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a b s t r a c t 

In this paper, a Casualty Collection Points (CCPs) location problem is formulated as a two-stage robust 

stochastic optimization model in an uncertain environment. In this modelling approach, the network de- 

sign decisions are integrated with the multi-period response operational decisions where the number of 

casualties with different levels of injuries coming from the affected areas is uncertain. Furthermore, the 

transportation capacity for the evacuation of casualties to CCPs and hospitals is also uncertain. To solve 

this complex problem, a robust sample average approximation method with the feasibility restoration 

technique is proposed, and its efficiency is examined through a statistical validation procedure. We then 

evaluate the proposed methodology in the backdrop of a hypothetical case of Bhopal gas tragedy (with 

the same hazard propagation profile) at the present day. We also report the solution robustness and 

model robustness of 144 instances of the case-study to show the proficiency of our proposed solution 

approach. Results analysis reveals that our modelling approach enables the decision makers to design a 

humanitarian logistic network in which not only the proximity and accessibility to CCPs are improved, 

but also the number of lives lost is decreased. Moreover, it is shown that the proposed robust stochas- 

tic optimization approach converges rapidly and more efficiently. We hope that our methodology will 

encourage urban city planners to pre-identify CCP locations, and, in the event of a disaster, help them 

decide on the subset of these CCPs that could be rapidly mobilised for disaster response. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Severe weather events and natural disasters have displaced ap-

roximately 32 million people globally in 2012 and numbers are

rojected to continue rising ( IPCC, 2014 ). According to the Cen-

re for Research on the Epidemiology of Disasters , over the past ten

ears, natural disasters affected almost 1.7 billion people, including

.7 million killed, and resulted in 1.4 trillion dollars in damages

orldwide ( Guha-Sapir, Hoyois & Below, 2015 ). Similarly, man-

ade disasters have human, environmental and economic con-

equences. Examples of such disasters include stampede, nuclear

r chemical plant explosion, emergencies resulting from incorrect

andling/transportation of hazardous materials, water contamina-

ion and oil spill. Man-made disasters happen mainly due to ac-

idents, negligence or incompetence. With the global increase in

he number and severity of the disasters, researchers from differ-
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nt disciplines are increasingly paying attention to disaster man-

gement problems. 

Alerts and early warning systems are among the tools available

o city planners for dealing with emergencies. These inform the

opulation of an impending disaster, e.g., tsunami warning system

f the Japanese Meteorological Agency ( Tatehata, 1997 ) and COBRA

lerts in the UK ( Thunhurst, Ritchie, Friend & Booker, 1992 ). Al-

hough these are useful for the advance warning, it is also essen-

ial to have, in place, existing strategies for humanitarian logistic

etwork design that could be initiated after a disaster occurs. An-

lytical models may be developed to represent population centres

ith critical infrastructures like hospitals, power plants and trans-

ort networks. This will enable experimentation of humanitarian

ogistic operations and inform city planners if these are fit for pur-

ose and where improvements can be made. In this paper, we have

eveloped one such model. The model is motivated by a disaster

hich took place in Bhopal, India, in the year 1984. It is com-

only referred to as the Bhopal gas tragedy and was caused due

o a leak of toxic gas (methyl isocyanate) from a pesticide man-

facturing plant. In OR literature, the case study of Bhopal disas-

er has been used once before to illustrate a methodology that can
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1 The California National Guard announced that establishment of a CCP capable 

of providing an intermediate-level medical care requires a minimum of 48 hours to 

set up. 
help identify root causes of disasters and facilitating allocation of

resources to prevent their occurrence. In their work, Ishizaka and

Labib (2014) propose a hybrid method consisting of problem struc-

turing, visualisation, Analytic Hierarchy Process and mathematical

programming, with the objective to calculate the optimal allocation

of available funds in order to avoid a disaster. 

For our model, we use the backdrop of the propagation of haz-

ard that took place on the night of 2–3rd December 1984; we

use population and other model-specific parameters from the lat-

est available census data and other municipal reports for the city

of Bhopal. We consider a hypothetical case of a gas leak taking

place in Bhopal in today’s date which follows the hazard prop-

agation profile (e.g., wind direction) reported back in 1984. The

number of people dead as a direct consequence of inhaling toxic

gas is estimated to be between 3700 and 16,000. Considering the

catastrophic loss of lives, our objective here is to design a humani-

tarian logistic network in which response planning and operations

are taken into account for the evacuation of the entire population

of the affected areas to facilities that provide temporary medical

assessment and treatment (these are referred to as Casualty Collec-

tion Points or CCPs) and to the hospitals. In our model there are

two uncertain parameters, namely, the number of casualties and

the transportation capacity. The motivation for using these vari-

ables is based on the hazard profile that was associated with the

Bhopal disaster. The direction of the wind determined the number

of people that inhaled the toxic gas. If the wind movement was

in the direction of build-up population centres (called as wards)

then this would affect more people. Furthermore, the demograph-

ics associated with a ward could have a bearing on the severity

associated with inhaling the gas. For example, inhalation of the

gas had different sensitivities associated with children and elderly

people compared to the rest of the population ( Bowonder, 1987 ).

Our model, therefore, considered this uncertainty in the number

and severity of casualties. The motivation for the second uncertain

parameter (transport capacity) is based on the generally accepted

fact that developing countries often have inadequate transporta-

tion and which is likely to affect emergency evacuation ( Bisarya &

Puri, 2005; Bowonder, 1987 ). Bisarya and Puri (2005) recommend

that the people living in the vicinity of hazardous plants should

be made aware of the sources of transportation/ambulances for

emergency evacuation. However, in a disaster of such magnitude,

it is important to consider not only public transport but also pri-

vate vehicles for the transportation of casualties (as happened in

Bhopal). Ownership of private vehicles will usually depend on the

socio-economic status of the people living in different wards. Fur-

ther, public transport capacity will also be dictated by transport

infrastructure available in different population centres. In order to

account for these variations, our model includes transport capacity

as an uncertain parameter. 

In such uncertain environment, decision makers are to act with-

out exact or complete information about number of casualties from

the affected areas and the transportation capacity for moving casu-

alties to CCPs and hospitals. These factors cannot be confidentially

estimated due to the unpredictability of time, place and severeness

of a disaster as well as the changing roadway infrastructure as a

result of disaster impacts ( Bayram & Yaman, 2018 ). In the context

considered here, the number of casualties with different levels of

injuries coming from the affected areas over the planning horizon

and the transportation capacity for moving casualties are uncertain

parameters. The uncertainty about future realizations of these pa-

rameters are considered in the form of random sample of scenarios

incorporated in the problem formulation. 

The vast majority of studies in disaster and emergency manage-

ment have focussed on the distribution of relief in the aftermath of

disasters ( Anaya-Arenas, Renaud & Ruiz, 2014; Paul & Zhang, 2019 ).

In this context, stock location, resource allocation, and commodity
ow from predefined warehouse locations to affected areas have

een the most impactful variables to optimize for the construc-

ion of relief distribution networks. Casualty management prob-

ems, such as the one presented in this paper, can similarly be con-

trued in terms of CCP location, casualty medical treatments, and

asualty flow from the affected areas to safer places and hospitals.

n spite of the importance of casualty management in humanitar-

an logistics, relatively little attention has been paid to this subject

 Gupta, Starr, Farahani & Matinrad, 2016 ). Our work is, therefore, a

ontribution to this literature; specifically, we are concerned with

he casualty management functions of disaster management that

re caused by human error, such as industrial accidents, and which

re implemented after a disaster strikes (response phase of disaster

lanning). 

A disaster may result in numerous lives being lost. However,

he severity of potential threats in the aftermath of a disaster can

e mitigated by providing fast and essential aids through interme-

iary sites. As mentioned earlier, these sites with short-term mis-

ions and temporary locations are referred to as CCPs. An overall

iew of CCP establishment and operations is presented in Fig. 1 . In

xisting literature, several terms have been interchangeably used to

enote these facilities, such as field treatment site ( Drezner, 2004 )

r alternative care facilities ( Caunhye, Li & Nie, 2015 ). However, for

onsistency, we have used CCP for Casualty Collection Point or fa-

ilities that are functionally similar to CCPs. CCP locations are iden-

ified before the disaster occurrence, i.e. during the preparedness

hase, but selected after the disaster has occurred, i.e. in the re-

ponse phase (see Fig. 1 ). After choosing the right location and

stablishing 1 the CCPs, the following operational and tactical de-

isions are to be made in the response phase at CCPs: (i) triage,

ii) casualty registration, (iii) casualty medical treatment, (iv) casu-

lty evacuation, and finally (v) shutting down the site(s) ( Koehler,

oley & Jones, 1992 ). 

Uncertainty affects strategic CCP location decisions, and which

ave a bearing on tactical and operational decisions. The network

esign decisions are strategic decisions that are made when fore-

asting uncertain parameters. Planning and operational decisions,

n the other hand, are usually made when parameters are more

bvious (e.g., the parts of the city that may be affected due to

n unfolding weather-related event). It is arguable that including

trategic decisions would improve the quality of casualty manage-

ent and other operational decisions. In particular, optimizing the

ocation and allocation decisions at the strategic level with the hi-

rarchical integration of the periodical policy decisions lead us to

 two-stage stochastic optimization model. With this motivation,

e reflect on a robust stochastic optimization approach, which si-

ultaneously optimizes the number of CCPs, location, allocation,

nd capacity decisions at the strategic level and scenario-based ca-

ualty triage, casualty registration, casualty holding, and casualty

ransportation decisions in a multi-period planning setting, while

atisfying the system constraints enhancing the problem objective

unction. 

The organization of the remainder of this paper is as follows. In

ection 2 , we provide a literature review and highlight the main

ontributions of this paper. Section 3 represents a generic robust

ptimization modelling approach and a two-stage formulation for

he problem context presented in the paper. Section 4 contains a

obust stochastic optimization procedure as well as the validation

rocedure. In Section 5 , we study the application of the model to

he case study; we provide experimental results for extensive real-

stic problem instances; we discuss these results and performance
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Fig. 1. CCP establishment and operations. 
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f the solution methodology. Section 6 is the concluding section

nd discusses future work. 

. Literature review 

This section presents a brief overview of research on casu-

lty management and disaster response. ( Drezner, 2004 ) first in-

roduced the CCP location problem in a discrete network and its

pplication in disaster management in Orange County, California.

hen, Drezner, Drezner and Salhi (2006) developed the problem to

 multi-objective programming model to find appropriate locations

or CCPs. Casualty transportation in cases of expected disasters and

ost-disaster, have been widely studied in the form of a trans-

ortation network design problem ( Ben-Tal, Do Chung, Mandala &

ao, 2011; Ozdamar, 2011; Shen, Pannala, Rai & Tsoi, 2008; Yao,

andala & Do Chung, 2009 ). In this regard, An, Cui, Li and Ouyang

2013) and Kulshrestha, Lou and Yin (2014) developed a stochastic

odel that incorporates mass-transit casualty evacuation planning

rom pick-up locations. Goerigk and Grün (2014) , Najafi, Eshghi and

ullaert (2013) and Goerigk, Deghdak and T’Kindt (2015 ) studied

he impact of multiple transportation modes including private ve-

icles, rapid transit, and mass-transit shuttle buses. Sacco et al.

