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The minimal repair replacement is a reasonable assumption in many practical systems. Under this as-
sumption a failed component is replaced by another one whose reliability is the same as that of the
component just before the failure, i.e., a used component with the same age. In this paper we study the
minimal repair in coherent systems. We consider both the cases of independent and dependent compo-
nents. Three replacement policies are studied. In the first one, the first failed component in the system
is minimally repaired while, in the second one, we repair the component which causes the system fail-
ure. A new technique based on the relevation transform is used to compute the reliability of the systems
obtained under these replacement policies. In the third case, we consider the replacement policy which
assigns the minimal repair to a fixed component in the system. We compare these three options un-
der different stochastic criteria and for different system structures. In particular, we provide the optimal

strategies for all the coherent systems with 1-4 independent and identically distributed components.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, people demand more and more reliable systems.
Several techniques have been developed to model and improve
the reliability of a system. The basic concepts used in Reliabil-
ity Theory were introduced in the classic book by Barlow and
Proschan (1975). Recent developments can be seen, for example,
in Aven and Jensen (2013) and Natvig (2011). A good way to
improve the reliability of a system is to consider some redun-
dancy or maintenance actions. These actions can be performed
in different ways as, for example, by planning some replacement
strategies, minimal repairs, imperfect repairs, redundancies, etc.
On the one hand, it is addressed in literature the concept of ac-
tive or hot redundancy, where some additional components are
included in the system by using parallel structures, see Valdés
and Zequeira (2006), Zhao, Chan, Li, and Ng (2013), Zhao, Chan,
and Ng (2012), and Zhao, Zhang, and Chen (2017), or Belzunce,
Martinez-Puertas, and Ruiz (2013) and Zhang, Amini-Seresht, and
Ding (2017) for systems having independent and dependent com-
ponents, respectively. On the other hand, it is addressed the con-
cept of standby or cold redundancy, where a component is re-
placed or repaired when it fails. Among the standby policies,
many papers study the case of perfect repairs when the broken
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unit is replaced by a new and identical unit, see, e.g., Misra,
Misra, and Dhariyal (2011), Singh and Misra (1994) and You and
Li (2014). Nevertheless, there exist many options of replacement
for a failed component. A nice summary of these cases is de-
scribed in Aven (2014). In this paper we focus on minimal re-
pairs as a particular case of cold redundancy. Under this assump-
tion a failed component is repaired to be just as it was before
its failure. This is equivalent to replace this unit by another one
whose reliability is the same as that of the component just before
the failure, that is, it is replaced by a used component with the
same distribution and the same age. This concept allows us to de-
scribe many repairs in real cases where it is not unrealistic to think
that repairs basically bring the system to the same condition it was
just before the failure.

The basic minimal repair model was introduced in Barlow and
Hunter (1960). To formalize this idea, the basic model assumes
that the repair time is negligible and the number of failures that
occur in the interval (0, t] follows a nonhomogeneous Poisson
process (NHPP) with an intensity function A(t). Since then, many
works have been published attempting to extend the minimal re-
pair concept. For example, Brown and Proschan (1983) examined
the case of imperfect repair which uses a perfect repair with
probability p and a minimal repair with probability 1 — p. This
model was generalized by Block, Borges, and Savits (1985) by
considering that the probability of perfect repair depends on the
system’s state and by Shaked and Shanthikumar (1986) for the
multivariate case. Phelps (1983) obtained an optimal policy for
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the replacement problem with minimal repair, under the as-
sumption of an increasing failure rate. Stadje and Zuckerman
(1991) studied a maintenance model in which the degree of repair
is a decision variable determined by a controller and it varies be-
tween minimal and perfect repairs. Beichelt (1993) proposed a new
common framework, based on a general failure model, to include
different replacement policies under minimal repair. Finkelstein
(2004) generalized the notion of minimal repair to the case when
the lifetime distribution function is a continuous or a discrete mix-
ture of distributions, that is, a heterogeneous population. Aven and
Castro (2008) and Zequeira and Berenguer (2006) analysed an opti-
mal strategy of maintenance from two types of failures in the sys-
tem and the associated repair costs. More recently, Balakrishnan,
Kamps, and Kateri (2009) introduced minimal repair processes un-
der a simple step-stress test in the context of life-testing reliability
experiments. Some authors split minimal repairs into two cases:
physical minimal repairs and statistical minimal repairs. The for-
mer is used when a component of the system is repaired and the
latter, also called black box minimal repair, when the system is re-
paired, see Aven (2014) and Aven and Jensen (2000, 2013) for fur-
ther details and illustrative examples. As it is nicely discussed in
Aven (2014), the need to be precise with the level of information
leads to some author to frame their works in the theory of point
processes by taking into account the history of the system. Some
valuables contributions in this sense are given by Arjas and Nor-
ros (1989), Aven (1983, 1987, 1996), Aven and Jensen (2000, 2013),
Bergman (1985), Gasemyr and Natvig (2017) and Natvig (1979,
1990).

In the literature there exist alternative approaches not based
in processes as well. For example, some stochastic comparisons
of repairable coherent systems with independent components
were obtained in Belzunce, Martinez-Riquelme, and Ruiz (2018),
Chahkandi, Ruggeri, and Suarez-Llorens (2016) and El-Neweihi and
Sethuraman (1993) and some preservation results and aging prop-
erties of repairable systems under minimal repair were established
in Chahkandi, Ahmadi, and Baratpour (2014). Recently, a new rep-
resentation for the reliability function of a coherent system with
possibly dependent components was obtained by using copulas,
see, e.g., Miziuta and Navarro (2017) and Navarro, Pellerey, and
Di Crescenzo (2015) or expression (2.4) below. This expression is
very useful since the distortion (or aggregation) function Q con-
tains all the information about the structure of the system and
the dependency between the components (its survival copula). This
representation was used in Arriaza, Navarro, and Sudrez-Llorens
(2018) to compare different replacement policies under minimal
repairs when we have a limited maximum number k of repairs and
they are assigned to fixed components in the system.

In this paper we use expression (2.4) as an alternative approach
to model and compare the lifetimes of the repaired systems. Our
approach could be considered as a good alternative to the classical
approach based on processes and, in our opinion, satisfies some
advantages. Firstly, the representation of the system reliability
function in terms of distortion functions leads to simplify the
complex algebraic expressions derived from the computation of
the system’s reliability. Secondly, our results can be applied to
systems with independent or dependent components. Further-
more, this approach can be used to deal with systems having
heterogeneous components. Finally, the main results allow us to
get distribution-free comparisons (i.e. comparisons that do not
depend on the distributions of the components) of the repaired
systems. We study different repair policies based on minimal
repairs of the failed components in the system. We will focus on
comparing three different repair policies. The first policy, denoted
by case I, consists in a minimal repair of the component that fails
first. The second one, denoted by case II, consists in a minimal
repair of the component that causes the system failure. The last

one, denoted by case IIl, consists in assigning a minimal repair
to a fixed component in the system. This last case is the one
studied in Arriaza et al. (2018) when k = 1. In all these cases we
will consider only one repair and we will compare the resulting
systems under different stochastic criteria. Moreover, we show
that the same technique can be applied to study k replacements
and other replacement policies. In particular, we prove that the
replacement policy of case II is better than that of case I under
the assumption of independent and identically distributed (IID)
components. However, some examples prove that they are not
ordered with case IIl. We also apply this procedure to determine
the best replacement policy in terms of the usual stochastic order
for all the systems with 1-4 IID components.

The rest of the paper is organized as follows. In Section 2 we in-
troduce the notation and the tools needed in the paper including
the basic properties on the relevation transform and on coherent
systems. The main results are given in Section 3, where we give
a procedure to determine the reliability functions of the systems
obtained with the replacement policies of the cases mentioned
above. The expressions obtained are based on distortion functions.
These representations are used in Section 4 to compare the differ-
ent replacement policies. There we also provide some general re-
sults for systems with IID components. The conclusions are placed
in Section 5.

Throughout the paper, we say that a function g is increasing
(resp. decreasing) if g(x)<g(y) (=) for all x<y. If G: [0, 1]"— [0,
1], then 0;G represents the partial derivative of G with respect to
the ith variable.

