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We propose a novel approach based on the Marshall–Olkin (MO) copula to estimate the impact of sys- 

tematic and idiosyncratic components on cross-border systemic risk. To use the data on non-failed banks 

in the suggested method, we consider the time to bank failure as a censored variable. Therefore, we 

propose a pseudo-maximum likelihood estimation procedure for the MO copula for a Type I censored 

sample. We derive the log-likelihood function, the copula parameter estimator and the bootstrap confi- 

dence intervals. Empirical data on the banking system of three European countries (Germany, Italy and 

the UK) shows that the proposed censored model can accurately estimate the systematic component of 

cross-border systemic risk. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The 20 07–20 08 financial crisis has shown how a shock that

riginates in one country or asset class can quickly propagate to

ther markets and across borders. A key aspect of financial conta-

ion is given by the linkages among banks. In the Euro area, the

ross-border exposures arose as a prominent issue with the Eu-

opean sovereign debt crisis in 2011 and 2012, where large expo-

ure of many EU banks to stressed sovereigns were revealed by

he European Banking Authority ( EBA, 2013 ). In a broader perspec-

ive, correlated exposures have recently been shown to be a major

ource of systemic risk. 

Given the importance of this research field, this paper is fo-

used on systemic risk in the European banking sector. By defi-

ition, systemic risk involves a collection of interconnected institu-

ions that have mutually beneficial business relationships through

hich insolvency can quickly propagate during periods of financial

istress Billio, Getmansky, Lo, and Pelizzon (2012) . Systemic risk

s mainly due to idiosyncratic and systematic shocks (see De Bandt,

artmann, & Peydró, 2009 and European Central Bank, 2010 ). The

ormer affects only the health of a single financial institution,

hile the latter affects the whole economy, e.g. all financial insti-

utions together at the same time. The component of systemic risk

ue to idiosyncratic shocks is also known as contagion risk in the

iterature ( De Bandt et al., 2009 ). 
∗ Corresponding author. 
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a  

t  

r  

u  

ttps://doi.org/10.1016/j.ejor.2019.06.027 

377-2217/© 2019 Elsevier B.V. All rights reserved. 
One of the the main aims of this paper is to propose a new

ethodological approach for the analysis of systemic risk to jointly

odel idiosyncratic and systematic shocks. We propose to apply

he copula approach to measure systemic risk between the bank-

ng sectors of two countries. To our knowledge, the only papers

hat previously applied copulae to assess banking system stability

re Baglioni and Cherubini (2013a) , Baglioni and Cherubini (2013b) ,

traetmans (2010) and Weiss (2012) . In other words, the approach

s quite novel to the area of banking and systemic risk. 

The contributions of this paper are twofold. The first of these is

o apply the Marshall and Olkin (MO) copula for modelling sys-

emic risk between two countries. The second innovative aspect

s how time to failure is considered for non-failed banks as right-

ensored. As the MO copula is an extreme value copula, it is suit-

ble to study the dependence between extreme events such as

ank failures. Moreover, since the MO copula shows an upper tail

ependence, in order to apply it to systemic risk, we suggest to

onsider the distribution function (df) of time to failure for each

ountry as the marginal df of the MO copula. Coherently with ex-

ectations, the dependence is stronger for high values of probabil-

ties of bank failure. 

Another important advantage of the MO copula is that it has

oth an absolute continuous and a singular part. Thanks to the sin-

ular component, we can assign a non-null probability to the event

hat two banks in two countries show similar failure probabilities

t the same time if the copula parameter is not null. Therefore,

he singular part represents the systematic component of systemic

isk. In other terms, it is given by the joint probabilities of fail-

re due to simultaneous shocks on banks located in two different

https://doi.org/10.1016/j.ejor.2019.06.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.06.027&domain=pdf
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countries with similar marginal failure probabilities. In this paper,

we consider the joint failure probability of two banks operating

in two different countries as a linear combination of idiosyncratic

and systematic shocks. The weights of these two kinds of shocks is

a function of the parameter of the MO copula. To the best of our

knowledge, this is the first paper that proposes an approach to es-

timate the contributions of idiosyncratic and systematic shocks to

cross-border systemic risk. Baglioni and Cherubini (2013a) also use

the MO copula to propose an index that represents the average im-

pact of systematic and idiosyncratic risk, but they are focused on

the financial system in a given country, not on cross-border sys-

temic risk. 

Regarding the second innovation of this paper, we apply a Type

I censored sampling, i.e. the testing stops at a predetermined time,

at which point any non-failed banks are right-censored. In this

way all the information of non-failed banks can be used to esti-

mate the parameter of the dependence structure. Finally, we sug-

gest a pseudo- maximum likelihood method to estimate the pa-

rameter of the MO copula for the Type I censored sampling 1 . We

derive the log-likelihood function, the copula parameter estimator

and the bootstrap confidence intervals. The pseudo-maximum like-

lihood method handles the complexity given by the presence of

both a continuous and a singular component of the MO copula. As

far as we know, this is the first paper that applies the MO copula

to censored data on systemic risk. 

In this work, we apply the suggested model to balance sheet

data on three of the most important banking systems in Europe:

Germany, Italy and the UK. These countries present different char-

acteristics. Germany and Italy are characterised by a large number

of small banks, while the UK banking system is a concentrated

banking system with a few large banks. We pair up banks in two

European countries in terms of their probabilities of bank failure

estimated by using the BGEVA model ( Calabrese, Marra, & Osmetti,

2016 and Calabrese, Degl’ Innocenti, & Osmetti, 2017 ). In order to

estimate the marginal cumulative distribution function (cds) of the

MO copula, we use the empirical cdf of time to failure for each

country. 

We apply the proposals of this paper to data over the period

1995–2012. The European sovereign debt crisis of 2009 is included

in the empirical analysis. At first, we estimate the probability of

failure for banks in each country using the BGEVA model (see

Calabrese & Osmetti, 2013 and Calabrese & Osmetti, 2015 ) on a set

of bank specific factors addressed by the CAMELS framework (e.g.

Arena, 2008 ). To capture the economic cycle, we include macroe-

conomic variables in the BGEVA model. The estimates so obtained

are used to pair up banks in two countries. In the country with the

higher number of banks, we consider only the banks with higher

risk failure. 

We compare the MO copula with the copula models used in

the literature Weiss (2012) , such as the Gaussian copula, the Gum-

bel copula and a mixture of the Frank, Clayton and Gumbel copula.

An important result of this empirical analysis is that the estimate

of the upper tail dependence in the MO copula is higher due to

the singular component. Moreover, according to a goodness-of-fit

measure, the MO copula is the model that best fits the data. Fi-

nally, when we apply censored techniques to the data, coherently

with our expectations, we find that the impact of the systematic

component on systemic risk increases. 

We organise the paper as follows. The next section describes

the literature review. Section 3 explains the methodological pro-

posal. Section 4 describes the dataset and reports the main re-

sults on cross-border systemic risk. Finally, the last section con-
1 Osmetti (2012) suggested an estimation technique for the Type II censored sam- 

pling, i.e. the testing stops after a given number of observations fails. 

v  

p  

M  

t  
ains some concluding remarks. In the appendix, we report the

core functions to obtain the pseudo-maximum likelihood estima-

or of the parameter of the MO copula for Type I censored sam-

ling and a simulation study. 

