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a b s t r a c t 

The minimal repair replacement is a reasonable assumption in many practical systems. Under this as- 

sumption a failed component is replaced by another one whose reliability is the same as that of the 

component just before the failure, i.e., a used component with the same age. In this paper we study the 

minimal repair in coherent systems. We consider both the cases of independent and dependent compo- 

nents. Three replacement policies are studied. In the first one, the first failed component in the system 

is minimally repaired while, in the second one, we repair the component which causes the system fail- 

ure. A new technique based on the relevation transform is used to compute the reliability of the systems 

obtained under these replacement policies. In the third case, we consider the replacement policy which 

assigns the minimal repair to a fixed component in the system. We compare these three options un- 

der different stochastic criteria and for different system structures. In particular, we provide the optimal 

strategies for all the coherent systems with 1–4 independent and identically distributed components. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays, people demand more and more reliable systems.

everal techniques have been developed to model and improve

he reliability of a system. The basic concepts used in Reliabil-

ty Theory were introduced in the classic book by Barlow and

roschan (1975) . Recent developments can be seen, for example,

n Aven and Jensen (2013) and Natvig (2011) . A good way to

mprove the reliability of a system is to consider some redun-

ancy or maintenance actions. These actions can be performed

n different ways as, for example, by planning some replacement

trategies, minimal repairs, imperfect repairs, redundancies, etc.

n the one hand, it is addressed in literature the concept of ac-

ive or hot redundancy , where some additional components are

ncluded in the system by using parallel structures, see Valdés

nd Zequeira (2006) , Zhao, Chan, Li, and Ng (2013) , Zhao, Chan,

nd Ng (2012) , and Zhao, Zhang, and Chen (2017) , or Belzunce,

artínez-Puertas, and Ruiz (2013) and Zhang, Amini-Seresht, and

ing (2017) for systems having independent and dependent com-

onents, respectively. On the other hand, it is addressed the con-

ept of standby or cold redundancy , where a component is re-

laced or repaired when it fails. Among the standby policies,

any papers study the case of perfect repairs when the broken
∗ Corresponding author. 
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nit is replaced by a new and identical unit, see, e.g., Misra,

isra, and Dhariyal (2011) , Singh and Misra (1994) and You and

i (2014) . Nevertheless, there exist many options of replacement

or a failed component. A nice summary of these cases is de-

cribed in Aven (2014) . In this paper we focus on minimal re-

airs as a particular case of cold redundancy. Under this assump-

ion a failed component is repaired to be just as it was before

ts failure. This is equivalent to replace this unit by another one

hose reliability is the same as that of the component just before

he failure, that is, it is replaced by a used component with the

ame distribution and the same age. This concept allows us to de-

cribe many repairs in real cases where it is not unrealistic to think

hat repairs basically bring the system to the same condition it was

ust before the failure. 

The basic minimal repair model was introduced in Barlow and

unter (1960) . To formalize this idea, the basic model assumes

hat the repair time is negligible and the number of failures that

ccur in the interval (0, t ] follows a nonhomogeneous Poisson

rocess (NHPP) with an intensity function λ( t ). Since then, many

orks have been published attempting to extend the minimal re-

air concept. For example, Brown and Proschan (1983) examined

he case of imperfect repair which uses a perfect repair with

robability p and a minimal repair with probability 1 − p. This

odel was generalized by Block, Borges, and Savits (1985) by

onsidering that the probability of perfect repair depends on the

ystem’s state and by Shaked and Shanthikumar (1986) for the

ultivariate case. Phelps (1983) obtained an optimal policy for

https://doi.org/10.1016/j.ejor.2019.06.013
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the replacement problem with minimal repair, under the as-

sumption of an increasing failure rate. Stadje and Zuckerman

(1991) studied a maintenance model in which the degree of repair

is a decision variable determined by a controller and it varies be-

tween minimal and perfect repairs. Beichelt (1993) proposed a new

common framework, based on a general failure model, to include

different replacement policies under minimal repair. Finkelstein

(2004) generalized the notion of minimal repair to the case when

the lifetime distribution function is a continuous or a discrete mix-

ture of distributions, that is, a heterogeneous population. Aven and

Castro (2008) and Zequeira and Berenguer (2006) analysed an opti-

mal strategy of maintenance from two types of failures in the sys-

tem and the associated repair costs. More recently, Balakrishnan,

Kamps, and Kateri (2009) introduced minimal repair processes un-

der a simple step-stress test in the context of life-testing reliability

experiments. Some authors split minimal repairs into two cases:

physical minimal repairs and statistical minimal repairs. The for-

mer is used when a component of the system is repaired and the

latter, also called black box minimal repair, when the system is re-

paired, see Aven (2014) and Aven and Jensen (20 0 0, 2013) for fur-

ther details and illustrative examples. As it is nicely discussed in

Aven (2014) , the need to be precise with the level of information

leads to some author to frame their works in the theory of point

processes by taking into account the history of the system. Some

valuables contributions in this sense are given by Arjas and Nor-

ros (1989) , Aven (1983, 1987, 1996) , Aven and Jensen (20 0 0, 2013) ,

Bergman (1985) , Gåsemyr and Natvig (2017) and Natvig (1979,

1990) . 

In the literature there exist alternative approaches not based

in processes as well. For example, some stochastic comparisons

of repairable coherent systems with independent components

were obtained in Belzunce, Martínez-Riquelme, and Ruiz (2018) ,

Chahkandi, Ruggeri, and Suárez-Llorens (2016) and El-Neweihi and

Sethuraman (1993) and some preservation results and aging prop-

erties of repairable systems under minimal repair were established

in Chahkandi, Ahmadi, and Baratpour (2014) . Recently, a new rep-

resentation for the reliability function of a coherent system with

possibly dependent components was obtained by using copulas,

see, e.g., Miziuła and Navarro (2017) and Navarro, Pellerey, and

Di Crescenzo (2015) or expression (2.4) below. This expression is

very useful since the distortion (or aggregation) function Q̄ con-

tains all the information about the structure of the system and

the dependency between the components (its survival copula). This

representation was used in Arriaza, Navarro, and Suárez-Llorens

(2018) to compare different replacement policies under minimal

repairs when we have a limited maximum number k of repairs and

they are assigned to fixed components in the system. 

In this paper we use expression (2.4) as an alternative approach

to model and compare the lifetimes of the repaired systems. Our

approach could be considered as a good alternative to the classical

approach based on processes and, in our opinion, satisfies some

advantages. Firstly, the representation of the system reliability

function in terms of distortion functions leads to simplify the

complex algebraic expressions derived from the computation of

the system’s reliability. Secondly, our results can be applied to

systems with independent or dependent components. Further-

more, this approach can be used to deal with systems having

heterogeneous components. Finally, the main results allow us to

get distribution-free comparisons (i.e. comparisons that do not

depend on the distributions of the components) of the repaired

systems. We study different repair policies based on minimal

repairs of the failed components in the system. We will focus on

comparing three different repair policies. The first policy, denoted

by case I, consists in a minimal repair of the component that fails

first. The second one, denoted by case II, consists in a minimal

repair of the component that causes the system failure. The last
ne, denoted by case III, consists in assigning a minimal repair

o a fixed component in the system. This last case is the one

tudied in Arriaza et al. (2018) when k = 1 . In all these cases we

ill consider only one repair and we will compare the resulting

ystems under different stochastic criteria. Moreover, we show

hat the same technique can be applied to study k replacements

nd other replacement policies. In particular, we prove that the

eplacement policy of case II is better than that of case I under

he assumption of independent and identically distributed (IID)

omponents. However, some examples prove that they are not

rdered with case III. We also apply this procedure to determine

he best replacement policy in terms of the usual stochastic order

or all the systems with 1–4 IID components. 

The rest of the paper is organized as follows. In Section 2 we in-

roduce the notation and the tools needed in the paper including

he basic properties on the relevation transform and on coherent

ystems. The main results are given in Section 3 , where we give

 procedure to determine the reliability functions of the systems

btained with the replacement policies of the cases mentioned

bove. The expressions obtained are based on distortion functions.

hese representations are used in Section 4 to compare the differ-

nt replacement policies. There we also provide some general re-

ults for systems with IID components. The conclusions are placed

n Section 5 . 

Throughout the paper, we say that a function g is increasing

resp. decreasing) if g ( x ) ≤ g ( y ) ( ≥ ) for all x ≤ y . If G : [0, 1] n → [0,

], then ∂ i G represents the partial derivative of G with respect to

he i th variable. 

. Notation and preliminary results 

.1. Relevation transform 

Let X and Y be two nonnegative independent random variables

ith absolutely continuous reliability (survival) functions F̄ and Ḡ .

hen the reliability function of X + Y (convolution) is 

 ̄∗ Ḡ (t) = Pr (X + Y > t) = 

∫ ∞ 

t 

f (x ) dx + 

∫ t 

0 

∫ ∞ 

t−x 

g(y ) f (x ) d yd x 

= F̄ (t) + 

∫ t 

0 

Ḡ (t − x ) f (x ) dx, 

here f and g are the respective probability density functions. Un-

er a perfect repair in a cold standby procedure, the unit X is re-

laced when failed by an independent unit Y having the same dis-

ribution as X (when new). Then the resulting reliability is 

 ̄∗ F̄ (t) = F̄ (t) + 

∫ t 

0 

F̄ (t − x ) f (x ) dx. 

f X and Y are dependent, we obtain the expression included in the

ollowing definition. 

efinition 2.1. If X and Y are two nonnegative dependent ran-

om variables with reliability functions F̄ and Ḡ , then the releva-

ion transform (or conditional convolution) F̄ # ̄G is the reliability of

 + Y given by 

 ̄# ̄G (t) = F̄ (t) + 

∫ t 

0 

Ḡ x (t − x ) f (x ) dx, (2.1)

here f is the probability density function of X and Ḡ x is the relia-

ility function of (Y | X = x ) . 

Under a classic relevation transform , the unit X is replaced when

t fails at a time x by a unit having reliability Ḡ but with the same

ge as X , that is, by Y x = (Y − x | Y > x ) with reliability 

¯
 x (y ) = Pr (Y − x > y | Y > x ) = 

Ḡ (x + y ) 

Ḡ (x ) 
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or y ≥ 0. Hence, 

 ̄# ̄G (t) = Pr (X + Y X > t) = F̄ (t) + 

∫ t 

0 

Ḡ (t) 

Ḡ (x ) 
f (x ) dx. (2.2) 

Under a minimal repair , the failed unit X is replaced by a unit

aving the same reliability as X and with the same age (that is, it

s repaired to be as it was just before its failure). Then, from (2.2) ,

he resulting reliability is 

 ̄# ̄F (t) = F̄ (t) + 

∫ t 

0 

F̄ (t) 

F̄ (x ) 
f (x ) dx = F̄ (t) − F̄ (t ) ln F̄ (t ) . 

fter k replacements, the resulting reliability is 

 ̄# 

k F̄ (t) = F̄ (t ) 
k ∑ 

i =0 

1 

i ! 
[ − ln F̄ (t )] i , 

here F̄ # 

0 F̄ = F̄ , F̄ # 

1 F̄ = F̄ # ̄F , F̄ # 

2 F̄ = ( ̄F # ̄F )# ̄F and so on. Note

hat ( ̄F # ̄F )# ̄F � = F̄ #( ̄F # ̄F ) . We shall write it as F̄ # 

k F̄ (t) = q̄ k ( ̄F (t))

ith 

¯
 k (u ) = u 

k ∑ 

i =0 

1 

i ! 
(− ln u ) i . (2.3)

he distributions that can be written in this way are called dis-

orted distributions (see, e.g., Navarro, del Águila, Sordo, & Suárez-

lorens, 2013; Navarro & Rychlik, 2010 and the references therein).

hus, we say that a distribution function F q is a distortion of an-

ther distribution F if F q (t) = q (F (t)) for a distortion function q :

0, 1] → [0, 1] increasing, continuous and such that q (0) = 0 and

 (1) = 1 . A similar representation holds for the respective reliabil-

ty functions, that is, F̄ q (t) = q̄ ( ̄F (t)) , where q̄ (u ) = 1 − q (1 − u ) for

 ∈ [0, 1]. It is also a distortion function, that is, it is an increasing

ontinuous function in [0,1] such that q̄ (0) = 0 and q̄ (1) = 1 (see,

.g., (2.3) ). It is called the dual distortion function associated to q . 