2. Notation and preliminary results
2.1. Relevation transform

Let X and Y be two nonnegative independent random variables
with absolutely continuous reliability (survival) functions F and G.
Then the reliability function of X +Y (convolution) is

- - o] t 00
FaGlt) = PrX +Y = 1) :/t f(x)dx+/0 /t, 2) f(x)dydx

- t -
= F(t)+/0 G(t —x) f(x)dx,

where f and g are the respective probability density functions. Un-
der a perfect repair in a cold standby procedure, the unit X is re-
placed when failed by an independent unit Y having the same dis-
tribution as X (when new). Then the resulting reliability is

F*F(t)=15(t)+/0t1~:(t—x)f(x)dx.

If X and Y are dependent, we obtain the expression included in the
following definition.

Definition 2.1. If X and Y are two nonnegative dependent ran-
dom variables with reliability functions F and G, then the releva-
tion transform (or conditional convolution) F#G is the reliability of
X +Y given by

F#G(t) = F(t) + fo CE(t - x) f0dx, (21)

where f is the probability density function of X and Gy is the relia-
bility function of (Y|X = x).

Under a classic relevation transform, the unit X is replaced when
it fails at a time x by a unit having reliability G but with the same
age as X, that is, by Yy = (Y — x|]Y > x) with reliability

Gx+y)

Gx(y) =Pr(Y —x > y|Y > x) = )
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for y > 0. Hence,

G(t)
G(x)
Under a minimal repair, the failed unit X is replaced by a unit
having the same reliability as X and with the same age (that is, it
is repaired to be as it was just before its failure). Then, from (2.2),
the resulting reliability is
LE(t)
F(x)

After k replacements, the resulting reliability is

F#G(t) =Pr(X +Yx > t) = F(t) + /[ f(x)dx. (2.2)
0

f(x)dx = F(t) — F(t)InF(t).

F#F(t) = F(t) +f0

k
F#F(t) =F(t) ) il,[—lnﬁ(t)]",
i=0

where F#9F = F, F#!F = F#F, F#2F = (F#F)#F and so on. Note
that (F#F)#F  F#(F#F). We shall write it as F#*F(t) = g, (F(t))
with

k 1 )
G =u) ﬂ(—1nu)l. (2.3)

i=0
The distributions that can be written in this way are called dis-
torted distributions (see, e.g., Navarro, del Aguila, Sordo, & Suarez-
Llorens, 2013; Navarro & Rychlik, 2010 and the references therein).
Thus, we say that a distribution function F; is a distortion of an-
other distribution F if F;(t) = q(F(t)) for a distortion function q:
[0, 11— [0, 1] increasing, continuous and such that q(0) =0 and
q(1) = 1. A similar representation holds for the respective reliabil-
ity functions, that is, f(¢) = §(F(t)), where q(u) =1 —q(1 —u) for
uel0, 1]. It is also a distortion function, that is, it is an increasing
continuous function in [0,1] such that g(0) =0 and q(1) =1 (see,
e.g., (2.3)). It is called the dual distortion function associated to q.

2.2. Coherent systems

Let T be the lifetime of a coherent system with component life-
times Xi,..., Xn. In the general case, the components can be de-
pendent and this possible dependency will be represented by the
joint reliability of the components lifetimes which can be written
as

F(xq, .. A Xn > xp) =K(F (x1), ..., F.(x)),

where K is the survival copula and F is the reliability function of
the ith component for i=1,...,n (see, e.g., Durante and Sempi
(2015, p. 33)). Note that the case of independent components is
included here and that it is represented by the product copula
K =TI, where IT(uy, ..., Up) =Uy...Uy for uq,..., up € [0, 1]. From
now on we assume that F is absolutely continuous with joint prob-
ability density function

F@a o x) = k(B (), Fa) fr(xa) - fa (),
where f; is the probability density function of X; and

an
..,un)me(u],...,un)

L Xn) =Pr(Xq > xq, ..

k(uy,...,up) =071...0,K(uy,.
is the probability density function associated to K.

Then it is well known (see, e.g., Miziuta & Navarro, 2017;
Navarro et al., 2015) that the system reliability can be written as

Fr(t) =QF 1).....R()), (2.4)
where Q is a distortion function, that is, a continuous increas-
ing function Q:[0,1]" — [0,1] such that Q(0,...,0)=0 and
Q(1,...,1) =1 which depends on the system structure and on K

(the dependence structure). In particular, if the components are
identically distributed (ID), then (2.4) reduces to Fr(t) = q(F(t))

(see, e.g., Navarro & Rychlik, 2010) where F is the common reli-
ability function of the components and G(u) =Q(u, ..., u) (ie, T
has a distorted distribution from the common distribution of the
components). If the components are just independent, then Q is
a multinomial expression (see Barlow & Proschan, 1975, p. 21). Fi-
nally, if they are independent and identically distributed (IID), then
G(u) =1, aul, where (ay, ..., an) is called the minimal signature
of the system (see, e.g., Navarro & Rubio, 2010).

For example, if n = 2, the reliability function of the parallel sys-
tem Xy, = max(X;, Xy) is

Bao(t) = Pr({X; > t}U X2 > t}) = R (t) + B(t)
— Pr(X; > t,X3 > t) = Qa(Fi (t), K(1)),

where Qy9(u,v) =u+v—K(u,v) and, in the IID case, Gy (u) =
Qp(u,u) = 2u —u?.

2.3. Reliability of systems using the relevation transform

Let us see how the relevation transform can also be used to
compute the system’s reliability. This new technique will be used
in the following sections to compute the reliability of systems with
minimal repairs on failed components. As in the preceding section
we consider the simple case of a two-component parallel system.

Example 2.2. Let us consider Xp.; = max(X, X). If the component
lifetimes X;, X, are IID with a common reliability F, then

- - - - t =
B (t) = Fra#F(0) = @) + [ £ i (x)dx
o F(x)
and, as Fi.5(t) = F2(t) and fi.o(t) = 2F(t) f(t), we have
- & LE(t) .-
B (t) = F2() + /0 Fog 2F00S (ax

= F2(t) + 2F(t)F (t) = 2F(t) — F%(t).

Let us assume now that both components can be dependent with
a survival copula K. Then

B (t) = Pr(X; < X2) Pr(Xaa > t|X1 < X2)
+ PI'(XQ < X]) PI'(XQ:Z > thz < X])

= Pr(X; < X)FEX 4G, (£) + Pr(X, < X)EXV4G, (1),
where F‘f"fxz)(t) —Pr(Xy > t1X; <Xp), BV (p) = Pr(X; >
t|X2 < X]), Gl,x(y) = Pl'(Xz —X > y|X1 =X, X2 > X) and szx(y) =
Pr(X; —x > y|X; = x,X; > x). Note that
pi = Pr(X; <X) = /0 / [ F0) 012K (R (). B (y))dydx

X
- fo FEOKE (), B (x)dx

when lim,_, g+ 81K (F; (x), u) = 0 (see Navarro & Sordo, 2018). Anal-
ogously,

P =Pr( < X0) =11 = [~ L000K(F (o). o) d
when lim, ¢+ 3,K(u, K(y)) =0. The joint density of (X,

X5|X1 <X3) is h(x,y) =f(x,y)/p1 for all x<y (0 otherwise).
Then the marginal density of (X;]|X; <X3) is

‘l o0
hi(x) = E/x fx,y)dy
L [ 5100R0)02K (0. By
p] X

_ % FEO#KE (). B(x)).
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Hence, the conditional density of (X;|X; =x, X, > x) is

h(x.y)  f@)d2KE ). HY))
()~ K(E ). R(X)

and then the reliability function G; , is given by

* f,(2)912K(F (x), K(2)) dz

h2|1(y|x) =

Grx®) = [ hyp(zlxydz = KA
1x0) X+y an (2lx)dz vy 01IK(F (%), B(x))
01K (F (x), K(x))
In a similar way (by the symmetry), we get
Gy () = 2KEX+Y) BE) (2.6)

K (F (), B (x))

Therefore, from (2.1), we obtain

FO )46, (¢) = F%=%) (1) 1 /0 CEy (= 0hy (0 dx
— EX 9 ) 4 % | FOBK(E (), B (6))dx
= B4+ - [B0) - K ©.BO)]
Analogously, we have
E%X04G,(t) = B0 (t) + %[151 () =K (t), B(1))].