. Literature review 

The European Central Bank European Central Bank (2010) has

dentified three main approaches to analyse systemic risk. First,

arly warning signal models use information on current data to

stimate the likelihood that intermediaries show financial deteri-

ration (for example Calabrese & Giudici, 2015 ). Second, contagion

nd spillover models can be used to analyse the transmission of

nancial shocks across banks (see e.g. Billio et al., 2012 ). Third,

tress testing models can assess the effects of macroeconomic

hocks on the banking system (e.g. EBA, 2013 ). The first two

trands are mainly focused on idiosyncratic shocks, while the

ast one primarily analyses the systematic component of systemic

isk. A way of analysing systematic shocks in the first two groups

f models is to include macroeconomic variables, analogous to

alabrese and Giudici (2015) . 

Another possible classification of the literature on systemic risk

an be divided into two different strands: the first area of research

ses financial market data, see e.g. Cappiello, Gerard, and Man-

anelli (2005) , Engle and Manganelli (2004) , Gropp, Lo Duca, and

esala (2009) , Hartmann, Straetmans, and de Vries (2004) , Longin

nd Solnik (2001) . The second approach is based on banks’ balance

heet data to assess systemic risk, see e.g. Degryse and Nguyen

2007) , Mistrulli (2011) , van Lelyveld and Liedorp (2006) and

ormaki, Bech, Arnold, Glass, and Beyeler (2007) . 

Different methodologies have been applied to analyse conta-

ion risk. Some studies assume that the presence of contagion

isk can be detected by observing negative abnormal returns (see

.g. Akhigbe & Madura, 2001, Gropp & Moermann, 2004, Kabir

 Hassan, 2005 ). Few authors have used extreme value theory

o analyse the idiosyncratic shocks (see e.g. Gropp & Moermann,

004 and Gropp et al., 2009 ), others have used a copula-based ap-

roach (see De Vries, 2005, Straetmans, 2010 and Weiss, 2012 ).

eiss (2012) captures the changes in the dependence structure

f abnormal bank returns by analysing the changes in the para-

etric form and the parameters of various copulae. Specifically,

he author analyses changes in the dependence structure of banks

round bailout announcements. To cover a maximal variety of tail

ependence structures, Weiss (2012) considers a convex combina-

ion over time of the Student’s t, Frank, Clayton and Gumbel cop-

la. The author uses the Akaike’s Information Criterion (AIC) to

hoose the copula with the highest goodness of fit. He obtains that

he Clayton-Frank-Gumbel mixture shows the best fit to the loga-

ithmic stock returns of German banks. De Vries (2005) suggests

he Gumbel copula with Pareto marginal dfs as a joint distribution

f the returns on syndicated loans to obtain heavy tailed marginal

fs, positive correlation and asymptotic independence. 

We highlight that all the previous copulae are absolutely con-

inuous, this means that the impact of the systematic component

n systemic risk could be underestimated. We overcome this draw-

ack by applying the MO copula. There is a limited literature on

he use of the MO copula for modelling systemic risk. Baglioni and

herubini (2013a) propose a new financial stability index (named

uadras and Augé index) to measure the fragility of the banking

ector in a given country. Time to failure for a bank is assumed

o follow an exponential distribution. Each bank shows the same

ntensity parameter of the exponential distribution, so the multi-

ariate intensity based model is homogeneous. To model the de-

endence structure between banks the authors use a symmetric

O copula. Baglioni and Cherubini (2013b) extend this approach

o marginal distributions with non-constant intensity parameters
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nd to non-symmetric MO copula. Using a hierarchical approach,

he authors model the systemic risk within the banking system at

he lower level and the probability of a joint default of the bank-

ng system and the public sector at the higher level. In both papers

he model parameters are estimated by non-parametric measures

f association such as Spearman’s rank correlation. 

The main methodological differences between this paper and

he previous works Baglioni and Cherubini (2013a) and Baglioni

nd Cherubini (2013b) are that we do not assume parametric dis-

ributions for the marginal default probabilities. We mainly focus

ur attention on the dependence structure and the impact of the

ystematic component on cross-border systemic risk. Baglioni and

herubini (2013a) and Baglioni and Cherubini (2013b) use a non-

arametric approach to estimate the copula parameter, instead we

se a semiparametric technique based on the pseudo-maximum

ikelihood method. Furthermore, we use a censored sampling to

nclude the observation of non-failed banks for the estimation of

he copula parameter. 

From an empirical point of view, most of the copula-based ap-

roaches cited in this section use financial market data. On the

ontrary, we use banks’ balance sheet data in this paper as we

nalyse European countries such as Germany and Italy charac-

erised by a high number of small banks, for which market data

re not available. 

. A new copula model for estimating systemic risk 

In this work we propose to model the dependence structure of

ross-border bank failures using a copula approach. The concept of

opula represents a flexible method since it does not require para-

etric assumptions on the marginal components ( Nelsen, 2006 ,

nd Fisher, 1997 ). In this way, a general class of distributions can

e expressed through a simple model specification. 

There are several advantages in applying the copula approach

o systemic risk. Firstly, the copula function is a suitable model to

epresent the dependence structure between rare events. As the

ercentage of bank failures is usually very low (lower than 5%),

ank failure can be classified as a rare event. We propose in this

ork to use a model that better classifies rare events, such as the

GEVA model ( Calabrese & Giudici, 2015 ), to estimate the empiri-

al marginal cdfs in a copula framework. 

Secondly, the copula model accounts for non-linear dependence

nd upper tail dependence. Few empirical studies, for example

eiss (2012) , have shown that linear models, such as linear re-

ression analysis, are usually unable to capture contagion effects.

herefore, to accurately assess systemic risk, we consider a copula

hat allows for tail dependence, analogously to Baglioni and Cheru-

ini (2013a) and Baglioni and Cherubini (2013b) for CDS quotes

nd De Vries (2005) and Straetmans (2010) for bank stock returns.

Thirdly, the parametric specification of the marginal distribu-

ions is not required in the copula approach, only the character-

stics of the dependence structure are defined. From the available

opula families, we consider an extreme value copula with non-

rivial tail dependence given by the Marshall–Olkin copula in order

o represent the dependence structure between bank failures. 

.1. Copulae and tail dependence 

Every bivariate and multivariate cdf F can be treated as the re-

ult of two components: the marginal distributions and the de-

endence structure. The copula describes the way that the two

arginal distributions are put together into the bivariate cdf. 

In mathematical terms, a bivariate copula is a function C : I 2 → I ,

ith I 2 = [0 , 1] × [0 , 1] and I = [0 , 1] , which satisfies all the proper-

ies of a cdf. In particular, it is the bivariate cdf of a random vector
 U , V ) with uniform marginal random variables (rvs) in [0,1] 

(u, v ) = P (U ≤ u, V ≤ v ) , 0 ≤ u ≤ 1 0 ≤ v ≤ 1 . 