.2. Coherent systems 

Let T be the lifetime of a coherent system with component life-

imes X 1 , . . . , X n . In the general case, the components can be de-

endent and this possible dependency will be represented by the

oint reliability of the components lifetimes which can be written

s 

 ̄(x 1 , . . . , x n ) = Pr (X 1 > x 1 , . . . , X n > x n ) = K( ̄F 1 (x 1 ) , . . . , F̄ n (x n )) , 

here K is the survival copula and F̄ i is the reliability function of

he i th component for i = 1 , . . . , n (see, e.g., Durante and Sempi

2015 , p. 33)). Note that the case of independent components is

ncluded here and that it is represented by the product copula

 = �, where �(u 1 , . . . , u n ) = u 1 . . . u n for u 1 , . . . , u n ∈ [0 , 1] . From

ow on we assume that F̄ is absolutely continuous with joint prob-

bility density function 

f (x 1 , . . . , x n ) = k ( ̄F 1 (x 1 ) , . . . , F̄ n (x n )) f 1 (x 1 ) . . . f n (x n ) , 

here f i is the probability density function of X i and 

 (u 1 , . . . , u n ) = ∂ 1 . . . ∂ n K(u 1 , . . . , u n ) = 

∂ n 

∂ u 1 . . . ∂ u n 
K(u 1 , . . . , u n ) 

s the probability density function associated to K . 

Then it is well known (see, e.g., Miziuła & Navarro, 2017;

avarro et al., 2015 ) that the system reliability can be written as 

 ̄T (t) = Q̄ ( ̄F 1 (t ) , . . . , F̄ n (t )) , (2.4)

here Q̄ is a distortion function , that is, a continuous increas-

ng function Q̄ : [0 , 1] n → [0 , 1] such that Q̄ (0 , . . . , 0) = 0 and
¯
 (1 , . . . , 1) = 1 which depends on the system structure and on K

the dependence structure). In particular, if the components are

dentically distributed (ID), then (2.4) reduces to F̄ (t) = q̄ ( ̄F (t))
T 
see, e.g., Navarro & Rychlik, 2010 ) where F̄ is the common reli-

bility function of the components and q̄ (u ) = Q̄ (u, . . . , u ) (i.e., T

as a distorted distribution from the common distribution of the

omponents). If the components are just independent, then Q̄ is

 multinomial expression (see Barlow & Proschan, 1975 , p. 21). Fi-

ally, if they are independent and identically distributed (IID), then

¯ (u ) = 

∑ n 
i =1 a i u 

i , where (a 1 , . . . , a n ) is called the minimal signature

f the system (see, e.g., Navarro & Rubio, 2010 ). 

For example, if n = 2 , the reliability function of the parallel sys-

em X 2:2 = max (X 1 , X 2 ) is 

 ̄2:2 (t) = Pr ({ X 1 > t} ∪ { X 2 > t} ) = F̄ 1 (t) + F̄ 2 (t) 

− Pr (X 1 > t, X 2 > t ) = Q̄ 2:2 ( ̄F 1 (t ) , F̄ 2 (t )) , 

here Q̄ 2:2 (u, v ) = u + v − K(u, v ) and, in the IID case, q̄ 2:2 (u ) =
¯
 2:2 (u, u ) = 2 u − u 2 . 

.3. Reliability of systems using the relevation transform 

Let us see how the relevation transform can also be used to

ompute the system’s reliability. This new technique will be used

n the following sections to compute the reliability of systems with

inimal repairs on failed components. As in the preceding section

e consider the simple case of a two-component parallel system. 

xample 2.2. Let us consider X 2:2 = max (X 1 , X 2 ) . If the component

ifetimes X 1 , X 2 are IID with a common reliability F̄ , then 

 ̄2:2 (t) = F̄ 1:2 # ̄F (t) = F̄ 1:2 (t) + 

∫ t 

0 

F̄ (t) 

F̄ (x ) 
f 1:2 (x ) dx 

nd, as F̄ 1:2 (t) = F̄ 2 (t) and f 1:2 (t) = 2 ̄F (t ) f (t ) , we have 

 ̄2:2 (t) = F̄ 2 (t) + 

∫ t 

0 

F̄ (t) 

F̄ (x ) 
2 ̄F (x ) f (x ) dx 

= F̄ 2 (t) + 2 ̄F (t ) F (t ) = 2 ̄F (t) − F̄ 2 (t) . 

et us assume now that both components can be dependent with

 survival copula K . Then 

 ̄2:2 (t) = Pr (X 1 < X 2 ) Pr (X 2:2 > t| X 1 < X 2 ) 

+ Pr (X 2 < X 1 ) Pr (X 2:2 > t| X 2 < X 1 ) 

= Pr (X 1 < X 2 ) ̄F 
(X 1 <X 2 ) 

1 
# ̄G 1 (t) + Pr (X 2 < X 1 ) ̄F 

(X 2 <X 1 ) 
2 

# ̄G 2 (t) , 

here F̄ 
(X 1 <X 2 ) 

1 
(t) = Pr (X 1 > t| X 1 < X 2 ) , F̄ 

(X 2 <X 1 ) 
2 

(t) = Pr (X 2 >

| X 2 < X 1 ) , Ḡ 1 ,x (y ) = Pr (X 2 − x > y | X 1 = x, X 2 > x ) and Ḡ 2 ,x (y ) =
r (X 1 − x > y | X 2 = x, X 1 > x ) . Note that 

p 1 = Pr (X 1 < X 2 ) = 

∫ ∞ 

0 

∫ ∞ 

x 

f 1 (x ) f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) d yd x 

= 

∫ ∞ 

0 

f 1 (x ) ∂ 1 K( ̄F 1 (x ) , F̄ 2 (x )) dx 

hen lim u → 0 + ∂ 1 K( ̄F 1 (x ) , u ) = 0 (see Navarro & Sordo, 2018 ). Anal-

gously, 

p 2 = Pr (X 2 < X 1 ) = 1 − p 1 = 

∫ ∞ 

0 

f 2 (x ) ∂ 2 K( ̄F 1 (x ) , F̄ 2 (x )) dx 

hen lim u → 0 + ∂ 2 K(u, F̄ 2 (y )) = 0 . The joint density of ( X 1 ,

 2 | X 1 < X 2 ) is h (x, y ) = f (x, y ) /p 1 for all x ≤ y (0 otherwise).

hen the marginal density of ( X 1 | X 1 < X 2 ) is 

 1 (x ) = 

1 

p 1 

∫ ∞ 

x 

f (x, y ) dy 

= 

1 

p 1 

∫ ∞ 

x 

f 1 (x ) f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) dy 

= 

1 

p 1 
f 1 (x ) ∂ 1 K( ̄F 1 (x ) , F̄ 2 (x )) . 
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Hence, the conditional density of (X 2 | X 1 = x, X 2 > x ) is 

h 2 | 1 (y | x ) = 

h (x, y ) 

h 1 (x ) 
= 

f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) 

∂ 1 K( ̄F 1 (x ) , F̄ 2 (x )) 

and then the reliability function Ḡ 1 ,x is given by 

Ḡ 1 ,x (y ) = 

∫ ∞ 

x + y 
h 2 | 1 (z| x ) dz = 

∫ ∞ 

x + y 

f 2 (z) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (z)) 

∂ 1 K( ̄F 1 (x ) , F̄ 2 (x )) 
dz 

= 

∂ 1 K( ̄F 1 (x ) , F̄ 2 (x + y )) 

∂ 1 K( ̄F 1 (x ) , F̄ 2 (x )) 
. (2.5)

In a similar way (by the symmetry), we get 

Ḡ 2 ,x (y ) = 

∂ 2 K( ̄F 1 (x + y ) , F̄ 2 (x )) 

∂ 2 K( ̄F 1 ( x ) , F̄ 2 ( x )) 
. (2.6)

Therefore, from (2.1) , we obtain 

F̄ (X 1 <X 2 ) 
1 

# ̄G 1 (t) = F̄ (X 1 <X 2 ) 
1 

(t) + 

∫ t 

0 

Ḡ 1 ,x (t − x ) h 1 (x ) dx 

= F̄ (X 1 <X 2 ) 
1 

(t) + 

1 

p 1 

∫ t 

0 

f 1 (x ) ∂ 1 K( ̄F 1 (x ) , F̄ 2 (t)) dx 

= F̄ (X 1 <X 2 ) 
1 

(t) + 

1 

p 1 

[
F̄ 2 (t) − K( ̄F 1 (t) , F̄ 2 (t)) 

]
. 

Analogously, we have 

F̄ (X 2 <X 1 ) 
2 

# ̄G 2 (t) = F̄ (X 2 <X 1 ) 
2 

(t ) + 

1 

p 2 
[ ̄F 1 (t ) − K( ̄F 1 (t ) , F̄ 2 (t ))] . 

Then 

F̄ 2:2 (t) = p 1 ̄F 
(X 1 <X 2 ) 

1 
# ̄G 1 (t) + p 2 ̄F 

(X 2 <X 1 ) 
2 

# ̄G 2 (t) 

= p 1 ̄F 
(X 1 <X 2 ) 

1 
(t) + p 2 ̄F 

(X 2 <X 1 ) 
2 

(t) + F̄ 1 (t) 

+ F̄ 2 (t) − 2 K( ̄F 1 (t ) , F̄ 2 (t )) 

= p 1 Pr (X 1:2 > t| X 1 < X 2 ) + p 2 Pr (X 1:2 > t| X 2 < X 1 ) 

+ F̄ 1 (t) + F̄ 2 (t) − 2 K( ̄F 1 (t ) , F̄ 2 (t )) 

= Pr (X 1:2 > t) + F̄ 1 (t) + F̄ 2 (t) − 2 K( ̄F 1 (t ) , F̄ 2 (t )) 

= F̄ 1 (t) + F̄ 2 (t) − K( ̄F 1 (t ) , F̄ 2 (t )) . 

These expressions can be simplified if F is exchangeable (EXC),

that is, K is permutation invariant and the components are ID. In

this case we have F̄ 2:2 = F̄ 1:2 # ̄G , where 

Ḡ x (y ) = Pr (X 2 − x > y | X 1 = x, X 2 > x ) = 

Pr (X 2 > x + y | X 1 = x ) 

Pr (X 2 > x | X 1 = x ) 
. 

Then, from (2.5) , we get Ḡ x (y ) = 

∂ 1 K( ̄F (x ) , F̄ (x + y )) 

∂ 1 K( ̄F ( x ) , F̄ ( x )) 
. Hence, from

(2.1) , we have 

F̄ 1:2 # ̄G (t) = F̄ 1:2 (t) + 

∫ t 

0 

Ḡ x (t − x ) f 1:2 (x ) dx 

= F̄ 1:2 (t) + 

∫ t 

0 

∂ 1 K( ̄F (x ) , F̄ (t)) 

∂ 1 K( ̄F (x ) , F̄ (x )) 
f 1:2 (x ) dx, 

where F̄ 1:2 (x ) = K( ̄F (x ) , F̄ (x )) and f 1:2 (x ) = 2 f (x ) ∂ 1 K( ̄F (x ) , F̄ (x )) .