Then
Ba(t) = piEM 4G, (6) + poF e V4G, (1)
= PRS0 + BTV (O + RO
+E(t) - 2K(F (t), B(t))
= p1 Pr(Xi2 > t|X; < Xp) + p2 Pr(Xi2 > t[X; < Xq)
+R () +E(t) - 2K(F (1), K@)
=Pr(Xi2 > t) + K (t) + B(t) - 2K(F (t), B(t))
=F(t) + BE(@) — K (8), BE(O)).
These expressions can be simplified if F is exchangeable (EXC),

that is, K is permutation invariant and the components are ID. In
this case we have F., = F.,#G, where

Pr(X, > x+y|X; =x)
Pr(X; > x|X; =x)

01K (F(x), F(x))

Gx(¥) =Pr(o —x > y|X; =x,X > x) =

Then, from (2.5), we get Gx(y) = . Hence, from

(2.1), we have

- - - t -
Fo#G(t) = Fa(t) + /0 Gu(t — %) fra (X)dx

ERK(F(x),F(t))
0 1 K(E(x),F(x))

where Fi5(x) = K(F(x),F(x)) and fi.2(x) = 2f(x)0;K(F(x). F(x)).
Therefore,

= 1‘:1:2(f) + f];z(X)dX,

Ra#G(O) = a0 +2 [ 01K (G0, F(e) S
=K(F(t),F(t)) —2K(F(t),F(t)) + 2K(1,F(t))
=2F(t) —K(F(t),F(1)).

Another approach for the general case is

FZ:2 = 131;2#6, (27)

where
Gx(¥) = 1) Pr(Xp —x > y|X; =%, X3 > X)
+p2(X)Pr(Xq; —x > y|Xo =%, X1 > X)
Pr(Xo >x+y|X; =x) Pr(X;>x+y|X; =x)
Pr(X; > x|X; =x) Pr(X; > x|X; =x) ’
p1(x) =Pr(Xy < Xp|X12 =%) and py(x) =Pr(Xy < X;[Xq1.2 =X).

+p2(x)

=p1(x)

Similar expressions can be obtained for other order statistics (k-
out-of-n systems), that is, for X;. ,, i=1, ..., n. For example, in the
IID case, the reliability of X,. 5 can be written as F.5 = F.3#F., or
that of X3. 3 as F.3 = (F.3#F.;)#F. Analogous (but more compli-
cated) expressions hold for general coherent systems.

3. Main results

With the notation introduced in the preceding section, let us
assume that we have a coherent system with lifetime T based on n
components with lifetimes X, ..., Xn. If we apply a single minimal
repair to the system then the main options are:

Case I: To repair the component which fails first.

Case II: To repair the component which leads to the system
failure.

Case III: To repair a fixed component (e.g., to repair the ith
component).

Other options will be considered later. If we can choose among
these options (this is not always the case in practice), we need to
determine which one is the best one under some stochastic crite-
ria. To do this, we need to obtain the reliability of the resulting
systems after these replacement policies.

From now on, we will denote by T; and Tj the lifetimes
associated to the resulting system under the policy I and II,
respectively. In the third option, if we repair the ith component,
the resulting system lifetime will be represented by TIEP If the
dependence structure does not change after the replacement, then
the reliability of T, is

B (0 = QRO .. Fa©. G FO). Fr (O, F(0)),

where ¢; is given in (2.3). If the components are ID, then
Eo(t) = ) (F(6)), where
1

aw =Q, ..., u,qi(Ww,u,...,u) (3.1)

and ¢ is placed at the ith position. Comparison results for these
kinds of replacements were given in Arriaza et al. (2018). Let us
study the other two cases.

3.1. Case |

In this case we repair the component which fails first. Its life-
time is X = Xq.;. Then the broken component is minimally repaired
and the resulting system has the same structure as T but we know
that all the components are working and have age X. Hence its re-
liability is
Fﬂ(t) = F1;,1#C(t), (3.2)
where

Gx(¥) =Pr(T—x>yX; >x%,.... %X > X)
_ Pr(T >x+y.X1 >X,...,Xp >X)
o Pr(X; > X,...,Xn > X)
when X = x. In Proposition 3 of Navarro (2018) is proved that this

reliability can be written as Gy(t) = Qx(F x(t). ... Fax(t)). where
Ex(t) =Pr(X; —x > t|X; > x) = F(t +x)/F(x) fori=1,...,n and Qx
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is a distortion function (see Section 2). Hence, from (2.1), we
have,

- - t -
B () = Fn(t) + /0 Gt — %) fron ()X

= F_I:n(t) +/(; Q_X(ﬁlx(t fX), ey Fn.x(t - X))fl:n(x)dx~ (3-3)

Let us see an example.

Example 3.1. If T = X;., (a parallel system with two components),
then

G ()
=Pr(T—x>yX; >xX; >%)
CPrT>x4+y.X > %X > %)
Pr(X; > x, X3 > Xx)
Pr(X; >x+y, X, >X) +Pr(X; > x+y,X; >x) —
Pr(X; > x, Xy > X)
_ KRi(x+y). E®) +KEE). BE+y) ~K(Rx+y). hE+Y))
K(F (%), B (X))

Pr(X; >x+y.Xo >x+Y)

= QR ). Bx)

for y>0, with F () =Ex+y)/Bx)

and
Q-x(Uh uz)
_ KR ®).BX) + K(F ). 12k (X)) — K Fi (). 12k (X))
K(F (x).B(x))
whenever K(F (x), K (x)) > 0. Hence, from (2.1) and (3.2),

=FE+y)/A®), Bxy)

- - t - - -
Fi(t) = Fa(t) + /0 Qe (Fox(t — ). By (£ — %)) fra (0)dx

= Fia(t) + Fa(t) In(F (1))
f K(F (6), E®) +KE ), B(®))
0 Fa(x)
holds. In particular, if the components are IID, then
By (t) = F2(t) + 2F2(t) In(F (t))
CF(t)F(x) + F(X)F(t)
* /0 F2(x)
= F2(t) + 2F%(t) In(F (t)) + 4F (t)F (t).
Therefore, Fy(t) = ;(F(t)) with §(u)=4u— 3u2 +2u?ln(u). A
straightforward calculation shows that ql')(u)

u?lnu and §; < q”) for i=1,2. So, T; <s Tm holds for all F, that
is, in this system, it is better to replace a fixed component than to
replace the first failure.

If the components are just ID, from (3.4), we get

Fr(t) = Fa(t) + Fa(t) In(F2(0))
n /t K(F(t), F(X)_) +K(F(x),F(t))
0 Fi» (X)
= Fa(t) + Ao (t) In(Fo (1))
N /t K(F(t),F(x)) + K(F(x),F(t))
0 K(F(x), F(x))
x [01K(F (x), F(x)) + 02K (F (x), F(x))]f (x)dx,
where F.,(t) = K(F(t), E(t)). Now, if we do the change v = F(x),
then
F(8) = 8k (F(t)) + 8k (F(t)) In(8 (F(t)))
U K(F(t),v) + K, F(t))
* /F(r) S (v, v)

fi2(x)dx (34)

2f(x)F (x)dx

u? —ulnu+

fra(x)dx

3 (v)dv,

where §x(v) =
and &, (v) =
i (F(t)) with

K(v,v) is the diagonal section of the copula K
01K(v,v) 4 3K (v, v) for v e (0,1). Therefore Fy(t) =

VK, v) + K@, u)
Sk (v)

A similar representation is obtained in the following theorem
for an arbitrary coherent system.

Gr(1) = S () + 8 () In(8x () + / 8 (w)dv.

Theorem 3.2. Let T be the lifetime of a coherent system with ID com-
ponents having a common reliability F. Then the reliability function of
T, can be written as

Fi(t) = qi(F(t))

for all t>0 and a distortion function g, which does not depend on F.

(3.5)

Proof. In the ID case, the general representation obtained in (3.3),
can be written as

Fr () = Fin() + /0 Gt — %) frn () dx = Fyn (0)

+ / G (Be(t — X)) frn (¥)dx, (3.6)
0

where Gx(u) = Qu(u. ..., u) and F(t) = Pr(X; — x > t|X; > x) = F(t +

x)/F(x) fori=1,...,n. Even more, in this case, Gy can be written
as Gy(y) = q(F(x+y) F(x)), see Navarro (2018). Hence

Fy (£) = Fion(t) +f0 A(F(©); F(0) frn(X)dx

where  F.,(t) = 8g(F(b)),
F(6)d (E(t)). Then

Sk(uw) =K(u,...,u) and fi.,,(t) =

- - t - - —_
F (t) = 8g (F(t)) +/0 G(F (£); F(%))38k (F(x)) f (x)dx.
Finally, if we do the change u = F(x), then

- - l -
F (8) = 8k (F (1)) +/F(t)d(F(f);u)51’((u)du (3.7)

and therefore (3.5) holds. O

The dual distortion function g; in (3.5) depends on the structure
of the system and on the underlying survival copula K. In the next
sections we will show how to compute it. However, we must say
that, sometimes, it is not easy to get an explicit expression for it
(since we have to solve the integral in (3.7)). In the IID case, the
preceding theorem can be simplified as follows.