To better understand the copula model we consider the Sklar’s

heorem Sklar (1959) . 

heorem 3.1 (Sklar) . Let ( X , Y ) be a bivariate random variable with

oint cdf F X , Y ( x , y ) and marginal cdfs F X ( x ) and F Y ( y ) . It exists a copula

unction C : I 2 → I such that ∀ x, y ∈ R 

 X,Y (x, y ) = C(F X (x ) , F Y (y )) (3.1)

f F X ( x ) and F Y ( y ) are continuous functions then the copula C ( · ) is

nique. Otherwise, C ( · ) is uniquely determined on RanF X × RanF Y .

onversely, if C ( · ) is a copula function and F X ( x ) and F Y ( y ) are

arginal cdfs, then the F X , Y ( x , y ) in (3.1) is a bivariate cdf. 

If the marginal cdfs are continuous and strictly increasing func-

ions, from (3.1) the copula function is 

(u, v ) = F X,Y (F −1 
X (u ) , F −1 

Y (v )) (3.2)

here u = F X (x ) and v = F Y (y ) are the cdfs F X ( · ) and F Y ( · ), respec-

ively. 

However, if the marginal cdfs are not strictly increasing func-

ions, then the inverse of the cdf does not exist. In this case,

e can consider the quasi-inverse of a cdf defined as F (−1) (t) =
n f { x | F (x ) ≥ t} = sup{ x | F (x ) ≤ t} for all t ∈ I (see Nelsen, 2006 for

etails). 

Thus, a copula captures the dependence structure between the

arginal probabilities F x ( x ) and F Y ( y ) and, consequently, between

he marginal rvs X and Y . 

A pivotal characteristic for systemic risk analysis is the upper

ail dependence. An upper tail dependence parameter χu is de-

ned as 

u = lim 

u → 1 −
P [ X > F −1 

X (u ) | Y > F −1 
Y (u ))] 

= lim 

u → 1 −
P [ Y > F −1 

Y (u ) | X > F −1 
X (u ))] (3.3) 

hen the limit exists. Higher is the value of χu ∈ (0, 1], higher is

he level of upper tail dependence. Analogously, the lower tail de-

endence parameter χ l can be defined. See Nelsen (2006) for the

xpressions of the lower and upper tail dependence parameters for

he main copula families. 

.2. The Marshall-Olkin copula 

Let X and Y be the time to failure of two banks located in two

ountries and let F X (t) = P (X ≤ t ) and F Y (t ) = P (Y ≤ t) be their

robabilities of failure over a given time period. We consider a

opula function to analyse the dependence structure between the

ime to failure of banks situated in two different countries. Partic-

larly, we suggest to use the Marshall and Olkin (MO) copula. 

The MO bivariate exponential distribution was proposed by

arshall and Olkin in 1967 ( Mai & Scherer, 2012 ). It is used in re-

iability analysis to model jointly failure time of two components

n a system when the failure is due to both idiosyncratic shocks,

iven by the characteristics of the components, and shocks com-

on to both the components. The MO copula models the depen-

ence structure of the namesake probability distribution. The main

dvantage of our suggestion is that the dependence structure of

ime to bank failure could be due to both idiosyncratic and sys-

ematic shocks. As explained in Section 2 , the literature shows that

oth these components are important to model systemic risk. 

In the case of two exchangeable marginal rvs X and Y , the

O copula or Cuadras-Augé copula (see Nelsen, 2006 and Mai &

cherer, 2012 ) is defined as 

(u, v ) = P (U ≤ v , V ≤ v ) = u v min (u 

−θ , v −θ ) (3.4)
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where θ ∈ [0, 1] represents the intensity of the (positive) rela-

tionship between the marginals. If θ = 0 then the rvs X and

Y are stochastically independent and the MO copula becomes

(u, v ) = u v . If θ = 1 then there is a perfect positive association

between the rvs X and Y and the MO copula becomes C(u, v ) =
min (u, v ) . Furthermore, the MO copula is an extreme value cop-

ula with an upper right tail dependence where θ is the upper tail

dependence parameter χu defined in Eq. (3.3) . 

An important characteristic of the MO copula (3.4) is that it has

an absolute continuous part and a singularity for u = v with pos-

itive probability (see Nelsen, 2006 and Osmetti, 2012 ). Thanks to

the singular part, we can assign a non-null probability to the event

 = V . This means that the failure of two banks (characterised by

the same marginal cdf) located in two different countries at the

same time has a non null probability. Hence, the MO copula can

be considered as a linear combination of the absolute continuous

part C a and the singular part C s 

(u, v ) = 

2 − 2 θ

2 − θ
C a ( u, v ) + 

θ

2 − θ
C s (u, v ) (3.5)

where C s (u, v ) = [ min (u θ , v θ )] 
2 −θ
θ for u = v and C a (u, v ) for u � = v

is 

 a (u, v ) = 

2 − θ

2 − 2 θ
[ u v min (u 

−θ , v −θ )] − θ

2 − 2 θ
C s (u, v ) . 

As explained in Section 2 , the systemic risk is due to both

the idiosyncratic and the systematic shocks. The former is mainly

characterised by banks’ characteristics, the latter represents char-

acteristics common to both the countries, such as macroeconomic

conditions. 

In Eq. (3.5) the idiosyncratic component is represented by the

absolute continuous part C a and the systematic component is given

by the singular part C s . The weights of these two components are

a function of the copula parameter θ ∈ [0, 1]. If θ = 0 , the systemic

risk is given only by idiosyncratic shocks. This means that the cop-

ula function in Eq. (3.5) is given only by the absolutely continuous

component C(u, v ) = C a (u, v ) = u v . In this case, the marginal fail-

ure probabilities are independent, so the joint failure probability

is given by the product of the marginal probabilities in the two

countries. Instead, if the parameter θ is high ( θ > 2/3), then sys-

tematic shocks are more important than idiosyncratic shocks to ex-

plain systemic risk. For values of θ very close to 1, the idiosyncratic

component is very small ( Baglioni & Cherubini, 2013b ). 

As the copula defined in Eq. (3.4) is exchangeable ( Baglioni &

Cherubini, 2013a ), this means that the dependence structure is

symmetric C(u, v ) = C(v , u ) . In other terms, the order of the two

analysed countries does not affect the cross-border measure. We

obtain the same result for the pair given by the country A and B

and for the pair given by the country B and A. 

The cdf defined in (3.1) can be estimated by parametric

or semiparametric approaches. The widely used parametric ap-

proaches are the maximum likelihood (ML) method and the two-

stage inference function for margins (IFM) method proposed by

Joe (1997) . Important discussions about the properties of the

two methods could be found in Joe (2005) , Kojadinovic and Yan

(2010) and Kim, Silvapulle, and Silvapulle (2007) . 

Beims, Bain, and Higgins (1972) and Bhattacharyya and Johnson

(1973) use ML method to estimate a MO bivariate exponential dis-

tribution. When the marginal distributions are unknown, a semi-

parametric method is preferred. This is represented by the Pseudo

Maximum Likelihood (PML) or the canonical maximum likelihood

(see Cherubini, Luciano, & Vecchiato, 2004 and Genest, Ghoudi, &

Rivest, 1995 ). In contrast to parametric methods such as ML and

IFM, the PML method does not require that the user specifies the

functional forms for the marginal distributions. In particular, the

PML method is a two-step semiparametric estimation approach:
n the first step the marginal cdfs are estimated by the empiri-

al cdf, in the second step the copula parameters are estimated by

he maximum likelihood method. For more details on the prop-

rties of the method and on the comparison between the para-

etric and semiparametric methods see for example Kim et al.