Therefore, 

F̄ 1:2 # ̄G (t) = F̄ 1:2 (t) + 2 

∫ t 

0 

∂ 1 K( ̄F (x ) , F̄ (t)) f (x ) dx 

= K( ̄F (t) , F̄ (t)) − 2 K( ̄F (t) , F̄ (t)) + 2 K(1 , F̄ (t)) 

= 2 ̄F (t) − K( ̄F (t ) , F̄ (t )) . 

Another approach for the general case is 

F̄ 2:2 = F̄ 1:2 # ̄G , (2.7)
here 

¯
 x (y ) = p 1 (x ) Pr (X 2 − x > y | X 1 = x, X 2 > x ) 

+ p 2 (x ) Pr (X 1 − x > y | X 2 = x, X 1 > x ) 

= p 1 (x ) 
Pr (X 2 >x + y | X 1 = x ) 

Pr ( X 2 > x | X 1 = x ) 
+p 2 ( x ) 

Pr ( X 1 >x + y | X 2 = x ) 

Pr ( X 1 > x | X 2 = x ) 
, 

p 1 (x ) = Pr (X 1 < X 2 | X 1:2 = x ) and p 2 (x ) = Pr (X 2 < X 1 | X 1:2 = x ) . 

Similar expressions can be obtained for other order statistics ( k -

ut-of- n systems), that is, for X i : n , i = 1 , . . . , n . For example, in the

ID case, the reliability of X 2: 3 can be written as F̄ 2:3 = F̄ 1:3 # ̄F 1:2 or

hat of X 3: 3 as F̄ 3:3 = ( ̄F 1:3 # ̄F 1:2 )# ̄F . Analogous (but more compli-

ated) expressions hold for general coherent systems. 

. Main results 

With the notation introduced in the preceding section, let us

ssume that we have a coherent system with lifetime T based on n

omponents with lifetimes X 1 , . . . , X n . If we apply a single minimal

epair to the system then the main options are: 

Case I: To repair the component which fails first. 

Case II: To repair the component which leads to the system

ailure. 

Case III: To repair a fixed component (e.g., to repair the i th

omponent). 

Other options will be considered later. If we can choose among

hese options (this is not always the case in practice), we need to

etermine which one is the best one under some stochastic crite-

ia. To do this, we need to obtain the reliability of the resulting

ystems after these replacement policies. 

From now on, we will denote by T I and T II the lifetimes

ssociated to the resulting system under the policy I and II,

espectively. In the third option, if we repair the i th component,

he resulting system lifetime will be represented by T (i ) 
I I I 

. If the

ependence structure does not change after the replacement, then

he reliability of T (i ) 
I I I 

is 

 ̄

T (i ) 
I I I 

(t) = Q̄ ( ̄F 1 (t ) , . . . , F̄ i −1 (t ) , q̄ 1 ( ̄F i (t )) , F̄ i +1 (t ) , . . . , F̄ n (t )) , 

here q̄ 1 is given in (2.3) . If the components are ID, then

 ̄

T 
(i ) 

I I I 

(t) = q̄ (i ) 
I I I 

( ̄F (t)) , where 

¯
 

(i ) 
I I I 

(u ) = Q̄ (u, . . . , u, q̄ 1 (u ) , u, . . . , u ) (3.1)

nd q̄ 1 is placed at the i th position. Comparison results for these

inds of replacements were given in Arriaza et al. (2018) . Let us

tudy the other two cases. 

.1. Case I 

In this case we repair the component which fails first. Its life-

ime is X = X 1: n . Then the broken component is minimally repaired

nd the resulting system has the same structure as T but we know

hat all the components are working and have age X . Hence its re-

iability is 

 ̄T I (t) = F̄ 1: n # ̄G (t) , (3.2)

here 

¯
 x (y ) = Pr (T − x > y | X 1 > x, . . . , X n > x ) 

= 

Pr (T > x + y, X 1 > x, . . . , X n > x ) 

Pr (X 1 > x, . . . , X n > x ) 

hen X = x . In Proposition 3 of Navarro (2018) is proved that this

eliability can be written as Ḡ x (t) = Q̄ x ( ̄F 1 ,x (t ) , . . . , F̄ n,x (t )) , where

 ̄i,x (t) = Pr (X i − x > t| X i > x ) = F̄ i (t + x ) / ̄F i (x ) for i = 1 , . . . , n and Q̄ x
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s a distortion function (see Section 2 ). Hence, from (2.1) , we

ave, 

 ̄T I (t) = F̄ 1: n (t) + 

∫ t 

0 

Ḡ x (t − x ) f 1: n (x ) dx 

= F̄ 1: n (t) + 

∫ t 

0 

Q̄ x ( ̄F 1 ,x (t − x ) , . . . , F̄ n,x (t − x )) f 1: n (x ) dx. (3.3) 

Let us see an example. 

xample 3.1. If T = X 2:2 (a parallel system with two components),

hen 

Ḡ x (y ) 

= Pr (T − x > y | X 1 > x, X 2 > x ) 

= 

Pr (T > x + y, X 1 > x, X 2 > x ) 

Pr (X 1 > x, X 2 > x ) 

= 

Pr (X 1 > x + y, X 2 > x ) + Pr (X 2 > x + y, X 1 > x ) − Pr (X 1 > x + y, X 2 > x + y ) 

Pr (X 1 > x, X 2 > x ) 

= 

K( ̄F 1 (x + y ) , ̄F 2 (x )) + K( ̄F 1 (x ) , ̄F 2 (x + y )) − K( ̄F 1 (x + y ) , ̄F 2 (x + y )) 

K( ̄F 1 (x ) , ̄F 2 (x )) 

= Q̄ x ( ̄F 1 ,x (y ) , ̄F 2 ,x (y )) 

or y ≥ 0, with F̄ 1 ,x (y ) = F̄ 1 (x + y ) / ̄F 1 (x ) , F̄ 2 ,x (y ) = F̄ 2 (x + y ) / ̄F 2 (x )

nd 

Q̄ x (u 1 , u 2 ) 

= 

K(u 1 ̄F 1 (x ) , F̄ 2 (x )) + K( ̄F 1 (x ) , u 2 ̄F 2 (x )) − K(u 1 ̄F 1 (x ) , u 2 ̄F 2 (x )) 

K( ̄F 1 (x ) , F̄ 2 (x )) 

henever K( ̄F 1 (x ) , F̄ 2 (x )) > 0 . Hence, from (2.1) and (3.2) , 

 ̄T I (t) = F̄ 1:2 (t) + 

∫ t 

0 

Q̄ x ( ̄F 1 ,x (t − x ) , F̄ 2 ,x (t − x )) f 1:2 (x ) dx 

= F̄ 1:2 (t) + F̄ 1:2 (t ) ln ( ̄F 1:2 (t )) 

+ 

∫ t 

0 

K( ̄F 1 (t) , F̄ 2 (x )) + K( ̄F 1 (x ) , F̄ 2 (t)) 

F̄ 1:2 (x ) 
f 1:2 (x ) dx (3.4) 

olds. In particular, if the components are IID, then 

 ̄T I (t) = F̄ 2 (t) + 2 ̄F 2 (t ) ln ( ̄F (t )) 

+ 

∫ t 

0 

F̄ (t) ̄F (x ) + F̄ (x ) ̄F (t) 

F̄ 2 (x ) 
2 f (x ) ̄F (x ) dx 

= F̄ 2 (t) + 2 ̄F 2 (t ) ln ( ̄F (t )) + 4 ̄F (t ) F (t ) . 

herefore, F̄ T I (t) = q̄ I ( ̄F (t)) with q̄ I (u ) = 4 u − 3 u 2 + 2 u 2 ln (u ) . A

traightforward calculation shows that q̄ (i ) 
I I I 

(u ) = 2 u − u 2 − u ln u +
 

2 ln u and q̄ I ≤ q̄ (i ) 
I I I 

for i = 1 , 2 . So, T I ≤ST T (i ) 
I I I 

holds for all F , that

s, in this system, it is better to replace a fixed component than to

eplace the first failure. 

If the components are just ID, from (3.4) , we get 

 ̄T I (t) = F̄ 1:2 (t) + F̄ 1:2 (t ) ln ( ̄F 1:2 (t )) 

+ 

∫ t 

0 

K( ̄F (t) , F̄ (x )) + K( ̄F (x ) , F̄ (t)) 

F̄ 1:2 (x ) 
f 1:2 (x ) dx 

= F̄ 1:2 (t) + F̄ 1:2 (t ) ln ( ̄F 1:2 (t )) 

+ 

∫ t 

0 

K( ̄F (t) , F̄ (x )) + K( ̄F (x ) , F̄ (t)) 

K( ̄F (x ) , F̄ (x )) 

× [ ∂ 1 K( ̄F (x ) , F̄ (x )) + ∂ 2 K( ̄F (x ) , F̄ (x ))] f (x ) dx, 

here F̄ 1:2 (t) = K( ̄F (t ) , F̄ (t )) . Now, if we do the change v = F̄ (x ) ,

hen 

 ̄T I (t) = δK ( ̄F (t)) + δK ( ̄F (t)) ln (δK ( ̄F (t))) 

+ 

∫ 1 

F̄ (t) 

K( ̄F (t) , v ) + K(v , F̄ (t)) 

δK (v , v ) 
δ′ 

K (v ) dv , 
here δK (v ) = K(v , v ) is the diagonal section of the copula K

nd δ′ 
K (v ) = ∂ 1 K(v , v ) + ∂ 2 K(v , v ) for v ∈ (0 , 1) . Therefore F̄ T I (t) =

¯ I ( ̄F (t)) with 

¯
 I (u ) = δK (u ) + δK (u ) ln (δK (u )) + 

∫ 1 

u 

K(u, v ) + K(v , u ) 

δK (v ) 
δ′ 

K (v ) dv . 

A similar representation is obtained in the following theorem

or an arbitrary coherent system. 

heorem 3.2. Let T be the lifetime of a coherent system with ID com-

onents having a common reliability F̄ . Then the reliability function of

 I can be written as 

 ̄T I (t) = q̄ I ( ̄F (t)) (3.5) 

or all t ≥ 0 and a distortion function q̄ I which does not depend on F̄ . 

roof. In the ID case, the general representation obtained in (3.3) ,

an be written as 

 ̄T I (t) = F̄ 1: n (t) + 

∫ t 

0 

Ḡ x (t − x ) f 1: n (x ) dx = F̄ 1: n (t) 

+ 

∫ t 

0 

q̄ x ( ̄F x (t − x )) f 1: n (x ) dx, (3.6) 

here q̄ x (u ) = Q̄ x (u, . . . , u ) and F̄ x (t) = Pr (X i − x > t| X i > x ) = F̄ (t +
 ) / ̄F (x ) for i = 1 , . . . , n . Even more, in this case, Ḡ x can be written

s Ḡ x (y ) = q̄ ( ̄F (x + y ) ; F̄ (x )) , see Navarro (2018) . Hence 

 ̄T I (t) = F̄ 1: n (t) + 

∫ t 

0 

q̄ ( ̄F (t) ; F̄ (x )) f 1: n (x ) dx 

here F̄ 1: n (t) = δK ( ̄F (t)) , δK (u ) = K(u, . . . , u ) and f 1: n (t) =
f (t) δ′ 

K 
( ̄F (t)) . Then 

 ̄T I (t) = δK ( ̄F (t)) + 

∫ t 

0 

q̄ ( ̄F (t) ; F̄ (x )) δ′ 
K ( ̄F (x )) f (x ) dx. 