Theorem 3.3. Let T be the lifetime of a coherent system with IID
components having a common reliability F. Then the reliability func-
tion of Ty can be written as Fy, (t) = q;(F(t)) where

Gi(u) _nZ u + (1 —nZ )u —na,u™Inu (3.8)

and (aq,..., ap) is the minimal signature of the system.

Proof. If the components are independent, then Gy(t) =
Q(le(t) an(t)) holds from Proposition 5 in Navarro (2018),
that is, Qx Q, where Q is the distortion function in (2.4). Then, if
they are IID, we have Gy (t) = G(F(t)), where E(t) = F(t + x)/F (x)
and q(u) = Y, aut (see Section 2). Hence, from (3.6), we have

By () = Frn(0) + f GCEt — X)) fron (x)dx

—F”(t)+/ (FE ;>nF" (%) f(x)dx
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_F"(t)+nZaF’(t)/ Fr=i-1(x) f (x)dx
i=1
—F"(t)—i—nz

ai F )1 = F"(t)) + na F (t) (= InF(t))

which concludes the proof. O

The minimal signatures of all the coherent systems with 1-5
IID components were obtained in Navarro and Rubio (2010). Hence,
from the preceding theorem, we have explicit expressions for q; for
all these systems.

3.2. Case Il

Let us assume now that we repair the component which is crit-
ical for the system. We may expect that this option leads to a bet-
ter performance since the most relevant components for the sys-
tem have higher probabilities of being repaired. Note that, in case
I, we just repair the first failure and so, for example, if the com-
ponents are exchangeable, then all the components have the same
probability of being repaired. However, we must note that case II
is not always available in practice for all systems.

In this case it is not easy to obtain the reliability I:‘T” of the re-
sulting system lifetime Tj;. Let us see a simple example. If the sys-
tem is a series system, then cases I and II coincide since the first
failure is always critical for the system. So let us consider again a
parallel system.

Example 34. If T = X;., and the components are IID, then, from
(2.1), we have

F(t)

R = F#F 0 = Fr0+ [ 23 o
where F(t) = 2F(t) — F2(t) and fr(t) = 2(1 — F(t))f(t). Hence
B (6) = 26(6) — F2(6) + 2F(t)/ F(") =70 rodx

= F2(t) - 2F () InF (1) = qu(m))

with §;(u) =u? —2ulnu. So Ty also has a distorted distribution
from F. Hence it is easy to compare the three replacement poli-
cies for this system just by comparing the three distortion func-
tions. Thus a straightforward calculation leads to § < q; < qm) <qy
and so T <g7 Tj <s1 T,;, <¢r Ty for all F and i = 1, 2, that is, the best
option in this system is to repair the component which is critical
for the system. The second best option is to replace a fixed compo-
nent and, of course, the three options are better than the original
system T. They are also better than a parallel system with three
components (active redundancy) with §z.3(u) = 3u — 3u? + u3.

Let us assume now that the component lifetimes are just ex-
changeable. Then, proceeding as in Section 2, we have Fy, (t) =
Fr#G(t), where
Pr(X; <x,X, >x+Y)

Pr(X; <x,X; > x)
_PrXo >x+y) —Pr(X; > XX >x+Y)
- Pr(X; > x) — Pr(X; > x, X5 > x)
_ F(x+y) —K(Fx).F(x+y))
F(x) = K(F(x), F(x))
for x, y > 0. Hence, from (2.1), we have

Gx() =Pr(Xo —x>y|X1 <x. X3 > X) =

B (6) = B () + /0 Gt — %) fr (x)dx

LE(t) —K(F(x),E(t))
0o F(x) —K(F(x),F(x))

=F@®)+ fr(x)dx,

where Fr(t) = 2E(t) — K(F(t),F(t)) and
I K(E(t), F(t)))f(t). Therefore

fr)=2(1-

- - - - t F —_— F L
B () = 2F(t)—K(F(t),F(t))+2/O i&;_iggig;

x (1= 0 K(F(x), F(x)))f(x)dx
CoEe k(B T F(t) =K@, E(t))
_ 2F(t) K(F(t),F(t))—l—Z/F_([) Xy
x (1= K, v))dv = gy (F(t))

with

Gu(u) = 2u — K(u, u) +2 /l u=RK.W 0 ok v)dv. (3.9)

v« V=K, v)
Note that we need K (and to solve this integral) to get an explicit
expression for q;. Of course, if K(u,v) = uv, then we obtain the
expression obtained above for the IID case.

Finally, in the general case, proceeding as in (2.7), we get
Fr, (t) = Fr#G(t), where

Gx(¥) = pr()Pr(Xo —x > y|X; <x. X5 > X)
+P2(X) Pr(Xq —x > y|Xo <X, X1 > X)
Pr(X;<x,X; >x+Y) Pr(X; <x,X; >x+Yy)

=P Pr(X; <x,X; > Xx) +P2(%) Pr(Xo <x, X1 > X)
i) Pr(Xo > x+y) —Pr(X; > X, Xa > X+ )
= b Pr(X; > x) —Pr(X; > x,X; > x)
Pr(X; > x+y) —Pr(X; > x+y, X5 > x)
+p2() Pr(X; > x) = Pr(X; > x, X5 > x)
3 Ex+y) —K(FE®).Ex+y))
=p1(x) = = =
EX) - KR x), h(x))
F(x+y) —KEE+y). X))
- = = , 3.10
R ) K (0. B) (310

P1(x) :=Pr(X; <X3|T=%x) and pr(x) :=Pr(Xp <X{|T=%x)=1-
p1(x) for x, y>0. To compute p;(x), we need the joint reliability
of (X1, X3. ) given by
H(x.y) = Pr(X; > x. X2 > ¥)

= PI'(X] > X, X1 > y) + Pr(X1 > X, X5 > y)

—Pr(X; > x, X1 >y, X >y)

=R +KEE,BEY) -KE), B))

for all x<y. Hence, its joint density is h(x,y) =

f1(X) f2()01 2K (F (x), K (y)) for all x<y (0 otherwise) and the
conditional density function of (X;|Xy., =y) is

1) ()01 2K(F (x). B(¥))
fr»)

h]\z(xb’) =

for 0 <x <y. Therefore

Yy
Pr(y) = Pr(X; < Xa|T = y) =Pr(X; < Xon|T =y)= /0 h 5 (xly)dx

/y f1(x) f(y) 01 2K (F (x). Fz()’))

0 fr)

- LWRKFE ). E))
fr)

when lim,_, ;- 3,K(u, K (y)) =1 (see Navarro & Sordo, 2018). Anal-
ogously, we get

_ LW

(3.11)

_ ) -~ iWaKED). Fz(y))

P2 (y) =

(3.12)
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Hence, from (2.1), (3.10), (3.11) and (3.12), we have
- - t -
Fu(©) = Fr(©) + [ Gt =) fr 0

— R(t) + B —KE ). B©)
B (6 —K(F (x). (1)
1-8,K(F
/[ KO BN w0 B0
E (0K (). ()
B (0 K(F (). B(x))
:Pr(X2<

fa(xdx

/ [1-8,K(F (x). B ()]~

In the exchangeable case, we have Pr(X; <X;|T =y)
X1|T=y) =1/2 and (3.9).

The preceding example shows that it is not easy to get an ex-
pression for the reliability in the general case. So, we are going to
try to solve the case of exchangeable components. In this case, we
know that the system’s reliability can be written as

n
Fr(t) = siin(0). (313)
i=1
where s = (51, ...,
Xip) fori=1,...,
following result.

sn) is the signature of the system and s; = Pr(T =
n. We can use this representation to obtain the

Theorem 3.5. Let T be the lifetime of a coherent system with compo-
nents having an absolutely continuous exchangeable joint reliability.
Then the reliability function of Ty can be written as

By (0) = Gu(F(©) (3.14)

for all t>0 and for a distortion function gy which does not depend
onF.