2007) , Kojadinovic and Yan (2010) , Genest et al. (1995) , Genest

nd Werker (2002) , Kole, Koedijk, and Verbeek (2007) , Durrleman,

ikeghbali, and Roncalli (20 0 0) , Mai and Scherer (2014) , Mai and

cherer (2012) . Other popular procedures for estimating the MO

opula parameter are the method of moments ( Hering & Mai,

012 ) and an approach based on the inversion of Spearman’s rho

nd Kendall’s tau ( Kojadinovic & Yan, 2010 ). 

In this section we suggest to apply a PML to estimate the MO

opula. In the first step, we consider the empirical cdf as a non-

arametric estimator of the cdf of the time to bank failure for each

ountry ˆ u i = 

ˆ F X (x i ) and 

ˆ v i = 

ˆ F Y (y i ) . In the second step, we obtain

he estimator of the parameter θ ∈ (0, 1) of the MO copula by max-

mising the conditional likelihood function as follows 

ˆ = arg max L (θ | ̂  u , ̂  v ) 

here 

 (θ | ̂  u , ̂  v ) = 

n ∏ 

i =1 

c θ ( ̂  u i , ̂  v i ) (3.6)

To compute the probability density function c θ ( · ) in Eq.

3.6) we apply the procedure described in Proschan and Sullo

1976) for the MO exponential distribution. As shows in Eq. (3.5) ,

he MO copula is not absolutely continuous respect to the two-

imensional Lebesgue measure ( μ2 ) and contains singularities.

onsequently, the joint density function does not exist with re-

pect to μ2 . Nevertheless, the copula is absolutely continuous with

espect to a σ -finite measure μ( B ) defined on the two-dimensional

pace as follows (see Beims et al., 1972; Osmetti, 2012; Proschan &

ullo, 1976 ): 

(B ) = μ2 (B ) + μ1 

(
B ∩ 

{
x : (x, x ) ∈ R 

+ 
2 

})
(3.7)

or each B ∈ B + 
2 

where μ2 is a two-dimensional Lebesgue measure,

 

+ 
2 

is the Borel σ−algebra in R + 
2 

and μ1 is the Lebesgue measure

n the real line. 

It follows that we can define a probability density function

 θ ( · , · ) with respect to the measure μ( · ) defined in Eq. (3.7) . 

heorem 3.2. The MO copula density function c θ (u, v ) is defined as

ollows: 

 θ (u, v ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

c 1 (u, v ) = (1 − θ ) 
1 

u v 
C θ (u, v ) = (1 − θ ) u 

−θ i f { u > v } 

c 2 (u, v ) = (1 − θ ) 
1 

u v 
C θ (u, v ) = (1 − θ ) v −θ i f { u < v } 

c s (w ) = θ
1 

w 

C θ (w, w ) = θw 

1 −θ i f u = v = w 

(3.8)

ith 0 ≤ v ≤ 1 , 0 ≤ u ≤ 1 and 0 < θ < 1 . 

roof. We obtain c 1 ( · , · ) and c 2 ( · , · ) by computing the deriva-

ives 
∂ 2 C θ (u, v ) 

∂ u∂ v for u > v and v > u, respectively. As we cannot ob-

ain c s ( · ) in a similar way, we follow the approach suggested by

arhana and Balakrishnan (2007) , Kundu and Gupta (2009) and

amalizadeh and Kundu (2013) and we consider the following

quation: 
 1 ∫ u 

c 1 (u, v ) d v d u + 

∫ 1 ∫ v 
c 2 (u, v ) d ud v + 

∫ 1 

c s (w, w ) dw = 1 . 
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Fig. 1. Sample censored data. 
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2 The Kaplan–Maier estimator is usually used to estimate the cdf for a censored 

sample (see Kaplan & Meier, 1958 ). 
t follows that 

 1 = 

∫ 1 

0 

∫ u 

0 

c 1 (u, v ) d v d u = 

∫ 1 

0 

∫ u 

0 

(1 − θ ) u 

−θ d v d u 

= (1 − θ ) 

∫ 1 

0 

u 

1 −θ du = (1 − θ ) 

∫ 1 

0 

w 

1 −θ dw 

 2 = 

∫ 1 

0 

∫ v 

0 

c 1 (u, v ) d ud v = 

∫ 1 

0 

∫ v 

0 

(1 − θ ) v −θ d ud v 

= (1 − θ ) 

∫ 1 

0 

v 1 −θ dv = (1 − θ ) 

∫ 1 

0 

w 

1 −θ dw 

ince 
 1 

0 

c s (w, w ) = 1 − (I 1 + I 2 ) = θ

∫ 1 

0 

w 

1 −θ dw = 

θ

(2 − θ ) 
, 

e have 

 s (w, w ) = θw 

1 −θ �

The function c θ ( ·, · ) can be considered a probability den-

ity function if it is understood that the two terms c 1 ( · , · ) and

 2 ( · , · ) are probability density functions with respect to the two-

imensional Lebesgue measure and the third term c s ( · , · ) is a

robability density function with respect to the one-dimensional

ebesgue measure (see Sarhana & Balakrishnan, 2007, Beims et al.,

972, Kundu & Gupta, 2009 and Proschan & Sullo, 1976 ). Therefore,

ven if the MO copula is not absolutely continuous with respect to

he two-dimensional Lebesgue measure, we can specify the den-

ity function and derive the likelihood function L (θ | ̂  u , ̂  v ) as follows

 (θ | ̂  u , ̂  v ) ∝ (1 − θ ) n 1 + n 2 θn 3 

n ∏ 

i =1 

C θ ( ̂  u i , ̂  v i ) . (3.9)

The terms n 1 , n 2 and n 3 are the number of observations such

hat n 1 = � { ̂  u i < ̂

 v i } , n 2 = � { ̂  u i > ̂

 v i } and n 3 = � { ̂  u i = ̂

 v i } . Hence, the

aximum likelihood estimator of θ is 

ˆ = (1 + exp (− ˆ ψ )) −1 

ith 

ˆ 
 = − ln 

[ 

n − 2 n 3 − S min + 

√ 

n 

2 + S 2 
min 

− S min (2 n − 4 n 3 ) 

2 n 3 

] 

ith n 3 > 0 and S min = 

n ∑ 

i =1 

min (− ln ( ̂  u i ) , − ln ( ̂ v i )) (see Osmetti,

012 for details). Ruiz-Rivas and Cuadras (1988) obtained a simi-

ar result. 

.3. Censored time of failure 

The method described in the former section to estimate the MO

opula allows to use only the information provided by failed banks

hat represents a very low percentage of the sample. To use also

he characteristics of most of the banks that do not fail, we suggest

o apply the Type I censored sampling on the right to the time to

ank failure. 

In the literature there are two main types of censored sam-

ling: Type I and Type II censored sampling ( Choen, 1991 ). The

ype I censoring occurs when an experiment ends after a given

ime t ∗. Hence, the number of censored observations is random.

n the contrary, the Type II censored sampling occurs when an

xperiment ends after a specific number of observations has oc-

urred. Therefore, the censoring time is random. Two different

ample statistics are given by the estimation procedure for these

ampling methods, as explained by Choen (1991) for the univariate

ontext. While Osmetti (2012) proposed an estimator for the MO
opula with bivariate Type II censored sampling, in this section we

uggest an estimation procedure for bivariate Type I censored data.