inally, if we do the change u = F̄ (x ) , then 

 ̄T I (t) = δK ( ̄F (t)) + 

∫ 1 

F̄ (t) 
q̄ ( ̄F (t) ; u ) δ′ 

K (u ) du (3.7) 

nd therefore (3.5) holds. �

The dual distortion function q̄ I in (3.5) depends on the structure

f the system and on the underlying survival copula K . In the next

ections we will show how to compute it. However, we must say

hat, sometimes, it is not easy to get an explicit expression for it

since we have to solve the integral in (3.7) ). In the IID case, the

receding theorem can be simplified as follows. 

heorem 3.3. Let T be the lifetime of a coherent system with IID

omponents having a common reliability F̄ . Then the reliability func-

ion of T I can be written as F̄ T I (t) = q̄ I ( ̄F (t)) where 

¯
 I (u ) = n 

n −1 ∑ 

i =1 

a i 
n − i 

u 

i + 

( 

1 − n 

n −1 ∑ 

i =1 

a i 
n − i 

) 

u 

n − na n u 

n ln u (3.8)

nd (a 1 , . . . , a n ) is the minimal signature of the system. 

roof. If the components are independent, then Ḡ x (t) =
¯
 ( ̄F 1 ,x (t) , . . . , F̄ n,x (t)) holds from Proposition 5 in Navarro (2018) ,

hat is, Q̄ x = Q̄ , where Q̄ is the distortion function in (2.4) . Then, if

hey are IID, we have Ḡ x (t) = q̄ ( ̄F x (t)) , where F̄ x (t) = F̄ (t + x ) / ̄F (x )

nd q̄ (u ) = 

∑ n 
i =1 a i u 

i (see Section 2 ). Hence, from (3.6) , we have 

 ̄T I (t) = F̄ 1: n (t) + 

∫ t 

0 

q̄ ( ̄F x (t − x )) f 1: n (x ) dx 

= F̄ n (t) + 

∫ t 

0 

q̄ 

(
F̄ (t) 

F̄ (x ) 

)
n ̄F n −1 (x ) f (x ) dx 
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= F̄ n (t) + n 

n ∑ 

i =1 

a i ̄F 
i (t) 

∫ t 

0 

F̄ n −i −1 (x ) f (x ) dx 

= F̄ n (t) + n 

n −1 ∑ 

i =1 

a i 
n − i 

F̄ i (t)(1 − F̄ n −i (t)) + na n ̄F 
n (t )(− ln F̄ (t ))

which concludes the proof. �

The minimal signatures of all the coherent systems with 1–5

IID components were obtained in Navarro and Rubio (2010) . Hence,

from the preceding theorem, we have explicit expressions for q̄ I for

all these systems. 

3.2. Case II 

Let us assume now that we repair the component which is crit-

ical for the system. We may expect that this option leads to a bet-

ter performance since the most relevant components for the sys-

tem have higher probabilities of being repaired. Note that, in case

I, we just repair the first failure and so, for example, if the com-

ponents are exchangeable, then all the components have the same

probability of being repaired. However, we must note that case II

is not always available in practice for all systems. 

In this case it is not easy to obtain the reliability F̄ T II of the re-

sulting system lifetime T II . Let us see a simple example. If the sys-

tem is a series system, then cases I and II coincide since the first

failure is always critical for the system. So let us consider again a

parallel system. 

Example 3.4. If T = X 2:2 and the components are IID, then, from

(2.1) , we have 

F̄ T II (t) = F̄ T # ̄F (t) = F̄ T (t) + 

∫ t 

0 

F̄ (t) 

F̄ (x ) 
f T (x ) dx, 

where F̄ T (t) = 2 ̄F (t) − F̄ 2 (t) and f T (t) = 2(1 − F̄ (t )) f (t ) . Hence 

F̄ T II (t) = 2 ̄F (t) − F̄ 2 (t) + 2 ̄F (t) 

∫ t 

0 

1 − F̄ (x ) 

F̄ (x ) 
f (x ) dx 

= F̄ 2 (t) − 2 ̄F (t ) ln F̄ (t ) = q̄ II ( ̄F (t)) 

with q̄ II (u ) = u 2 − 2 u ln u . So T II also has a distorted distribution

from F . Hence it is easy to compare the three replacement poli-

cies for this system just by comparing the three distortion func-

tions. Thus a straightforward calculation leads to q̄ ≤ q̄ I ≤ q̄ (i ) 
I I I 

≤ q̄ II 

and so T ≤ST T I ≤ST T (i ) 
I I I 

≤ST T II for all F̄ and i = 1 , 2 , that is, the best

option in this system is to repair the component which is critical

for the system. The second best option is to replace a fixed compo-

nent and, of course, the three options are better than the original

system T . They are also better than a parallel system with three

components (active redundancy) with q̄ 3:3 (u ) = 3 u − 3 u 2 + u 3 . 

Let us assume now that the component lifetimes are just ex-

changeable. Then, proceeding as in Section 2 , we have F̄ T II (t) =
F̄ T # ̄G (t) , where 

Ḡ x (y ) = Pr (X 2 − x > y | X 1 ≤ x, X 2 > x ) = 

Pr (X 1 ≤ x, X 2 > x + y ) 

Pr (X 1 ≤ x, X 2 > x ) 

= 

Pr (X 2 > x + y ) − Pr (X 1 > x, X 2 > x + y ) 

Pr (X 2 > x ) − Pr (X 1 > x, X 2 > x ) 

= 

F̄ (x + y ) − K( ̄F (x ) , F̄ (x + y )) 

F̄ (x ) − K( ̄F (x ) , F̄ (x )) 

for x , y ≥ 0. Hence, from (2.1) , we have 

F̄ T II (t) = F̄ T (t) + 

∫ t 

0 

Ḡ x (t − x ) f T (x ) dx 

= F̄ T (t) + 

∫ t 

0 

F̄ (t) − K( ̄F (x ) , F̄ (t)) 

F̄ (x ) − K( ̄F (x ) , F̄ (x )) 
f T (x ) dx, 
here F̄ T (t) = 2 ̄F (t) − K( ̄F (t ) , F̄ (t )) and f T (t ) = 2(1 −
 1 K( ̄F (t) , F̄ (t))) f (t) . Therefore 

 ̄T II (t) = 2 ̄F (t) − K( ̄F (t ) , F̄ (t )) + 2 

∫ t 

0 

F̄ (t) − K( ̄F (x ) , F̄ (t)) 

F̄ (x ) − K( ̄F (x ) , F̄ (x )) 

× (1 − ∂ 1 K( ̄F (x ) , F̄ (x ))) f (x ) dx 

= 2 ̄F (t) − K( ̄F (t ) , F̄ (t )) + 2 

∫ 1 

F̄ (t) 

F̄ (t) − K(v , F̄ (t)) 

v − K(v , v ) 

× (1 − ∂ 1 K(v , v )) dv = q̄ II ( ̄F (t)) 

ith 

¯
 II (u ) = 2 u − K(u, u ) + 2 

∫ 1 

u 

u − K(v , u ) 

v − K(v , v ) 
(1 − ∂ 1 K(v , v )) dv . (3.9)

ote that we need K (and to solve this integral) to get an explicit

xpression for q̄ II . Of course, if K(u, v ) = u v , then we obtain the

xpression obtained above for the IID case. 

Finally, in the general case, proceeding as in (2.7) , we get

 ̄T II 
(t) = F̄ T # ̄G (t) , where 

¯
 x (y ) = p 1 (x ) Pr (X 2 − x > y | X 1 ≤ x, X 2 > x ) 

+ p 2 (x ) Pr (X 1 − x > y | X 2 ≤ x, X 1 > x ) 

= p 1 (x ) 
Pr (X 1 ≤x, X 2 > x + y ) 

Pr ( X 1 ≤ x, X 2 > x ) 
+p 2 ( x ) 

Pr ( X 2 ≤x, X 1 > x + y ) 

Pr ( X 2 ≤ x, X 1 > x ) 

= p 1 (x ) 
Pr (X 2 > x + y ) − Pr (X 1 > x, X 2 > x + y ) 

Pr ( X 2 > x ) − Pr (X 1 > x, X 2 > x ) 

+ p 2 (x ) 
Pr (X 1 > x + y ) − Pr (X 1 > x + y, X 2 > x ) 

Pr ( X 1 > x ) − Pr (X 1 > x, X 2 > x ) 

= p 1 (x ) 
F̄ 2 (x + y ) − K( ̄F 1 (x ) , F̄ 2 (x + y )) 

F̄ 2 ( x ) − K( ̄F 1 (x ) , F̄ 2 (x )) 

+ p 2 (x ) 
F̄ 1 (x + y ) − K( ̄F 1 (x + y ) , F̄ 2 (x )) 

F̄ 1 ( x ) − K( ̄F 1 (x ) , F̄ 2 (x )) 
, (3.10)

p 1 (x ) := Pr (X 1 < X 2 | T = x ) and p 2 (x ) := Pr (X 2 < X 1 | T = x ) = 1 −
p 1 (x ) for x , y ≥ 0. To compute p 1 ( x ), we need the joint reliability

f ( X 1 , X 2: 2 ) given by 

¯
 (x, y ) = Pr (X 1 > x, X 2:2 > y ) 

= Pr (X 1 > x, X 1 > y ) + Pr (X 1 > x, X 2 > y ) 

− Pr (X 1 > x, X 1 > y, X 2 > y ) 

= F̄ 1 (y ) + K( ̄F 1 (x ) , F̄ 2 (y )) − K( ̄F 1 (y ) , F̄ 2 (y )) 

or all x ≤ y . Hence, its joint density is h (x, y ) =
f 1 (x ) f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) for all x ≤ y (0 otherwise) and the

onditional density function of (X 1 | X 2:2 = y ) is 

 1 | 2 (x | y ) = 

f 1 (x ) f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) 

f T (y ) 

or 0 ≤ x ≤ y . Therefore 

p 1 (y ) = Pr (X 1 < X 2 | T = y ) = Pr (X 1 < X 2:2 | T = y ) = 

∫ y 

0 

h 1 | 2 (x | y ) dx

= 

∫ y 

0 

f 1 (x ) f 2 (y ) ∂ 1 , 2 K( ̄F 1 (x ) , F̄ 2 (y )) 

f T (y ) 
dx 

= 

f 2 (y ) − f 2 (y ) ∂ 2 K( ̄F 1 (y ) , F̄ 2 (y )) 

f T (y ) 
(3.11)

hen lim u → 1 − ∂ 2 K(u, F̄ 2 (y )) = 1 (see Navarro & Sordo, 2018 ). Anal-

gously, we get 

p 2 (y ) = Pr (X 2 < X 1 | T = y ) = 

f 1 (y ) − f 1 (y ) ∂ 1 K( ̄F 1 (y ) , F̄ 2 (y )) 

f T (y ) 
. 

(3.12)
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ence, from (2.1), (3.10), (3.11) and (3.12) , we have 

 ̄T II (t) = F̄ T (t) + 

∫ t 

0 

Ḡ x (t − x ) f T (x ) dx 

= F̄ 1 (t) + F̄ 2 (t) − K( ̄F 1 (t ) , F̄ 2 (t )) 

+ 

∫ t 

0 

[1 −∂ 2 K( ̄F 1 (x ) , F̄ 2 (x ))] 
F̄ 2 (t) −K( ̄F 1 (x ) , F̄ 2 (t)) 

F̄ 2 (x ) −K( ̄F 1 (x ) , F̄ 2 (x )) 
f 2 (x ) dx

+ 

∫ t 

0 

[1 −∂ 1 K( ̄F 1 (x ) , F̄ 2 (x ))] 
F̄ 1 (t) −K( ̄F 1 (t) , F̄ 2 (x )) 

F̄ 1 (x ) −K( ̄F 1 (x ) , F̄ 2 (x )) 
f 1 (x ) dx

n the exchangeable case, we have Pr (X 1 < X 2 | T = y ) = Pr (X 2 <

 1 | T = y ) = 1 / 2 and (3.9) . 