Proof. Let us consider the events Ey = {X;(1) <+ < Xy} for o
in the set P, of all the permutations of order n. If the components
are exchangeable, then Pr(E,) = 1/n!. Let us divide the set P, in
the disjoint subsets Ay, ..., A, where A; contains all the permuta-
tions which lead to T =Xij:n and to a fixed repaired system T;. Let

H;= erAon- Then p; :=Pr(H;) = |Aj|/n!, where |A;| is the cardi-

nal of the set A; for j=1,..., k. Hence

_ k

F (t) =Pr(Ty > t) =Y p; Pr(Ty > t[H;). (3.15)
j=1

Note that under H;, we know which component failure causes
the system failure. Moreover (T|H;) =gt (Xij:,,|Hj). Also note that
Xij:n =T (X,~jm|Hj) due to the assumption about exchangeable
components. Proceeding as in Section 2, we get Pr(Ty > t|H;) =
F,-jm#Gj(t), where

Gix(@) = Pr(Tj — X > y|Xi .. = x, Hj) (3.16)

and T; is the system obtained after a minimal repair of the com-
ponent broken in the ijth position and at a given time x under H;.
Note that the structure of this system is completely determined by
H;. This event also determines which components are working and
which have failed at time x. Hence, from (2.1),

- k - t -

F,(t) =Y p; |:Fi]:n(t) +/0 Gjx(t — X)fij:n(x)dxi| (3.17)
j=1

holds. Note that the semi-coherent system T; has n —i; + 1 work-

ing components (some of them can be irrelevant for the system).
These components are exchangeable and the corresponding joint
reliability function H(yq, ... ,y,,_in) is given by
Pr(X,-j —X>V1,..
Xl-]_l gx,X,»j >X, ...,

.,Xn—x>yn_ii+1|X1 <X ...,
Xn > X).

f1(x)dx.

Proceeding as in case I, this joint reliability can be written as
Hy1. . Ynsie) = QB0). - EOnije1)) (3.18)

for a distortion function Qx which depends on F(x), where F(y) =
F(x+y)/F(x). Let A L H be the reliability functions of

Tin - n—ii+1:n

J
the order statlstlcs obtained from these exchangeable components
and let (s, .. ) be the signature (of order n—i; + 1) of T;.

Then
- k -
Fr" (t) = Zp] |:Ej:n(t) + 5]/ X)fij:n(x)dx}-
j=1
2013) that Isij:n(t) can

It is well known (see, e.g., Navarro et al,,
be written as I-:, a0 = (j,-j:n(l-:(t)) where §; ., depends on K. Analo-

n1+1

n— 1J+l

gously, from (3.18), we know that Al can be written as /. (y) =
q (F(x +y); F(x)) where q depends on K. Therefore

n—i;+1
Fr,,(mzp, [q, w(F(O) + Z st f al, (F©): Fx)d,. n(F(X))f(X)dX}

(3.19)
and by doing the change v = F(x) we get (3.14). O

The coefficients in the signature used in (3.13) can also be com-
puted as s, = |Bi|/n!, where By is the subset of P, with the per-
mutations which lead to T =X,.,, that is, B =Uj:,~j=kAj. Hence
(3.19) can also be written as

k n—ij+1
BO=F®O+Y p; > sl / G, (F(0); F ()3} o (F () f()dx.
j=1 =1

(3.20)

where F(t) = Gr(F(t)). These general expressions can be simpli-
fied in the IID case as follows.

Theorem 3.6. Let T be the lifetime of a coherent system with IID
components having a common absolutely continuous reliability F.
Then the reliability function of Ty can be expressed as Fy (t) =

qu(E(t)) for all t>0, where

n n
> qui 4+ diu'lnu
i=1 i-1

for some coefficients ¢;, d;, i=1,..., n which only depend on the
structure of the system.

Proof. Let a/ = (d/, ... ai -~
tem T; considered in the proof of the preceding theorem for j =

., k. In the IID case, this semi-coherent system has n —i; +1

qu(u) = (3.21)

) be the minimal signature the sys-

IID components with the common reliability F (y) = F(x +y)/F (x).
Hence the reliability in (3.16) is
. - n—ij+1 ; F(X +y) ¢
Gix(y) = ; al< 0 > )
Therefore, from (3.17) and (3.20), we have
n—ij+1 Z(t) ) _
By (6) = Fr(6) + Zp, Z / Froe) B FON T 00

where £, (t)

& r—nti-1( 1 r—1 r
r:§+l(_1) ' 1(") <n_i>u

= G.n(F(t)) for a polynomial

qi:n (U) =
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(see, e.g., David & Nagaraja, 2003, p. 46). So
fin(®) = f(t)qm(F(t))
_ _ 1 \r—n+i-1 n r—1 nr—1
= f@® Z (-1) r(r) (n _ i)F (®).
r=n—i+1
Therefore, if (ay,...,a,) is the minimal signature of T, then

n—ij+1

k P
Ft)+Y p; > aF()
j=1

=1

x oy (= (T;) (n—l)/ Fr=1(x) f(x)dx

r=n—ij+1

FTH (t) =

n—ij+1

n k
=Y qF @) +) p; > alF(t)
j=1 j=1

=1

; r—n-+ij— n r—1
X r=l§+1 r(-1) 1 (r> (n B ij>¢r_e (t),

where ¢s(t) = (1= F5(t))/s if s>0 and ¢s(t) = —InF(t) if s=0.
This concludes the proof. O

Example 4.4 shows how to apply the preceding theorem. In
Navarro, Arriaza, and Suarez-Llorens (2017) we provide an R-script
to compute the coefficients ¢; and d; for a given coherent system
with [ID components.

In general it is not easy to compute the reliability function as-
sociated to the case Il of a coherent system with dependent com-
ponents. However, the reliability function of k-out-of-n systems
can be obtained by assuming exchangeable components. Thus, if
T = X;., for a fixed i € {2, ..., n} and the components are exchange-
able, then Fy (t) = F.,#G(t), where

Gx(¥) =Pr(Xi > x+y,.... X > X+ y|X1 <x,...,
Xii1<xXi>Xx,...,X >X)
CPrXi=x . X =X, X > x4y,
Pr(X; <x,...,
_ Hi(F®).F(x+y))
Hi(F(x), F(x))
with a function H; such that Pr(X; <x,....X;_1 <x,X;>t,.... Xn >

t) = H;(F(x), F(t)) for all 0 <x <t. Note that H; only depends on K.
Therefore, from (2.1), we have

- t (F F
P = 0) = a0+ [ %ﬁmum

If the components are IID, then the following result provide an
explicit expression for (3.22).

»Xn >X+Y)
Xii1 <xXi>Xx,...,X, >X)

(3.22)

Proposition 3.7. Given an i-out-of-n system with IID components
and lifetime T = X;., for a fixed i € {2,..., n}, then F (t) = gy (F(¢)),
where

= _ n n—i+1 n—i+1
qn(u) = (n—i+1)u +u
k n\[(k-1
k—n+i—1
kn21:+2( D k — n+l—1(k>(n—i)

+ Z ( l)k n+1 —i+1

—-n+i-1
k=n—i+2 +

x (n) (k a l.)u" - i('?)u””l Inu.
k)\n—i i

Proof. If the components are IID, then

Cx(¥) =Pr(Xi > X+y, ... Xn>Xx+y|X; <X, ...,

Xi—] SX,XI' >X, ..., Xp > X)
=Pr(X; > x+y|Xi > x)...Pr(X; > x+y|X;y > X)
B Fn-i+1 (x+y)
- W
Moreover, as Fiy (1) = Yp_, i1 (=D} 1 () (K FR () (see, eg.,
David & Nagaraja, 2003, p. 46), we have

tFn l+1(t)
0 Fn H—l( )fzn( )dX

n—i+ n+i— k-1
S HCRCI I I ”(1)(”_1)

k=n—i+1

Pr(Ty > t) = Fizn(t) +

x /[ IEk—n+i—2 (x)f(x)dx
0

_E . 1 \k—n+i- n k=1
= ,:n(t)+k=§+2( 1) 1lc(k>(n—i)
Frivt () - FH@) i<?)f”"*l (t)InF(t)

k-n+i-1
n
— n pn—i+1 _ _ 1 \k-n+i-1
(ot )eo- 3 en

k=n—i+2

n—i+1 (n\[(k-1)z
><k—n+i—1<k>(n—i>F ©

JrI;n 'H(t) Z ( ])k n+i— 1

k=n—i+2

n\ (k-1 AN =iy =
X(lc)(n—i)_l<i>l: 1) InF(t)

which concludes the proof. O

k
—-n+i-1

3.3. Other cases

The purpose of this section is to show that we can study other
cases following the procedures used above in cases I and II. For ex-
ample, if we know that the system does not fail with the first com-
ponent failure, we can consider to repair the system at the second
component failure with a minimal repair of the broken component
at this point. Then, if the components are exchangeable, the relia-
bility function of the repaired system is F)(t) = F.,#G(t), where
- 1<
Ge(y) = - D Pr(T;—x > y|X; < x. X; > t for all j 1)

i=1
and T; is the lifetime of the semi-coherent system obtained from
T when we know that the ith component is broken. A similar ex-
pression can be obtained if the system is repaired at the jth failure
for j=3,4,....