At the beginning, to pair up banks located in two different

ountries, we order banks in each country based on their failure

robability. In the order created for each country, we consider the

 th bank. Let x i be the observed time to failure for the i th bank lo-

ated in a given country and y i the time to failure for the i th bank

ocated in a different country. We define m = � { x i ≤ t ∗ ∩ y i ≤ t ∗}
he number of pairs with both failed banks in the two countries.

urthermore, we define r = � { x i ≤ t ∗ ∩ y i > t ∗} the number of failed

anks in the first country and of non-failed banks in the second

ountry and s = � { x i > t ∗ ∩ y i ≤ t ∗} the number of non-failed banks

n the first country and of failed banks in the second country.

his means that n − m = � { x i > t ∗ ∩ y i > t ∗} + r + s is the number

f pairs where at least one bank of the two countries is not failed.

o apply a Type I censored sampling, we assign t ∗ to the time to

ailure for non-failed banks, as shown in the Fig. 1 . 

We modify the CLM procedure described in the previous sec-

ion as follows. In the first step we estimate the marginal cdf

sing the Kaplan-Mayer estimator 2 : ˆ u i = 

ˆ F X (x i ) , ˆ v i = 

ˆ F Y (y i ) . Then,

n the second step, we maximise the conditional likelihood func-

ion of the copula. We consider (�X , �Y ) = (I { X≤t ∗} )(x ) , I { Y ≤t ∗} (y )) ,
X = 1 − �X and �

Y = 1 − �Y , where I A ( · ) is the indicator func-

ion of the set A . Following Owzar and Sen (2003) , we compute the

onditional likelihood function for the copula 

(θ | ̂  F X , ˆ F Y ) = 

n ∑ 

i =1 

ln [ c θ ( ̂  F X (x i ) , ˆ F Y (y i )) ] 
�X 

i 
�Y 

i 

+ 

n ∑ 

i =1 

ln [ C 1 θ ( ̂  F X (x i ) , ˆ F Y (y i )) ] 
�

X 

i �
Y 
i 

+ 

n ∑ 

i =1 

ln [ C 2 θ ( ̂  F X (x i ) , ˆ F Y (y i )) ] 
�

Y 

i �
X 
i 

+ 

n ∑ 

i =1 

ln [ C θ ( ̂  F X (x i ) , ˆ F Y (y i )) ] 
�

X 

i �
Y 

i (3.10) 

here c θ (u, v ) is the copula density defined in (3.8) , C 1 
θ
(u, v ) =

∂C θ (u, v ) 
∂v and C 2 

θ
(u, v ) = 

∂C θ (u, v ) 
∂u 

. 

As described in Theorem 3.2 of the previous section, we can de-

ne the density function c θ ( · , · ) in Eq. (3.8) with respect to μ( B )

nd derive the likelihood function in (3.10) . 



1058 R. Calabrese and S.A. Osmetti / European Journal of Operational Research 279 (2019) 1053–1064 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

t  

s  

s  

t  

T  

t  

W  

V  

t  

A  

u  

S  

s  

o  

R  

R

4

 

p  

b  

T  

t  

p  

c  

a  

e  

G  

f

 

p  

w  

t  

s  

t  

a  

f  

s  

s  

f

 

t  

G  

F

C  

w  

m  

m  

p  

r  

t  

r  

T  

p  

a  

u  

I  

d  

G  

c

3 The number of bank pairs for the singular component is given by # {| v i − u i | < 

0 . 001 } . 
The maximum likelihood estimator of θ for Type I censored

data is 

ˆ θc = (1 + exp (− ˆ ψ c )) 
−1 (3.11)

with 

ˆ ψ c = 

− ln 

[ 
m + r + s − 2 m 3 − S min + 

√ 

(m + r + S min − 2 m 3 ) 
2 + 4 m 3 (m + r + s − m 3 ) 

2 m 3 

] 
(3.12)

where m 1 = m − � { ̂  u i ≥ ˆ v i } , m 2 = m − � { ̂  u i ≤ ˆ v i } , m 3 = m − m 1 − m 2

and 

S min = 

m ∑ 

i =1 

min (− ln ( ̂  u i ) , − ln ( ̂ v i )) + 

r ∑ 

i =1 

[ − ln ( ̂  u i )] 

+ 

s ∑ 

i =1 

[ − ln ( ̂ v i )] + (n − m − r − s ) t ∗. 

The maximum likelihood estimator (3.11) is the unique

and acceptable solution of this optimisation problem (see

Appendix A.1 for details). 

4. Empirical results 

4.1. Dataset 

The empirical analysis is based on annual data for the period

1995–2012 for the German (DE), the Italian (IT) and the UK banks.

The data are from Bankscope, a comprehensive database of bal-

ance sheet and income statement data for individual banks across

the world provided by the private company Bureau Van Dijk. The

time horizon and the geographic area are important for the Euro-

pean sovereign debt crisis of 2009. We choose to analyse the cross-

border bank interdependence between Italy, Germany and the UK

since their banking systems are quite different. For example, most

of the Italian and the German banks are quite small and they are

cooperative or savings banks (around 90% in Germany). In the UK

the average bank size is very large, there are not traditionally re-

gional or state banks and only one cooperative bank. 

All the three banking systems came under pressure during the

financial and the sovereign debt crisis. The UK banks were signifi-

cant exposed to toxic assets which originated in the US, the Italian

and the German banks less. The impact of the sovereign debt cri-

sis was stronger on the Italian and the German banking systems,

even if the stability of the German system has been achieved in

the short run in large part through substantial government sup-

port measures. 

To analyse these banking systems, we choose a definition of

bank failure in accord with Arena (2008) and Calabrese and Giu-

dici (2015) . A bank failure occurs when the bank is in at least one

of the following statuses: bankruptcy, in liquidation, dissolved or

under receivership. As mergers and acquisition could have been

carried out for strategic reasons rather than insolvency aims Arena

(2008) , banks that are merged or acquired by another bank are not

considered failed. All data are available for 1802 German banks,

602 Italian banks and 265 UK banks. These sample sizes are coher-

ent with the characteristics of the banking systems of these coun-

tries. The number of failed banks are 72 for UK, 30 for IT and 86

for DE. 

To pair up banks located in two countries, we order the banks

in each country based on their failure risk. In particular, we apply

the BGEVA model (see Calabrese & Osmetti, 2013 and Calabrese &

Osmetti, 2015 ) to estimate the probability of failure for each bank

in a given country. The BGEVA model is a semiparametric regres-

sion approach suitable to correctly classify binary rare events. As
xplanatory variables in the BGEVA model, we follow the litera-

ure on bank failure: we consider two sets of variables, one is bank

pecific, i.e. the financial ratios associated with the CAMELS rating

ystem Arena (2008) , the latter is given by macroeconomic fac-

ors that affect the all banking system ( Calabrese & Giudici, 2015 ).

o measure the severity of multicollinearity we have computed

he Variance Inflation Factor (VIF) for each explanatory variable.

e consider 22 independent variables, we remove those with a

IF higher than 5 and we obtain the following 18 covariates: To-

al Assets, Loan Loss Reserve over Gross Loans, Equity over Total

ssets, Return on Average Assets (ROAA), Return on Average Eq-

ity (ROAE), Net Loans over Total Assets, Liquid Assets over Cust&

T Funding, Interbank Assets over Interbank Liabilities, Liquid As-

ets over Tot Dep & Bor, Tier 1 Ratio, Total Capital Ratio, Equity

ver Liabilities, Equity over Net Loans, Net Interest Margin, Growth

ate of GDP, Inflation Rate, Unemployment Rate and Interest

ate. 

