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This study proposes a decomposition approach based upon data envelopment analysis that identifies vari- 

ous sources of CO 2 emission. In addition to the previously identified seven sources, we propose three new 

ones. As an empirical application, this study applies the proposed approach to examine ten sources of 

CO 2 emission across Chinese provinces from 2008 to 2015. In the empirical study, we overcome method- 

ological difficulties related to (a) what methodological merits of technology change indexes are and how 

to measure them in a separated manner and (b) how to separate effects of various sources and how 

to identify the annual shift of those sources of CO 2 emission changes. This study finds three empirical 

implications. First, three sources may increase the amount of CO 2 emission. They include an economic 

activity, a technology change on a desirable output and a potential energy intensity change. Second, two 

sources are important in reducing the amount of CO 2 emission. They are an operational efficiency change 

on a desirable output and a change in energy saving technology. Finally, conflicting results exist in some 

sources in the manner that they increase CO 2 emission in some provinces but decrease it in the other 

provinces. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

China has experienced rapid economic growth and conse-

quently it has drastically increased the Carbon Dioxide (CO 2 ) emis-

sion. According to National Bureau of Statistics of China (2018) ,

China’s Gross Domestic Product (GDP) reached 82,712.17 billion

RMB (i.e. China’s currency unit) in 2017, which was 1.67 times

higher than 2010 and 4.54 times of the amount in 20 0 0. The av-

erage annual economic growth rates were 10.34% from 20 0 0 to

2009 and 7.95% from 2010 to 2017. Along with the rapid economic

growth, China has increased the amount of CO 2 emission. For ex-

ample, British Petroleum ( BP, 2018 ) has reported that China’s CO 2 

emission has increased from 3352.7 million tons in 20 0 0 to 9123.0

million tons in 2016. The share of China’s CO 2 emission has also in-

creased in the world total. For example, the share increased from

13.97% in 20 0 0 to 27.29% in 2016. Under such a situation, it has

attracted great policy attention on how to reduce the emission
amount. 
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Along with the increase, China faces a growing international

ressure to reduce the amount of CO 2 emission. The Chinese gov-

rnment has pledged to control the amount. According to State

ouncil (2015) , the target was to reduce the CO 2 emission by 2030.

nder the policy direction, a top priority for the Chinese govern-

ent is to set the target on CO 2 emission. In following the di-

ection, this study is concerned with identifying potential sources

hich influence China’s CO 2 emission changes at a provincial level.

In discussing the Chinese policy on climate changes, this study

eeds to consider provincial imbalance. Historically, China has

een a transitional and developing economy. At present, provinces

re important administrative divisions in China and those govern-

ents make profound effects on provincial economies. As a con-

equence, there have been significant differences across provinces.

ntil now, many studies have confirmed the existence of provincial

isparities in energy and environmental performance, such as Li,

hang, Zhou and Yao (2017), Sueyoshi, Yuan, Li and Wang (2017b),

un, Liu and Li (2018), Wang and Zhou (2018), Sun, Liu and Li

2018), Wang, Chiu and Chiu (2015) and Li, Zhang, Huang and Yao

2018) . 

In addition, previous studies revealed that technology changes

layed an important role in determining energy or carbon related

argets (e.g. Tan & Lin, 2018; Yao, Zhou, Zhang & Li, 2015 ). How-
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ver, they have not yet discussed the effect of biased technology

hanges (e.g. an energy based technology change and a desirable

utput based technology change). Furthermore, the existing tech-

ology changes were not useful in detecting the existence of cross-

ver or retreat among efficiency frontiers. 

Methodology: Acknowledging the contribution of previous re-

earch effort s on Chinese studies on energy and environment, this

tudy discusses two methodological concerns. One of them is that

his study adds three new technology indexes and discusses their

mplications on different technology changes. To attain the ob-

ective, this study considers how new indexes are incorporated

nto Production-theoretical Decomposition Analysis (PDA) and In-

ex Decomposition Analysis (IDA). Both PDA and IDA are measured

y Data Envelopment Analysis (DEA) in this study. The other is

hat we investigate what methodological merits of new technol-

gy changes are and how to measure them in a separate way. We

lso examine separated effects of various sources and identify main

ources of CO 2 emission changes in a time horizon. 

Implications: Our empirical study separates potential sources

hat influence CO 2 emission changes across Chinese provinces af-

er considering different technology changes. For the purpose, this

tudy examines ten potential sources by applying the proposed ap-

roach. Those contain three technology change indexes, two exist-

ng ones, three efficiency change indexes, an energy consumption

tructure index and an economic activity effect index. Based on

hese separated indexes, this study discusses sources of CO 2 emis-

ion changes, along with a special focus on provincial differences

n China. 

The abbreviations, used hereafter, are summarized as follow:

E : Activity Effect, CBTC : Combined Based Technology Change,

MU: Decision Making Unit, DTS: Damages To Scale, EA (or

E ): Economic Activity (i.e. GDP), EBTC : Energy Based Technol-

gy Change, EMF : Emission Factor of Energy, EMX : Energy Mix

hange, ESTC : Energy Saving Technology Change, EU: European

nion, EUEF : Energy Use Efficiency, GBTC : GDP Based Technology

hange, GEF : GDP based operational Efficiency, GTC : GDP Tech-

ology Change, IDA: Index Decomposition Analysis, IE : Intensity

ffect, OE : Operational Efficiency, PEI : Potential Energy Intensity

hange, RTS: Returns to Scale, SDA: Structural Decomposition Anal-

sis, SUBE : Substitution Effect, STRE : Structure Effect, TE : Technol-

gy change Effect and TOT : Total change. 

It is important to note that OE is conventionally termed as

technical efficiency”. This study uses G in GBTC , GEF and GTC to

xpress GDP that corresponds to a desirable output ( g ) in the pro-

osed DEA formulations. The above specifications drop C from EMX

nd PEI even if it stands for a change. This study uses “italic” to ex-

ress decision variables. Concepts do not use the italic. 

The remainder of this study is organized as follows: Section

 provides a literature review. Section 3 proposes mathematical

odels and describes a data set used for the empirical study.

ection 4 discusses empirical results and summarizes policy im-

lications for China. The last ( 5 ) section provides concluding com-

ents along with future extensions. 

. Literature review 

This study proposes a combined approach between PDA and

DA to investigate potential sources on CO 2 emission changes. As

 method, we use DEA to measure decomposed components of the

ombined approach. This section summarizes DEA-related stud-

es and then describes previous research effort s on decomposition

nalysis. 

.1. Previous efforts on DEA 

This study summarizes previous DEA effort s, returning to the

rst DEA journal publication by Charnes, Cooper and Rhodes
1978) . After their effort, many researchers have explored many

oncepts, methodologies and applications on the method. The book

 Sueyoshi & Goto, 2018 ) has discussed the history of DEA after re-

urning to the science of the 18th century. See also Glover and

ueyoshi (2009) and Ijiri and Sueyoshi (2010) that discussed the

istory from the perspective of Professor W.W. Cooper who was

he father of DEA. Sueyoshi and Sekitani (2009) mathematically ex-

mined strengths and drawbacks of all DEA models. Sueyoshi and

oto (2012) discussed how to apply DEA to environmental assess-

ent. They considered a computational framework that separated

utputs into desirable (e.g. electricity) and undesirable (e.g. CO 2 

mission) categories. The two groups of outputs had opposite di-

ections for improvement and they were unified into a single effi-

iency measure. Recently, Sueyoshi and Goto (2019) and Sueyoshi

t al. (2017b) have extended the original work toward a new unifi-

ation process for environmental assessment. The book ( Sueyoshi

 Goto, 2018 ) has provided about 700 articles on the DEA en-

ironmental assessment. Their description included how to select

roduction factors (inputs and outputs) and how apply the DEA

ethod for environmental assessment for specific industries such

s agriculture, transportation, electricity distribution, energy and

thers. See also Sueyoshi, Yuan and Goto (2017a) for the literature

urvey. 