In all the options studied above, we just repair one component.
We can of course consider k replacements. For example, if k=2
and, in case IIl, we repair components i and j (for fixed i <j), then
the reliability of the repaired system is

B © = QE©, .. F 0.4 RO R O, ..,
CRIGRAGION RGN AG))

where §; is given in (2.3). If the components are ID, then this
representation can be reduced to FT("J') (t)_qm”(F(t)) where
11

qm”(u) Q,...,u, g1, u,...,u, g (w),u,...,u) and G (u) is
placed at the ith and jth positions. Analogously, if we repair the
ith component twice, then

Fon ) = QRO Fr (0, (RO, Far O, Fa(0)),
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where ¢, is given in (2.3). If the components are ID, we get
Fran (©) =" (F(©0), where

q"l,l)(u) Qu,...,u,go(u),u,...,u)

and ¢, is placed at the ith position. Other options with fixed re-
pairs were studied in Arriaza et al. (2018).

We could consider other options with k =2 minimal repairs.
For example, we can repair the two first broken components. In
this case, if X, ..., Xy are IID, the resulting reliability is

E@(t) = (Fun#Gr.n)#G(0),

where F.,(t) = F'(t) is the
min(Xy, ..., Xn),

reliability function of Xj.,=

Frix+y)
Fr(x)

is the reliability function of Y;., = min(Yy,..., ) .
tem with n [ID components and a common reliability F (y) = F(x +
y¥)/F(x)) and Gy(z) = qr(F,(2)) is the reliability of a system with
the same structure as T, having n lID components with reliabil-
ity F, when Y;.;, = y. The reliability H = F;.,#G;., can be computed
from (2.1) as

(G-l:n)x(Y) = FXH(Y) =

Y,) (a series sys-

A(t) = Fr(t) + /t FUO -1 F(x)dx = 7 (6) ™ (6) InF(0).
o Fn(x)
Its density is h(t) = —n?F"1(t)f(t)InF(t). Then, by using

(2.1) again, the system’s reliability is

- - t -
E®(6) = H(t) + /O G,(t — y)h(y)dy

= Ao - [ qr( §$§)F‘ ) f @) InEy)dy

CA@O -2y af () f F1(y) InF (y) f(y)dy,
i=1
where (aq, ..., ap) is the minimal signature of the system T. Then

F2© = A© - e © [ B @) mFe) o)y -
0

n-1 t_ _

xS aF @) [[F @) InF)fw)dy
i=1

— H() + nz%ﬁn () I E(t) — n?

ni] - t - . -

< S af @) [[F e mFe) f»dy.
i=1

Finally, by doing the change x=—InF(y), in L(t) = [ F"=1

W InFy)f(y)dy, we get

SFO e FOIE®R) 1 -Fri()
li(t):/O xe™"Vdx = n—i (n—i)2
Therefore
FQM) =q F"(6)) + LB () In? F(t) + n?

nl F”(t)lnF(t) nl F'(t) F”(t)

N R =

i=1
Note that the reliability can be written as £ (t) =4 (F(t))
for a distortion function tjl(z). For example, for T = Xj.,, we ob-
tain q,(2>(u) =u"—nu"lnu+ (n2/2)u"(Inu)2. For this system, if
we repair the first k broken components, then we get (j,(k) (u) =

YK o niun (= Inu)iyil.

Other similar replacement policies can be studied in a similar
way. However, in the following section we restrict ourselves to the
cases with k=1 to develop fair comparisons, that is comparisons
of replacement policies with the same number of repairs (i.e. with
the same cost).

4. Comparison results

The representations obtained in the preceding section can be
used jointly with the ordering results for distorted distributions
given in Navarro et al. (2013) and Navarro and Gomis (2016) to
compare the different replacement policies. For sake of complete-
ness we include some of these ordering results in the following
theorem. We shall consider the following (well known) stochastic
orders.

The main order is the usual stochastic order, denoted by X < ¢7Y,
that compares the respective reliability functions Fy (t) < £ (t) for
any time t. This ordering implies that E(X) < E(Y) (if these expecta-
tions exist). An alternative (stronger) order is the hazard rate order,
denoted by X < yrY, that compares the respective residual lifetimes
X —t|X>t) <57 (Y—t|Y >t) for any time t. While the ST order
compares new units, the HR order compares (in the ST order) used
units with the same age t. Analogously, the mean residual life or-
der, denoted by X < yr.Y, compares the respective mean (expected)
residual lifetimes E(X —t|X >t) <E(Y —t|Y > t) for any time t.
The HR order implies the MRL order. An order similar to the HR or-
der is the reversed hazard rate order, denoted by X < gyrY, that com-
pares the inactivity times (t —X|X <t) >s7r (t =Y|Y <t) for any
time t. Finally, the likelihood ratio order, denoted by X <Y, holds if
the ratio of their densities fy/fx is increasing in the union of their
supports. This order implies all the preceding orders. For basic
properties and applications of these orders we refer the reader to
Barlow and Proschan (1975) and Shaked and Shanthikumar (2007).

Theorem 4.1. Let X; and X, be two random variables with distribu-
tion functions Fy, = q1(F) and Fy, = qo(F) obtained as distorted dis-
tributions from the same distribution function F and from the distor-
tion functions q, and q,, respectively. Let g, and G, be the respective
dual distortion functions. Then:

(i) X1 <st Xy for all F <= q1(u) < G2 (u) [or q;(u) > q2(u)] for
allu e (0, 1).

(ii) X; <yr Xy for all F < q,(u)/q; (u) is decreasing in (0, 1).

(iii) X1 < gyrXo forall F < q(u)/q;1(u) isincreasingin (0, 1).

(iv) Xy <ig X for all F — @, (u)/q} (u) is decreasing in (0, 1).

(v) X1 <mgrL Xo for all F < q,(u)/q; (u) is bathtub in (0, 1)
and E(X;) <E(X3).

We apply these ordering results in the following theorems and
examples comparing the different replacement policies. In the first
main result we prove that, for any system with IID components,
the replacement policy of case II is always ST-better than that of
case L.

Theorem 4.2. Let T be the lifetime of a coherent system with IID
components having a common absolutely continuous reliability F. Let
T; and Ty be the system lifetimes obtained with the replacement poli-
cies of cases I and II, respectively. Then T; < ¢;Ty for all F.

Proof. If we assume that the component lifetimes X;,...,X, are
IID, then the system’s reliability can be written as F-(t) = q(F(t))
for a polynomial g(u). From Theorems 3.3 and 3.6, we also know
that the reliability functions of T; and Tj; can be written as Pr(T; >
t) = G;(F(t)) and Pr(T; > t) = Gy (F(t)). So we just need to prove
that ¢;(u) < gy (u) for all ue[o, 1].

From the proof of Theorem 3.3, we know that T; =
where Xq., = min(Xy, ..., Xp),

Pr(Y! —x > y|Xi.n = x) = Pr(T* > y)

X1:n +Y1,
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and T* is the lifetime of a system with the same structure as T
and having IID components with the common reliability function
F(y) = F(x+y)/F(x) for y>0. Hence

Pr(Y' - x > y[Xi.n = x) = Pr(T* > y) = G(R)).

On the other hand, from the proof of Theorem 3.6, we know
that T; =T + Y, where

Pr(Y"—x > y|T =x) =Pr(T™ > y)

and T** is a mixture of different semi-coherent systems with n (or
less) IID components with the common reliability function F.