2007) , Wilson, Hawe, Coates and Crouch (2013 ) and Kilic, Dincer

nd Gokce (2014 ) focused on processing operational decisions in-

olving triage, transportation, and treatment for medical injuries

ver the planning period. He and Peeta (2014 ) and He, Zheng and

eeta (2015) underlined the impact of dynamic resource allocation

n casualty transportation and evacuation. 

In logistic network design, there exists temporal hierarchical

tructure between initial design considerations and the subsequent

lanning and operational decisions; this implies that these deci-

ions are made under uncertainty ( Klibi, Lasalle, Martel & Ichoua,

010; Shapiro, 2008 ). Klibi and Martel (2013 ) emphasized that in-
ividual optimization of the logistical decisions may not guaran-

ee an optimal solution for the whole operation. Amiri-Aref, Klibi

nd Babai (2018) showed that the integration of the design and

lanning decisions could improve the quality of solutions in net-

ork design when demand is uncertain. Due to unpredictability

oncerning the magnitude of a disaster, number and location of ca-

ualties, the availability of infrastructure, weather conditions, etc.,

roviding a logistical response encounters a high level of difficulty

nd uncertainty ( Apte, 2010 ). Thus, for the construction of an op-

imization model, to enable the integration of design and plan-

ing decisions it is important to consider temporal hierarchical

tructures with uncertainty. Bayram, Tansel and Yaman, (2015) em-

hasised that disaster management models that do not take into

ccount the uncertainties may lead towards inefficient logistical

lanning and operational decision making. According to Gupta

t al. (2016) , who present the latest survey in this field, integrating

ecisions related to locating casualties and moving them to hospi-

als (or safer places) can save numerous lives and further research

s required in this area. 

In the existing literature, only a few authors have addressed

he stochasticity in an integrated CCP network design problem

ith multi-period planning settings. Li, Nozick, Xu and Davidson

2012) developed a scenario-based bi-level programming model for

he shelter location model with the evacuation consideration for a

ealistic case study of North Carolina and highlighted the impact

f transportation when selecting the location decisions. Bayram

nd Yaman (2015) proposed a scenario-based two-stage stochas-

ic shelter location model considering casualties (evacuees) alloca-

ion to the nearest facility to minimize the expected total evacua-

ion time. Bayram and Yaman, (2017) provided the exact solution

ased on Benders-decomposition algorithm to the model formu-

ated by Bayram and Yaman (2015) . They showed the importance

f the inclusion of uncertainty in planning for evacuations. Despite
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the contribution of the abovementioned effort s on the interdepen-

dency of casualty transportation and shelter (CCP) location deci-

sions in humanitarian logistics network design, the main short-

coming is the neglect of temporal hierarchy relationship between

the strategic and planning decisions and the dynamicity of casu-

alty arrivals as illustrated in Fig. 1 . Strategic decisions are adopted

at the beginning of response phase in an uncertain environment

where exact or complete information about the number of casual-

ties are not available. Then, scenario-based multi-period decisions

are made during the response phase in which we assume the hori-

zon is composed of a set of discrete operational cycles. Note that

a user makes periodical decisions on a timely basis (e.g., hourly, 8-

hourly, 12-hourly and daily). In fact, the consideration of casualty

state transition from one operational cycle to the next and of hi-

erarchical setting between decisions results to a multi-period two-

stage stochastic program model for the humanitarian logistics net-

work design problem. 

To the best of our knowledge, a two-stage stochastic modelling

for the CCP location problem with uncertain number of casual-

ties with different levels of injuries under a multi-period settings

and uncertain transportation capacity is lacking in the literature.

Given that this problem has the same NP-hardness property as a

basic facility location problem, we have developed a heuristic ro-

bust method for solving the problem. This paper extends the lit-

erature related to the humanitarian logistic network design in the

following three ways. 

While several humanitarian logistical problems studied the re-

sponse network design for providing medical supply from preposi-

tioned warehouses or staging areas to the affected people through

the points of distribution (POD), this paper focuses on a network

design with casualty response planning from the affected areas to

the evacuation points (EP) or safer places through the temporary

CCPs. In the former context, relief items and supplies move to-

wards affected areas, whereas the model presented in this paper

relies on the flow of victims with life threating conditions from

the affected areas to the EPs or hospitals through the intermedi-

ate CCPs in an uncertain environment. The additional contribution

of this paper to the relevant articles in the literature (e.g., Apte,

Heidtke & Salmerón, 2014; Yi & Ozdamar, 2007 ) is the explicit in-

clusion of the uncertainty inherent in CCP location-allocation de-

cisions made at the design stage of the optimization model. In

fact, the uncertainty is due to the time lag between the strate-

gic design decisions in the first stage and the dynamic operational

decisions in the second stage during the response phase. Strate-

gic decisions on the number, location and allocation of CCPs are

made through anticipating the plausible scenarios for the opera-

tional decisions in the second stage. Although several studies in the

location-evacuation literature investigated the humanitarian logis-

tic network design, they almost considered deterministic or mean-

value information. In this paper, we develop a two-stage stochastic

programming modelling approach to cope adequately with the un-

certainty inherent in disaster contexts, where the value of stochas-

tic information is high. It has been shown that the inclusion of

uncertainty at the strategic level improves the quality of the CCP

design decisions ( Birge & Louveaux, 2011 ). 

Second, the main aim of the problem considered here is to opti-

mize CCP design decisions in view of the existence of the temporal

hierarchy structure between the strategic and operational decisions

over the planning period. The time setting between these decisions

as well as the distinct time-horizon granularity are incorporated in

the proposed model to capture the dynamic nature of lifesaving

operations in the response phase. In this research, we deal with an

integrated humanitarian logistic network problem in which strate-

gic decisions are made in the first-stage model and operational

decisions with anticipation of uncertain factors are made/revised

during the multi-period planning horizon. This problem must not
e confounded with problems which in fact optimizes the loca-

ion and evacuation decisions simultaneously for achieving coordi-

ation, as pointed out in Sheu and Pan (2014); Yi and Ozdamar

2007) . It is important to note that in this modelling approach the

bjective is to use the anticipated decisions optimized for each op-

rational cycle under all scenarios, so that more efficient and ro-

ust CCP design solutions are generated at the strategic level. From

he practical point of view, strategic decisions include the number

nd location of CCPs to be opened, CCPs capacity allocation, al-

ocation of affected areas to established CCPs, hospitals allocation

o established CCPs and alternative CCP locations. These decisions,

lso known as design decisions, are made immediately following a

isaster. Planning decisions such as casualty triage, casualty regis-

ration, casualty medical treatment and casualty transporting, then

eed to be made over the whole of the planning period. The num-

er of casualties (with several levels of injuries) and the available

ransportation capacity are uncertain throughout the proposed net-

ork. Due to the hierarchical structure of strategic and planning

ecisions, finding an optimal solution for one activity is not usually

ufficient for the whole of the response phase. Therefore, the focus

f this paper is to present a model that reflects the hierarchical

tructure of the strategic and planning decisions in the presence of

ncertain parameters in one unique problem in order to provide

ffective design solutions; Further, to formulate such a problem in

he form of a two-stage robust stochastic optimization model . 

Third, we proposed a robust stochastic optimization solution

pproach to cope with the infeasibility issues which may occur in

he stochastic optimization problems. Our proposed approach re-

urns robust solutions which are close to any given scenarios with

inimum dispersion from the optimal values. This has been vali-

ated by the optimality gap analysis. 

Our review of the literature on stochastic programming ap-

roaches specific to casualty management problems has shown

hat no existing model has taken into consideration the three fea-

ures presented above. The main purpose of this study is to pro-

ide a specific representation of an integrated casualty manage-

ent structure in an uncertain environment while the system con-

traints are met. To the best of our knowledge, the modelling of

CP logistic network design problem with the characteristics men-

ioned above has not been studied in the literature so far. 

. Modelling approach and problem formulation 

In this section, we first present a generic robust stochastic opti-

ization modelling approach and then apply this approach in the

roposed CCP logistic network design problem where the uncer-

ain number of casualties with different levels of injuries, and un-

ertain casualty transportation capacity, are described by a set of

ealizations or scenarios for their values. 

.1. Modelling approach 

This problem is characterized by two decision variable sets:

esign variables and control variables. Let us assume x ∈ R 

n + 
1 

de-

otes the vector of design variables which need to be made here-

nd-now in the first-stage of decision-making problems with n -

imensional integer space. The design variables have static nature

uring the planning horizon and are non-adjustable to the uncer-

ain parameters. Let us further assume y ∈ R 

n + 
2 

denotes the vector

f control variables in an n -dimensional nonnegative space that are

ubjected to adjustment once the actual data of the uncertain pa-

ameters reveals itself. This decision set is scenario-dependent and

djustable to the optimal value of the design variables. The control

ariables which are made in the second-stage of dynamic decision-

aking problems are so-called wait-and-see decisions. Considering
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he definition of the design and control variables, a general frame-

ork of a two-stage stochastic programming model with uncertain

arameters is presented in the following, 

min 

 ∈ R n + 
2 

{
c T x + E [ Q ( x , ψ ) ] 

}
(1) 

 . t . A x = b, x ≥ 0 , (2)

here C := { c, A , b } is a set of vectors of fixed coefficients of the

rst-stage decision-making problem and of free of noise in in-

ut data. Objective function (1) represents objective function of

he first-stage decision-making problem and the expected opti-

al value of the second-stage decision-making problem, defined

y Q ( x , ψ ) , and Eq. (2) denotes the structural constraints with

xed parameters. 

 ( x , ψ ) = min 

y ∈ R n + 
2 

{
q T y 

}
(3) 

 . t . C y = e − B x (4)

here, ψ := { q, B , C , e } defines a set of uncertain parameters,

ubjected to noisy input data, associated with the second-stage

ecision-making problem. Objective function (3) optimizes the

ontrol variables in the second-stage decision-making problem

ubject to noisy parameters. Eq. (4) denotes control constraints

ith uncertain parameters adjusted to the first stage variables. Let

s denote the set of ψ as a random vector with corresponding

robability space support � and its particular realization. Sup-

ose the expected value function E [ Q ( x , ψ ) ] with random vec-

or ψ has finite support � . That is to say ψ has a finite num-

er of realizations or scenarios ψ(ω) := { q (ω ) , B(ω ) , C(ω ) , e(ω ) }
ith respective probabilities π(ω) , ω ∈ � = { 1 , 2 , ..., | �| } , where
 | �| 
ω=1 

π(ω) = 1 . Therefore, the expected value function is repre-

ented as follows: 

 [ Q ( x , ψ ) ] = 

∑ 

ω∈ �
π( ω ) Q ( x , ψ ( ω ) ) , (5) 

here, for each ω ∈ � = { 1 , 2 , ..., | �| } , Q ( x , ψ( ω) ) denotes the op-

imal value of the deterministic-equivalent linear formulation of

he second-stage decision making problem: 

min 

 ( ω ) ∈ R n + 2 

{ ∑ 

ω∈ �
π( ω ) q T ( ω ) y ( ω ) 

} 

(6) 

 . t . C ( ω ) y ( ω ) = e ( ω ) − B ( ω ) x , ∀ ω ∈ �, (7)

If the set of constraints (7) has no feasible solution, the second-

tage decision making problem is infeasible. Under this condition,

here exists at least one scenario realization ω ∈ �, for which

 

T (ω) y (ω) = + ∞ and so Q ( x , ψ( ω) ) = + ∞ . On the other hand,

his problem could be unbounded depending on the first-stage

ariables and scenario realizations and hence Q ( x , ψ( ω) ) = −∞ . 