In addition to the above previous works on DEA, we summa-

ize previous studies that applied DEA to energy and environmen-

al protection. For example, Bruno and Manello (2015), Li et al.

2017), Sueyoshi et al. (2017a, 2017b ), Tan and Lin (2018) and T.

ueyoshi, Li and Gao (2018) have applied the DEA approach to as-

ess energy usage and environmental protection. Many other stud-

es evaluated energy efficiency, eco-efficiency or environmental ef-

ciency, where the potential contributors were explored. For ex-

mple, Picazo-Tadeo, Gmez-Limn and Reig-Martnez (2011) assessed

arming eco-efficiency in Spain and found that eco-inefficiency

as highly linked with operational inefficiency in input manage-

ent. Martini, Manello and Scotti (2013) evaluated airport in-

fficiency, after considering environmental externality (noise and

ir pollutions) in Italy. Falavigna, Manello and Pavone (2013) as-

essed environmental efficiency in Italian agriculture and found

hat public funds were generally assigned to disadvantaged ar-

as. Mahlberg and Luptacik (2014) examined the contributors to

co-efficiency. Ignatius, Ghasemi, Zhang, Emrouznejad and Hatami-

arbini (2016) evaluated energy efficiency of 23 EU member coun-

ries, after dealing with asymmetric fuzzy numbers. Kuosmanen

nd Johnson (2017) examined the performance of electricity dis-

ribution firms in Finland. Sueyoshi and Wang (2018) applied DEA

nvironmental assessment to examine US petroleum industry by

sing a non-radial approach with the property of translation in-

ariance in a time horizon. The property makes it possible to han-

le a negative value(s) in the environmental assessment. 

.2. Previous efforts on decomposition analysis 

We first focus upon the existing studies on decomposition anal-

sis that will be further explored in this research. In reviewing

he previous works, we identified the six types of effects, which

ere the driving forces of energy (or carbon) related targets. As

ummarized in the right hand side of Table 1 , these effects were

E , IE , OE , STRE , SUBE and TE (e.g. Yao et al., 2015; Wang &

hou, 2018 , 2018; Wang, Hang, Su & Zhou, 2018 ). First, AE im-

lied an effect on economy by its activity changes (e.g. growth

n GDP or sector value added). Second, IE was measured by the

atio of GDP (or sector value-added) to energy consumption (or

O 2 emission). Changes in potential (or actual) energy (or car-

on) intensity directly influence operational or environmental ef-

ciencies. Third, OE stands for operational efficiency. Fourth, STRE

ndicated effects due to energy consumption mix or structure of
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Table 1 

Recent DEA environmental studies on PDA and IDA. 

Article Desirable 

output 

Undesirable 

output 

Inputs Methods Country, sector and 

periods 

Decomposition target Main decomposed factors 

Tan and Lin (2018) Sector output K , E , L PDA and IDA China, 

energy–intensive 

sectors, 2000–2013 

Energy intensity AE , IE , OE , STRE , SUBE , TE . 

Wang and Zhou (2018) Sector output CO 2 K , E , L PDA and spatial 

decomposition 

14 world countries, 33 

economic sectors, 2007 

Regional disparities in 

carbon intensity 

AE , IE , STRE , SUBE . 

Liu, Zhou, Zhou and 

Wang (2018) 

GDP K , E , L PDA and IDA China, provinces, 

2007–2012 

Energy consumption AE , IE , OE , STRE , SUBE , TE . 

Wang et al. (2018) Industrial GDP CO 2 K , E , L PDA, IDA and 

attribution 

analysis 

China, industry, 

2006–2014 

Carbon intensity AE , OE , STRE , SUBE , TE . 

Kwon, Cho and Sohn 

(2017) 

GDP CO 2 E , L, 

patent 

IDA 12 European countries, 

2007–2010 

CO 2 emission AE , IE , STRE . 

Wang and Feng (2017) Industrial GDP CO 2 K , E , L PDA and IDA China, industry, 

2000–2015 

CO 2 emission AE , IE , OE , STRE , TE . 

Li et al. (2017) GDP CO 2 K , E , L PDA and IDA China, provinces, 

2001–2011 

CO 2 emission AE , IE , OE , STRE , TE . 

Du, Xie and Ouyang 

(2017) 

GDP CO 2 E PDA and IDA China, provinces, 

2006–2012 

Carbon intensity AE , IE , OE , STRE , TE . 

Du and Lin (2015) GDP K , E , L PDA and IDA China, provinces, 

2003–2010 

Energy consumption AE , IE , OE , STRE , SUBE , TE . 

Wang et al. (2015) GDP CO 2 E PDA China, provinces, 

2005–2010 

CO 2 emission AE , IE , OE , TE . 

Lin and Du (2014) Sector output K , E , L PDA and IDA China, provinces, 2005 

and 2010 

Energy intensity AE , IE , OE , STRE , SUBE , TE . 

Guo et al. (2014) Sector output CO 2 K , E , L IDA China, transportation 

sector, 1997–2012 

CO 2 emission AE , IE , STRE . 

Xu, Fan and Yu (2014) Sector output CO 2 E IDA China, 2005–2010 Energy consumption, 

CO 2 emission 

AE , IE , OE , STRE . 

Zhang, Zhang and Tan 

(2013) 

GDP CO 2 K , E , L PDA 25 OE CD counties and 

China, 1998–2007 

CO 2 emission AE , IE , OE , STRE , TE . 

Kim and Kim (2012) Sector output CO 2 K , E , L PDA and IDA World countries, 

1990–2006 

CO 2 emission AE , IE , OE , STRE , TE . 

Zhang, Tan, Tan and 

Yuan (2012) 

GDP CO 2 K , E , L PDA World countries, 

1995–2005 

CO 2 emission AE , IE , OE , TE . 

(a) GDP: gross domestic product. K : capital. L : labor. E : energy. PDA: Production-theoretical Decomposition Analysis. IDA: Index decomposition analysis. AE : activity effect; 

IE : intensity effect; OE : operational (or technical) efficiency change effect; STRE : structure effect; SUBE : substitution effect; TE : technological change effect. 
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economy. There were differences between energy-intensive and

energy-extensive sectors. Fifth, SUBE was an effect due to inter-

factor substitution between energy and non-energy inputs. The

substitution may directly influence input combination in produc-

tion process, thus affecting production performance (e.g. Wang &

Zhou, 2018 ). Finally, the effect of different technology advance-

ment is measured by technology changes or operational efficiency

changes. Thus, PDA was used to measure the effect of OE and TE

by comparing inefficient organizations with the best practice ones

(e.g. Wang & Zhou, 2018, Wang et al., 2018 ). 

To extend the research efforts in Table 1 , this study utilizes a

combined approach between PDA and IDA to investigate potential

sources on CO 2 emission changes in China. 

Until now, decomposition analysis has been often utilized to

investigate potential sources of energy or environmental indica-

tors (e.g. energy productivity and carbon intensity). Those previ-

ous studies have utilized IDA and SDA as decomposition meth-

ods, along with PDA. A detailed methodological comparison among

them can be found in Hoekstra, Bergh and C.J.M. (2003), Su and

Ang (2012) and Zaim, Gazel and Akkemik (2017), Zhou and Ang

(2008) . A problem is that no research has clearly explored a math-

ematical justification on the decomposition analysis. The theo-

retical justification will be an important future extension of this

study. 

The main differences among the three decomposition meth-

ods explored in this study are as follows. First, their foundations

are significantly different. The IDA was linked to the index num-

ber theory, which decomposed a value change index into price

and quantity change indices. The SDA was based upon the input-

output analysis in quantitative economics and thus it was applied
o analyze the factors affecting ener gy or carbon related indica-

ors. Meanwhile, PDA depended upon the production theory, which

ncorporated both desirable and undesirable outputs. Second, the

DA was usually more data demanding than the other two meth-

ds, since it relied on input-output relationship. In comparison, the

DA needed data with sector disaggregation, while the PDA was

ess data-demanding and involved computation by linear program-

ing. Finally, as for desirable properties, the PDA satisfied factor-

eversal and time reversal properties. The method was robust to

n occurrence of zero in values. In comparison, some IDA or SDA

ethods satisfy the three properties and the other methods do not.

ee Zhou and Ang (2008) for a detailed discussion. 