The preceding example shows that it is not easy to get an ex-

ression for the reliability in the general case. So, we are going to

ry to solve the case of exchangeable components. In this case, we

now that the system’s reliability can be written as 

 ̄T (t) = 

n ∑ 

i =1 

s i ̄F i : n (t) , (3.13)

here s = (s 1 , . . . , s n ) is the signature of the system and s i = Pr (T =
 i : n ) for i = 1 , . . . , n . We can use this representation to obtain the

ollowing result. 

heorem 3.5. Let T be the lifetime of a coherent system with compo-

ents having an absolutely continuous exchangeable joint reliability.

hen the reliability function of T II can be written as 

 ̄T II (t) = q̄ II ( ̄F (t)) (3.14) 

or all t ≥ 0 and for a distortion function q̄ II which does not depend

n F̄ . 

roof. Let us consider the events E σ = { X σ (1) < · · · < X σ (n ) } for σ
n the set P n of all the permutations of order n . If the components

re exchangeable, then Pr (E σ ) = 1 /n ! . Let us divide the set P n in

he disjoint subsets A 1 , . . . , A k where A j contains all the permuta-

ions which lead to T = X i j : n and to a fixed repaired system T j . Let

 j = ∪ σ∈ A j E σ . Then p j := Pr (H j ) = | A j | /n ! , where | A j | is the cardi-

al of the set A j for j = 1 , . . . , k . Hence 

 ̄T II (t) = Pr (T II > t) = 

k ∑ 

j=1 

p j Pr (T II > t| H j ) . (3.15)

ote that under H j , we know which component failure causes

he system failure. Moreover (T | H j ) = ST (X i j : n | H j ) . Also note that

 i j : n 
= ST (X i j : n | H j ) due to the assumption about exchangeable

omponents. Proceeding as in Section 2 , we get Pr (T II > t| H j ) =
 ̄i j : n 

# ̄G j (t) , where 

¯
 j,x (y ) = Pr (T j − x > y | X i j : n = x, H j ) (3.16)

nd T j is the system obtained after a minimal repair of the com-

onent broken in the i j th position and at a given time x under H j .

ote that the structure of this system is completely determined by

 j . This event also determines which components are working and

hich have failed at time x . Hence, from (2.1) , 

 ̄T II (t) = 

k ∑ 

j=1 

p j 

[
F̄ i j : n (t) + 

∫ t 

0 

Ḡ j,x (t − x ) f i j : n (x ) dx 

]
(3.17) 

olds. Note that the semi-coherent system T j has n − i j + 1 work-

ng components (some of them can be irrelevant for the system).

hese components are exchangeable and the corresponding joint

eliability function H̄ (y 1 , . . . , y n −i j +1 ) is given by 

Pr (X i j − x > y 1 , . . . , X n − x > y n −i j +1 | X 1 ≤ x, . . . , 

X i j −1 ≤ x, X i j > x, . . . , X n > x ) . 
roceeding as in case I, this joint reliability can be written as 

¯
 (y 1 , . . . , y n −i j +1 ) = Q̄ x ( ̄F x (y 1 ) , . . . , F̄ x (y n −i j +1 )) (3.18)

or a distortion function Q̄ x which depends on F̄ (x ) , where F̄ x (y ) =
 ̄(x + y ) / ̄F (x ) . Let H̄ 

j 
1: n 

, . . . , H̄ 

j 
n −i j +1: n 

be the reliability functions of

he order statistics obtained from these exchangeable components

nd let (s 
j 
1 
, . . . , s 

j 
n −i j +1 

) be the signature (of order n − i j + 1 ) of T j .

hen 

 ̄T II (t) = 

k ∑ 

j=1 

p j 

[ 

F̄ i j : n (t) + 

n −i j +1 ∑ 

� =1 

s j � 

∫ t 

0 

H̄ 

j 
� : n (t − x ) f i j : n (x ) dx 

] 

. 

t is well known (see, e.g., Navarro et al., 2013 ) that F̄ i j : n (t) can

e written as F̄ i j : n (t) = q̄ i j : n ( ̄F (t)) where q̄ i j : n depends on K . Analo-

ously, from (3.18) , we know that H̄ 

j 
� : n can be written as H̄ 

j 
� : n (y ) =

¯ 
j 
i : n 

( ̄F (x + y ) ; F̄ (x )) where q̄ 
j 
i : n 

depends on K . Therefore 

 ̄T II 
(t) = 

k ∑ 

j=1 

p j 

⎡ 

⎣ q̄ i j : n 
( ̄F (t)) + 

n −i j +1 ∑ 

� =1 

s j � 

∫ t 

0 

q̄ j 
i : n 

( ̄F (t) ; F̄ (x )) ̄q ′ i j : n ( ̄F (x )) f (x ) dx 

⎤ 

⎦ 

(3.19) 

nd by doing the change v = F̄ (x ) we get (3.14) . �

The coefficients in the signature used in (3.13) can also be com-

uted as s k = | B k | / n ! , where B k is the subset of P n with the per-

utations which lead to T = X k : n , that is, B k = ∪ j: i j = k A j . Hence

3.19) can also be written as 

 ̄T II (t) = ̄F T (t) + 

k ∑ 

j=1 

p j 

n −i j +1 ∑ 

� =1 

s j � 

∫ t 

0 

q̄ j 
i : n 

( ̄F (t) ; F̄ (x )) ̄q ′ i j : n ( ̄F (x )) f (x ) dx, 

(3.20) 

here F̄ T (t) = q̄ T ( ̄F (t)) . These general expressions can be simpli-

ed in the IID case as follows. 

heorem 3.6. Let T be the lifetime of a coherent system with IID

omponents having a common absolutely continuous reliability F̄ .

hen the reliability function of T II can be expressed as F̄ T II (t) =
¯ II ( ̄F (t)) for all t ≥ 0, where 

¯
 II (u ) = 

n ∑ 

i =1 

c i u 

i + 

n ∑ 

i =1 

d i u 

i ln u (3.21)

or some coefficients c i , d i , i = 1 , . . . , n which only depend on the

tructure of the system. 

roof. Let a j = (a 
j 
1 
, . . . , a 

j 
n −i j +1 

) be the minimal signature the sys-

em T j considered in the proof of the preceding theorem for j =
 , . . . , k . In the IID case, this semi-coherent system has n − i j + 1

ID components with the common reliability F̄ x (y ) = F̄ (x + y ) / ̄F (x ) .

ence the reliability in (3.16) is 

¯
 j,x (y ) = 

n −i j +1 ∑ 

� =1 

a j � 

(
F̄ (x + y ) 

F̄ (x ) 

)� 

. 

herefore, from (3.17) and (3.20) , we have 

 ̄T II (t) = F̄ T (t) + 

k ∑ 

j=1 

p j 

n −i j +1 ∑ 

� =1 

a j � 

∫ t 

0 

F̄ � (t) 

F̄ � (x ) 
q̄ ′ i j : n ( ̄F (x )) f (x ) dx 

here F̄ i : n (t) = q̄ i : n ( ̄F (t)) for a polynomial 

¯
 i : n (u ) = 

n ∑ 

r= n −i +1 

(−1) r−n + i −1 

(
n 

r 

)(
r − 1 

n − i 

)
u 

r 
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(see, e.g., David & Nagaraja, 2003 , p. 46). So 

f i : n (t) = f (t) ̄q ′ i : n ( ̄F (t)) 

= f (t) 
n ∑ 

r= n −i +1 

(−1) r−n + i −1 r 

(
n 

r 

)(
r − 1 

n − i 

)
F̄ r−1 ( t) . 

Therefore, if (a 1 , . . . , a n ) is the minimal signature of T , then 

F̄ T II (t) = F̄ T (t) + 

k ∑ 

j=1 

p j 

n −i j +1 ∑ 

� =1 

a j � F̄ 
� (t) 

×
n ∑ 

r= n −i j +1 

r(−1) r−n + i j −1 

(
n 

r 

)(
r − 1 

n − i j 

)∫ t 

0 

F̄ r−� −1 ( x ) f ( x ) dx 

= 

n ∑ 

j=1 

a j ̄F 
j (t) + 

k ∑ 

j=1 

p j 

n −i j +1 ∑ 

� =1 

a j � F̄ 
� (t) 

×
n ∑ 

r= n −i j +1 

r(−1) r−n + i j −1 

(
n 

r 

)(
r − 1 

n − i j 

)
φr−� ( t) , 

where φs (t) = (1 − F̄ s (t)) /s if s > 0 and φs (t) = − ln F̄ (t) if s = 0 .

This concludes the proof. �

Example 4.4 shows how to apply the preceding theorem. In

Navarro, Arriaza, and Suárez-Llorens (2017) we provide an R-script

to compute the coefficients c i and d i for a given coherent system

with IID components. 

In general it is not easy to compute the reliability function as-

sociated to the case II of a coherent system with dependent com-

ponents. However, the reliability function of k -out-of- n systems

can be obtained by assuming exchangeable components. Thus, if

T = X i : n for a fixed i ∈ { 2 , . . . , n } and the components are exchange-

able, then F̄ T II (t) = F̄ i : n # ̄G (t) , where 

Ḡ x (y ) = Pr (X i > x + y, . . . , X n > x + y | X 1 ≤ x, . . . , 

X i −1 ≤ x, X i > x, . . . , X n > x ) 

= 

Pr (X 1 ≤ x, . . . , X i −1 ≤ x, X i > x + y, . . . , X n > x + y ) 

Pr (X 1 ≤ x, . . . , X i −1 ≤ x, X i > x, . . . , X n > x ) 

= 

H i ( ̄F (x ) , F̄ (x + y )) 

H i ( ̄F (x ) , F̄ (x )) 
, 

with a function H i such that Pr (X 1 ≤ x, . . . , X i −1 ≤ x, X i > t, . . . , X n >

) = H i ( ̄F (x ) , F̄ (t)) for all 0 ≤ x ≤ t . Note that H i only depends on K .

Therefore, from (2.1) , we have 

Pr (T II > t) = F̄ i : n (t) + 

∫ t 

0 

H i ( ̄F (x ) , F̄ (t)) 

H̄ i ( ̄F (x ) , F̄ (x )) 
f i : n (x ) dx. (3.22)

If the components are IID, then the following result provide an

explicit expression for (3.22) . 

Proposition 3.7. Given an i-out-of-n system with IID components

and lifetime T = X i : n for a fixed i ∈ { 2 , . . . , n } , then F̄ T II (t) = q̄ II ( ̄F (t)) ,

where 

q̄ II (u ) = 

(
n 

n − i + 1 

)
u 

n −i +1 + u 

n −i +1 

×
n ∑ 

k = n −i +2 

(−1) k −n + i −1 k 

k − n + i − 1 

(
n 

k 

)(
k − 1 

n − i 

)

+ 

n ∑ 

k = n −i +2 

(−1) k −n + i n − i + 1 

k − n + i − 1 

×
(

n 

k 

)(
k − 1 

n − i 

)
u 

k − i 

(
n 

i 

)
u 

n −i +1 ln u. 