The classical stochastic programming is likely to be infeasi-

le especially when the distribution of uncertain parameter is

nknown, or the uncertain parameter realizations do not follow

 specific distribution ( Khor, Elkamel, Ponnambalam & Douglas,

008 ). Due to the lack of information or imperfect data in disas-

er management, such as, location and time of disaster, it’s sever-

ty in terms of number of casualties, and available transportation

apacity subsequent to the disaster, the parameters are almost un-

redictable or are forecasted with a wide range of variability. This,

oupled with the need to execute a large number of scenarios,

ill most likely produce infeasible solutions to the stochastic pro-

ramming ( Neyshabouri & Berg, 2017 ). To tackle possible infeasi-

ility due to the presence of uncertain parameters and the risk

ttributed to the decision-maker, robust counterparts problem is

roposed. Its purpose is to find an optimal solution that satisfies
ll constraints for any uncertainty realization while reducing the

isk of dispersion of the objective function value. In the robust

ptimization literature, two performance metrics that have been

idely applied are the concept of solution robustness and model

obustness ( Mulvey, Vanderbei & Zenios, 1995 ). Our robust coun-

erpart problem studies both solution robustness and the model

obustness concepts simultaneously. Since the robust counterpart

roblem accounts for the second-stage decision-making problem

ith uncertain parameter realization, without loss of generality, we

ainly focus on the formulations given in (6) and (7). 

To achieve solution robustness, Mulvey and Ruszczy ́nski (1995 )

easured the dispersion of the objective values by minimizing the

verage of standard deviation (or absolute deviation) of the ob-

ective values over all scenarios. This metric guarantees that the

econd-stage solutions are close to any scenario realizations ap-

lied in the problem ( Ben-Tal, Goryashko, Guslitzer & Nemirovski,

004 ). In order to avoid nonlinearity resulting from the standard

eviation formulation, we instead utilize the absolute deviation

ne, denoted by �(ω) in (8) for each scenario ω ∈ �. 

( ω ) = 

∣∣∣∣∣q T ( ω ) y ( ω ) −
∑ 

ω ′ ∈ �−{ ω } 
π

(
ω 

′ )q T 
(
ω 

′ )y 
(
ω 

′ )∣∣∣∣∣ ∀ ω ∈ �. 

(8) 

The model robustness, which focuses on infeasibility issue as a

esult of a violation of data-driven parameters, takes into account

nfeasibility penalty ρ in the objective function of the second-

tage decision-making problem. In this modelling framework, the

onstraint violation is measured by an infeasibility variable vec-

or z (ω) , where a positive value of z (ω) show the amount of in-

easibility of the corresponding scenario ω ∈ � in the model. It

s clear that z (ω) = 0 if the model is feasible. The mean value of

robable infeasibilities is then penalized in the objective function.

 ( ω ) y ( ω ) + z ( ω ) = e ( ω ) − B ( ω ) x , ∀ ω ∈ �, (9)

Considering both solution robustness and model robustness

epresented in (8) and (9) , respectively, the robust counterpart of

he second-stage stochastic programming is given as follows. 

min 

 ( ω ) ∈ R n + 2 

{ ∑ 

ω∈ �
π( ω ) 

(
q T ( ω ) y ( ω ) + �( ω ) + ρz ( ω ) 

)} 

(10) 

.t. constraints (8)–(9) , where the expected cost function is pre-

ented in the first term of (10) and solution robustness and model

obustness are given in the second and third terms of (10) , respec-

ively. Since the terms stated in (10) need to be unified, we use

oefficients β1 and β2 to provide a compromised objective func-

ion, as denoted in (11) . 

min 

 ( ω ) ∈ R n + 2 

{ ∑ 

ω∈ �
π( ω ) 

(
q T ( ω ) y ( ω ) + β1 �( ω ) + β2 ρz ( ω ) 

)} 

. (11) 

In the next subsection, an extended formulation of the robust

wo-stage stochastic programming model to design the casualty

ollection logistical network problem is presented. 

.2. Problem formulation 

The context of the study is based on the 1984 Bhopal gas

ragedy and our methodology for problem formulation is inspired

y the guidelines provided in the technical report of Haynes and

reeman (1989 ). One of the key recommendations of this report

s the importance of designing an efficient logistical network in

ases of disasters with mass causality. With this motivation, a ro-

ust two-stage stochastic programming model is formulated to de-



970 M. Alizadeh, M. Amiri-Aref and N. Mustafee et al. / European Journal of Operational Research 279 (2019) 965–983 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. CCP logistical network. 
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velop a logistics network design problem for the Casualty Collec-

tion Points in the event of a disaster. 

The first-stage objective function follows the recommenda-

tions of the report ( Haynes & Freeman, 1989 ), where the CCP

locations should be close enough to both affected areas and

hospitals so as to facilitate the efficient movement of casualties

(here, the casualties are people who have been affected by the

disaster). This objective function considers a fixed cost that can

be assigned to each potential location for establishing a CCP and

relative cost associated with distance to travel from the affected

areas to the established CCPs and/or to the hospitals. According

to the technical report, when injury severity is minor and the

hospitals are in the vicinity of the affected areas, casualties can

travel directly to established CCPs or hospitals without assistance

(so-called self-evacuees ). On the other hand, casualties with the

need for intermediate or immediate medical care are directed to

established CCPs by either emergency, mass-transit or even private

vehicles (so-called emergency-evacuees ). The emergency-evacuees

go through four stages– triage, registration, treatment and evacua-

tion. Incoming casualties to the CCPs are diagnosed for severity of

their injuries (triage) and are registered subsequently. Temporary

hospitalization and first aid medical services are then provided

to the casualties (treatment). They are then transferred to the

hospitals or other health and care facilities for further treatment

(evacuation). The distance to travel for both self-evacuees (moving

from affected areas to the established CCPs or hospitals) and

emergency-evacuees (first travelling from affected areas to the

CCPs, and then from the CCPs to the hospitals) is formulated in

the form of a travelled distance cost minimization function . The

second-stage objective function minimizes the expected operating

costs and the penalty cost due to lives lost. The expected operat-

ing cost consists of the cost incurred by periodical decisions for

casualty holding and transportation as well as the penalty cost

due to system inefficiency and lack of adequate resources. In this

study, the first-stage objective function incorporates the design

decisions, while the second-stage objective considers the planning

decisions incorporated into the design decisions. A typical CCP

logistical network is graphically illustrated in Fig. 2 . 

3.2.1. The first stage model 

The first-stage of casualty collection logistical network design

problem focuses only on the humanitarian objective optimization

with the aim of locating the CCPs where the cost of travelled dis-

tance to affected areas and hospitals are minimal. Let us introduce

the set of affected areas by I = { 1 , 2 , ..., |I| } , where the casual-

ties come from. This set can also be viewed as demand points in

the business context. The set of potential locations for establish-

ing CCPs are denoted by J = { 1 , 2 , ..., |J | } and the set of existing

hospitals to serve CCPs are indicated by K = { 1 , 2 , ..., |K| } . 
The set of first-stage design decisions is composed of (1) deter-

mining the number of required CCPs to meet demand, (2) selecting

the location of CCPs among potential locations where each CCP is

characterized by its capacity, and (3) allocating the affected areas

as well as hospitals to every established CCP. The input param-

eters, according to the first-stage requirements, contain the dis-

tance matrices in our designated network. Let us denote the dis-

tance from affected area i ∈ I to potential CCP location j ∈ J by

D IJ = [ d i j ] |I|×|J | , the distance from potential CCP location j ∈ J to

hospital k ∈ K by D J K = [ d jk ] |J |×|K| , and the distance from affected

area i ∈ I to hospital k ∈ K by D IK = [ d ik ] |I|×|K| . The binary deci-

sion variables used in the first stage model are also represented in

the following: 

X j = 1 if potential location j is selected as a CCP, and 0 other-

wise, 
Y i j = 1 if affected area i is allocated to potential location j, and

0 otherwise, 

V jk = 1 if operating CCP j is allocated to hospital k , and 0 oth-

erwise, 

U ik = 1 if affected area i is allocated to hospital k , and 0 other-

wise. 

These strategic decisions are made considering the uncertain

arameters for the whole planning period. The uncertain param-

ter that is used most often in network design is demand value,

hich corresponds to the flow of casualties in the humanitarian

ontext. In addition to this, we also incorporated uncertain trans-

ortation capacity into the model to achieve more realistic and

ore reliable results. The set of all possible flow of casualty sce-

arios and available transportation capacity scenarios are denoted

y ϒ and 
, respectively. At the second stage, while realizing the

ossible scenarios υ ∈ ϒ and γ ∈ 
, the response decisions, in-

luding (i) triage, (ii) registration, (iii) treatment, and (iv) evacu-

tion, are adopted over the planning period. Let Q ( x , ω ) be the

olution of planning and operating decisions at the second-stage

epending on the scenario ω = ( υ, γ ) ∈ � = ϒ × 
, where � rep-

esents a set of all combinations of scenarios υ ∈ ϒ and γ ∈ 
.

et assume π(ω) is the probability of each scenario occurrence,

here π(ω) = π(υ) .π (γ ) . Thus, we can introduce π(ω) q ( x , ω )

s the expected value of the objective function of the second stage,

here x = ( X j , Y i j , V jk , U ik ) denotes the vector of the first-stage bi-

ary decision variables. Considering that, we present the first-stage
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ecision-making problem in the following: 

in 

x 

{ ∑ 

ω∈ �
π( ω ) q ( x , ω ) 

+ α

( ∑ 

i ∈I 

∑ 

j∈J 
d i j Y i j + 

∑ 

j∈J 

∑ 

k ∈K 
d jk V jk + 

∑ 

i ∈I 

∑ 

k ∈K 
d ik U ik 

) } 

, (12) 

 . t : Y i j ≤ X j , ∀ i ∈ I, j ∈ J , (13)

 jk ≤ X j , ∀ j ∈ J , k ∈ K (14)

 

j∈J 
Y i j + 

∑ 

k ∈K 
U ik ≥ 1 , ∀ i ∈ I, (15)

 

k ∈K 
V jk ≥ X j , ∀ j ∈ J , (16)

 j , Y i j , V jk , U ik ∈ { 0 , 1 } , ∀ i ∈ I, j ∈ J , k ∈ K, (17)

here α represents the provisional cost of travelling per distance

nit. The objective function of the first stage model, presented in

12) , contains the expected cost of the second-stage problem after

ncertainty realization and the cost related to the travelled dis-

ance. Constraints (13) ensure that each affected area can be al-

ocated to each established CCP. Constraints (14) show that only

he established CCPs are allowed to be allocated to the existing

ospitals. Constraints (15) represent that each affected area must

e allocated to either established CCPs or existing hospitals. Con-

traints (16) guarantee that each operating CCP must be allocated

o at least one of the existing hospitals. The binary decision vari-

bles are given in (17) . 