Returning to the fifth column of Table 1 , including the pre-

ious studies related to PDA and IDA, this study identifies four

nteresting findings. First, among 16 studies, 12 studies were re-

ated to China at various disaggregated levels. China was an im-

ortant research focus because it had large energy consumption

nd CO 2 emission. Second, among these studies, there were two

ypes of decomposition targets, i.e. energy-related targets and CO 2 -

elated targets. The former targets contained energy consumption,

nergy efficiency, energy intensity and energy productivity. This

ype of research contained 5 studies. Meanwhile, the latter tar-

ets included carbon intensity and CO 2 emissions as examined in

2 studies. In this aspect, it was a research focus regarding how

o reduce CO 2 emissions and carbon intensity. Third, methodolog-

cally, 9 studies adopted the combined approach of PDA with IDA,

 studies adopted PDA and 3 studies adopted IDA. In this regard,

he combined approach of PDA and IDA had several methodolog-

cal advantages, because it investigated the potential sources (e.g.

ubstitution between production factors, efficiency and technology
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hanges) by comparing the approach with traditional IDA studies

e.g. Du & Lin, 2015; Kim & Kim, 2012; Lin & Du, 2014 ). Mean-

hile, this approach overcomes the inconsistency of PDA. See Lin

nd Du (2014) for a detailed description on the inconsistency. Fi-

ally, the existing studies mainly focused upon five types of effects,

hich were due to the driving forces of energy (or carbon) related

argets. They examined five types of effects. All the 16 studies dis-

ussed economic activity, 15 studies examined intensity effect, 14

tudies considered structure effect, and the 13 studies, adopting

DA, discussed the effect of operational efficiency and technology

hanges. By comparison, only 6 studies considered a substitution

ffect. 

The position of this study is that we propose a new combina-

ion between PDA and IDA to investigate potential sources on CO 2 

mission changes in China. We use DEA to measure decomposed

omponents of the combined approach. It is true that DEA cannot

easure the decomposed potential sources of CO 2 emission, but it

an provide the level of these decomposed components by mea-

uring these efficiencies and indexes. Thus, this study documents

 new DEA-based decomposition analysis to reduce the amount of

O 2 emission in China. 

. Models and data set 

This study utilizes the DEA approaches proposed in Du and Lin

2015)), Kim and Kim (2012) and Ang and Choi (1997), Li et al.

2017), Zhou and Ang (2008) . 

.1. Environmental production technology 

DMUs (e.g. Chinese provinces) use inputs to produce outputs.

his study considers n DMUs ( j = 1,., n ). Three inputs are specified

y the vector X = ( x E, x C, x L ), where the three subscripts stand for

nergy ( E ), capital ( C ) and labor ( L ), respectively. A desirable output

 g ) is GDP (Gross Domestic Product), while an undesirable output

 b ) is the amount of CO 2 emission. 

The production technology set ( T ) can be specified in the fol-

owing manner: 

 = 

{ 

( x E , x C , x L , g, b) : 
n ∑ 

j=1 

x E j λ j ≤ x E , 

n ∑ 

j=1 

x C j λ j ≤x C , 

n ∑ 

j=1 

x L j λ j ≤ x L , 

n ∑ 

j=1 

g j λ j ≥ g , 

n ∑ 

j=1 

b j λ j ≤ b , λ j ≥ 0 

} 

. (1) 

here the technology ( T ) assumes constant RTS and constant DTS

ecause Eq. (1) excludes 
∑ n 

j=1 λ j = 1 from the formulation. The as-

umption is important for avoiding an infeasible solution on (1).

ueyoshi and Goto (2018) provided a detailed description on RTS

nd DTS. 

Meanwhile, a distance function measures either minimization

f a production input or maximization of a desirable output, when

ther production variables remain unchanged. Thus, it determines

n efficiency level by comparing between an observed DMU and an

fficiency frontier. For the specific period t , the distance functions

or the energy input ( x t 
E 

) and the desirable output ( g t ) become as

ollows: 

 

t 
E (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) = min { θ : (θx t E , x 
t 
C , x 

t 
L , g 

t , b t ) ∈ T t } and (2)

 

t 
G (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) = max { η : (x t E , x 
t 
C , x 

t 
L , ηg t , b t ) ∈ T t } . (3)

ere, θ ≤ 1 and η ≥ 1 , related to the level of efficiency, are main-

ained in the two equations. 
Suppose there are two periods ( t-1 and t ) to be examined in

his study. To handle the existence of production variables in a

ime horizon, we define the distance functions as follows: 

 

t−1 
E 

(
x t E , x 

t 
C , x 

t 
L , g 

t , b t 
)

= min 

{
θ : 

(
θx t E , x 

t 
C , x 

t 
L , g 

t , b t 
)

∈ T t−1 
}
, (4) 

 

t−1 
G (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) = max { η : (x t E , x 
t 
C , x 

t 
L , ηg t , b t ) ∈ T t−1 } , (5)

D 

t 
E (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) 

= min { θ : (θx t−1 
E , x t−1 

C , x t−1 
L , g t−1 , b t−1 ) ∈ T t } and (6) 

D 

t 
G (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) 

= max { η : (x t−1 
E , x t−1 

C , x t−1 
L , ηg t−1 , b t−1 ) ∈ T t } . (7) 

In the above equations, D 

t−1 indicates the technology set at the

-1 th period, while D 

t indicates the same set for the t th period.

q. (4) minimizes the energy input under the technology set of the

-1 th period, where all production variables are at the t th period.

n the other hand, Eq. (6) minimizes the energy input under the

echnology set of the t th period, where all production variables

re at the t-1 th period. Eqs. (5) and (7) can be explained by a

imilar manner. 

.2. Decomposition approach 

This study uses PDA to conduct decomposition analysis of CO 2 

mission. See Yao et al. (2015), Zhou and Ang (2008) and Kim and

im (2012) on their descriptions on the PDA. Based upon these

revious studies, this study conducts further decomposition analy-

is by introducing three new indexes of technology changes. 

In the s th period, we decompose the total amount of CO 2 emis-

ion ( b s ) as follows: 

 

s = 

∑ 

j 

b s j = 

∑ 

j 

b s 
j 

x s 
E j 

×
x s 

E j 

x s 
E 

× x s E 
g s 

× g s for s ∈ { t − 1 , t} , (8)

here the subscript ( j) stands for the j th DMU. The total sum of

hese DMUs drops the subscription. The s stands for the s th pe-

iod, containing either the t -1 th or the t th period. 

For further decomposition, the geometric mean is used to

void the arbitrariness of selecting the referenced technology in a

ime horizon. This study introduces indexes concerning technology

hanges which need further decomposition as follows: 

 

t−1 = 

∑ 

j 

b t−1 
j 

x t−1 
E j 

×
x t−1 

E j 

x t−1 
E 

×
x t−1 

E 
/ 
[
D 

t−1 
E 

(x t−1 
E 

, x t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) D 

t 
E (x t−1 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

]1 / 2 

g t−1 / 
[
D 

t−1 
G 

(x t−1 
E 

, x t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) D 

t 
G 
(x t−1 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

]1 / 2 

× D 

t−1 
E (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) 

×
[
D 

t 
E (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) / D 

t−1 
E (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) 
]1 / 2 

× g t−1 

×
[
D 

t 
G (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) / D 

t−1 
G (x t−1 

E , x t−1 
C , x t−1 

L , g t−1 , b t−1 ) 
]1 / 2 

× 1 

D 

t 
G 
(x t−1 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

×
[

D 

t−1 
G 

(x t E , x 
t−1 
C 

, x t−1 
L 

, g t , b t−1 ) D 

t 
G (x t E , x 

t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) 