.2. Estimation results 

After ordering the banks in each country based on their failure

robability, to apply a bivariate copula we consider the same num-

er of banks with higher failure risk in the two analysed countries.

hen, we use the empirical cdfs of time to failure for each coun-

ry as marginal cdfs of the MO copula. Therefore, we estimate the

arameter θ of the MO copula both in the case of complete and

ensored sample following the procedures suggested in Section 3.2 .

nd 3.3. The sample size of the complete data is given by the low-

st number (30) of failed banks in the three countries UK, Italy and

ermany. For the censored sample, the sample size is given by 265

ailed and non-failed banks. 

The singular component of the MO copula is obtained by the

airs of banks in two different countries that fail in the same year

ith similar risk of failure estimated using the empirical cdfs of

ime to failure. 3 If we consider the countries UK and Italy, the

ingular component is respectively given by 9 and 113 banks for

he non-censored and censored sample. When we analyse the UK

nd Germany, the singularity is represented by 11 and 158 banks

or non-censored and censored sample. Finally, Italy and Germany

how 13 (in the non-censored sample) and 187 (in the censored

ample) banks that fail in the same year with similar risk of

ailure. 

We compare the MO copula with the copula models used in

he literature (see Rodriguez, 2007 and Weiss, 2012 ), such as the

aussian copula, the Gumbel copula and a finite mixture of the

rank C F , Clayton C C and Gumbel C G copulae ( F + C + G ) 

(u, v ) = πF C F (u, v ;α) + πC C C (u, v ;γ ) + (1 − πF − πC ) C G (u, v ; r)

ith weights 0 ≤π i ≤ 1 for i = F , C, G . The MO, Gumbel and the

ixture of copulae display asymptotic tail dependence and asym-

etry, while the Gaussian copula is symmetric without tail de-

endence. The parameter −1 < ρ < 1 of the Gaussian copula rep-

esents the linear correlation coefficient. The parameter r > 1 of

he Gumbel copula is a measure of positive association and rep-

esents the intensity of the upper tail dependence (χu = 2 − 2 1 /r ) .

he Frank copula is a symmetric copula and it shows positive de-

endence for α ∈ (0 , + ∞ ) , negative dependence for α ∈ (−∞ , 0)

nd independence for α = 0 . The tail dependence in the Frank cop-

la is null. The Clayton copula shows also a positive dependence.

ts parameter γ represents the intensity of the lower tail depen-

ence (χu = 2 −1 /γ ) . Hence, the mixture of the Frank, Clayton and

umbel copulae can display lower tail dependence for the Clayton

opula, and upper tail dependence for the Gumbel copula. 
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Table 1 

Copula parameter estimates and bootstrap confidence intervals. 

Copula IT-UK IT-DE UK-DE 

Gaussian ˆ ρ = 0 . 25 ˆ ρ = 0 . 30 ˆ ρ = 0 . 27 

(0.03; 0.32) (0.13; 0.37) (0.08; 0.34) 

Gumbel ˆ r = 1 . 30 ˆ r = 1 . 40 ˆ r = 1 . 37 

(1.02; 1.49) (1.05; 1.59) (1.05; 1.57) 

ˆ πF = 0 . 31 ˆ πF = 0 . 21 ˆ πF = 0 . 25 

(0.12; 0.50) (0.13; 0.35) (0.14; 0.33) 

F + C + G ˆ πC = 0 . 15 ˆ πC = 0 . 14 ˆ πC = 0 . 13 

(0.009; 0.22) (0.01; 0.23) (0.01; 0.22) 

ˆ α = 0 . 01 ˆ α = 0 . 04 ˆ α = 0 . 03 

(0.00; 0.18) (0.03; 0.19) (0.03; 0.18) 

ˆ γ = 0 . 23 ˆ γ = 0 . 26 ˆ γ = 0 . 25 

(0.13; 0.45) (0.12; 0.47) (0.10; 0.47) 

ˆ r = 1 . 33 ˆ r = 1 . 45 ˆ r = 1 . 45 

(1.03; 1.69) (1.10; 0.53) (1.08; 0.54) 

MO 

ˆ θ = 0 . 37 ˆ θ = 0 . 55 ˆ θ = 0 . 45 

(0.29; 0.52) (0.33; 0.59) (0.28; 0.54) 

 

p  

T  

r

o  

t  

u  

T  

w  

a  

p  

p  

T  

o

 

t  

t  

D  

r  

χ  

d  

t  

b  

m  

l  

d  

U  

l  

e  

g  

d  

G  

m

 

u  

m  

o  

i  

t

 

M  

a  

t  

t  

G  

e

Table 2 

Fit measures. 

AIC 

Copula IT-UK IT-DE UK-DE 

Gaussian −4.32 −10.3 −9.18 

Gumbel −19.20 −22.33 −18.45 

F + C+G −24.87 −25.98 −18.45 

MO copula −34.44 −37.89 −21.67 
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For each copula we compute the PML estimate of the copula

arameters and the bootstrap confidence intervals (see Efron &

ibshirani, 1993 ) on 10 0 0 bootstrap samples randomly drawn. The

esults are reported in Table 1 . The linear correlation coefficient ˆ ρ
f the Gaussian copula is close to zero for all the pairs of coun-

ries. This result could be due to the fact that the Gaussian cop-

la displays only a linear dependence and not a tail dependence.

he latter is what we expect in the data. To verify this expectation

e apply a Gumbel copula that shows upper tail dependence and

 mixture of copulae that displays both upper and lower tail de-

endence. Since the parameter ˆ r is higher than 1 for all the three

airs of countries, this means that there is upper tail dependence.

he intensity of this dependence is quite low since all the values

f r are close to 1. 

In agreement with the expectations, the Gumbel copula shows

he highest weight in the mixture model for all the pairs of coun-

ries ( ̂  πG = 0.54 for IT-UK, ˆ πG = 0.65 for IT-DE and ˆ πG = 0.62 for UK-

E). We use Eq. (3.3) to compute the upper tail dependence pa-

ameter. We obtain χu = 0.316 for IT-UK, χu = 0.365 for UK-DE and

u = 0.387 for IT-DE. This means that the intensity of the upper tail

ependence in the mixture model is still low. We highlight that

he orderings of the upper tail dependence parameter estimates in

oth the mixture and the Gumbel copulae are the same. Further-

ore, these orderings correspond to the one of the linear corre-

ation coefficients in the Gaussian copula. From this ordering we

educe that the systemic risk for IT-DE is higher than that for DE-

K that is finally higher than the one for IT-UK. This result is in

ine with expectations and with the outcomes obtained in Gropp

t al. (2009) . In Gropp et al. (2009) the authors estimate the conta-

ion directions of banks that experience a large shock on the same

ay. They obtain a strong bilateral relationship between Italy and

ermany and a weak bilateral contagion between the UK and Ger-

any. 