.2.2. The second stage model 

Once CCP location identification is done, the casualty response

perations, including (i) triage, (ii) registration, (iii) treatment,

nd (iv) evacuation, commence with scenario realizations over the

lanning period T = { 1 , 2 , ..., |T | } . However, the purpose of the

econd stage stochastic formulation is to generate a robust design

olution by involving different scenarios at the planning and oper-

tional level. To address the uncertainty of the number of casual-

ies, a set of possible scenarios are generated and are then used in

he model. Let ξilt (υ) be the number of casualties identified with

he injury severity level l ∈ L = { 1 , 2 , . . . , |L| } at the affected area

 ∈ I on day t ∈ T under scenario υ ∈ ϒ . Although a wide range of

njury severity level can be used, we divide the set of injury sever-

ty L into the following three subsets, L 

mi , L 

in , and L 

im , indicating

inor injury severity, intermediate injury severity, and immedi-

te injury severity, respectively. Note that the injury severity sub-

ets are independent pairwise and that { L 

mi ∪ L 

in ∪ L 

im } = L and

 L 

mi ∩ L 

in ∩ L 

im } = ∅ . We are inspired by the fact associated with

he case study that self-evacuation is unlikely to happen for casu-

lties with intermediate and immediate injury severity. Following

o this point, we assume that casualties with minor injury severity

evel, i.e. l ∈ { L 

mi } , are able to reach CCPs/hospitals by themselves,

o-called self-evacuees , and those with intermediate and immediate

njury severity, i.e. l ∈ { L 

in ∪ L 

im } , are led to the established CCPs.

t should be noted that self-evacuation does not include flow of ca-

ualties with intermediate and immediate injury severity levels, i.e.

 ∈ { L 

in ∪ L 

im } , and that casualties with minor injury severity level,

.e. l ∈ { L 

mi } , can either travel to established CCPs or move directly

o the hospitals. On the other hand, casualties with intermediate

nd immediate injury severity levels are moved to CCPs. In other

ords, casualties with minor severity level that are in the vicinity

f a hospital can travel directly to the hospital without reaching
CPs. , We denote nonnegative continuous decision variable F in 
i jlt 

(ω)

s the flow of casualties characterized by all injury severity levels

 ∈ { L 

mi ∪ L 

in ∪ L 

im } , from affected area i to CCP j in period t un-

er scenario ω and F dir 
iklt 

(ω) as the flow casualties with minor in-

ury severity level, i.e. l ∈ L 

mi , from affected area i directly to hos-

ital k in period t under scenario ω. We also denote the outflows

f casualties with injury severity level l ∈ { L 

in ∪ L 

im } from CCP j

o hospital k in period t under scenario ω by nonnegative con-

inuous decision variable F out 
jklt 

(ω) . Note that, only casualties with

ntermediate and immediate severity levels will be evacuated to

ospitals for further treatment while casualties with minor sever-

ty level are supposed to be treated by medical services at CCPs

nd do not require to be evacuated to hospitals. Let t c i j = ϑ. d i j be

he cost of transporting the casualties from affected area i to CCP

j, and t c jk = ϑ. d jk be the cost of transporting the casualties from

CP j to hospital k , where ϑ represents the transportation cost per

erson per kilometre, on average. It is clear that the transportation

ost of self-evacuees can be ignored as it does not affect the net-

ork flow. 

The number of casualties with injury severity level l which are

ept at CCP j in period t under scenario ω for temporary hospi-

alization is indicated by C hos 
jlt 

(ω) and associated cost of casualty

olding or temporary hospitalization cost at a CCP is indicated by

c. Owing to the inefficiency in the response operations or insuffi-

ient transportation resources, an injured person (i.e. casualty) may

ubsequently be dead. The number of lives lost of casualties with

njury severity level l at CCP j in period t under scenario ω, due to

he abovementioned reasons, are denoted by M 

R 
jlt 

(ω) and M 

T 
jlt 

(ω) ,

espectively. As such, in the model a very high life lost cost B is

mposed in case of mortality. We ignored the cost of rest of op-

rations, such as casualty triage and registration, as those have a

egligible cost comparing to the mortality costs and casualty tem-

orary hospitalization and transportation costs. 

In the second stage, the set of all possible scenarios ω =
( υ, γ ) ∈ � = ϒ × 
 associated with the flow of casualties υ ∈ ϒ

nd the available transportation capacity γ ∈ 
 are randomly gen-

rated from the historical data outside the optimization procedure.

or each scenario ω ∈ �, the objective function (18) of the second-

tage is the expected value of the total response planning and op-

rational costs, involving casualty transportation cost from/to CCPs

 18.1 ), casualty holding cost ( 18.2 ), and mortality cost ( 18.3 ) as fol-

ows. This objective function is subject to the system constraints

19) to (35) , as described in afterwards. 

in 

{ ∑ 

ω∈ �
π( ω ) q ( x , ω ) 

} 

(18) 

here, for each ω ∈ �, 

 ( x , ω ) = 

∑ 

i ∈I 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
t c i j F 

in 
i jlt ( ω ) + 

∑ 

j∈J 

∑ 

k ∈K 

∑ 

l∈L 

∑ 

t∈T 
t c jk F 

out 
jklt ( ω ) 

(18.1) 

 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
hc.C hos 

jlt ( ω ) (18.2) 

 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
B 

(
M 

R 
jlt ( ω ) + M 

T 
jlt ( ω ) 

)
(18.3) 

.2.2.1. Casualty triage and assignment constraints. Casualty assign-

ent constraints refer to the CCP logistical network design and the

llowable flow of casualties throughout the network. This set of

onstraints depends in large part on triage operations and the di-

gnosed level of injury severity. Constraint (19) ensures that self-

vacuation is applied to only casualties with minor injury severity
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level to be directed to the hospitals by themselves. In other words,

it prohibits the direct flow for intermediate or immediate injury

levels l ∈ { L 

in ∪ L 

im } . Constraint (20) presents that casualties with

all injury severity levels, i.e., l ∈ {L} , are allowed to be moved to

the established CCPs. Constraint (21) shows that casualties with

only intermediate or immediate medical care, i.e. l ∈ { L 

in ∪ L 

im } ,
are transported to hospitals. Since the casualties with minor in-

jury level are absolutely treated in CCPs and do not require further

medical treatments, they do not need to be evacuated to hospi-

tals. Note that, constraints (19) –(21) guarantee that the flow of

casualties in the network is considered where the allocation in the

network is certified. ∑ 

l∈ { L mi } 
F dir 

iklt ( ω ) ≤ M U ik , ∀ i ∈ I, k ∈ K, t ∈ T , ω ∈ � (19)

∑ 

l∈L 
F in i jlt ( ω ) ≤ M Y i j , ∀ i ∈ I, j ∈ J , t ∈ T , ω ∈ � (20)

∑ 

l∈ { L in ∪ L im } 
F out 

jklt ( ω ) ≤ M V jk , ∀ j ∈ J , k ∈ K, t ∈ T , ω ∈ � (21)

where M is a positive large number. 

3.2.2.2. Resource capacity constraints. This set of constraints refers

to two capacitated resources in the model, i.e. physical capacity

limitations for casualty treatment at both CCPs and hospitals, and

the available transportation capacity to move casualties in the net-

work. 

The physical capacity for casualty treatment at established CCP

j is limited to a j = 

A j 
μ , where A j represents the area of that CCP,

in square-meter unit, and μ indicates the required surface to pro-

vide medical services to an individual, on average. However, the

required capacity division for each injury severity level should be

determined at each established CCP. The capacity division, shown

by S jl (ω) , represents the part of capacity of CCP j dedicated to in-

jury severity level l ∈ L under scenario ω. This decision variable

is adaptive to the uncertainty inherent in the model. Constraint

(22) guarantees that the capacity division is implemented at the

established CCP and constraint (23) assures that the total capacity

divisions do not exceed the total physical area of a CCP. Constraint

(24) verifies that the inflows of casualties from the affected areas

to an established CCP do not violate its dedicated capacity for each

injury severity level. 

S jl ( ω ) ≤ M X j , ∀ j ∈ J , l ∈ L , ω ∈ � (22)

∑ 

l∈L 
S jl ( ω ) ≤ a j X j , ∀ j ∈ J , ω ∈ � (23)

∑ 

i ∈ I 
F in i jlt ( ω ) ≤ S jl ( ω ) , ∀ j ∈ J , l ∈ L , t ∈ T , ω ∈ � (24)

Constraint (24) associates the estimation of inflows, 
∑ 

i ∈ I F in i jlt 
(ω)

which also contains information about the demand realization,

with the treatment capacity limitation S jl (ω) of CCPs which have

been established in the first-stage model. However it does not nec-

essarily mean that all allocated inflows will be registered at that

CCP. Thus, the difference between inflows of casualties and num-

ber of registered casualties results in the number of mortalities. In

fact, constraint (24) plays an important role to form the skeleton

of the logistical network design. Because, it allows the model to

end with more flexible network design solutions by altering allo-

cation decisions to the established CCP locations and/or opening

additional CCPs for serving mass casualty flows. 

Constraint (25) indicates the maximum treatment capacity of

hospitals, indicated by c , k ∈ K, for providing the required medical
k 
ervices to casualties coming directly from the affected areas and

asualties transporting from the established CCPs. 
 

i ∈I 

∑ 

l∈ { L mi } 
F dir 

iklt ( ω ) + 

∑ 

j∈J 

∑ 

l∈ { L in ∪ L im } 
F out 

jklt ( ω ) ≤ c k , 

∀ k ∈ K, t ∈ T , ω ∈ � (25)

Moreover, we consider the situation wherein the available

ransportation capacity at CCP j to cover inflows and outflows of

asualties at injury severity level l ∈ L is uncertain due to failures,

raffic congestion, accident, etc., in the roadways. This uncertain

arameter is denoted by ζ jl (γ ) , where γ ∈ 
 is the set of sce-

arios for the available transportation capacity. Constraint (26) in-

icates that the inflows and outflows of casualties, i.e. F in 
i jlt 

(ω)

nd F out 
jklt 

(ω) , respectively, at CCP j for injury severity level l ∈
 L 

in ∪ L 

im } cannot exceed the available transportation capacity un-

er scenario γ . 
 

i ∈I 
F in i jlt ( ω ) + 

∑ 

k ∈K 
F out 

jklt ( ω ) ≤ ζ jl ( γ ) 

∀ j ∈ J , l ∈ 

{
L 

in ∪ 

L im }, t ∈ T , ω ∈ �, γ ∈ 
 (26)

.2.2.3. Uncertain flow of casualties. Constraint (27) takes into ac-

ount the current uncertain flow of casualties under scenario υ ∈
with injury severity level l transporting from the affected areas

o the established CCPs and the hospitals. 
 

j∈J 
F in i jlt ( ω ) + 

∑ 

k ∈K 
F dir 

ikl ′ t ( ω ) = ξilt ( υ) 

∀ i ∈ I, l ∈ L , l ′ ∈ 

{
L 

mi 
}
, t ∈ T , ω ∈ �, υ ∈ ϒ (27)

.2.2.4. Casualties management constraints. Casualty management

perations emphasize the necessary functions including ( i ) regis-

ration, ( ii ) temporary hospitalization, and ( iii ) evacuation to hos-

itals or safer places, in the humanitarian logistics ( Lejeune & Mar-

ot, 2018 ). Considering this sequence of operations explained in

he context of the problem, we define the scenario-based decision

ariables accordingly. Let C 
reg 

jlt 
(ω) indicate the number of casualties

egistered with injury severity level l at CCP j in period t under

cenario ω. Constraint (28) guarantees that this latter does not ex-

eed the inflows of casualties from the affected areas to a CCP. 