Now let assume that the IID components are exponential with
mean 1, that is, F(t) =e~t for t>0. This model has the lack of
memory property and so K (y) = F(y) for all y> 0. Hence

Pr(Y' —x > y[Xi:n = %) = G(F(y)) = Pr(T > y)

for all x, y >0, that is, (Y/ —x|X;., = x) =s7 T. So Xy. , and Y’ are in-
dependent. Analogously, T** is a mixture of different semi-coherent
systems with n (or less) components and having IID components
with the common reliability function F. Hence T and Y! are in-
dependent. Moreover, as all these semi-coherent systems are ST-
better than X;., (because they have n or less components), then
X1. n <srT**. Finally, from Theorem 1.A.3, b, in Shaked and Shan-
thikumar (2007, p. 6), we get

= Xin+T <57 T+T" =51 Tyt

for F(t) = e~t, where T* =¢; T. Hence g;(e~t) < gy (e~t) for all t> 0.
So q;(u) < qy(u) for all ue|0, 1] and the proof is completed. O

In the second theorem we prove that this property can be ex-
tended to the hazard rate order for the systems which preserve the
IFR (increasing failure rate) aging property. A similar result can be
stated for the likelihood ratio order from Theorem 1.C.9 in Shaked
and Shanthikumar (2007, p. 46) and the preservation results for
the ILR class of logconcave densities given in Proposition 2.2 of
Navarro, del Aguila, Sordo, and Sudrez-Llorens (2014).

Theorem 4.3. Let T be the lifetime of a coherent system with IID
components having a common absolutely continuous reliability F. Let
T; and Ty be the system lifetimes obtained with the replacement poli-
cies of cases I and II, respectively. Let G be the dual distortion function
of T If a(u) = uq'(u)/q(u) is decreasing in (0,1), then Tj<pgTy for
all F.

Proof. As in the preceding theorem, we have Pr(T; > t) = §;(F(t))
and Pr(T; > t) = gy (F(t)). So, from Theorem 4.1, (ii), we need to
prove that ¢;/q; is decreasing in (0,1). With the notation used
in the proof of the preceding theorem, if we assume that F(t) =
et for t>0 (exponential components), we have T} =s5 Xy., + T*
and Ty =7 T + T**, where T* =¢y T and T** is a mixture of semi-
coherent systems of order n. Then its reliability can be written as

Pr(T* > t) = s7Fp(t) + - - - + 5 Fyen (£)

for all t>0. The vector (s**,...,sk*) is called the signature (of or-
der n) of T** (see, e.g., Navarro, Samaniego, Balakrishnan, & Bhat-
tacharya, 2008). The signature of X;., is (1,0,...,0). Hence, as
(1,0,...,0) <pg (s3*,...,s3), from Theorem 4.4 in Navarro et al.
(2008), we get Xy. , <pyrT** for F(t) = e~t. Moreover, we know that
T* is independent of X;., and T** is independent of T. Then we
can apply Lemma 1.B.3 in Shaked and Shanthikumar (2007, p. 18)
obtaining

= Xin+ T <gr T+T" =51 Ty

for F(t) = e~ whenever T is IFR. Now we note that, from the re-
sults given in Navarro et al. (2014, p. 447), if the function « defined
above is decreasing, then the system preserves the IFR property.

Table 1
Repairing options for the system in Example 4.4.
i 4 H AL T i T
1 (L) Xo<X,<X, 2 T=X, 2 min(Xy, X3)
2 (b, 1d3) X, <Xi <Xy 2 T=X; 2 X
3 (i i 1) X, <X, <Xp 2 T=X; 30X

So, as the exponential distribution is IFR, then T is also IFR and
T; < urTy holds for F(t) = e_t, that is,

Pr(Ty > 6) _ @n(F(©) _ dne™)
PG>0 qED) | die)

is increasing for t> 0. Therefore, q;;(u)/q;(u) is decreasing in (0,1)
and the proof is completed. O

The following example shows that, sometimes, to repair a fixed
component (case III) is better than to repair the critical component
of the system (case II).

Example 4.4. Let us consider a coherent system with three IID
components and lifetime T = max(X;, min(X5, X3)). Then the dis-
tortion functions of the system are Q(uj,us,us) = Uy + Upllz —
ujupus and G(u) = Q(u, u, u) = u + u? — u3. Furthermore, the dual
distortion functions associated to the lifetimes obtained after the
minimal repair of the components 1, 2 and 3 are given by

aw W) = Q@ @), uu)=u+u? - — (u-v’)lnu

and

P W =3P W =Qu g, u) =u+u?—v’ - @ -u?)Inu

On the other hand, the distortion function for case I can be ob-
tained from (3.8) as

qr(u) = %quBu2 - %u3 +3ulnu.

Finally, we compute §;; from (3.21). The signature of the system
is (0, 2/3, 1/3). It can be computed from the permutations given
in Table 1. This table also contains the numbers i; of component
failures which cause the system failure and the expressions of the
repaired system lifetimes T; for each j =1, 2, 3. Hence, from (3.15),
we get

13
Pr(Ty >t) = 3 ZPT(TM > t|H;))
=1

for the events H; given in Table 1. The first probability can be com-
puted as

Pr(Ty > t|Hy) = B 5#Gy (t) = Bs#Gy (1),
where if X5.3 = X, then
Gix(y) = Pr(T; —x > y|Xo:3 = X, Hy)

F2(x+y)

=Pr(min(X3, X3) —x > y|X1 <x <Xp < X3) = —
F2(x)

since the components are IID. Therefore, from (2.1), we have

_ t Fz(t)
Pr(Ty > t|Hy) = Fos (1) + /O B
where F5(t) =3F2(t) — 2F3(t) and fo5(t) = 6(F(t) — F2(t)) f(©).
Hence

fa:3(x)dx,
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Fig. 1. Plots of the dual distortion functions for the cases: I, I, IIl ((1) and (2)) and for the system given in Example 4.4 (left). Ratio q;,}>/q,, in the interval (0,1) (right).
_ _ t F(x) — F2(x and have the following Clayton-Oakes survival copula
Pr(T > tH) = o () + 6720) [ T piayax
0 F2(x) uv
Kuv)y=———.
_ 672(t) t 1 1 food u+v—-uv
=F(t — — x)dx
B + /(; F(x) Taking into account that both components are ID and have survival

= B3 (t) + 6F% () (— log F(t) — (1))
= —3F2(t) + 4F3(t) — 6F2(t) log F (t).

A straightforward (analogous) calculation for H, and Hs leads us
to

Pr(Ty > t|Hy) = 3E(t) — 3F2(t) + F3(¢)

and

Pr(Ty > t|Hs) = —%I-:(t) +3F2(t) — %IB (t) — 3F(t) log F(t).

Hence
1 1 1
Pr(Ty > t) = 3 Pr(Ty > t|Hy) + 3 Pr(T; > t|Hy) + 3 Pr(T; > t|Hs)
= %I:"(t) —F2(t) + %F3 (t) = F(t)log F(t)
—2F%(t) logF(t)
= qu(F(t)).

where Gy (u) = u/2 — u? + (3/2)u® —ulogu — 2u? logu for u€(0, 1).

In Fig. 1 (left) we compare the distortion functions of the three
cases. From these plots we conclude that T <gr T,;Iz) <1 Ty <st
T <st Tlﬁll) In order to clarify the last inequality, we plot the ra-
tio '}/Gy in the interval (0,1) (see Fig. 1, right). This quotient
is always above the line y = 1. However it is not decreasing and
therefore Tj; and TIL]) are not HR-ordered. Hence, we can state that
against the expected, the replacement policy of case II is not al-
ways the best strategy in the case of IID components.

The following example shows that Theorem 4.2 is not true
when the components are dependent.

Example 4.5. Let us consider a parallel system with 2 exchange-
able components having a common absolutely continuous reliabil-
ity function F. Let us assume that both components are dependent

copula K, we get

F(t) 2f®)
2-F(t) Q2 -F(t)?
where f represents the common density function of both compo-

nents. Hence, the reliability function associated to T; can be ob-
tained from (3.4) as follows

Fio(t) =K(F(t), F(t)) = and fi(t) =

CK(E(t), F(x))

B (6) = Fua (6) + Froa (0) In(Fria (£)) + 2 /0 P Hia0ds
_FO B (e — F(e — 7 (F
= 5 (1~ 3P0~ —F©) =4 FO)

where q;(u) =@ —-3ulnu—-uln2-1u))/(2-u)
dual distortion associated to T;.