Proof. If the components are IID, then 

Ḡ x (y ) = Pr (X > x + y, . . . , X n > x + y | X 1 ≤ x, . . . , 
i 
X i −1 ≤ x, X i > x, . . . , X n > x ) 

= Pr (X i > x + y | X i > x ) . . . Pr (X n > x + y | X n > x ) 

= 

F̄ n −i +1 (x + y ) 

F̄ n −i +1 (x ) 
. 

oreover, as F̄ i : n (t) = 

∑ n 
k = n −i +1 (−1) k −n + i −1 

(
n 
k 

)(
k −1 
n −i 

)
F̄ k (t) (see, e.g.,

avid & Nagaraja, 2003 , p. 46), we have 

r (T II > t) = F̄ i : n (t) + 

∫ t 

0 

F̄ n −i +1 (t) 

F̄ n −i +1 (x ) 
f i : n (x ) dx 

= F̄ i : n (t) + F̄ n −i +1 (t) 
n ∑ 

k = n −i +1 

(−1) k −n + i −1 k 

(
n 

k 

)(
k − 1 

n − i 

)

×
∫ t 

0 

F̄ k −n + i −2 (x ) f (x ) dx 

= F̄ i : n (t) + 

n ∑ 

k = n −i +2 

(−1) k −n + i −1 k 

(
n 

k 

)(
k − 1 

n − i 

)

× F̄ n −i +1 (t) − F̄ k (t) 

k − n + i − 1 

− i 

(
n 

i 

)
F̄ n −i +1 (t) ln F̄ (t) 

= 

(
n 

n − i + 1 

)
F̄ n −i +1 (t) −

n ∑ 

k = n −i +2 

(−1) k −n + i −1 

× n − i + 1 

k − n + i − 1 

(
n 

k 

)(
k − 1 

n − i 

)
F̄ k (t) 

+ F̄ n −i +1 (t) 
n ∑ 

k = n −i +2 

(−1) k −n + i −1 k 

k − n + i − 1 

×
(

n 

k 

)(
k − 1 

n − i 

)
− i 

(
n 

i 

)
F̄ n −i +1 (t) ln F̄ (t) 

hich concludes the proof. �

.3. Other cases 

The purpose of this section is to show that we can study other

ases following the procedures used above in cases I and II. For ex-

mple, if we know that the system does not fail with the first com-

onent failure, we can consider to repair the system at the second

omponent failure with a minimal repair of the broken component

t this point. Then, if the components are exchangeable, the relia-

ility function of the repaired system is F̄ (2) (t) = F̄ 2: n # ̄G (t) , where 

¯
 x (y ) = 

1 

n 

n ∑ 

i =1 

Pr (T i − x > y | X i ≤ x, X j > t for all j � = i ) 

nd T i is the lifetime of the semi-coherent system obtained from

 when we know that the i th component is broken. A similar ex-

ression can be obtained if the system is repaired at the j th failure

or j = 3 , 4 , . . . . 

In all the options studied above, we just repair one component.

e can of course consider k replacements. For example, if k = 2

nd, in case III, we repair components i and j (for fixed i < j ), then

he reliability of the repaired system is 

 ̄

T (i, j) 
I I I 

(t) = Q̄ ( ̄F 1 (t) , . . . , F̄ i −1 (t) , q̄ 1 ( ̄F i (t)) , F̄ i +1 (t) , . . . , 

F̄ j−1 (t) , q̄ 1 ( ̄F j (t)) , F̄ j+1 (t) , . . . , F̄ n (t)) , 

here q̄ 1 is given in (2.3) . If the components are ID, then this

epresentation can be reduced to F̄ 
T 

(i, j) 
I I I 

(t) = q̄ 
(i, j) 
I I I 

( ̄F (t)) , where

¯ 
(i, j) 
I I I 

(u ) = Q̄ (u, . . . , u, q̄ 1 (u ) , u, . . . , u, q̄ 1 (u ) , u, . . . , u ) and q̄ 1 (u ) is

laced at the i th and j th positions. Analogously, if we repair the

 th component twice, then 

 ̄

T (i,i ) 
I I I 

(t) = Q̄ ( ̄F 1 (t ) , . . . , F̄ i −1 (t ) , q̄ 2 ( ̄F i (t )) , F̄ i +1 (t ) , . . . , F̄ n (t )) , 
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here q̄ 2 is given in (2.3) . If the components are ID, we get

 ̄

T 
(i,i ) 

I I I 

(t) = q̄ (i,i ) 
I I I 

( ̄F (t)) , where 

¯
 

(i,i ) 
I I I 

(u ) = Q̄ (u, . . . , u, q̄ 2 (u ) , u, . . . , u ) 

nd q̄ 2 is placed at the i th position. Other options with fixed re-

airs were studied in Arriaza et al. (2018) . 

We could consider other options with k = 2 minimal repairs.

or example, we can repair the two first broken components. In

his case, if X 1 , . . . , X n are IID, the resulting reliability is 

 ̄

(2) 
I 

(t) = ( ̄F 1: n # ̄G 1: n )# ̄G (t) , 

here F̄ 1: n (t) = F̄ n (t) is the reliability function of X 1: n =
in (X 1 , . . . , X n ) , 

( ̄G 1: n ) x (y ) = F̄ n x (y ) = 

F̄ n (x + y ) 

F̄ n (x ) 

s the reliability function of Y 1: n = min (Y 1 , . . . , Y n ) (a series sys-

em with n IID components and a common reliability F̄ x (y ) = F̄ (x +
 ) / ̄F (x ) ) and Ḡ y (z) = q̄ T ( ̄F y (z)) is the reliability of a system with

he same structure as T , having n IID components with reliabil-

ty F̄ y when Y 1: n = y . The reliability H̄ = F̄ 1: n # ̄G 1: n can be computed

rom (2.1) as 

¯
 (t) = F̄ n (t) + 

∫ t 

0 

F̄ n (t) 

F̄ n (x ) 
n ̄F n −1 (x ) f (x ) dx = F̄ n (t) −n ̄F n (t ) ln F̄ (t ) . 

ts density is h (t) = −n 2 F̄ n −1 (t ) f (t ) ln F̄ (t ) . Then, by using

2.1) again, the system’s reliability is 

 ̄

(2) 
I 

(t) = H̄ (t) + 

∫ t 

0 

Ḡ y (t − y ) h (y ) dy 

= H̄ (t) − n 

2 

∫ t 

0 

q̄ T 

(
F̄ (t) 

F̄ (y ) 

)
F̄ n −1 (y ) f (y ) ln F̄ (y ) dy 

= H̄ (t) − n 

2 
n ∑ 

i =1 

a i ̄F 
i (t) 

∫ t 

0 

F̄ n −i −1 (y ) ln F̄ (y ) f (y ) dy, 

here (a 1 , . . . , a n ) is the minimal signature of the system T . Then 

 ̄

(2) 
I 

(t) = H̄ (t) − n 

2 a n ̄F 
n (t) 

∫ t 

0 

F̄ −1 (y ) ln F̄ (y ) f (y ) dy − n 

2 

×
n −1 ∑ 

i =1 

a i ̄F 
i (t) 

∫ t 

0 

F̄ n −i −1 (y ) ln F̄ (y ) f (y ) dy 

= H̄ (t) + n 

2 a n 

2 

F̄ n (t ) ln 

2 
F̄ (t ) − n 

2 

×
n −1 ∑ 

i =1 

a i ̄F 
i (t) 

∫ t 

0 

F̄ n −i −1 (y ) ln F̄ (y ) f (y ) dy. 

inally, by doing the change x = − ln F̄ (y ) , in I i (t) = 

∫ t 
0 F̄ 

n −i −1 

(y ) ln F̄ (y ) f (y ) dy, we get 

 i (t) = 

∫ − ln ̄F (t) 

0 

xe −(n −i ) x dx = 

F̄ n −i (t ) ln F̄ (t ) 

n − i 
+ 

1 − F̄ n −i (t) 

(n − i ) 2 
. 

herefore 

 ̄

(2) 
I 

(t) = q̄ 1 (F n (t)) + 

n 

2 a n 

2 

F̄ n (t) ln 

2 
F̄ (t) + n 

2 

×
n −1 ∑ 

i =1 

a i 
F̄ n (t) ln F̄ (t) 

n − i 
+ n 

2 
n −1 ∑ 

i =1 

a i 
F̄ i (t) − F̄ n (t) 

(n − i ) 2 
. 

ote that the reliability can be written as F̄ (2) 
I 

(t) = q̄ (2) 
I 

( ̄F (t))

or a distortion function q̄ (2) 
I 

. For example, for T = X 1: n , we ob-

ain q̄ (2) 
I 

(u ) = u n − nu n ln u + (n 2 / 2) u n ( ln u ) 2 . For this system, if

e repair the first k broken components, then we get q̄ (k ) 
I 

(u ) =
 k 
i =0 n 

i u n (− ln u ) i /i ! . 
Other similar replacement policies can be studied in a similar

ay. However, in the following section we restrict ourselves to the

ases with k = 1 to develop fair comparisons, that is comparisons

f replacement policies with the same number of repairs (i.e. with

he same cost). 

. Comparison results 

The representations obtained in the preceding section can be

sed jointly with the ordering results for distorted distributions

iven in Navarro et al. (2013) and Navarro and Gomis (2016) to

ompare the different replacement policies. For sake of complete-

ess we include some of these ordering results in the following

heorem. We shall consider the following (well known) stochastic

rders. 

The main order is the usual stochastic order , denoted by X ≤ ST Y ,

hat compares the respective reliability functions F̄ X (t) ≤ F̄ Y (t) for

ny time t . This ordering implies that E ( X ) ≤ E ( Y ) (if these expecta-

ions exist). An alternative (stronger) order is the hazard rate order ,

enoted by X ≤ HR Y , that compares the respective residual lifetimes

(X − t | X > t ) ≤ST (Y − t | Y > t ) for any time t . While the ST order

ompares new units, the HR order compares (in the ST order) used

nits with the same age t . Analogously, the mean residual life or-

er , denoted by X ≤ MRL Y , compares the respective mean (expected)

esidual lifetimes E(X − t | X > t ) ≤ E(Y − t | Y > t ) for any time t .

he HR order implies the MRL order. An order similar to the HR or-

er is the reversed hazard rate order , denoted by X ≤ RHR Y , that com-

ares the inactivity times (t − X| X < t) ≥ST (t − Y | Y < t) for any

ime t . Finally, the likelihood ratio order , denoted by X ≤ LR Y , holds if

he ratio of their densities f Y / f X is increasing in the union of their

upports. This order implies all the preceding orders. For basic

roperties and applications of these orders we refer the reader to

arlow and Proschan (1975) and Shaked and Shanthikumar (2007) .

heorem 4.1. Let X 1 and X 2 be two random variables with distribu-

ion functions F q 1 = q 1 (F ) and F q 2 = q 2 (F ) obtained as distorted dis-

ributions from the same distribution function F and from the distor-

ion functions q 1 and q 2 , respectively. Let q̄ 1 and q̄ 2 be the respective

ual distortion functions. Then: 

(i) X 1 ≤ST X 2 for all F ⇐⇒ q̄ 1 (u ) ≤ q̄ 2 (u ) [ or q 1 (u ) ≥ q 2 (u )] for

ll u ∈ (0 , 1) . 

(ii) X 1 ≤HR X 2 for all F ⇐⇒ q̄ 2 (u ) / ̄q 1 (u ) is decreasing in ( 0 , 1) . 

(iii) X 1 ≤ RHR X 2 for all F ⇐⇒ q 2 ( u )/ q 1 ( u ) is increasing in (0, 1). 

(iv) X 1 ≤LR X 2 for all F ⇐⇒ q̄ ′ 2 (u ) / ̄q ′ 1 (u ) is decreasing in ( 0 , 1) . 

(v) X 1 ≤MRL X 2 for all F ⇐ q̄ 2 (u ) / ̄q 1 (u ) is bathtub in ( 0 , 1) 

nd E ( X 1 ) ≤ E ( X 2 ) . 