 

reg 

jlt 
( ω ) ≤

∑ 

i ∈I 
F in i jlt ( ω ) , ∀ j ∈ J , l ∈ L , t ∈ T , ω ∈ � (28)

For the medical treatment, the available capacity dedicated to

ach injury severity level of a CCP should be taken into account.

his matter is represented in constraint (29) . Let us recall that

 

hos 
jlt 

(ω) represents the number of casualties for temporary hospital-

zation . It states that the number of casualties receiving temporary

ospitalization services cannot be more than the dedicated capac-

ty divisions at a CCP. Note that C hos 
jlt 

(ω) refers to the cumulative

ospitalized individuals that corresponds to constraint (32) . 

 

hos 
jlt ( ω ) ≤ S jl ( ω ) , ∀ j ∈ J , l ∈ L , t ∈ T , ω ∈ � (29)

The medical services are immediately provided to the registered

asualties diagnosed with injury severity level l. Depending on the

everity of injuries l, the length of the hospitalization period, dur-

ng which the casualties have to be kept and treated at CCPs, is

enoted by τl . After completing the hospitalization period τl , these

asualties become ready-to-evacuate to the corresponding hospi-

als. Constraint (30) reflects on the evacuation operations. 

 

e v a 
jlt ( ω ) = C reg 

jl,t−τl 
( ω ) , ∀ j ∈ J , l ∈ L , t ∈ T | t 〉 τl , ω ∈ � (30)

here C e v a 
jlt 

(ω) denotes the number of ready-to-evacuate casualties

ith injury severity level l at CCP j in period t under scenario ω.
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onstraint (31) certifies that the number of casualties transported

rom a CCP to the allocated hospitals cannot exceed the number

f ready-to-evacuates . Note that only casualties with injury levels

f intermediate and immediate have to be evacuated to hospitals,

ince they require further medical treatments. 

 

e v a 
jlt ( ω ) ≥

∑ 

k ∈K 
F out 

jklt ( ω ) , ∀ j ∈ J , l ∈ 

{
L 

in ∪ L 

im 

}
, t ∈ T , ω ∈ �

(31) 

Constraints (32) verifies the equilibrium casualty state transi-

ion in the consecutive periods in which the number of hospital-

zed casualties from the previous period plus the number of reg-

stered casualties of the current period is equal to the number of

eady-to-evacuate casualties and the hospitalized casualties of the

urrent period. 

 

hos 
jlt ( ω ) = C hos 

jl,t−1 ( ω ) + C reg 

jlt 
( ω ) − C e v a jlt ( ω ) , 

∀ j ∈ J , l ∈ L , t ∈ T , ω ∈ � (32) 

The most impactful output of humanitarian logistic network de-

ign is to save lives and reduce human suffering. This critical out-

ut is measured in our model by the following variables, M 

R 
jlt 

(ω)

ndicating the number of lives lost with injury severity level l ∈ L
ue to facility capacity limitation at CCP j in period t under sce-

ario ω and M 

T 
jlt 

(ω) indicating the number of lives lost with injury

everity level l ∈ { L 

in ∪ L 

im } due to transportation capacity limi-

ation passing through CCP j in period t under scenario ω. Con-

traint (33) states that when casualty inflows are more than the

CP capacity to register, lives lost due to facility capacity limita-

ion occurs. Similarly, Constraint (34) states that when the number

f ready-to-evacuate exceeds the casualty outflows, lives lost due to

he limitation in transportation capacity occurs. 

 

R 
jlt ( ω ) = 

∑ 

i ∈I 
F in i jlt ( ω ) − C reg 

jlt 
( ω ) , ∀ j ∈ J , l ∈ L , t ∈ T , ω ∈ �

(33) 

 

T 
jlt ( ω ) = C e v a jlt ( ω ) −

∑ 

k ∈K 
F out 

jklt ( ω ) , 

∀ j ∈ J , l ∈ 

{
L 

in ∪ L 

im 

}
, t ∈ T , ω ∈ �∀ j ∈ (34) 

The nonnegative continuous decision variables are given in

35) . 

 

in 
i jlt ( ω ) , F dir 

ikl ′ t ( ω ) , F out 
jkl ′′ t ( ω ) , C r jlt ( ω ) , M 

s 
jlt ( ω ) , S jl ( ω ) ≥ 0 

∀ i ∈ I, j ∈ J , l ∈ L , l ′ ∈ 

{
L 

mi 
}
, l ′′ ∈ { L 

in , L 

im } , 
k ∈ K, t ∈ T , ω ∈ �, r ∈ { reg, hos, e v a } , s ∈ { R, T } (35) 

Number of constraints in the first-stage model and the

econd-stage model is bounded to |I| × |J | + |J | × |K| and

 �| × ( |I| × |J | × |K| × |T | + |I| × |J | × |L| × |T | ) , respectively.

his two-stage stochastic model contains | �| × (|J | × |L| ×
( |T | × ( |I| + 2 ) + 1 ) + |K| × |T | × (|I| × | L 

mi | + |J | × (| L 

in | +
 L 

im | ))) nonnegative continuous and |I| × |J | + |J | × |K| + |I| ×
K| + |I| binary decision variables, which represents a complex

arge-scale optimization problem. The solvability of this problem

s highly dependent on the number of constraints and binary

ecision variables. 

. Solution approach 

The solution approach proposed in this section is partly in-

pired from the sample average approximation (SAA) technique

 Shapiro, 2008 ), which is based on an approximation of the

tochastic model by an equivalent deterministic mixed-integer pro-

ramming (MIP) model. The methodology incorporates the SAA
ethod, the robust counterpart problem and the feasibility restora-

ion technique to solve the stochastic CCP network design problem

ith uncertain parameters. 

.1. Sample average approximation method 

The scenario-based two-stage stochastic programming model 

epresented above is a complex large-scale optimization problem,

s a large number of scenarios is involved for uncertain param-

ters realization. To solve the two-stage stochastic CCP network

esign problem represented above, we are inspired by the SAA

echnique ( Shapiro, 2008 ), which is based on an approximation

f the stochastic model by an equivalent deterministic mixed-

nteger programming (MIP) model. The SAA model incorporates

he equivalent deterministic mixed-integer program of the second-

tage decision-making problem into the first-stage decision-making

roblem. The SAA method has mainly been used to find near-

ptimal solutions for two-stage stochastic problems ( Amiri-Aref

t al., 2018; Klibi & Martel, 2013; Schütz, Tomasgard & Ahmed,

009 ). 

Since two sets of uncertain parameters are concerned in

his paper, i.e. the number of casualties and available trans-

ortation capacity, two sets of scenario generation should be

ealized in this model. By generating N 1 independent number

f casualty scenarios given as { υ1 , υ2 , . . . , υN 1 } = ϒN 1 ⊂ ϒ ,

nd N 2 independent available transportation capacity sce- 

arios as { γ 1 , γ 2 , . . . , γ N 2 } = 
N 2 ⊂ 
, we produce a pool of

 1 × N 2 equiprobable scenarios { ω 

1 , ω 

2 , . . . , ω 

N } = �N ⊂ �, where
N = ϒN 1 × 
N 2 and N = N 1 . N 2 with the occurrence probability of

ach scenario as π(ω) = π(υ) .π (γ ) = ( 1 
N 1 

) . ( 1 
N 2 

) = 

1 
N . Given the

riginal two-stage stochastic model (12) –(35) , the SAA program is

onstructed in the following: 

in 

{∑ 

i ∈I 

∑ 

j∈J 
α d i j Y i j + 

∑ 

j∈J 

∑ 

k ∈K 
α d jk V jk + 

∑ 

i ∈I 

∑ 

k ∈K 
α d ik U ik 

+ 

1 

N 

∑ 

ω∈ �N 

(∑ 

i ∈I 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
t c i j F 

in 
i jlt ( ω ) + 

∑ 

j∈J 

∑ 

k ∈K 

∑ 

l∈L 

∑ 

t∈T 
t c jk F 

out 
jklt ( ω ) 

+ 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
hc.C hos 

jlt ( ω ) + 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
B (M 

R 
jlt ( ω ) + M 

T 
jlt (ω)) 

)}
(36) 

.t. constraints sets (13) –(17) , and constraints sets (19) –(35) . 

here, the first three terms in (36) denote the first-stage objective

unction and the last term denotes the expected objective function

f the second-stage problem. 

The SAA method is performed when a feasible solution exists

nd the problem has a finite objective value ( Shapiro, 2008 ). How-

ver, the uncertain parameters in humanitarian logistics may not

ave an identical distribution or a known distribution parameter.

n such a situation, the SAA method is prone to return infeasi-

le solutions by violating some of the constraints in at least one

cenario. To tackle this challenge, we provide a robust counterpart

roblem for the represented SAA method, involving robust solution

nd robust model, proposed by Mulvey et al. (1995) , in the follow-

ng subsection. 

.2. Robust SAA method 

A robust solution is characterized by its proximity to the opti-

al solution of a stochastic programming model. We incorporate

olution robustness by the inclusion of the mean absolute devi-

tion of the second-stage solutions, indicated by �(ω) , over the
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number of scenarios in the SAA model, as follows: 

�( ω ) = 

∣∣∣∣∣q ( x , ω ) −
∑ 

ω ′ ∈ �N −{ ω } 
π

(
ω 

′ )q ( x , ω ) 

∣∣∣∣∣. ω ∈ �N (37)

Let us recall that q ( x , ω ) is the second-stage decision-making

problem. As discussed earlier, expression (37) has to be minimized

to achieve solution robustness. Therefore, it is included in the ob-

jective function of the SAA model. As it contains the absolute func-

tion which makes the SAA model nonlinear, we apply a lineariza-

tion approach to guarantee the convexity of the solution space. 

Proposition 1. As the expression ( 37 ) is included in the minimization

objective function, we can substitute it by the following expressions:

�′ ( ω ) = q ( x , ω ) −
∑ 

ω ′ ∈ �N −{ ω } 
π

(
ω 

′ )q ( x , ω ) + 2�( ω ) ω ∈ �N 

(38)

where, 

�( ω ) ≥ q ( x , ω ) −
∑ 

ω ′ ∈ �N −{ ω } 
π

(
ω 

′ )q ( x , ω ) , ω ∈ �N (39)

�( ω ) , �′ ( ω ) ≥ 0 ω ∈ �N (40)

where q ( x , ω ) is given in ( 18.1 )–( 18.3 ). Now we consider

two possible cases to verify the proposition. Case 1 is

where q ( x , ω ) − ∑ 

ω ′ ∈ �N −{ ω} π( ω 

′ ) q ( x , ω ) ≥ 0 , then accord-

ing to ( 39 ), we have �(ω) ≥ 0 . It is clear that �(ω) = 0 ,

when minimizing expression ( 38 ). In this case, �′ (ω) =
q ( x , ω ) − ∑ 

ω ′ ∈ �N −{ ω} π( ω 

′ ) q ( x , ω ) = �(ω) . Case 2 is where

q ( x , ω ) − ∑ 

ω ′ ∈ �N −{ ω} π( ω 

′ ) q ( x , ω ) < 0 . Considering the minimiza-

tion of �′ (ω) , we then have �(ω) = 

∑ 

ω ′ ∈ �N −{ ω} π( ω 

′ ) q ( x , ω ) −
q ( x , ω ) which results in �′ = q ( x , ω ) − ∑ 

ω ′ ∈ �N −{ ω} π( ω 

′ ) q ( x , ω ) =
�(ω) . For more information regarding this linearization method,

refer to Yu and Li (20 0 0 ). 