D 

t 
G 
(x t 

E 
, x t−1 

C 
, x t−1 

L 
, g t , b t−1 ) D 

t−1 
G 

(x t 
E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

]1 / 2 

×
[

D 

t 
G (x t−1 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) D 

t−1 
G 

(x t E , x 
t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) 

D 

t−1 
G 

(x t−1 
E 

, x t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) D 

t 
G 
(x t 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

]1 / 2 

×
[

D 

t 
G (x t E , x 

t−1 
C 

, x t−1 
L 

, g t , b t−1 ) D 

t−1 
G 

(x t−1 
E 

, x t−1 
C 

, x t−1 
L 

, g t−1 , b t−1 ) 

D 

t−1 
G 

(x t 
E 
, x t−1 

C 
, x t−1 

L 
, g t , b t−1 ) D 

t 
G 
(x t−1 

E 
, x t−1 

C 
, x t−1 

L 
, g t−1 , b t−1 ) 

]1 / 2 

(9) 
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b t = 

∑ 

j 

b t 
j 

x t 
E j 

×
x t 

E j 

x t 
E 

×
x t E / 

[
D 

t 
E (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) D 

t−1 
E 

(x t E , x 
t 
C , x 

t 
L , g 

t , b t ) 
]1 / 2 

g t / 
[
D 

t 
G 
(x t 

E 
, x t 

C 
, x t 

L 
, g t , b t ) D 

t−1 
G 

(x t 
E 
, x t 

C 
, x t 

L 
, g t , b t ) 

]1 / 2 

× D 

t 
E (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) 

×
[
D 

t−1 
E (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) / D 

t 
E (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) 
]1 / 2 

× g t 

×
[
D 

t−1 
G (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) / D 

t 
G (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) 
]1 / 2 

× 1 

D 

t−1 
G 

(x t 
E 
, x t 

C 
, x t 

L 
, g t , b t ) 

×
[

D 

t 
G (x t−1 

E 
, x t C , x 

t 
L , g 

t−1 , b t ) D 

t−1 
G 

(x t−1 
E 

, x t C , x 
t 
L , g 

t , b t ) 

D 

t−1 
G 

(x t−1 
E 

, x t 
C 
, x t 

L 
, g t−1 , b t ) D 

t 
G 
(x t−1 

E 
, x t 

C 
, x t 

L 
, g t , b t ) 

]1 / 2 

×
[

D 

t−1 
G 

(x t E , x 
t 
C , x 

t 
L , g 

t , b t ) D 

t 
G (x t−1 

E 
, x t C , x 

t 
L , g 

t , b t ) 

D 

t 
G 
(x t 

E 
, x t 

C 
, x t 

L 
, g t , b t ) D 

t−1 
G 

(x t−1 
E 

, x t 
C 
, x t 

L 
, g t , b t ) 

]1 / 2 

×
[

D 

t−1 
G 

(x t−1 
E 

, x t C , x 
t 
L , g 

t−1 , b t ) D 

t 
G (x t E , x 

t 
C , x 

t 
L , g 

t , b t ) 

D 

t 
G 
(x t−1 

E 
, x t 

C 
, x t 

L 
, g t−1 , b t ) D 

t−1 
G 

(x t 
E 
, x t 

C 
, x t 

L 
, g t , b t ) 

]1 / 2 

(10)

Eqs. (9) and ( 10 ) have eleven decomposed indexes as listed in

these right hand sides. The ten indexes are variables and the one

index ( EMF ) is assumed to be unchanged. These indexes are speci-

fied by the following manner: 

(a) EMF : The index indicates the change in CO 2 emission fac-

tor due to energy. Following Kim and Kim (2012) , the index

is assumed to be unchanged, so indicating that it does not

produce any effect on CO 2 emission. 

(b) EMX : The index measures the structure effect that results

from an energy mix change. 

(c) PEI : The index measures the effect caused by a potential

energy intensity change. The index is different from actual

observed-energy intensity, where operational inefficiency is

assumed to be eliminated. See Zhou and Ang (2008) and

Kim and Kim (2012) for their detailed discussions. 

(d) EUEF : The index indicates the effect due to an energy-based

OE change. 

(e) ESTC : The index shows the effect originated from an energy

saving technology change. 

(f) EA : The index accounts for the effect induced by an eco-

nomic activity change. The economic activity is expected to

make a profound effect on the economic system. 

(g) GTC : The index measures the effect due to a desirable output

(e.g. GDP) technology change. 

(h) GEF : The index stands for the effect caused by a desirable

output-based OE change. 

(i) GBTC : The index is measured as a desirable output-based

technology change. This index explains the effect of a tech-

nology change in GDP across periods in which the other in-

puts and desirable output are assumed to be unchanged. 

(j) EBTC : The index is measured by an energy based technol-

ogy change. The index measures the effect of a technology

change in energy across periods, when the other inputs and

outputs are assumed to be unchanged. 

(k) CBTC : The index is referred to as a combined technol-

ogy change. This index indicates the effect of a technology

change for a desirable output and an input, across periods

when the other inputs and undesirable output are assumed

to be fixed. 

It is important to note that there are two differences between

GTC and GBTC which are related to technology changes. One of
hem is that GTC is an ordinary technology index (e.g. information

echnology development which influences all industries), while

BTC belongs to biased technology index where “biased” means

pecific technology development such as solar energy. The other

s that time horizons on production factors are different between

hem. For example, GTC does not cover production factors in two

eriods, while GBTC covers their economic activities in the two pe-

iods. 

Index classification: The previous studies have discussed six in-

exes, as summarized in the right hand side of Table 1 . Meanwhile,

his study uses eleven indexes which are classified into five groups.

he first index contains activity effect ( AE in Table 1 ), which is

easured by EA in this study. The second index has intensity ef-

ect ( IE in Table 1 ), which is measured by PEI . The third index in-

icates a structure effect ( STRE and SUBE in Table 1 ), which are

easured by EMX . The fourth index ( OE in Table 1 ) examines the

ffect caused by operational efficiency change that are measured

y EUEF and GEF . The fifth index ( TE in Table 1 ) shows the effect

f technology change that is measured by ESTC and GTC . Note that

MF is assumed to be unchanged, so not corresponding to indexes

isted in Table 1 . 

Three New Indexes: This study proposes GBTC , EBTC and CBTC

s new indexes. The proposed indexes are derived from TE (tech-

ological change effect). The previous technology index does not

over production variables between two periods. Thus, we measure

 technology progress. 

Based on the above descriptions, the decomposition of CO 2 

mission can be expressed as follows: 

 

s = 

∑ 

j 

b s j = 

( ∑ 

j 

EMF s 
j 

× EMX 

s 
j 
× P EI × EUEF × EST C × EA 

×GT C × GEF × GBT C × EBT C × CBT C 

) 

for s ∈ { t − 1 , t} (11)

This study uses the following multiplicative logarithmic mean,

r the Divisia index method (LMDI). This method was initially pro-

osed by Ang and Choi (1997) . It has the advantage of performing

erfect decomposition without unexplained residual terms. 

The ratio between the two ( t-1 and t ) periods is specified by 

 T OT = 

b t 

b t−1 
= 

(
D EMF × D EMX × D PEI × D E UE F × D EST C × D EA 

×D GT C × D GEF × D GBT C × D EBT C × D CBT C 

)
(12)

We measure all the potential sources of CO 2 emission by the

ollowing equations: 

 EMF = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

( 

EMF t 
j 

EMF t−1 
j 

) } 

(13)

 EMX = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

( 

EMX 

t 
j 

EMX 

t−1 
j 

) } 

(14)

 PEI = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
P E I t 

P E I t−1 

)} 

(15)

 E UE F = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
E UE F t 

E UE F t−1 

)} 

(16)
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 EST C = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
EST C t 

EST C t−1 

)} 

(17) 

 EA = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
E A 

t 

E A 

t−1 

)} 

(18) 

 GT C = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
GT C t 

GT C t−1 

)} 

(19) 

 GEF = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
GE F t 

GE F t−1 

)} 

(20) 

 GBT C = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
GBT C t 

GBT C t−1 

)} 

(21) 

 EBT C = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
EBT C t 

EBT C t−1 

)} 

(22) 

 CBT C = exp 

{ ∑ 

j 

(b t 
j 
− b t−1 

j 
) / ( ln b t 

j 
− ln b t−1 

j 
) 

( b t − b t−1 ) / ( ln b t − ln b t−1 ) 
· ln 

(
C BT C t 

C BT C t−1 

)} 

(23) 

This study assumes no occurrence of zero in the denominators

easured by Eqs. (13) –( 23 ). See Wang and Feng (2017) have dis-

ussed a mathematical rationale on the above equations. 