Finally, we apply the MO copula. Its parameter θ represents the

pper tail dependence parameter. From Table 1 obtain that the MO

odel shows an higher tail dependence than those of the previ-

us copula models. The tail dependence between the failed banks

n Italy and Germany is medium-high ( χu = 0.55), the one between

he UK and Germany is medium-low ( χu = 0.45). 

The higher value of the upper tail dependence parameter in the

O copula could be due to include a singular part in the model to

ssign a non-null probability to the event that banks in two coun-

ries fail at the same time. In this way, we can accurately estimate

he systematic component of systemic risk. On the contrary, in the

umbel and in the mixture model this component could be under-

stimated, as the data show. 
We explained in Section 3.2 the role of the copula parameter θ .

he weights of idiosyncratic and systematic shocks are a function

f θ as given by Eq. (3.5) . If θ is very high (i.e. θ > 2/3), the sys-

ematic component is more important than the idiosyncratic one

o explain systemic risk. On the contrary if θ is equal to zero, the

ystemic risk is explained only by the idiosyncratic shocks. As Ital-

an and German banks are under the same monetary policy of the

uropean Central Bank, it is coherent that the systematic compo-

ent for this pair of countries is more relevant than that for two

anking systems with different monetary policies. Fig. 2 shows the

stimated MO copula function and its contour levels for the cou-

les IT-UK, UK-DE and IT-DE. 

To identify the copula that best fits the data, we need to choose

 criterion. As the models are non-nested, we use a modified ver-

ion of the Akaike Information Criterion (AIC) associated with the

ML ( Chen & Fan, 2005; McNeil, Frey, & Embrechts, 2005 ), given

y 

IC ∗ = 2 k − 2 l( ̂  θ ) + 

2 k (k + 1) 

n − k − 1 

(4.1)

here l( ̂  θ ) is the maximum of the log pseudo likelihood function,

 is the number of estimated parameters, and n is the sample size.

he last term in Eq. (4.1) is a correction for small sample bias

 Breymann, Dias, & Embrechts, 2003 ). According to this criterion,

he model with best fit is the one that minimises the AIC. 

Grø nneberg and Hjort (2014) investigated the limitations of the

IC for copula model selection in semiparametric PML methods

nd they proposed the cross validation Copula Information Criteria

CIC) to overcome these drawbacks. However, Jordanger and Tjs-

heim (2014) compared the performance of the AIC and the CIC

n a simulation study, obtaining minor differences between these

wo criteria and emphasising that the CIC is computational inten-

ive. Given these results, we prefer to use the AIC instead of the

IC. Based on our knowledge, there is a lack of theoretical justifica-

ion in the literature to use the AIC for comparing absolutely con-

inuous and non-absolutely continuous copulae. As El-Bassiouny,

hahen, and Bouhawwash (2018) , Hanagal and Sharma (2015) and

arhan, Hamilton, Smith, and Kundu (2011) used the AIC for a cop-

la function with a singular component, we calculate this criterion

or the MO copula using the pseudo likelihood function (3.6) in Eq.

4.1) . We choose the MO copula based on the results in Table 2 and

ts characteristics described in Section 3.2. 

The results for a censored sampling are shown in Table 3 . We

btain that the estimates of the copula parameter θ increase for

ll the three pairs of countries. This means that the systematic

omponent becomes more important for all the pairs of countries

hen we consider the characteristics of all the sample. As θ is

he upper tail dependence parameter, the most important result

f this empirical analysis is that the intensity of the upper tail de-

endence increases if we consider a censored sampling. In other

ords, the contagion risk could be underestimated if we do not

onsider the characteristics of non-failed banks. Moreover, as the

ength of the bootstrap confident intervals in Table 3 decreases for

he censored sample, the estimates of the copula parameter θ are

ore accurate. 
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Fig. 2. The MO copula and the contour lines estimate for IT-UK (top), UK-DE (middle), and IT-DE (bottom). 
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Table 3 

Copula parameter estimates and bootstrap confidence intervals for complete and censored sample. 

IT-UK IT-DE UK-DE 

Complete sample ˆ θ = 0 . 37 ˆ θ = 0 . 55 ˆ θ = 0 . 45 

(0.29; 0.52) (0.33; 0.59) (0.28; 0.54) 

Censored sample ˆ θ = 0 . 50 ˆ θ = 0 . 83 ˆ θ = 0 . 76 

(0.48; 0.51) (0.82; 0.84) (0.75; 0.77) 
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. Conclusions 

In this paper we propose a novel copula-based approach for

odelling cross-border systemic risk. In particular, the MO copula

s used to estimate the dependence between times to bank fail-

res located in two different countries. The main advantage of this

odel is that the impact of the idiosyncratic and systematic com-

onents on the systemic risk can be measured. We highlight that

he idiosyncratic component is represented by the continuous part

f the copula, the systematic by the singular part. To include the

nformation on non-failed banks in the estimation procedure, we

onsider a censoring mechanism. We propose a pseudo-maximum

ikelihood method to estimate the MO copula parameter for Type I

ensored samples. 

Such a proposal is applied to data on three of the main banking

ystems in Europe (Germany, Italy and the UK). The first important

esult of this empirical analysis is that the MO copula is the copula

hat best fits the data according to the AIC measure. The second

mportant result is that the impact of the systematic risk is higher

f we consider a censored sample compared to that obtained for

 complete sample (without a censoring technique). We hope that

his work proposes a novel method that central banks can use to

rovide more accurate estimates of systemic risk. 

This paper is focused on the analysis of cross-border systemic

isk between two countries. From an empirical point of view, fur-

her work will extend the approach here proposed to analyse the

ystemic risk between more than two countries using a higher di-

ensional copula. Another further research from a methodological

oint of view is to provide the theoretical justification of using the

IC or its modification to compare absolutely continuous and non-

bsolutely continuous copula models. 

ppendix A 

1. The estimator in Type I censored sampling 

We suggest the maximum likelihood estimator (3.11) in the

ase of Type I censored sampling. We consider the observations

s shown in Fig. 1 , we apply the logit transformation θ = (1 +
xp (−ψ)) −1 to the conditional log-likelihood function (3.10) , so

e obtain 

(ψ | ̂  u , ̂  v ) = k + (m 1 + m 2 + r + s ) ln [1 − (1 + exp (−ψ)) −1 ] 

+ m 3 ln [(1 + exp (−ψ)) −1 ] 

−(1 − (1 + exp (−ψ)) −1 )(S 1 (t ∗) + S 2 (t ∗)) 

− (1 + exp (−ψ)) −1 S max (t ∗) 

here k is a constant and 

 1 (t ∗) = 

m + r ∑ 

i =1 

[ − ln ( ̂  u i )] + (n − m − r) t ∗, 

 2 (t ∗) = 

m + s ∑ 

i =1 

[ − ln ( ̂ v i )] + (n − m − s ) t ∗
u  
nd 

 max (t ∗) = 

m ∑ 

i =1 

max [ − ln ( ̂  u i ) , − ln ( ̂ v i )] + rt ∗+ st ∗+ (n − m − r − s ) t ∗.