A robust model is regarded as a model that returns solutions

which are feasible for any given scenario realizations. Due to the

variability of the uncertain parameters, a stochastic programming

model might be infeasible for some scenario realizations. One of

the most probable reasons for infeasibility in a stochastic program-

ming model is the variability of scenario realizations, which corre-

sponds to the inflows of casualties ( Birge & Louveaux, 2011 ). This

issue, which is coupled with the limited available physical capac-

ity of each potential node for establishing a CCP, corresponds to

constraint (23) . In fact, this constraint verifies the additional CCP

nodes are required for accommodating the inflows, as the existing

areas of potential CCP nodes are not sufficient. To overcome this

issue, we apply a model robustness approach, in which an infeasi-

bility variable z j (ω) is taken into account in the system constraints,

as represented in (9) . The infeasibility variable z j (ω) shows the

amount of infeasibility of each scenario ω ∈ � in the model. It is

clear that z j (ω) = 0 if the model is feasible. Otherwise, it returns

a positive value. However, a huge penalty number ρ is assigned

to the infeasibility variable z j (ω) in the objective function of the

model to avoid being infeasible for all scenarios. We then modify

the constraint (23) , which refers to the j-th CCP capacity limita-

tion, by adding the infeasibility variable z j (ω) , as follows: ∑ 

l∈L 
S jl ( ω ) ≤ a j X j + z j ( ω ) ω ∈ �N (41)

z j ( ω ) ≥ 0 ω ∈ �N (42)

Considering that, the SAA model with the robust optimization

techniques, namely solution robustness and model robustness, is
epresented in the following: 

in 

{
β0 

(∑ 

i ∈I 

∑ 

j∈J 
α d i j Y i j + 

∑ 

j∈J 

∑ 

k ∈K 
α d jk G jk + 

∑ 

i ∈I 

∑ 

k ∈K 
α d ik U ik 

+ 

1 

N 

∑ 

ω∈ �N 

(∑ 

i ∈I 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
t c i j F 

in 
i jlt ( ω ) + 

∑ 

j∈J 

∑ 

k ∈K 

∑ 

l∈L 

∑ 

t∈T 
t c jk F 

out 
jklt ( ω ) 

+ 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
hc C hos 

jlt ( ω ) + 

∑ 

j∈J 

∑ 

l∈L 

∑ 

t∈T 
B (M 

R 
jlt ( ω ) + M 

T 
jlt ( ω ) ) 

))
+ β1 �

′ (ω) + β2 

∑ 

j∈J 
ρ z j ( ω ) 

}
, (43)

.t. constraints (13) –(17) , constraints (19) –(22) , constraints (24) –

35) , and constraints (38) –(42) , 

here β0 , β1 , and β2 are the coefficients to compromise the ob-

ective function elements. The first term in (43) corresponds to the

bjective function represented in (36) with the compromising co-

fficient. The second term refers to the mean absolute deviation of

he second-stage solutions which is formulated in (37) . The last-

erm penalizes the casualty flow violation. Note that for β0 = 1 and

1 = β2 = 0 , the objective function (43) becomes the classical one

epresented in (36) . Compromising coefficients β0 , β1 , β2 are ad-

usted based on the decision-maker’s risk attitude. The solutions

btained from the abovementioned robust counterpart problem of

he SAA method are reliable and efficient as long as the infeasibil-

ty variables return zero for all scenarios ω = ( υ, γ ) ∈ � = ϒ × 
.

f there exists at least one infeasibility variable with a nonzero

alue for any scenarios, the results are meaningless and inappli-

able. That is to say, the model does not guarantee that obtaining

olutions satisfy the system constraints for all scenario realizations

nd do not converge to the optimal solution. This failure can be

artly due to the inappropriate set of location and allocation deci-

ions or inadequate capacity acquisitions in the network structure

n the first-stage decision-making problem. In other words, not all

hoices of design decisions x ∈ R 

n + 
1 

give rise to feasible solutions.

o achieve feasible solutions when the infeasibility variables return

onzero values, we apply a feasibility restoration technique on the

on-algebraic constraints, i.e. design decisions, which is discussed

n the following section. 

.3. Feasibility restoration technique 

As casualty flow in humanitarian logistics is unpredictable, in

ase of failure in the robust SAA model, the feasibility restoration

echnique proposed in this paper allows us to reconsider the CCP

ogistic network structure and adopt appropriate design decisions

ccordingly. It is clear that the operational decisions at the second

tage will improve as a result of improvement in the design deci-

ions. 

The feasibility restoration technique is inspired from the work

f Abramson and Randall (1999) , which has been further devel-

ped in Casey and Sen (2005) , and applied in Huang and Mehro-

ra (2016), Kim and Wright (2016) and Lee, Liu, Mehrotra and Bie

2015) . This technique is characterized by detecting infeasibility

nd incorporating auxiliary design decision variables in the two-

tage program to tackle the issue while considering all scenario re-

lizations. The key feature of this technique is to expand the net-

ork configuration so that feasible solution is enhanced and can

eproduce more efficient objective value. 

roposition 2. Let us recall that x = ( X j , Y i j , V jk , U ik ) ∈ R 

n + 
1 

denotes

he vector of the first-stage binary decision variables, where j ∈
 = { 1 , 2 , . . . , |J | } represents potential locations to establish CCPs.

o redesign the network structure, we need a modified set of

otential locations. We introduce x r = ( X j r , Y i j r , V j r k , U ik ) ∈ R 

n + 
1 

as
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Fig. 3. The proposed robust stochastic optimization procedure. 
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 vector of feasibility restoration variables to the design decision

ariables (i.e. the non-algebraic constraints) in which j r ∈ J r =
 1 , 2 , . . . , | J r | } represents the set of restoration locations to estab-

ish emergency CCPs. From the practical point of view, these set

f points address the spots in the open space area, for example.

sing the operator � to indicate merge, we represent the supple-

entary design decision variables by x s = x � x r , such that x s =
( X j s , Y i j s , V j s k , U ik ) ∈ R 

n + 
1 

is a vector of binary variables where j s ∈
 s = { 1 , 2 , . . . , | J s | } represents the modified set of potential locations.

ote that J and J r are independent sets and that J ∩ J r = ∅ . Also,

ote that J ∪ J r = J s and that | J s | = |J | + | J r | . 
As a result of Proposition 2 , the new pooling of design decision

ariables gives rise to the evolution of the control variables accord-

ngly. We introduce the evolving control variables by y s (ω) ∈ R 

n + 
2 

s a vector of non-negative variables and subsequently the evolving

bsolute deviation function and infeasibility variable, �s (ω) and

 

s (ω) , respectively. According to the Proposition 2 , we then recon-

truct the robust SAA programming, as represented in (44) –(48) . 

min 

 

s ∈ R n + 
1 

, y s ( ω ) ∈ R n + 2 

{ 

β0 

( 

c T x 

s + 

∑ 

ω∈ �N 

π( ω ) q T ( ω ) y s ( ω ) 

) 

+ β1 

∑ 

ω∈ �N 

π( ω ) �
s 
( ω ) + β2 

∑ 

ω∈ �N 

ρ π( ω ) z s ( ω ) 

} 

(44) 

 . t . A x 

s = b, x 

s ≥ 0 , (45)

 ( ω ) x 

s + C ( ω ) y s ( ω ) + z s ( ω ) = e ( ω ) , ∀ ω ∈ �N , (46)

s 
( ω ) = 

∣∣∣∣∣q T ( ω ) y s ( ω ) −
∑ 

ω ′ ∈ �−{ ω } 
π

(
ω 

′ )q T 
(
ω 

′ )y s 
(
ω 

′ )∣∣∣∣∣, ∀ ω ∈ �N , 

(47) 

s 
( ω ) ≥ 0 , z s ( ω ) ≥ 0 , ∀ ω ∈ �N . (48)

As the extended (44) –(48) are partly similar to those already

escribed, we avoid repeating the description of the above model.
ncreasing the size of feasibility restoration variable set to | J r ′ | ,
here r ′ � r , allows the model to choose the most appropriate lo-

ations among the available nodes, although it increases the prob-

em complexity. 

A general computational framework for the robust stochastic

ptimization under uncertainty is outlined in Fig. 3 . 

.4. Validation analysis 

In this section, we discuss a validation analysis which is based

n optimality gap estimation between the objective value at a so-

ution found by the proposed algorithm and the optimal value of

he true problem. The optimality gap estimation is a way to eval-

ate the quality of stochastic solutions in two-stage programming

here the true objective value is finite and the second-stage solu-

ion is feasible for almost every realization of the random data. 

We suppose x T and y T denote the true optimal solutions of

he first-stage and the second-stage problem and f ( x T , y T ) is the

rue optimal objective value. According to Shapiro (2008) , since

nding the value of f ( x T , y T ) is almost impossible, as enormously

arge number of scenarios are required, statistical lower and up-

er bounds for the true optimal objective value using the valid in-

quality can qualify the solution procedure. The statistical lower

ound is estimated by averaging the solutions of the algorithm in

 independent times based on N generated scenarios and a valid

tatistical upper bound for the true optimal objective value is given

y sampling . This latter can be done through solving the second-

tage problem using a large enough sample of scenarios N 

′ � N,

here the solution of the first-stage problem is given as input. 

.4.1. Averaging procedure 

Let x m 

N 
and y m 

N 
, m = 1 , . . . , M, denote the optimal solution vector

f the two-stage stochastic problem found by the algorithm with

cenario sample size N in the m th replication of sample genera-

ion, and f ( x m 

N 
, y m 

N 
) be the optimal objective value corresponding

olution values. We then provide average and standard-deviation

stimators for the true objective values. An unbiased estimator of

he statistical lower bound of the expected true objective value,
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Validation procedure:
Step 1. Averaging procedure � , , �

For replication � 1,… ,

Generate sample scenario Ω
Solve the proposed algorithm outlined in Figure 3 and save � , �

Compute the approximate �1 − � × 100% confidence lower bound ℒ , using (51)
Next

Step 2. Sampling procedure �x, , �

Generate sample scenario Ω
For scenario � 1,… ,

Calculate the objective value � , ∗ � with the given solution x
Next
Calculate the objective value � , ∗ � with the given solution x and all scenarios ∈ Ω

Compute the approximate �1 − � × 100% confidence upper bound , using (53)
Step 3. Calculate Optimality gap 

Calculate the statistical optimality gap percentage given in (55).
If the gap is acceptable, stop; otherwise increase N and/or M and return to step 1

Output Statistically valid bounds on the true objective value (with confidence at least 1 − 2 ).