Assessment Rule: The ratio (i.e. a total influence on CO 2 emis-

ion) between the two ( t-1 and t ) periods measures an increasing

ate via D T OT = b t / b t−1 . The assessment is classified by the follow-

ng rule: 

(a) If b t / b t−1 > 1 , then the CO 2 emission “increases” in the

amount from the t-1 th to the t period. This situation is “un-

desirable”. 

(b) If b t / b t−1 = 1, then the CO 2 emission shows “no change” on

the amount between the two periods. 

(c) If b t / b t−1 < 1 , then the CO 2 emission “decreases” in the

amount between the two periods. This situation is “desir-

able”. 

It is important to specify the two additional treatments on the

ssessment rule. One of the two treatments is that we may take a

atural logarithm (ln) on the ratio in the manner of ln ( b t / b t−1 ) =
n ( b t ) − ln ( b t−1 ) . The above classification is separated into (a) pos-

tive (increasing, so being undesirable), (b) zero (no change), or

c) negative (decreasing, so being desirable), respectively. The other

reatment is that we measure the annual average of rate changes

n the observed annual periods. This study will determine our as-

essment on Chinese provinces by their annual averages. 
.3. DEA models 

To measure the decomposed indexes of the k th DMU, this

tudy solves the following DEA model: [
D 

s 
E (x s 

′ 
E , x 

s ′ 
C , x 

s ′ 
L , g 

s ′ , b s 
′ 
) 
]−1 = min θE 

s.t. 

n ∑ 

j=1 

x s E j λ j − θE x 
s ′ 
Ek ≤ 0 , 

n ∑ 

j=1 

x s C j λ j ≤ x s 
′ 

Ck , 

n ∑ 

j=1 

x s L j λ j ≤ x s 
′ 

Lk , 

n ∑ 

j=1 

g s j λ j ≥ g s 
′ 

k , 

n ∑ 

j=1 

b s j λ j ≤ b s 
′ 

k , 

j ≥ 0 (j = 1 , · · · , n ) , θE : URS, s ∈ { t − 1 , t} & s ′ ∈ { t − 1 , t} . (24) 

Model ( 24 ) represents the distance function with energy min-

mization. The model incorporates symbols to represent the two

eriods, i.e. s and s’ . The level of operational efficiency ( θ ∗
E 

) is mea-

ured on the optimality of Model ( 24 ). 

Meanwhile, the distance function with a desirable output

s maximized. The maximization is structured by the following

odel: [
D 

s 
G (x s 

′ 
E , x 

s ′ 
C , x 

s ′ 
L , g 

s ′ , b s 
′ 
) 
]−1 = max η

s.t. 

n ∑ 

j=1 

x s E j λ j ≤ x s 
′ 

Ek , 

n ∑ 

j=1 

x s C j λ j ≤ x s 
′ 

Ck , 

n ∑ 

j=1 

x s L j λ j ≤ x s 
′ 

Lk , 

n ∑ 

j=1 

g s j λ j − ηg s 
′ 

k ≥ 0 , 

n ∑ 

j=1 

b s j λ j ≤ b s 
′ 

k , 

λ j ≥ 0 (j = 1 , · · · , n ) , η : URS , s ∈ { t − 1 , t} & s ′ ∈ { t − 1 , t } . (25) 

ere, the level of operational efficiency ( θ ∗
g ) is measured by 1/ η∗

n the optimality of Model ( 25 ). 

At the end of this subsection, we need to mention five assump-

ions on Models ( 24 ) and ( 25 ) that make a linkage to the pro-

osed decomposition analysis. (a) First, DEA models belong to the

adial measurement because they contain efficiency scores ( θ ∗
E and

∗
g ) in their objective functions. However, the objective functions

o not have any influence from slacks. As discussed by Sueyoshi

nd Goto (2018) , their multipliers (i.e. dual variables) become of-

en zero in their dual formulations. In the occurrence of zero in

he multipliers, the DEA measurements by Models ( 24 ) and ( 25 )

annot fully use information (i.e. data) on production factors. This

tudy assumes that all multipliers are positive so that they can

ully utilize all production factors in the proposed assessments. (b)

econd, Models ( 24 ) and ( 25 ) often suffer from an occurrence of

ultiple solutions (e.g. multiple projection and multiple reference

ets). See Sueyoshi and Sekitani (2009) . The use of those models
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Fig. 1. An illustration of decomposed indexes. 
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requires the assumption on a “unique” solution on optimality for

the decomposition analysis. See Sueyoshi and Goto (2018) that pro-

vided a detailed description on how to handle multiple solutions.

(c) Third, this study assumes no occurrence of frontier cross-over,

implying that efficiency frontiers in t-1 th and t th periods make a

crossover or the t period retreats from the t -1 period in the worst

case. To handle the difficulty, Models ( 24 ) and ( 25 ) need to incor-

porate production factors in multiple periods (e.g. t-2, t-1 and t

periods) in the left hand sides of those formulations. See Sueyoshi

and Goto (2018) . (d) Fourth, the DEA efficiency scores depend upon

L1-norm distance measurement. However, the proposed decompo-

sition approach depends upon L2-norm distance measurement. The

two distance measures may be approximately similar to each other

in the proposed approach. See Sueyoshi and Goto (2018) that has

described a historical difference between the two distance norms.

(e) Finally, this study assumes that the unique solutions are pro-

duced by Models ( 24 ) and ( 25 ) and the assumption is applicable

to all the computational processes for the proposed decomposition

process ( 12 )-(23). 

It is clear that the proposed decomposition approach does not

function as we expect if any of the four assumptions is violated.

The proposed approach provides just an approximated result for

decomposition in the case. We will discuss how to handle the dif-

ficulty in a future research extension. 

3.4. A graphical illustration on decomposed indexes 

To visually describe the relationship among different decom-

posed indexes, Fig. 1 depicts one input (or undesirable output), a

desirable output and two frontiers across periods (i.e. t-1 and t ).

In the figure, the horizontal axis represents the input ( x : energy),

while the vertical axis represents the desirable output ( g : GDP).

The functional form f(x) stands for a production function at each

time period. In the figure, we assume that an increase in x en-

hances the amount of b . Thus, Fig. 1 does not specify b (i.e. CO 2 

emission) on the horizontal axis. 

There are two observations in the manner that DMU ( x a , g a ) at

period t-1 shifts to DMU ( x c , g c ) at period t . The shift may include

multiple projections from the t-1 th period to the t th period. For

example, ( x a , g d ) and ( x d , g a ) are such horizontally and vertically

projected DMUs on the efficient frontier at the t th period. 

This study begins with the indexes for depicting technology

changes, which can be visually expressed by a frontier shift across

periods. Conventionally, technology changes (i.e. frontier changes)

are expressed in terms of energy saving technology changes ( ESTC )

by measuring x − x c and desirable output technology changes
b 
 GTC ) by g c − g b . Both occur within each period. Those ratios be-

ween the two periods are measured by D EST C and D GT C . 

In addition to those representing frontier changes, there is an

ndex to measure an efficiency change, i.e. a desirable output oper-

tional efficiency change ( GEF ). The index is measured by g b − g a .

he ratio between the two periods is measured by D GEF . The in-

ex for measuring an energy use efficiency change ( EUEF ) is speci-

ed by x b − x a . The ratio between the two periods is measured by

 E UE F . 