We apply these ordering results in the following theorems and

xamples comparing the different replacement policies. In the first

ain result we prove that, for any system with IID components,

he replacement policy of case II is always ST-better than that of

ase I. 

heorem 4.2. Let T be the lifetime of a coherent system with IID

omponents having a common absolutely continuous reliability F̄ . Let

 I and T II be the system lifetimes obtained with the replacement poli-

ies of cases I and II, respectively. Then T I ≤ ST T II for all F̄ . 

roof. If we assume that the component lifetimes X 1 , . . . , X n are

ID, then the system’s reliability can be written as F̄ T (t) = q̄ ( ̄F (t))

or a polynomial q̄ (u ) . From Theorems 3.3 and 3.6 , we also know

hat the reliability functions of T I and T II can be written as Pr (T I >

) = q̄ I ( ̄F (t)) and Pr (T II > t) = q̄ II ( ̄F (t)) . So we just need to prove

hat q̄ I (u ) ≤ q̄ II (u ) for all u ∈ [0, 1]. 

From the proof of Theorem 3.3 , we know that T I = X 1: n + Y I ,

here X 1: n = min (X 1 , . . . , X n ) , 

r (Y I − x > y | X 1: n = x ) = Pr (T ∗ > y ) 
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Table 1 

Repairing options for the system in Example 4.4 . 

j A j H j | A j | T i j T j 

1 (1, i 2 , i 3 ) X 1 < X i 2 < X i 3 2 T = X i 2 2 min ( X 2 , X 3 ) 

2 ( i 1 , 1, i 3 ) X i 1 < X 1 < X i 3 2 T = X 1 2 X 1 
3 ( i 1 , i 2 , 1) X i 1 < X i 2 < X 1 2 T = X 1 3 X 1 
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and T ∗ is the lifetime of a system with the same structure as T

and having IID components with the common reliability function

F̄ x (y ) = F̄ (x + y ) / ̄F (x ) for y ≥ 0. Hence 

Pr (Y I − x > y | X 1: n = x ) = Pr (T ∗ > y ) = q̄ ( ̄F x (y )) . 

On the other hand, from the proof of Theorem 3.6 , we know

that T II = T + Y II , where 

Pr (Y II − x > y | T = x ) = Pr (T ∗∗ > y ) 

and T ∗∗ is a mixture of different semi-coherent systems with n (or

less) IID components with the common reliability function F̄ x . 

Now let assume that the IID components are exponential with

mean 1, that is, F̄ (t) = e −t for t ≥ 0. This model has the lack of

memory property and so F̄ x (y ) = F̄ (y ) for all y ≥ 0. Hence 

Pr (Y I − x > y | X 1: n = x ) = q̄ ( ̄F (y )) = Pr (T > y ) 

for all x , y ≥ 0, that is, (Y I − x | X 1: n = x ) = ST T . So X 1: n and Y I are in-

dependent. Analogously, T ∗∗ is a mixture of different semi-coherent

systems with n (or less) components and having IID components

with the common reliability function F̄ . Hence T and Y II are in-

dependent. Moreover, as all these semi-coherent systems are ST-

better than X 1: n (because they have n or less components), then

X 1: n ≤ ST T 
∗∗. Finally, from Theorem 1.A.3, b, in Shaked and Shan-

thikumar (2007 , p. 6), we get 

T I = ST X 1: n + T ∗ ≤ST T + T ∗∗ = ST T II 

for F̄ (t) = e −t , where T ∗ = ST T . Hence q̄ I (e −t ) ≤ q̄ II (e −t ) for all t ≥ 0.

So q̄ I (u ) ≤ q̄ II (u ) for all u ∈ [0, 1] and the proof is completed. �

In the second theorem we prove that this property can be ex-

tended to the hazard rate order for the systems which preserve the

IFR (increasing failure rate) aging property. A similar result can be

stated for the likelihood ratio order from Theorem 1.C.9 in Shaked

and Shanthikumar (2007 , p. 46) and the preservation results for

the ILR class of logconcave densities given in Proposition 2.2 of

Navarro, del Águila, Sordo, and Suárez-Llorens (2014) . 

Theorem 4.3. Let T be the lifetime of a coherent system with IID

components having a common absolutely continuous reliability F̄ . Let

T I and T II be the system lifetimes obtained with the replacement poli-

cies of cases I and II, respectively. Let q̄ be the dual distortion function

of T. If α(u ) = u ̄q ′ (u ) / ̄q (u ) is decreasing in (0,1), then T I ≤ HR T II for

all F̄ . 

Proof. As in the preceding theorem, we have Pr (T I > t) = q̄ I ( ̄F (t))

and Pr (T II > t) = q̄ II ( ̄F (t)) . So, from Theorem 4.1 , ( ii ), we need to

prove that q̄ II / ̄q I is decreasing in (0,1). With the notation used

in the proof of the preceding theorem, if we assume that F̄ (t) =
e −t for t ≥ 0 (exponential components), we have T I = ST X 1: n + T ∗

and T II = ST T + T ∗∗, where T ∗ = ST T and T ∗∗ is a mixture of semi-

coherent systems of order n . Then its reliability can be written as 

Pr (T ∗∗ > t) = s ∗∗
1 F̄ 1: n (t) + · · · + s ∗∗

n F̄ n : n (t) 

for all t ≥ 0. The vector (s ∗∗
1 , . . . , s 

∗∗
n ) is called the signature (of or-

der n ) of T ∗∗ (see, e.g., Navarro, Samaniego, Balakrishnan, & Bhat-

tacharya, 2008 ). The signature of X 1: n is (1 , 0 , . . . , 0) . Hence, as

(1 , 0 , . . . , 0) ≤HR (s ∗∗
1 , . . . , s 

∗∗
n ) , from Theorem 4.4 in Navarro et al.

(2008) , we get X 1: n ≤ HR T 
∗∗ for F̄ (t) = e −t . Moreover, we know that

T ∗ is independent of X 1: n and T ∗∗ is independent of T . Then we

can apply Lemma 1.B.3 in Shaked and Shanthikumar (2007 , p. 18)

obtaining 

T I = ST X 1: n + T ∗ ≤HR T + T ∗∗ = ST T II 

for F̄ (t) = e −t whenever T is IFR. Now we note that, from the re-

sults given in Navarro et al. (2014 , p. 447), if the function α defined

above is decreasing, then the system preserves the IFR property.
o, as the exponential distribution is IFR, then T is also IFR and

 I ≤ HR T II holds for F̄ (t) = e −t , that is, 

Pr (T II > t) 

Pr (T I > t) 
= 

q̄ II ( ̄F (t)) 

q̄ I ( ̄F (t)) 
= 

q̄ II (e −t ) 

q̄ I (e −t ) 

s increasing for t ≥ 0. Therefore, q̄ II (u ) / ̄q I (u ) is decreasing in (0,1)

nd the proof is completed. �

The following example shows that, sometimes, to repair a fixed

omponent (case III) is better than to repair the critical component

f the system (case II). 

xample 4.4. Let us consider a coherent system with three IID

omponents and lifetime T = max (X 1 , min (X 2 , X 3 )) . Then the dis-

ortion functions of the system are Q̄ (u 1 , u 2 , u 3 ) = u 1 + u 2 u 3 −
 1 u 2 u 3 and q̄ (u ) = Q̄ (u, u, u ) = u + u 2 − u 3 . Furthermore, the dual

istortion functions associated to the lifetimes obtained after the

inimal repair of the components 1, 2 and 3 are given by 

¯
 

(1) 
I I I 

(u ) = Q̄ ( ̄q 1 (u ) , u, u ) = u + u 

2 − u 

3 − (u − u 

3 ) ln u 

nd 

¯
 

(2) 
I I I 

(u ) = q̄ (3) 
I I I 

(u ) = Q̄ (u, q̄ 1 (u ) , u ) = u + u 

2 − u 

3 − (u 

2 − u 

3 ) ln u. 

n the other hand, the distortion function for case I can be ob-

ained from (3.8) as 

¯
 I (u ) = 

3 

2 

u + 3 u 

2 − 7 

2 

u 

3 + 3 u 

3 ln u. 

Finally, we compute q̄ II from (3.21) . The signature of the system

s (0, 2/3, 1/3). It can be computed from the permutations given

n Table 1 . This table also contains the numbers i j of component

ailures which cause the system failure and the expressions of the

epaired system lifetimes T j for each j = 1 , 2 , 3 . Hence, from (3.15) ,

e get 

r (T II > t) = 

1 

3 

3 ∑ 

j=1 

Pr (T II > t| H j ) 

or the events H j given in Table 1 . The first probability can be com-

uted as 

r (T II > t| H 1 ) = F̄ i 1 :3 # ̄G 1 (t) = F̄ 2:3 # ̄G 1 (t) , 

here if X 2:3 = x, then 

¯
 1 ,x (y ) = Pr (T 1 − x > y | X 2:3 = x, H 1 ) 

= Pr ( min (X 2 , X 3 ) − x > y | X 1 < x < X 2 < X 3 ) = 

F̄ 2 (x + y ) 

F̄ 2 (x ) 

ince the components are IID. Therefore, from (2.1) , we have 

r (T II > t| H 1 ) = F̄ 2:3 (t) + 

∫ t 

0 

F̄ 2 (t) 

F̄ 2 (x ) 
f 2:3 (x ) dx, 

here F̄ 2:3 (t) = 3 ̄F 2 (t) − 2 ̄F 3 (t) and f 2:3 (t) = 6( ̄F (t) − F̄ 2 (t )) f (t ) .

ence 
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Fig. 1. Plots of the dual distortion functions for the cases: I, II, III ((1) and (2)) and for the system given in Example 4.4 (left). Ratio q̄ (1) 
I I I 

/ ̄q II in the interval (0,1) (right). 
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r (T II > t| H 1 ) = F̄ 2:3 (t) + 6 ̄F 2 (t) 

∫ t 

0 

F̄ (x ) − F̄ 2 (x ) 

F̄ 2 (x ) 
f (x ) dx 

= F̄ 2:3 (t) + 6 ̄F 2 (t) 

∫ t 

0 

(
1 

F̄ (x ) 
− 1 

)
f (x ) dx 

= F̄ 2:3 (t) + 6 ̄F 2 (t ) 
(
− log F̄ (t ) − F (t) 

)
= −3 ̄F 2 (t) + 4 ̄F 3 (t) − 6 ̄F 2 (t) log F̄ (t) . 

 straightforward (analogous) calculation for H 2 and H 3 leads us

o 

r (T II > t| H 2 ) = 3 ̄F (t) − 3 ̄F 2 (t) + F̄ 3 (t) 

nd 

r (T II > t| H 3 ) = −3 

2 

F̄ (t) + 3 ̄F 2 (t) − 1 

2 

F̄ 3 (t) − 3 ̄F (t ) log F̄ (t ) . 

ence 

r (T II > t) = 

1 

3 

Pr (T II > t| H 1 ) + 

1 

3 

Pr (T II > t| H 2 ) + 

1 

3 

Pr (T II > t| H 3 )

= 

1 

2 

F̄ (t) − F̄ 2 (t) + 

3 

2 

F̄ 3 (t) − F̄ (t ) log F̄ (t ) 

− 2 ̄F 2 (t) log F̄ (t) 

= q̄ II ( ̄F (t)) , 

here q̄ II (u ) = u/ 2 − u 2 + (3 / 2) u 3 − u log u − 2 u 2 log u for u ∈ (0, 1).

In Fig. 1 (left) we compare the distortion functions of the three

ases. From these plots we conclude that T ≤ST T (2) 
I I I 

≤ST T I ≤ST 

 II ≤ST T (1) 
I I I 

. In order to clarify the last inequality, we plot the ra-

io q̄ (1) 
I I I 

/ ̄q II in the interval (0,1) (see Fig. 1 , right). This quotient

s always above the line y = 1 . However it is not decreasing and

herefore T II and T (1) 
I I I 

are not HR-ordered. Hence, we can state that

gainst the expected, the replacement policy of case II is not al-

ays the best strategy in the case of IID components. 