Fig. 4. Validation procedure. 
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denoted by f̄ ( x M 

N 
, y M 

N 
) , can be the average of M f ( x m 

N 
, y m 

N 
) values,

as follows: 

f̄ 
(
x 

M 

N , y 
M 

N 

)
= 

1 

M 

M ∑ 

m =1 

f ( x 

m 

N , y 
m 

N ) (49)

Considering M independent scenario generations, the standard

deviation is estimated in the following: 

ˆ ϑ 

M 

N = 

√ 

1 

M ( M − 1 ) 

M ∑ 

m =1 

(
f 
(
x 

m 

N 
, y m 

N 

)
− f̄ 

(
x 

M 

N 
, y M 

N 

))2 
(50)

Using the average and standard deviation estimators for M

replications of samples of size N , an approximate ( 1 − α) × 100%

confidence lower bound of the true objective value, denoted by L 

M 

N ,

is given as follows: 

L 

M 

N, 1 −α = f̄ 
(
x M 

N , y 
M 

N 

)
− t α,M−1 

ˆ ϑ 

M 

N (51)

where t α,M−1 represents the α-critical value of the t -distribution

with M − 1 degrees of freedom. 

4.4.2. Sampling procedure 

The statistical upper bound of the expected true optimal objec-

tive value can be estimated by sampling procedure. Let x̄ be the

best optimal solution vector of the first-stage problem found by

the algorithm with a scenario sample size N among M replications.

We then solve the problem with x̄ as an input and generate sam-

ple scenarios { ω 

1 , ω 

2 , . . . , ω 

N ′ } ∈ �N ′ ⊂ �, where N 

′ � N, which

are independent to samples used in computing x̄ . It is clear that

when x̄ is given as an input, the problem can be decomposed into

N 

′ deterministic problems. We denote the optimal objective value

based on a sample size N 

′ by ˆ f ( ̄x , y ∗
N ′ ) and the optimal objective

value solved one at a time by ˆ f ω ( ̄x , y ∗ω ) , where ω ∈ �N ′ ⊂ �. Note

that y ∗
N ′ and y ∗ω represent the solution of the second-stage problem

when N 

′ sample scenarios are involved and the scenario-wise so-

lution of the second-stage problem, respectively. One can calculate

the standard deviation of ˆ f ( ̄x , y ∗
N ′ ) by 

ˆ ϑ N ′ ( ̄x ) = 

√ 

1 

N 

′ ( N 

′ − 1 ) 

N ′ ∑ 

ω=1 

(
ˆ f ω ( ̄x , y ∗ω ) − ˆ f 

(
x̄ , y ∗

N ′ 
))2 

(52)
An approximate ( 1 − α) × 100% confidence upper bound of the

rue objective value, denoted by U N ′ , is then given as 

 N ′ , 1 −α = 

ˆ f ( ̄x , y ∗N ′ ) + n α
ˆ ϑ N ′ ( ̄x ) (53)

here n α represents the standard normal critical value with

( 1 − α) × 100% confidence level. Therefore, an approximate

( 1 − α) × 100% confidence interval for the expected true objec-

ive value is represented in the form of ( L 

M 

N, 1 −α, U N ′ , 1 −α) , using

qs. (51) and (53) . A statistically valid interval on the true objec-

ive value (with confidence at least 1 − 2 α), denoted by ̂ gap 

M 

N,N ′ ,
nd the statistical optimality gap percentage, denoted by ̂ gap 

M 

N,N ′ % ,

re given in Eqs. (54) and (55) , respectively, as follows: ̂ ap 
M 

N,N ′ = U 

M 

N ′ , 1 −α − L 

M 

N, 1 −α (54)

̂ ap 
M 

N,N ′ % = 

̂ gap 
M 

N,N ′ 

U 

M 

N ′ , 1 −α

× 100% (55)

The validation procedure discussed above is then summarized

n Fig. 4 . 

. Computational study 

The robust stochastic optimization modelling approach de-

cribed in Section 3 is implemented through a computational study

sing data scenarios modelled on the Bhopal gas tragedy that oc-

urred in India over three decades ago. More specifically, we con-

ider a hypothetical case of a gas leak in Bhopal in today’s date and

hich follows the hazard propagation profile (e.g., wind direction,

ffected wards) reported back in 1984. The underlying data for the

tudy, which includes the population of specific wards (popula-

ion areas/catchments), available transportation in the city, exist-

ng infrastructure (including schools and hospitals), open spaces,

nd other model-specific parameters, was obtained through census

ata and from local municipal reports. We conducted one field trip

o get access to some of this information. The data thus obtained

as used to estimate the required parameters, which were then

sed to model the scenarios for the computational study. In this

ection, we also discuss the efficiency of our proposed modelling

pproach and present the solution sensitivity analysis to provide
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Fig. 5. Geographical locations of the affected wards and CCPs. 
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2 The California National Guard announced that establishment of a CCP capable 

of providing an intermediate-level medical care requires a minimum of 48 hours to 

set up. 4-hour with the average speed of 60 km/h and the average two-way distance 

between demand points and CCPs ( Kumar & Jain, 2013 ). 
urther insights to humanitarian logistics planners and practition-

rs. 

.1. Context for study 

This section briefly describes the Bhopal Tragedy in India, often

nown as the worst industrial accident in the world and provides

 computational investigation into the humanitarian logistics net-

ork design for establishing CCPs in the affected areas. On Decem-

er 3, 1984, a highly toxic cloud of methyl isocyanate (MIC) leaked

rom a pesticide plant in Bhopal, the capital city of the state of

adhya Pradesh, the second largest state in India. The leak was the

onsequence of a large volume of water entering one of the methyl

socyanate storage tanks around 9:30 pm the day before. This trig-

ered off a chemical reaction resulting in a tremendous increase

f temperature and pressure in the tank and consequently led to

n explosion. More than thirty years have passed since the gas ex-

losion, but the Bhopal saga is far from over. During our trips to

he plant site and conversations with the volunteers at the NGO

linics as well as the local slum dwellers, we were told that of the

0 0,0 0 0 people living in Bhopal at that time, no one knows ex-

ctly how many people were affected that night (Veron and Nanda,

014) . 

The geographical scope of our study focuses on the affected

reas in the city of Bhopal. According to the technical report of

he Indian Council of Medical Research ( ICMR, 1985 ) on the Bhopal

isaster, |I| = 33 wards have been identified as affected areas

ith more than 70 0,0 0 0 population ( Pradesh, 2011 ) (each ward is

hown as an orange icon in Fig. 5 ). Within this area, a set of pre-

esignated locations have been selected as the candidate points to

stablish CCPs. These CCP points are usually sites that can accom-

odate a large number of casualties ( Drezner, 2004 ), for exam-
le, college and university campuses, high schools with a football

eld, mosques, malls and large parks. We identified a total of 65

CP candidate points, including existing buildings and open-spaces

shown as blue icons in Fig. 5 ). The capacity of each potential

CP location to provide medical services to casualties is estimated

y its total available area divided by the space required to treat

er person. We considered the latter equal to μ = 7 m ² per per-

on as reported in the statistical report ( Moore, Levit & Elixhauser,

014 ). Moreover, the network includes |K| = 9 hospitals and med-

cal care centres as safe places to evacuate the casualties for fur-

her treatment (hospitals are shown as a white cross in a purple

ircle). Union Carbide plant, i.e. the disaster point, is shown us-

ng a yellow icon. For more details about the case study, refer to

ppendix A. 

We assume that the available transportation capacity by means

f ambulances for immediate severity injury level is 500 people

er trip, 2 which was far below the required capacity to move

ass casualty in the disaster we considered. Therefore, we con-

idered the public/private vehicles (including mini buses, stan-

ard buses, and private cars) into the transportation capacity to

ove mass casualty with minor and intermediate severity injury

evel to CCPs and hospitals. Using both public and private modes

f transport, the available transportation capacity reached more

han 20 0,0 0 0 people. To generate random number of casualties,

e utilized the simulation procedure provided in Singh and Ghosh

1987) . Analysing the data, we observed that the coefficient of vari-

tion of generated number of casualties of 7 wards out of 33 was



978 M. Alizadeh, M. Amiri-Aref and N. Mustafee et al. / European Journal of Operational Research 279 (2019) 965–983 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

o  

i  

o  

t  

F  

c  

C  

f  

o  

c

 

m  

m  

t  

t  

r  

o  

a  

s  

t  

i  

i

5

 

w  

a  

l  

t  

P  

b  

u  

Y

w  

i  

t  

(  

S  

t  

t  

i  

l  

i  

t  

I  

t  

s

 

n  

p  

c  

m  

p  

c  

i  

&  

e  

p

5

 

t  

e  

I  
about 80%, while it was above 120% for 26 wards out of 33, which

represents a considerable uncertainty inherent in the generated

number of casualties. 

In order to provide a comprehensive perspective of results,

we test the problem across different values of the compro-

mising coefficients and the available transportation capacity for

each instance problem. A wide range of β0 , β1 , and β2 as

the compromising coefficients of objective function elements

have been used for each instance problem which are given

in the following, β0 = { 10 −1 
, 1 , 10 , 10 2 } , β1 = { 1 , 10 , 10 2 } , and

β2 = { 10 −3 
, 5 × 10 −3 

, 10 −2 
, 10 −1 

, 1 , 10 } . We represent two avail-

able transportation capacity scenario sets usable after the disaster,

percentage-wise by tr, and test with two sets of scenarios given

in the following: t r H = { 85% , 90% , 95% } and t r L = { 70% , 75% , 80% } .
Note that t r H and t r L refers to high and low transportation ca-

pacity scenarios, respectively. Therefore, the combination of vari-

ous values of compromising coefficients β0 , β1 , and β2 , and two

usable transportation capacity percentages t r H and t r L yields 144

problem instances. For each problem instance, we generated, based

on the population of each ward and the number of casualties re-

ported in Singh and Ghosh (1987) , N 1 = 5 independent number of

casualty scenarios in |L| = 3 level of injury severity for each ward

and N 2 = 3 independent available transportation capacity scenar-

ios for each CCP, over a planning period of |T | = 7 days. In other

words, for each problem instance, N 1 . N 2 . |T | . |L| = 315 sample sce-

narios are generated to represent the number of casualties for each

ward. 

5.2. Numerical results and discussion 

The instances described in Section 4.1 are solved after scenario

generations on a 64-bit operating system server with a 2.7 giga-

hertz CPU on Intel(R) processor and 72 gigabytes of RAM. The pro-

posed robust stochastic optimization approach, shown in Fig. 3 , is

performed using the optimization solver GAMS with a MIP Relative

Tolerance of 0.005 within a 5-hour computation time. The detailed

numerical results, including the solution value and computational

time, related to the 144 instances are represented in Tables B1-B8

of Appendix B. 

In order to measure the efficiency of the proposed logistic net-

work design and related operations, we applied important metrics

related to disaster management. We present the results in the fol-

lowing sections. 

5.2.1. Locational decisions 

We compare CCP location decisions found by SAA method and

the proposed robust stochastic optimization with feasibility restora-

tion variables with respect to coefficients of β0 = { 0 . 1 , 1 , 10 , 100 } .
This comparison is illustrated in Figs. 6 (a) and (b) showing two lev-

els of available transportation capacity after a disaster strikes. In

these figures, the coefficients of β0 can be considered as the risk

aversion attitude of a decision maker (DM), where 0.1 attributes

to a risk incentive DM and 100 relates to a risk aversive DM and

is represented on the x-axis. The average number of opened CCPs

over the number of involved instances is represented on the y -axis.