The energy related indexes examined in this study incorporate

MF , EMX and PEI . The EMF indicates how a use of energy influ-

nces the amount of CO 2 emission. Fig. 1 does not depict the in-

ex because it does not specify the axis for b . It also assumes that

he relationship is unchanged on a specific point in the horizon-

al axis. The degree of D EMF indicates the ratio between the two

eriods (so, two different points on the horizontal axis). In a sim-

lar manner, the EMX indicates the effect of an energy mix (e.g. a

uel mix among oil, gas, nuclear and renewable energy sources).

he PEI indicates the level of energy intensity (e.g. a portion of en-

rgy sources) that determines an effective allocation of the input

energy). Both indicate a shift from x a to x d in Fig. 1 . Their con-

ributions are measured by D EMX and D PEI in the proposed decom-

osition. Meanwhile, the EA indicates an economic activity change

ue to a scale change. For example, it is possible for a DMU to

hift from g a to g d by focusing on its economic development. The

ontribution is measured by D EA in the two periods. 

Besides the above existing technology change indexes, this

tudy incorporates three new indexes related to technology

hanges. These indexes contain GBTC , EBTC and CBTC . The feature

f these technology changes is that they capture frontier changes

ue to specific input and/or desirable output, given that the oth-

rs are “unchanged” across periods. This study considers the three

ypes of such indexes, where only energy, desirable output or their

ombination are assumed to be unchanged. Fig. 1 visually illus-

rates GBTC where a desirable output change across two periods

nd inputs are assumed to be unchanged. So, the distance between

 c − g b indicates such a case along with a horizontal (input spe-

ific) projection. The degree of D GBT C indicates the ratio between

he two periods. The measurement is applicable to EBTC . In the

ase, given g , the distance is measured by x c − x b along with a ver-

ical (desirable output specific) projection. The degree of D EBT C in-

icates the ratio between the two periods. The CBTC combines the

nalytical feature of GBTC and that of EBTC . Thus, given specific x

nd g , it measures the shift in the horizontal and vertical coor-

inates. The degree of D CBT C indicates the ratio between the two

eriods. 

.5. Data set 

In this study, each province in China is regarded as a DMU. Due

o data accessibility, this study incorporates the data set concern-

ng 30 provinces (or province-equivalents, provinces hereafter, ex-

luding Tibet) only in China mainland. The periods are from 2008

o 2016. 

In the proposed model, the inputs contain capital ( C , in 10 8 

MB), labor ( L , in 10 4 persons) and energy ( E , in 10 4 tce). In terms

f capital, this study utilizes the method of the perpetual inventory

stock) and the result of Zhang, Wu and Zhang (2002) , with the

ase year of 20 0 0. The data source is National Bureau of Statistics

f China (2009a-2017a) . 

Labor is calculated as the sum of urban unit employment

nd the number of engaged persons in private enterprises and

elf-employed individuals at year-end, where the data source is

ational Bureau of Statistics of China (2009b-2017b) . Energy is

easured as total energy consumption and the data source is

ational Bureau of Statistics of China (2009c-2017c) . 
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Table 2 

Descriptive statistics of production variables from 2008 to 2016. 

Indicator 
[1] 

Production inputs [2] Outputs 

Capital Labor Energy GDP CO 2 
10 8 RMB 10 4 persons 10 4 tce 10 8 RMB 10 4 tons 

Mean 15,681.07 1216.21 13,779.60 12,933.14 29,527.75 

Standard deviation 10,888.46 933.37 8315.68 10,596.60 20,899.23 

Minimum 1852.72 101.67 1135.00 640.35 1578.56 

Maximum 48,590.68 5595.37 38,899.00 52,310.95 98,768.67 

(a) Sources: National Bureau of Statistics of China ( 20 09a, 2017a , 20 09b, 2017b , 20 09c, 2017c, and 2018 ). 

(b) Production inputs include labor ( L , 10 4 persons), capital ( K , 10 8 RMB) and energy ( E , 10 4 tce). Desir- 

able output is GDP ( G , 10 8 RMB). Undesirable output is CO 2 ( B , 10 4 tons). 
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Fig. 2. Average growth rates of CO 2 emissions from 2008 to 2016. 

(a) BJ, Beijing; TJ, Tianjin; HEB, Hebei; SX, Shanxi; IM, Inner Mongolia; LN, Liaon- 

ing; JL, Jilin; HLJ, Heilongjiang; SH, Shanghai; JS, Jiangsu; AH, Anhui; CQ, Chongqing; 

FJ, Fujian; GS, Gansu; GD, Guangdong; GX, Guangxi; GZ, Guizhou; HAN, Hainan; 

HEN, Henan; HUB, Hubei; HUN, Hunan; JX, Jiangxi; NX, Ningxia; QH, Qinghai; SAX, 

Shaanxi; SC, Sichuan; YN, Yunnan; SD, Shandong; XJ, Xinjiang; ZJ, Zhejiang. For sim- 

plicity, this study does not cover all geographical regions of China. 

(b) If the growth rates are larger than zero, they exhibit an increase in the CO 2 
emission. The opposite (i.e. decrease) case can be found if they are less than zero. 

If they are zero, then no change is found on the emission increase or decrease. 

(c) Section 3 describes how to compute growth rates. This study measures the rate 

by ( ( b t − b t−1 ) / b t−1 ). The high growth rate (0.090–0.149) is green-colored and the 

next (0.0 0 0–0.090) is red-colored. Both have increased the amount of CO 2 emission. 

In contrast, the yellow-colored provinces have negative growth ( −0.050–0.0 0 0), so 

that their industrialization did not increase the amount of CO 2 emission. 

(d) The CO 2 emissions are calculated as the product of energy consumption and 

emission factors. The obtained CO 2 emissions are used to compute the annual 

growth rates. The decomposition is used to compute the forces determining the 

CO 2 emission changes across periods. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

a

e  

a  

c  

b  
The desirable output includes GDP and an undesirable output

s CO 2 . The data source of GDP is National Bureau of Statistics of

hina (2018) . The amount of CO 2 is calculated according to the

ethod proposed by Du (2010) and the data source is National Bu-

eau of Statistics of China (2009c, 2017c), IPCC (2006) and National

oordination Committee on Climate Change (2007) . Table 2 sum-

arizes the descriptive statistics of the above production variables.

.6. CO 2 emission changes in China 

Fig. 2 illustrates an average growth rate of CO 2 emission across

hinese provinces from 2008 to 2016. The average annual growth

ate is listed in the legend by measuring ( ( b t − b t−1 ) / b t−1 ) . The fig-

re visually indicates that there are significant differences in an

verage growth rate across Chinese provinces. 

To explain such regional differences in CO 2 emission changes,

ig. 2 separates our empirical findings by the following three

roups: (a) The 1st group (yellow marked) includes the provinces

ith a negative growth in CO 2 emission. The group contains the

hree provinces such as Beijing, Shanghai and Yunnan. These re-

ults are not surprising to us because Beijing and Shanghai are al-

eady well-developed with significant economic restructuring from

ndustry to service. Their pollution levels are saturated in the in-

rease of CO 2 emission. In contrast, Yunnan has a small-sized

conomy with slow economic growth. (b) The 2nd group (green-

arked) contains the provinces with rapid growth in CO 2 emission.

he group contains 2 provinces such as Shaanxi (10.37%) and Xin-

iang (15.57%) in their annual growth rates. (c) The 3rd group (red-

arked) includes provinces with moderate growth in CO 2 emis-

ion. They contain 25 provinces in total. The average growth rates

ange from zero to 9% in their annual growth. Currently, China is

till in the process of industrialization and urbanization. Their CO 2 

missions are expected to grow in those provinces. 