The previous equation can be simplified and it becomes 

(ψ | ̂  u , ̂  v ) = k + (m 1 + m 2 + r + s )(−ψ) 

−(m + r + s ) ln [(1 + exp (−ψ))] 

− exp (−ψ) 

(1 + exp (−ψ)) 
(S 1 (t ∗) + S 2 (t ∗)) 

−(1 + exp (−ψ)) −1 S max (t ∗) 

By differentiating the log-likelihood function with respect to ψ ,

e obtain 

∂ l(ψ | ̂  u , ̂  v ) 
∂ψ 

= −(m 1 + m 2 + r + s ) + (m + r + s ) 
exp (−ψ) 

(1 + exp (−ψ)) 

+ 

exp (−ψ) 

(1 + exp (−ψ)) 2 
[ S 1 (t ∗) + S 2 (t ∗) − S max (t ∗)] 

etting ∂ l(ψ | ̂ u , ̂ v ) 
∂ψ 

= 0 we obtain 

m 3 exp (−2 ψ) − (m + r + s − 2 m 3 + S min (t ∗)) exp (−ψ) 

−(m + r + s − m 3 ) = 0 , 

here S min (t ∗) = S 1 (t ∗) + S 2 (t ∗) − S max (t ∗) . 
By solving the previous equation with respect to exp (−ψ) , we

btain two solutions 

z 1 , 2 

= m + r + s − 2 m 3 − S min (t ∗) ±
√ 

(m + r + s − 2 m 3 − S min (t ∗)) 2 + 4 m 3 (m + r + s − m 3 )

2 m 3 

ince only the solution 

 1 = 
m + r + s − 2 m 3 − S min (t ∗) + 

√ 

(m + r + s − 2 m 3 − S min (t ∗)) 2 + 4 m 3 (m + r + s − m 3 ) 

2 m 3 

as positive values, it is the unique accepted solution for exp (−ψ) .

ence, the unique solution of the optimisation problem is 

ˆ 
 c = −ln (z 1 ) (A.1) 

We obtain that the previous solution is a maximum from the

ign of the second derivative. In (A.1) t ∗ is fixed and the number

f failed banks in one or both countries ( m , r and s ) are random

ariables. 

2. Simulation study 

In this section we perform a Monte Carlo simulation study to

nalyse the properties of the estimation procedures described in

ections 3.2 and 3.3 for finite samples. We generate 20 0 0 sam-

les with different sample size n = 20 , 50 , 100 , 500 from a bivari-

te distribution with MO copula and two marginal exponential

ariables with parameter λ = 2 . We consider only one marginal

istribution function in the simulation studies as the copula pa-

ameter estimator is ranked-based, so it does not dependent on

he marginal distribution. We choose different values of the cop-

la parameter θ = 0 . 1 , 0 . 7 , 0 . 9 , corresponding to low, medium and
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Fig. 3. Boxplot of the estimator distribution of the copula parameter θ for the complete sample with different values of n and θ . 

Table 4 

Bias and MSE of the copula parameter θ esti- 

mated using the pseudo maximum likelihood 

method for a complete sample. 

ˆ θ n Bias MSE Time 

0.9 20 0.0213 0.0360 2.467 

50 0.0102 0.0026 3.267 

100 0.0012 0.0006 3.761 

500 0.0003 0.0001 4.599 

0.7 20 0.0114 0.0417 2.879 

50 0.0093 0.0037 3.403 

100 0.0024 0.0010 3.879 

500 0.0010 0.0006 4.991 

0.1 20 0.0099 0.0095 2.956 

50 0.0056 0.0015 3.548 

100 0.0016 0.0009 3.954 

500 0.0001 0.0003 4.938 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Bias and MSE of the copula parameter θ es- 

timated using the pseudo maximum likeli- 

hood method for a censored sampling. 

ˆ θ n Bias MSE m 

0.9 20 0.0221 0.0377 18 

50 0.0111 0.0029 42 

100 0.0009 0.0007 86 

500 0.0008 0.0003 400 

0.7 20 0.0270 0.0515 18 

50 0.0099 0.0039 40 

100 0.0029 0.0019 78 

500 0.0008 0.0008 400 

0.1 20 0.0168 0.0099 16 

50 0.0088 0.0019 39 

100 0.0025 0.0011 78 

500 0.0007 0.0008 380 

o  

t  

o  
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e
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λ  

θ  
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o
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high positive dependence. We analyse the bias (Bias) and the mean

square error (MSE) of the parameter θ for the procedures proposed

in Sections 3.2 and 3.3 . 

Table 4 reports the results for the complete sample using the

PML estimation procedure explained in Section 3.2 . The outcomes

show that this technique is accurate in estimating the copula pa-

rameter as the bias and the MSE are usually lower than one tenth

of the real value of the parameter even for a small sample size

( n = 20 ). Moreover, the estimates are consistent as the bias and

the MSE decrease when the sample size increases, for a given θ .

The last column in Table 4 shows the time to end of study (Time).

Fig. 3 shows the boxplot of the estimator distribution of the

copula parameter θ for different values of n and θ . 

We also apply the estimation procedure for a censored sample

described in Section 3.3 . The results of the bias and the MSE for

the copula parameter θ for I type censored sampling are reported

in Table 5 , where we choose t ∗ = 2 as time for censoring. Particu-

larly, n is the size of the censored sample, with m observed units

and n − m not observed ones. Table 5 shows that both the bias and

the MSE of the censored sample are higher than the corresponding
nes for a complete sample, for given θ and n , as the observation

ime t ∗ = 2 is lower than the time for the complete sample. Anal-

gously to the results for a complete sample, the bias and the MSE

ecrease as the sample size n increase in Table 5 . 

Fig. 4 shows the boxplot of the estimator distribution for differ-

nt values of n and different values of the true parameter θ . 

Figs. 3 and 4 show that the estimation procedure slightly over-

stimates the parameter value for small sample size. 

Finally, we generate 20 0 0 random samples from a bivariate ran-

om variable with marginal exponential distributions of parameter

= 2 and an exchangeable MO copula of parameter θ = 0 . 9 and

= 0 . 7 . Afterwards, we apply the estimation procedure described

n Section 3.2 to a complete sample with m observations and the

pproach described in Section 3.3 to a censored sample with m

bserved units and n − m not observed units. 

We report the MSE of these two methods in Table 6 . The MSE

n the censored sample is lower than that in the complete one.

herefore, if we consider also the characteristics of non-observed

nits in the sample, the estimate of the dependence becomes more

ccuracy. 
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Fig. 4. Boxplot of the estimator distribution of the copula parameter θ for the censored sample with different values of n and θ . 

Table 6 

Complete sample vs. censored sample. 

MSE 

ˆ θ m n − m Complete sample Censored sample 

0.9 30 20 0.0261 0.0057 

70 0.0261 0.0026 

470 0.0261 0.0008 

50 50 0.0026 0.0016 

450 0.0026 0.0006 

0.7 30 20 0.0233 0.0055 

70 0.0233 0.0034 

470 0.0233 0.0009 

50 50 0.0037 0.0028 

450 0.0037 0.0008 

0.1 30 20 0.0054 0.0024 

70 0.0054 0.0019 

470 0.0054 0.0009 

50 50 0.0015 0.0012 

450 0.0015 0.0008 
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