Results illustrated in Fig. 6 (a) show that, when on average 90%

of casualty transportation capacity is available, the SAA method

opens 39 locations for establishing CCPs, on average, and is not

sensitive to the risk aversion attitude of a DM. Compared to this,

our proposed methodology suggests opening up to 43, on aver-

age, locations for establishing CCPs and is fairly relative to the

risk aversion attitude of a DM. CCP location decisions are more

of the essence when the available casualty transportation capacity

decreases to 80%, on average. Our findings show that the output

of the SAA method remains unchanged even when casualty trans-

portation capacity is reduced by 10%. However, by using our pro-
osed algorithm a significant increase in the number of CCPs is

bserved, which contributes to 47 locations for establishing CCPs

n the case of risk averse DM ( β0 = 100 ) – refer to Fig. 6 (b). In

ther words, the results reveal that the more conservative a DM is,

he more the number of CCPs that will need to be operationalised.

urther, using our proposed algorithm, as the coefficients of β0 in-

reases, the number of existing building selected for establishing

CPs decreased and instead more potential locations are chosen

rom open-space spots as locations to set-up CCPs. The information

n buildings and open spaces was based on data from our Bhopal

ase study. 

From Fig. 6 (a) and (b), it can be concluded that our proposed

ethodology, which is based on robust stochastic programming

odel, enables a DM to cope with the infeasibility issues due

o the dispersion of scenarios and generates more efficient solu-

ions which are feasible for any scenarios. Furthermore, being more

isk averse in an uncertain decision-making environment results in

pening more CCPs among the existing buildings and open-spaces

nd therefore being closer to the affected areas. This fact empha-

izes the necessity of providing fast and efficient medical services

o the casualties from the shortest possible distance. In the follow-

ng section, the role of accessibility to the services in CCPs and its

mpact on the number of lives lost is explored. 

.2.2. Network structure decisions 

In order to measure the quality of a complex emergency net-

ork design, we introduce the proximity metric which is defined

s the total distance travelled in the network to the number of

inks associated with all pair nodes, i.e. from the affected areas

o the established CCPs, also known as the average path length.

roximity is an important metric in humanitarian logistics and has

een extensively used in this context ( Muggy & Stamm, 2017 ). Let

s indicate the solution value of allocation decision variables by
ˆ 
 i j . The proximity metric is then formulated as 

∑ 

i 

∑ 

j 

d i j ̂
 Y i j / 

∑ 

i 

∑ 

j 

ˆ Y i j 

hich represents the average path length to reach a CCP. Results

llustrated in Fig. 7 reveal that our proposed robust optimiza-

ion method designs a network in which the average path length

shown as a dash-line in Fig. 7 ) has improved in comparison to the

AA method. This can be confirmed by the results of increasing in

he number of CCPs that are opened, as illustrated in Fig. 6 . We

hen investigate the number of lives loss, also known as mortality

n this work, to see whether it is influenced by the average path

ength improvement. As shown in Fig. 7 , on average, the mortal-

ty rate experienced a significant reduction from 438 individuals

o 294 individuals due to the decrease in the average path length.

n general, Fig. 7 suggests that a small improvement in proximity

o CCPs can result in a significant decrease in the number of lives

aved. 

This analysis also addresses the Equity , also known as fair-

ess, which tackles the discoordination of operational decisions for

roviding appropriate emergency services to casualties. When it

omes to relief contexts, this metric measures the unsatisfied de-

and associated with each operational decision over the planning

eriod ( Marsh & Schilling, 1994 ), which refers to mortality in our

ase. Moreover, the average path length which denotes the rapidity

s also widely considered as the equity metric ( Anaya-Arenas, Ruiz

 Renaud, 2013 ). It can be interpreted from Fig. 7 that overall, the

quity metric has been improved by the modelling approach we

roposed in this work. 

.2.3. Robust performance metrics 

As discussed earlier, robust optimization approach enables DMs

o generate solutions while reducing the risk of dispersion and

nsuring the solution concentration in an uncertain environment.

n this work, we measure the dispersion of the objective func-
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Fig. 6. The impact of DM risk aversion attitude on the locational decisions. 

Fig. 7. Proximity vs mortality. 
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Table 1 

Coefficient of variation of decision variables. 

F in 
i jlt 

(ω) (%) F dir 
iklt 

(ω) (%) C reg 

jlt 
(ω) (%) C hos 

jlt 
(ω)(%) C e v a 

jlt 
(ω)(%) F out 

jklt 
(ω)(%) S jl (ω)(%) 

Minimum 0.26 0.75 0.41 0.38 0.51 0.57 1.71 

Mean 0.27 0.82 0.44 0.40 0.55 0.64 2.15 

Maximum 0.33 0.88 0.46 0.43 0.59 0.67 3.12 

Fig. 8. Average optimality gap. 
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tion values over all given scenarios, found by the proposed model,

as a metric to evaluate the solution robustness. This metric gives

rise to the standard deviation of the objective values which repre-

sents the closeness between them. Results illustrate that the dis-

persion of objective values in the uncertain environment increases,

as the transportation capacity contributes to 10% reduction, on av-

erage. Results also suggest that the standard deviation of our pro-

posed optimization approach is slightly larger than the stochastic

programming method; this can be due to network expansion and

the resultant distribution of entities throughout the optimized net-

work. Overall, the dispersion of the objective value in both cases,

i.e. SAA method and the proposed stochastic robust optimization

method, are negligible (less than 10 –8 ). 

Another important factor that is used in robust optimization

approaches, also known as model robustness, is to generate so-

lutions values which satisfy all system constraints for any given

scenarios. Due to the uncertainty inherent in mass casualty flow

management, it is very likely to observe the infeasible solutions.

We also evaluate the infeasibility produced in the model for the

144 instances when using the stochastic modelling approach and

compare with the corresponding values when applying our pro-

posed solution algorithm by the usable transportation capacities. It

has been observed that the stochastic programming (SAA method)

approach results in solutions where positive values of infeasibility

exist, on average 3.5907445 ×10 5 , whereas the proposed approach

ended up with zero infeasibility values. It is also found out that

the infeasibility values corresponding to the SAA method increase

as transportation capacity tends to decrease. For detailed informa-

tion, refer to Tables B1-B8 of Appendix B. 

In relation to robust optimization, the overall performance and

reliability of solutions are measured by calculating the coefficient

of variation, i.e. standard deviation-to-mean ratio, through all the

scenarios ( Birge, 1982 ). We then calculate the coefficient of vari-

ation corresponding to decision variables used in the model over

144 instances and represent the minimum, mean, and maximum

value of the coefficient of variation of each variable over all in-

stances (see Table 1 ). Results show that the coefficient of variation
f all operational decisions are considerably low, such that, for the

ajority of them it is less than 1%. However, the coefficient of vari-

tion value corresponding to the strategic decision of capacity al-

ocation is 2.15% on average and which is not too large. In general,

t shows that the solution values have low variability and are quite

eliable. 

.2.4. Validation metrics 

In this section, the validation procedure, represented in Fig. 4 ,

s used to examine the accuracy of the solutions found by the

roposed robust optimization solution method. All instances are

ested and their associated statistical optimality gap values are

omputed according to the validation procedure. A lower bound

olution with 95% confidence level is computed using the averag-

ng procedure with replication size M = 4 and scenario size N = 15 .

hen, using the best solution found from the average, the sam-

ling procedure is applied with sample evaluation scenario size

 

′ = 150 to generate an upper bound with 95% confidence level.

e then calculate the statistical optimality gap percentage for each

nstance. The results are reported in Tables B1-B8, in Appendix B.

o provide a clear view of the optimality gap percentage over the

nstances and its relationship with DM risk aversion attitude, we

epresent the average of optimality gap percentage over the in-

tances for each corresponding value of β0 = { 0 . 1 , 1 , 10 , 100 } in

ig. 8 . As can be observed, the optimality gap has a decreasing

rend as the weight corresponding to DM risk aversion attitude

ncreases. It is due to the fact that instances with higher weight

f DM risk aversion attitude have the objective function with low

ariability and therefore with less optimality gap. It can be con-

luded that the more conservative the DM is, the less the optimal-

ty gap that exists. 

We finally compare the convergence rate of the proposed so-

ution methodology to that of SAA method by reporting the dual

bjective value and the best integer bound found by the solver in

ach iteration corresponding to an instance in Fig. 9 . Results rep-

esent that the proposed algorithm converges to optimal solutions

fter about 10 0,0 0 0 iterations while the corresponding number re-
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Fig. 9. Convergence rate comparison. 
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ated to the SAA method is over 20 0,0 0 0, which shows the fast

onvergence rate of the proposed algorithm. This is due to the fact

hat the feasibility restoration technique is able to facilitate the

roposed stochastic robust optimization approach to perform more

fficiently and rapidly. 

. Conclusion 

In this paper, a two-stage stochastic programming model has

een formulated for the Casualty Collection Point network design

roblem that is based on the 1994 Bhopal gas tragedy. The num-

er of causalities and the available transportation capacity were

he uncertain parameters of this problem; they were generated us-

ng an existing simulation model from literature and resulted in

 high variability of number of casualty scenario realization. To

ackle this issue, we have proposed a stochastic robust optimiza-

ion approach with the feasibility restoration technique, inspired

y the SAA method, and an extensive computational experiment

as been conducted for this case problem. The performance of

he solution approach has been tested by the validation procedure

ommonly used in stochastic programming. 

The experimental results reveal some practical and managerial

nsights confirming the importance of CCP logistical network de-

ign and operational response decisions in an uncertain environ-

ent. The findings show that the network configuration obtained

y our proposed methodology has a significant difference with the

AA method. More specifically, the proposed approach opens more

CPs and is more sensitive to the transportation capacity; this can

e contrasted with the SAA method where no significant sensitivity

as been observed. We notice that a conservative decision maker

DM), with risk aversion attitude, tends to open more CCPs in an

ncertain decision-making environment. 

The proximity metric has been quantified as the average path

ength to a CCP in the network structure for all instances. It has

een observed that the network configuration by our methodology

nables a DM to improve the proximity metric in a CCP logistical

etwork design. We notify that a small improvement in the prox-

mity metric can result in a significant increase in the number of

ives saved. Results also show that reduction in transportation ca-

acity in stochastic programming can lead to increasing the dis-

ersion of the solutions, however, our stochastic robust optimiza-
ion approach is able to achieve solution and model robustness

pproaching the optimal solutions. We realize that the optimality

ap in the stochastic programming can be improved by taking risk

version attitude which results in less variability of the objective

alues. 

Our future research will investigate a hybrid simulation-

ptimization approach for casualty evacuation based on CCP net-

ork structures that has been identified in this work. The inclusion

f the medical supply flow from the multiple available hospitals to

he established CCPs for the purpose of casualty treatment can be

nother direction to develop this problem towards a more realistic

ontext ( Haynes & Freeman, 1989 ). In this regard, simulation

pproaches like Discrete-event Simulation (DES) could be used for

odelling of healthcare supply chains ( Mustafee, Taylor, Katsaliaki

 Brailsford, 2009 ). Yet area of interest is the use of qualitative sys-

em dynamic at the tactical level as an alternative to the scenario

eneration in the optimization model to overcome the complexity

f the problem ( Powell, Mustafee, Chen & Hammond, 2016 ). An

xtension to the robust minmax regret stochastic programming

odel can be another interesting research topic to consider in the

umanitarian logistics network problem ( Feizollahi & Averbakh,

013 ). As the casualty accessibility to CCPs plays an important

ole in humanitarian logistics, a maximal accessibility network

esign can be further extended ( Aboolian, Berman & Verter, 2015 ).

hese are all future directions to the work presented in this

aper. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2019.06.018 . 
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