Next, comparing between our empirical findings and the exist-

ng literature, this study notes a comment on the three new po-

ential contributors to CO 2 emission changes. These contributors

nclude (a) GBTC as a previously proposed index, (b) EBTC and

c) CBTC ; all are newly proposed in this study. These contribu-

ors can provide us with information for guiding environmental

olicy. It is easily envisioned that the proposed approach is ex-

endable to examining other decomposition targets (e.g. carbon in-

ensity and energy productivity). To document such research im-

ortance, this study investigates the effect of different technology

hanges on CO 2 emission. Thus, this study provides detail informa-

ion on potential sources to produce China’s CO 2 emission changes

t a provincial level. Such information is important to policy mak-

rs, especially for local governments. 

Here, it is important to summarize analytical features of the

ewly proposed approach from identifying the change of CO 2 

mission. Using the new indexes, we understand how carbon emis-

ion has grown in the past. The ratio indicates a growth rate on

O emission from the t-1 th period to the t th period. It is an
2 
verage annual growth rate. After comparing growth rates of CO 2 

missions between the two consecutive years, we take an average

cross periods. If the ratio is larger than zero, the amount is in-

reasing on CO 2 emission. The opposite (i.e. decreasing) case can

e found if it is less than zero (so, becoming better). If the ratio is
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Table 3 

Effects of various contributors to CO 2 emissions changes. 

Provinces D EMX D PEI D EUEF D ESTC D EA D GTC D GEF D GBTC D EBTC D CBTC 

Beijing 0.938 1.097 1.000 0.945 1.081 1.106 0.820 1.000 1.001 1.000 

Tianjin 0.965 1.061 1.000 0.955 1.131 1.085 0.851 1.000 1.009 0.991 

Hebei 1.001 1.021 0.989 0.968 1.089 1.070 0.905 1.000 1.000 1.000 

Liaoning 0.998 1.135 1.011 0.878 1.080 1.048 0.923 1.000 1.000 1.000 

Shanghai 0.982 1.017 1.003 0.971 1.078 1.053 0.905 1.000 1.000 1.000 

Jiangsu 1.005 1.025 1.000 0.973 1.101 1.055 0.901 1.000 1.000 1.000 

Zhejiang 0.975 1.021 1.008 0.973 1.087 1.057 0.903 1.000 1.000 1.000 

Fujian 0.969 1.022 1.000 0.977 1.110 1.055 0.901 1.000 1.000 1.000 

Shandong 1.012 1.020 1.048 0.925 1.099 1.054 0.911 1.000 1.000 1.000 

Guangdong 0.986 1.034 1.011 0.959 1.090 1.056 0.900 1.000 1.007 0.993 

Hainan 1.001 0.991 1.041 0.967 1.103 1.064 0.918 1.000 1.002 0.998 

Shanxi 0.997 1.000 1.005 0.973 1.080 1.053 0.925 1.000 1.001 0.999 

Jilin 1.001 1.021 0.971 0.973 1.101 1.050 0.909 1.000 1.000 1.000 

Heilongjiang 0.999 1.040 0.984 0.968 1.090 1.049 0.907 1.000 1.000 1.000 

Anhui 0.994 1.034 1.000 0.973 1.113 1.050 0.898 1.000 1.000 1.000 

Jiangxi 0.993 1.024 1.010 0.973 1.111 1.049 0.906 1.000 1.000 1.000 

Henan 0.992 1.014 0.984 0.973 1.100 1.049 0.916 1.000 1.000 1.000 

Hubei 0.987 1.013 0.982 0.973 1.112 1.050 0.915 1.000 1.000 1.000 

Hunan 0.993 1.030 0.974 0.973 1.110 1.049 0.908 1.000 1.000 1.000 

Inner Mongolia 1.016 1.072 1.000 0.923 1.112 1.050 0.909 1.000 1.003 0.997 

Guangxi 0.999 1.023 1.008 0.973 1.107 1.049 0.908 1.000 1.000 1.000 

Chongqing 0.979 1.051 0.974 0.973 1.133 1.051 0.882 1.000 1.000 1.000 

Sichuan 0.976 1.040 0.984 0.973 1.114 1.061 0.883 1.000 1.000 1.000 

Guizhou 0.998 1.027 0.986 0.973 1.122 1.052 0.901 1.000 1.000 1.000 

Yunnan 0.954 1.019 0.993 0.973 1.111 1.048 0.912 1.000 1.000 1.000 

Shaanxi 1.030 1.025 1.008 0.973 1.114 1.050 0.906 1.000 1.000 1.000 

Gansu 1.000 1.005 0.996 0.973 1.103 1.051 0.922 1.000 1.000 1.000 

Qinghai 0.987 1.015 1.026 0.973 1.109 1.068 0.899 1.000 1.000 1.000 

Ningxia 1.009 1.001 1.025 0.973 1.104 1.060 0.918 1.000 1.000 1.000 

Xinjiang 1.033 1.001 1.067 0.973 1.100 1.071 0.908 1.000 0.999 1.001 

China’s average 0.992 1.030 1.003 0.964 1.103 1.057 0.902 1.000 1.001 0.999 

# of Provinces > 1 9 28 13 0 30 30 0 0 6 1 

# of Provinces = 1 1 1 6 0 0 0 0 30 23 24 

# of Provinces < 1 20 1 11 30 0 0 30 0 1 5 

(a) # denotes the number of provinces whose values are greater than, equal to, or less than unity, respectively. 

Table 4 

Comparison of decomposed results between this study and some previous studies. 

Studies Time coverage Provinces D EMX D PEI D EUEF D ESTC D EA D GTC D GEF D GBTC D EBTC D CBTC 

Zhou and Ang (2008) 1995–2005 China’s average 0.6740 1.1372 0.9334 4.9117 0.6711 0.8864 

Kim and Kim (2012) 1990–2006 China’s average 0.9771 0.3024 1.0092 1.0127 3.9648 

Li et al. (2017) 2001–2011 LCIP 1.0045 0.9450 1.0018 1.0078 1.2437 1.0319 1.0050 

MCIP 0.9878 0.9624 1.0033 1.0046 1.2628 1.0339 1.0008 

HCIP 0.9924 0.9793 1.0027 1.0018 1.2583 1.0300 0.9821 

This study 2008–2015 China’s average 0.992 1.030 1.003 0.964 1.103 1.057 0.902 1.000 1.001 0.999 

(a) Li et al. (2017) classified all China’s provinces into three groups. In this regard, LCIP, MCIP and HCIP stand for low-carbon-intensity provinces, middle-carbon-intensity 

provinces and high-carbon-intensity provinces respectively. 
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zero, then no change is found in the ratio. We can discuss such

a possibility on CO 2 emission prevention by measuring whether

the ratio increases or decreases between the two periods. The ra-

tio measurement is an initial step to understand on how we may

reduce the amount of CO 2 emission in future energy planning. 

4. Sources affecting CO 2 emission changes in China 

4.1. Overall results 

Table 3 summarizes the decomposition results of ten potential

contributors in China’s emission changes. As mentioned previously,

if the number is larger than unity, then it indicates that the factor

results in an increase in CO 2 emission. In contrast, if it is less than

unity, then it implies an opposite case (i.e. decline in CO 2 emis-

sion). If it is equal to unity, then it indicates that the contributor

makes no effect on CO 2 emission. 

Table 4 compares our results with those of some previous stud-

ies. In the table, our results are close to those of some previous
tudies. For example, the fourth column indicates that China’s av-

rage D EMX (0.992) is slightly less than unity. This result implies

hat China has a potential to reduce the amount of CO 2 emission

y changing the structure of an energy mix (e.g. a fuel mix change

mong coal, oil, nuclear and renewable energies). 

The result is consistent with those of Kim and Kim (2012) ,

hose average was 0.9771 with the analysis period from 1990 to

006. In this study, the period was updated from 2008 to 2015.

urthermore, our obtained average is close to the three measures

f Li et al. (2017) . Meanwhile, in this study, China’s D EUEF on

verage is larger than unity (1.003) on the sixth column of Table 4 .

he result is consistent with that of Kim and Kim (2012) and

i et al. (2017) . This result indicates that even if China increases

he energy-based OE change, the effort may not reduce the CO 2 

mission. 