On the other hand, we can obtain immediately the expression
for the dual distortion associated to Tj just by replacing K(u, v) in
(3.9) as follows

represents the

1y,
G () = 2u — K(u, u) + 2[ %(1 — 0K (v, v))dv
u3-2u) u@B-u) u? (5 —3u)
= - 1-u ln(2—u)+mlnu.

Finally, we obtain the dual distortion functions for the case IIl.
Firstly, we note that both distortions must be the same because
we are considering exchangeable components. Moreover, Q (u, V) =
u+v—K(u,v). Hence, the dual distortion function of TI;I” can be
obtained as follows

B (6) = Q@ (F©), F(©) = @1 (F(©) +F ()

G (FO)F©)

G (F z = qV(F@)),
q1(F(£)) + F(t) — q1(F(t))E(t) Gy (F(1))
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Fig. 2. Plots of the dual distortion functions for the system in Example 4.5 for cases I, II, IIl and without repairs (left) and plots of the ratios Lj“)/c'[,,, Gr/qn and G;/qy,

1
interval (0.3,1) (right).

Table 2
Coefficients ¢; and d; associated to the dual distortion function gy (see Theorem 3.6) for all the coherent systems with 1-4 [ID components

and the best replacement policy in the stochastic order. Cases I, I and III (i) are denoted by C;, C;; and C,(,’,), respectively.
N T=¢X1,X2, X3, X4) c d Best ST-policy
1 Xin=X1 (1) (-1) G=G=Cy
2 X1:2 = min(X1, X) (0,1) (0,-2) G=Cy
3 X2 = max(Xy, Xz) (0,1) (-2,0) Cu
4 X1:3 = min(X1, X2, X3) (0,0,1) (0,0,-3) C=Cy
5 min (X7, max (X, X3)) (0,0,1) (0,-4,1) Cy
6 X5. 3 (2-out-of-3:F) (0,-3,4) (0,-6,0) Gy
7 max (X;, min (X, X3)) (1/2,-1,3/2) (-1,-2,0) cy
8 X3.3 = max(Xy, X2, X3) (-3/2,3,-1/2) (-3,0,0) Gy
9 X1 4= lTlil'l(X] R X2 N X3 N X4) (0,0,0,1) (0,0,0'-4) C] = C"
10 max (min (X, Xz, X3), (0,0,0,1) (0,0,-6,2) Cy
min (X3, X3, X4))
1 min (Xy: 3, X4) (0,0,-3,4) (0,0,-9,2) Gy
12 min (Xq, max (X2, X3), max(Xz, X4)) (0, 1/2, -1, 3/2) (0,-2,-3,1) Cit
13 min (X7, max (X, X3, X4)) (0,-3/2,3,-1/2) (0,-6,3,-1) Cy
14 X: 4 (2-out-of-4:F) (0,0,-8,9) (0,0,-12,0) Gy
15 max (min (Xy, Xz), min(Xy, X3, Xy), (0,0,-4,5) (0,-2,-6,0) Cu
min (X3, X3, X4))
16 max (min (Xy, X3 ), min (X3, X)) (0,0,0,1) (0,-4,0,0) Cy
17 max (min (Xq, X2), min(Xy, X3), (0,-1,0,2) (0,-4,-2,0) Ci
min (X3, X3, X4))
18 max (min(X;, X3), min (X3, X3), (0,-2/4,-1) (0,-6,2,0) Cy
min (X3, X4))
19 max (min (X, max (X, X3, X4)), (0,-3,4,0) (0,-6,0,0) Cit
min (X3, X3, X4))
20 min(max (Xi, X3), max(Xq, X3), (0,-5,8,-2) (0,-8,2,0) Cy
max (X, X3, X4))
21 min (max (Xq, X3 ), max (X3, X4)) (0,-4,8,-3) (0,-8,4,0) Cy
22 min(max (X, Xz), max(Xq, X3, Xa), (0,-8,12,-3) (0,-10,2,0) Cy
max (Xa, X3, X))
23 X3. 4 (3-out-of-4:F) (0,-12,16,-3) (0,-12,0,0) Cr
24 max (X;, min(Xz, X3, X4)) (2/3,0,-2,7/3) (-1,0,-3,0) cy
25 max (X;, min (X,, X;), min (X,, X)) (1/3,-3,5.-4/3) (-1-410) G, Gy
26 max (Xo: 3, X4) (5/6,-5,13/2,-4/3) (-1,-4,0,0) Cu. C
27 max (X1, Xz, min (X3, X4)) (1/3,0,1,-1/3) (-2,0,0,0) Gy

28 Xa:4 = max(Xq, Xz, X3, X3) (-10/3,6,-2,1/3) (-4,0,0,0) Cu
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where
u—ulnu
1+(1-u)(1-1Inu)’

We compare ¢, G, and 61(11,) in Fig. 2 (left) along with the dual
distortion function associated to the system without repairs. We

observe that T< g Ty < 57Ty and Ty <sr T\. In Fig. 2 (right) we rep-

resent the quotients q},P/q,,, qr/qn and cj,/ql(lll). The first and second
ratios are above the line y =1 and they are decreasing, therefore

T <ur Tlgll) and Tj; < ygT;. However, ‘71/‘31(1]1) crosses the line y =1 at

the value ug = 0.5862 and thereby T; and T,;,l) are not compara-

ble in the ST order. As the ratio is bathtub, we have T,;,l) <mr. Ty

whenever E(T,;,l)) < E(Ty).

g\ () =2u—ulnu -

Proceeding as in the examples above, we can obtain the
stochastic comparisons among the three policies considered in this
paper for any coherent system. In particular, Table 2 provides the
best replacement policy in terms of the usual stochastic order for
all the coherent systems with 1-4 IID components. The coefficients
¢; and d;, associated to the distortion function g are given for
each system as well. As one would expect in the case of IID com-
ponents, the policy II induces a more reliable system in most of
cases (see Theorem 4.2). However, there exist some systems where
repairing a fix component is better than repairing the component
which causes the failure of the system. In particular, the systems 7
and 24 in Table 2 satisfy that the system’s reliability is improved
in a higher level if we apply the policy III rather than the policies
[ or II. For both systems the first component is the most impor-
tant component and its functioning implies the system functioning.
Furthermore, the policies Il and IIl are better than policy I for the
systems 25 and 26 and both policies are not ordered. In this case,
the optimal policy depends on if the decision maker is interested
in improving the reliability of the system in an advanced or early
age.

5. Conclusions

In the present paper we give a procedure to determine the reli-
ability functions of coherent systems under a minimal repair main-
tenance and three different replacement policies. The components
can be dependent or independent. In the first replacement pol-
icy, the first broken component is repaired. In the second case, a
minimal repair is applied to the component which produces the
failure of the system. In the third one, a fixed component is re-
paired in case of failure. Note that in the two first cases we do not
know a priori which component will be repaired. In this context,
we have proved that if the components are ID, then the reliability
function associated to the lifetime of the repaired system in case
I can be expressed as a distortion of the common component reli-
ability function (see Theorem 3.2). This distortion depends on the
structure of the system and on the underlying survival copula. We
provide an explicit expression of this distortion in Theorem 3.3 for
[ID components. Analogously, we have proved that the reliability
function for the case Il can also be expressed using a distortion
function when the components are exchangeable. This distortion is
simplified for the IID case in Theorem 3.6. The new technique de-
veloped here can also be used to study other replacement policies.
As an example, we provide an explicit expression for the dual dis-
tortion functions associated to the case of repairing the two first
broken components in a general system or the k first broken com-
ponents in a series system.

These representation results are used to compare the three re-
placement policies using the main stochastic orders. In this sense,
our first comparison result shows that, for any coherent sys-
tem with [ID components, the case II is always a better strat-
egy of replacement than the case I in the stochastic order (see

Theorem 4.2). We prove with an example that this property is not
true when the components are dependent. Furthermore, the previ-
ous result holds for the hazard rate order when we consider sys-
tems which preserve the IFR property (see Theorem 4.3). Unfortu-
nately, the case III is not ST-ordered with neither case I nor case II,
even assuming IID components. We provide both counterexamples
as well as some interesting examples including the comparisons of
all the coherent systems with 1-4 IID components (see Table 2).
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