The following example shows that Theorem 4.2 is not true

hen the components are dependent. 

xample 4.5. Let us consider a parallel system with 2 exchange-

ble components having a common absolutely continuous reliabil-

ty function F̄ . Let us assume that both components are dependent
nd have the following Clayton-Oakes survival copula 

(u, v ) = 

u v 
u + v − u v 

. 

aking into account that both components are ID and have survival

opula K , we get 

 ̄1:2 (t) = K( ̄F (t ) , F̄ (t )) = 

F̄ (t ) 

2 − F̄ (t) 
and f 1:2 (t) = 

2 f (t) 

(2 − F̄ (t)) 2 
, 

here f represents the common density function of both compo-

ents. Hence, the reliability function associated to T I can be ob-

ained from (3.4) as follows 

 ̄T I (t) = F̄ 1:2 (t) + F̄ 1:2 (t ) ln ( ̄F 1:2 (t )) + 2 

∫ t 

0 

K( ̄F (t) , F̄ (x )) 

F̄ 1:2 (x ) 
f 1:2 (x ) dx 

= 

F̄ (t) 

2 − F̄ (t) 

(
1 − −3 ln F̄ (t) − ln (2 − F̄ (t)) 

)
= q̄ I ( ̄F (t)) , 

here q̄ I (u ) = (u − 3 u ln u − u ln (2 − u )) / (2 − u ) represents the

ual distortion associated to T I . 

On the other hand, we can obtain immediately the expression

or the dual distortion associated to T II just by replacing K(u, v ) in
3.9) as follows 

¯
 II (u ) = 2 u − K(u, u ) + 2 

∫ 1 

u 

u − K(v , u ) 

v − K(v , v ) 
(1 − ∂ 1 K(v , v )) dv 

= 

u (3 − 2 u ) 

2 − u 

+ 

u (3 − u ) 

1 − u 

ln (2 − u ) + 

u 

2 (5 − 3 u ) 

(2 − u )(1 − u ) 
ln u. 

Finally, we obtain the dual distortion functions for the case III.

irstly, we note that both distortions must be the same because

e are considering exchangeable components. Moreover, Q̄ (u, v ) =
 + v − K(u, v ) . Hence, the dual distortion function of T (1) 

I I I 
can be

btained as follows 

 ̄

T (1) 
I I I 

(t) = Q̄ ( ̄q 1 ( ̄F (t)) , F̄ (t)) = q̄ 1 ( ̄F (t)) + F̄ (t) 

− q̄ 1 ( ̄F (t)) F̄ (t) 

q̄ 1 ( ̄F (t)) + F̄ (t) − q̄ 1 ( ̄F (t )) F̄ (t ) 
= q̄ (1) 

I I I 
( ̄F (t)) , 
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Fig. 2. Plots of the dual distortion functions for the system in Example 4.5 for cases I, II, III and without repairs (left) and plots of the ratios q̄ (1) 
I I I 

/ ̄q II , q̄ I / ̄q II and q̄ I / ̄q 
(1) 
I I I 

in the 

interval (0.3,1) (right). 

Table 2 

Coefficients c i and d i associated to the dual distortion function q̄ II (see Theorem 3.6 ) for all the coherent systems with 1–4 IID components 

and the best replacement policy in the stochastic order. Cases I, II and III ( i ) are denoted by C I , C II and C (i ) 
I I I 

, respectively. 

N T = φ(X 1 , X 2 , X 3 , X 4 ) c d Best ST-policy 

1 X 1:1 = X 1 (1) (-1) C I ≡ C II ≡ C (1) 
I I I 

2 X 1:2 = min (X 1 , X 2 ) (0,1) (0,-2) C I ≡ C II 
3 X 2:2 = max (X 1 , X 2 ) (0,1) (-2,0) C II 
4 X 1:3 = min (X 1 , X 2 , X 3 ) (0,0,1) (0,0,-3) C I ≡ C II 
5 min ( X 1 , max ( X 2 , X 3 )) (0,0,1) (0,-4,1) C II 
6 X 2: 3 (2-out-of-3:F) (0,-3,4) (0,-6,0) C II 

7 max ( X 1 , min ( X 2 , X 3 )) (1/2,-1,3/2) (-1,-2,0) C (1) 
I I I 

8 X 3:3 = max (X 1 , X 2 , X 3 ) (-3/2,3,-1/2) (-3,0,0) C II 
9 X 1:4 = min (X 1 , X 2 , X 3 , X 4 ) (0,0,0,1) (0,0,0,-4) C I ≡ C II 
10 max (min ( X 1 , X 2 , X 3 ), (0,0,0,1) (0,0,-6,2) C II 

min ( X 2 , X 3 , X 4 )) 

11 min ( X 2: 3 , X 4 ) (0,0,-3,4) (0,0,-9,2) C II 
12 min ( X 1 , max ( X 2 , X 3 ), max ( X 2 , X 4 )) (0, 1/2, -1, 3/2) (0, -2, -3, 1) C II 
13 min ( X 1 , max ( X 2 , X 3 , X 4 )) (0,-3/2,3,-1/2) (0,-6,3,-1) C II 
14 X 2: 4 (2-out-of-4:F) (0,0,-8,9) (0,0,-12,0) C II 
15 max (min ( X 1 , X 2 ), min ( X 1 , X 3 , X 4 ), (0,0,-4,5) (0,-2,-6,0) C II 

min ( X 2 , X 3 , X 4 )) 

16 max (min ( X 1 , X 2 ), min ( X 3 , X 4 )) (0,0,0,1) (0,-4,0,0) C II 
17 max (min ( X 1 , X 2 ), min ( X 1 , X 3 ), (0,-1,0,2) (0,-4,-2,0) C II 

min ( X 2 , X 3 , X 4 )) 

18 max (min ( X 1 , X 2 ), min ( X 2 , X 3 ), (0,-2,4,-1) (0,-6,2,0) C II 
min ( X 3 , X 4 )) 

19 max (min ( X 1 , max ( X 2 , X 3 , X 4 )), (0,-3,4,0) (0,-6,0,0) C II 
min ( X 2 , X 3 , X 4 )) 

20 min (max ( X 1 , X 2 ), max ( X 1 , X 3 ), (0,-5,8,-2) (0,-8,2,0) C II 
max ( X 2 , X 3 , X 4 )) 

21 min (max ( X 1 , X 2 ), max ( X 3 , X 4 )) (0,-4,8,-3) (0,-8,4,0) C II 
22 min (max ( X 1 , X 2 ), max ( X 1 , X 3 , X 4 ), (0,-8,12,-3) (0,-10,2,0) C II 

max ( X 2 , X 3 , X 4 )) 

23 X 3: 4 (3-out-of-4:F) (0,-12,16,-3) (0,-12,0,0) C II 

24 max ( X 1 , min ( X 2 , X 3 , X 4 )) (2/3,0,-2,7/3) (-1,0,-3,0) C (1) 
I I I 

25 max ( X 1 , min ( X 2 , X 3 ), min ( X 2 , X 4 )) (1/3,-3,5,-4/3) (-1,-4,1,0) C II , C 
(1) 
I I I 

26 max ( X 2: 3 , X 4 ) (5/6,-5,13/2,-4/3) (-1,-4,0,0) C II , C 
(4) 
I I I 

27 max ( X 1 , X 2 , min ( X 3 , X 4 )) (1/3,0,1,-1/3) (-2,0,0,0) C II 
28 X 4:4 = max (X 1 , X 2 , X 3 , X 4 ) (-10/3,6,-2,1/3) (-4,0,0,0) C II 
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M  
here 

¯
 

(1) 
I I I 

(u ) = 2 u − u ln u − u − u ln u 

1 + (1 − u )(1 − ln u ) 
. 

We compare q̄ I , q̄ II and q̄ (1) 
I I I 

in Fig. 2 (left) along with the dual

istortion function associated to the system without repairs. We

bserve that T ≤ ST T II ≤ ST T I and T II ≤ST T (1) 
I I I 

. In Fig. 2 (right) we rep-

esent the quotients q̄ (1) 
I I I 

/ ̄q II , q̄ I / ̄q II and q̄ I / ̄q 
(1) 
I I I 

. The first and second

atios are above the line y = 1 and they are decreasing, therefore

 II ≤HR T 
(1) 

I I I 
and T II ≤ HR T I . However, q̄ I / ̄q 

(1) 
I I I 

crosses the line y = 1 at

he value u 0 = 0 . 5862 and thereby T I and T (1) 
I I I 

are not compara-

le in the ST order. As the ratio is bathtub, we have T (1) 
I I I 

≤MRL T I 

henever E(T (1) 
I I I 

) ≤ E(T I ) . 

Proceeding as in the examples above, we can obtain the

tochastic comparisons among the three policies considered in this

aper for any coherent system. In particular, Table 2 provides the

est replacement policy in terms of the usual stochastic order for

ll the coherent systems with 1–4 IID components. The coefficients

 i and d j , associated to the distortion function q̄ II are given for

ach system as well. As one would expect in the case of IID com-

onents, the policy II induces a more reliable system in most of

ases (see Theorem 4.2 ). However, there exist some systems where

epairing a fix component is better than repairing the component

hich causes the failure of the system. In particular, the systems 7

nd 24 in Table 2 satisfy that the system’s reliability is improved

n a higher level if we apply the policy III rather than the policies

 or II. For both systems the first component is the most impor-

ant component and its functioning implies the system functioning.

urthermore, the policies II and III are better than policy I for the

ystems 25 and 26 and both policies are not ordered. In this case,

he optimal policy depends on if the decision maker is interested

n improving the reliability of the system in an advanced or early

ge. 

. Conclusions 

In the present paper we give a procedure to determine the reli-

bility functions of coherent systems under a minimal repair main-

enance and three different replacement policies. The components

an be dependent or independent. In the first replacement pol-

cy, the first broken component is repaired. In the second case, a

inimal repair is applied to the component which produces the

ailure of the system. In the third one, a fixed component is re-

aired in case of failure. Note that in the two first cases we do not

now a priori which component will be repaired. In this context,

e have proved that if the components are ID, then the reliability

unction associated to the lifetime of the repaired system in case

 can be expressed as a distortion of the common component reli-

bility function (see Theorem 3.2 ). This distortion depends on the

tructure of the system and on the underlying survival copula. We

rovide an explicit expression of this distortion in Theorem 3.3 for

ID components. Analogously, we have proved that the reliability

unction for the case II can also be expressed using a distortion

unction when the components are exchangeable. This distortion is

implified for the IID case in Theorem 3.6 . The new technique de-

eloped here can also be used to study other replacement policies.

s an example, we provide an explicit expression for the dual dis-

ortion functions associated to the case of repairing the two first

roken components in a general system or the k first broken com-

onents in a series system. 

These representation results are used to compare the three re-

lacement policies using the main stochastic orders. In this sense,

ur first comparison result shows that, for any coherent sys-

em with IID components, the case II is always a better strat-

gy of replacement than the case I in the stochastic order (see
heorem 4.2 ). We prove with an example that this property is not

rue when the components are dependent. Furthermore, the previ-

us result holds for the hazard rate order when we consider sys-

ems which preserve the IFR property (see Theorem 4.3 ). Unfortu-

ately, the case III is not ST-ordered with neither case I nor case II,

ven assuming IID components. We provide both counterexamples

s well as some interesting examples including the comparisons of

ll the coherent systems with 1–4 IID components (see Table 2 ). 
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