that helps to discriminate among the efficient and inefficient

ities. 

. Conclusion 

Performance evaluation is an important activity in the process

f identifying shortcomings in managerial efficiency and devising

oals and strategies for improvement ( Morita & Avkiran, 2009 ).

ne of the most popular techniques to evaluate the performance

s DEA; and although this technique has proven useful in various

elds throughout the years, supporting decision-making world-

ide ( Charles, Tsolas, & Gherman, 2018 ), the selection of inputs

nd outputs has been a constant concern. As it is well known, DEA

s sensitive to such variable selection in the sense that, the more

ariables added, the greater is the chance for some inefficient units

o dominate the added dimension and be classified as efficient
 d  
 Smith, 1997 ). Otherwise stated, when the number of DMUs is be-

ow the empirical threshold levels proposed in the literature that

elate the number of variables with the number of observations,

he discriminatory power between efficient and inefficient DMUs

ay drastically weaken; in consequence, performance evaluation

ay be affected. In the literature, the lack of discrimination is

ften referred to as the “curse of dimensionality”. 

In this paper, we have provided a simple approach using the

ell-known pure DEA model to increase the discriminatory power

etween efficient and inefficient DMUs. We have shown how in-

uts only or outputs only can be collapsed into a single input (or

ultiple inputs) and single output (or multiple outputs), respec-

ively; and how the collapse can also simultaneously take place in

oth the inputs and outputs side. In all the cases, it was possible

o avoid having to meet the empirical rules of thumb regarding the

umber of DMUs relative to the number of inputs and outputs. 

In terms of limitations of the present research, as in the

tandard DEA, we assume that the input and output data are

eterministic and non-statistical. If one is interested in adopting
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the current approach for stochastic DEA, we could assume that the

data are generated from a population through a data-generating

process. However, such an assumption may require significant new

development and we view this as a potential future research topic.

Lastly, regarding the input and output grouping rationale, in

this paper we have considered that the subsets (groups) are de-

fined by the experts and that opinions are derived in a qualitative

way. Nevertheless, such opinions could also be derived in a quan-

titative way and we position this as an avenue for future research.

Furthermore, in this paper, we have discussed radial DEA only; fu-

ture research could also consider various non-radial approaches. 
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