Returning to Table 3 , all contributors can be classified into three

roups. The first group has two factors ( D GEF and D ESTC ), whose

verages are significantly less than unity. Here, the “average” in-

icates the annual mean of each factor from 2009 to 2016. Among
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Fig. 3. Time trends of various decomposed contributors to CO 2 emissions 

(a) If the number is larger than unity, then it indicates that this factor results in 

an increase in CO 2 emission. In contrast, if it is less than unity, then it implies an 

opposite case (i.e. decline in CO 2 emission). In the case where it is equal to unity, 

it indicates that the contributor makes no effect on CO 2 emission. 

(b) Since D ESTC and D GEF are less than unity, they can reduce the amount of CO 2 
emission. 

Fig. 4. Geographical distribution of the most important factor. 

(a) GEF is the most important contributors for Beijing, Shanghai and Tianjin. 
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Fig. 5. Geographical distribution of the second most important factor. 

(a) GTC is the second most important contributors for Beijing. EA is for Tianjin and 

Shanghai. 
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he two factors, D GEF has the lowest values (0.902), implying that

he operational efficiency change of the desirable output may re-

ult in the reduction of CO 2 emission. The numerical values of

 D ESTC ) are less than unity (0.964). Thus, energy saving technology

hange causes mitigation of CO 2 emission. The second group con-

ains three factors ( D EA , D GTC and D PEI ), whose numerical values are

onsiderably larger than unity. Among all contributors, D has the
EA 
argest numerical values (1.103), which means that economic activ-

ty brings about an increase in CO 2 emission. The numerical values

f D GTC are 1.057 and those of D PEI are 1.030. Thus, the technology

hange of a desirable output and that of a potential energy inten-

ity change contribute to increased CO 2 emission. Finally, the third

roup includes five contributors, whose numerical values are be-

ween 0.99 and 1.01. Thus, these factors play insignificant roles in

etermining changes in China’s CO 2 emission. 

Fig. 3 illustrates the time trend of various contributors. Among

ll factors, the three have comparatively large variation across an-

ual periods. These factors are D PEI , D EMX and D EA . These results

re not surprising, since China’s rapid economic growth results in

ignificant variations in D EA and D PEI . In addition, during the exam-

ned periods, there are considerable changes in energy consump-

ion mix, thus causing variations of D EMX . In the comparison, there

re insignificant changes in other contributors. 

.2. Important contributors and provincial variations 

Table 3 indicates that there are significant differences in the

istribution of indexes concerning potential contributors. Let us

onsider the number of provinces whose indexes are larger than,

qual to, or less than unity. See the last row of Table 3 . 

All the contributors can be classified into the following four

roups: (a) The first group contains two contributors, i.e. D ESTC and

 GEF , whose indexes are less than unity in all provinces. The re-

ults imply that all provinces may mitigate the amount of CO 2 

mission by improving both an operational efficiency for a desir-

ble output (i.e. GDP) and an energy saving technology change. (b)
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Fig. 6. Geographical distribution of the third most important factor 

(a) PEI is the third most important contributors for Beijing. GTC is for Tianjin and 

Shanghai. 
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The second group includes one contributor ( D GBTC ), whose indexes

are close to unity in all provinces. Thus, a desirable output based

technology change does not make any effect on changes in CO 2 

emission. (c) The third group has two contributors ( D EA and D GTC ),

whose indexes are greater than unity in almost all provinces. The

results indicate that both economic activity ( D EA ) and technology

change ( D GTC ) on GDP may increase the amount of CO 2 emission

in all the provinces. (d) The fourth (last) group contains five con-

tributors. They have mixed results across provinces in the man-

ner that each contributor makes positive or negative effect on CO 2 

emission. According to the results of D EMX , an energy mix change

decreased the amount of CO 2 emission in 20 provinces but it in-

creased CO 2 emission in 9 provinces. The contributor shows an in-

significant implication (i.e. index = 1) in one province (i.e. Gansu).

There exist conflicting results in the effect of energy mix changes

on CO 2 emission across provinces. Such mixed results are found

in D EBTC , D EUEF , D CBTC and D PEI . Thus, provincial indexes (larger

than, equal to or less than unity) on contributors provide policy

makers with information for guiding provincial governments in

guiding CO 2 reduction. 

Figs. 4 –6 also illustrate the geographical distribution of impor-

tant decomposed factors. The three figures are for our illustra-

tive descriptions. First, Fig. 4 depicts the EA is the most impor-

tant contributor in 21 provinces in influencing the amount of CO 2 

emission. These provinces exhibit the highest index ratio of EA

among the eleven decomposition factors in terms of CO 2 reduc-

tion. This implies that the activity change on the economic system
e.g. a shift from manufacturing to service or high technology in-

ustry) may effectively reduce the amount of CO 2 emission. The

conomic activity change also includes the use of renewable en-

rgy sources in Chinese work places. The second important con-

ributor of each province is listed in Fig. 5 . The third important

ontributor of each province is listed in Fig. 6 . The results indi-

ate that economic activity is of crucial importance in increasing

he amount of CO 2 emission. Meanwhile, GEF is the most impor-

ant factor in eight provinces and it is the second important in 21

rovinces. The results imply that a desirable output based oper-

tional efficiency change is important in reducing the amount of

O 2 emission. Moreover, GTC is the second important factor in one

rovince and it is the third important one in 25 provinces. Thus,

echnology change of a desirable output is important in determin-

ng the amount of CO 2 emission at a provincial level. 

. Conclusion and future extensions 

China has been the largest CO 2 emitter in the world. To pre-

are for the climate policy, it is a prerequisite for China to obtain

etailed information on CO 2 emission sources. Under the policy di-

ection, this study has proposed the three indexes regarding differ-

nt technology changes that were incorporated into PDA and IDA.

hose indexes measured technology changes across periods. 

As an empirical application, the examined sources were used to

ecompose CO 2 emission across provinces in China from 2008 to

015. The main findings were summarized as follows. First, several

ources were important in increasing the amount of CO 2 emission

n China. Among all decomposed factors, economic activity was the

ost important source of a large increase in China’s CO 2 emission.

n 21 provinces, the activity was the most important source in in-

reasing the CO 2 emission. The technology change of a desirable

utput and potential energy intensity change followed the eco-

omic activity. The two factors played an important role in driving

p the amount of CO 2 emission. 

Second, two important sources decreased CO 2 emission. One

f them was the operational efficiency change of desirable out-

ut. This source was the most important one for decreasing CO 2 

mission in 8 provinces. In addition, the energy saving technol-

gy change was the second important source to reduce the CO 2 

mission. The policy implication, obtained from the technology

hange, is that China should promote the energy saving technol-

gy progress to reduce CO 2 emission. 

Finally, there were substantial provincial differences on the

ources of CO 2 emission change. In terms of these potential

ontributors, there were conflicting results regarding their effect

n CO 2 emission, since they decreased CO 2 emission in some

rovinces but increased CO 2 emission in the other provinces. They

ontained the energy mix change, the energy-based operational ef-

ciency change, the potential energy intensity change, the energy

ased technology change and the combined technology change. 

This study has drawbacks to be explored as future research

asks. First, we need to mathematically discuss on a linkage be-

ween decomposition and DEA formulation. Second, the proposed

pproach belongs to natural disposability because an efficiency

rontier is identified by decreasing x E (energy) and increasing g

GDP), so being not managerial disposability which finds an effi-

iency frontier by increasing energy and decreasing CO 2 emission.

he proposed approach needs to incorporate the perspective of

anagerial disposability. Otherwise, we cannot perfectly identify

he effect of CO 2 emission reduction. See Sueyoshi and Goto

2018) on the disposability concepts. Finally, we need to explore

cale effects on the CO 2 emission reduction such as returns to

cale and damages to scale ( Sueyoshi & Goto, 2019 ). Those research

ssues will be the important future extensions of this study. 
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In conclusion, it is hoped that this research makes a contribu-

ion to Chinese environmental protection. 
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