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a b s t r a c t 

Over the course of research on convolutional neural network (CNN) architectures, few modifications have 

been made to the fully connected layers at the ends of the networks. In image classification, these neural 

network layers are responsible for creating the final classification results based on the output of the last 

layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, 

and any classification algorithm could be applied to their output. Because neural networks use gradient 

descent to learn their weights subject to the classification error, fully connected neural networks are a 

natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other 

classification algorithms? In this work, we benchmark different classification algorithms on CNNs by re- 

moving the existing fully connected classifiers. Thus, the flattened output from the last convolutional 

layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability 

of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 

100 classes. The experimental results reveal that multiple classification algorithms, namely logistic re- 

gression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, 

are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particu- 

lar classification algorithm depends on the underlying CNN structure and the nature of the classification 

problem. For classification problems with many classes or for CNNs that produce many high-level image 

features, other classification algorithms are likely to perform better than fully connected neural networks. 

It follows that it is advisable to benchmark multiple classification algorithms on high-level image features 

produced from the CNN layers to improve classification performance. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Computer vision is a sub-field of artificial intelligence and com-

puter science that enables computers to develop a visual percep-

tion of real-world entities ( Szeliski, 2010 ). This is achieved by au-

tomatically extracting, analysing, and understanding information

from input images. The field of computer vision can be divided into

multiple sub-areas, each of which focuses on specific information

of the image data: classification, localisation, detection, semantic

segmentation, and instance segmentation (see Fig. 1 ). 
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This paper focuses on algorithms applied to the task of image

lassification. 

Before the dominance of neural networks in computer vision

esearch, any classification algorithm was used to distinguish the

lasses based on the output from manually designed feature ex-

ractors (filters) ( LeCun, Bottou, Bengio, & Haffner, 1998 ). The

mergence of convolutional neural networks in computer vision

roduced a shift from hand-designed feature extractors to auto-

atically generated feature extractors trained with backpropaga-

ion. 

Computer vision has made a lot of progress since the break-

hrough of artificial neural networks (ANN). This development was

ostered by the increases in available computational power and

raining data. But it was only in 2012, when a research team

rom the University of Toronto constructed AlexNet ( Krizhevsky,

utskever, & Hinton, 2012 ) for the ImageNet Large Scale Visual
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Fig. 1. Summary of different computer vision tasks from ( Li Fei-Fei & Yeung, 2017 ). 
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ecognition Challenge (ILSVRC-2012), that a convolutional neural

etwork (CNN) architecture outperformed traditional approaches

n the classification and localisation tasks ( Russakovsky et al.,

015 ). After that, CNN architectures were improved in many ways,

ound their way into multiple fields of research and were success-

ully applied in the industry ( Szegedy, Vanhoucke, Ioffe, Shlens, &

ojna, 2016 ). 

In recent years, there have been many developments in CNN

rchitectures ( Simonyan & Zisserman, 2014 ). The vast majority of

hese advances have been made in the earlier layers of the neu-

al network, meaning everything up to the fully connected lay-

rs. Little research has been devoted to the proficiency of the fully

onnected layers. Fully connected multi-layer perceptrons (MLPs)

eem to be the design choice for all network architectures, with

ittle research on or modifications made to these layers. But as the

o-free-lunch theorem states ( Wolpert & Macready, 1997 ), no clas-

ifier can be said to be superior to all other classifiers in every

roblem instance. Therefore, following the idea of the traditional

odel of pattern recognition wherein any classification algorithm

as used, the main research question for this paper is: 

Research question ”Is it possible to improve the performance

f the computer vision classification model by using different clas-

ification algorithms on high-level image features?”

Both convolutional and fully connected layers of a neural net-

ork learn their weights during the training phase, with the

rror being backpropagated from the output through the fully

onnected-layers back to the convolutional layers. Due to the na-

ure of the learning process, multi-layer perceptrons are a natural

hoice for convolutional neural networks. Therefore, the focus of

his paper is not directly on replacing the fully connected layers in

he learning process, but rather on enhancing the learning process

y using a two-step procedure: 

1. Regular CNN training process: Train a given CNN architec-

ture, including fully connected layers to make convolutional

layers learn high-level image features from image inputs. 

2. Enhancement of the training process: Replace the fully

connected layers with a different classification algorithm

and train this algorithm based on the high-level image fea-

tures produced from the last layer of convolutional layers in

the first step. 

The research question is tested over multiple settings and mul-

iple datasets to fully investigate under which conditions certain

lassification algorithms perform better. The datasets benchmarked

n this paper are CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012.

The paper is organized as follows: Section 2 gives an overview

f related work in the field of CNNs. Afterwards, Section 3 outlines

he experimental setup used to test the research question pro-

osed above, including the datasets, the network architectures, and
he chosen classification algorithms. Section 4 discusses the exper-

mental results and provides some guidelines for the choice of the

lassification algorithm to be used for classifying images by using

he high-level image features. Finally, Section 5 concludes the pa-

er by summarising the main findings of this study and suggesting

uture avenues of research. 

. Related works 

The ability of multilayer networks trained via gradient descent to

earn complex, high-dimensional, nonlinear mappings from large col-

ections of examples makes them obvious candidates for image recog-

ition tasks ( LeCun et al., 1998 ). 

This notion of learning is consistent with the general learn-

ng process of the human brain, because CNNs automatically de-

ect two-dimensional local structures within images without prior

anual definition. In comparison to fully-connected feedforward

eural networks, CNNs are also computationally more efficient

ecause the convolutional network layers require fewer weights.

hus, the model has to learn fewer parameters during the train-

ng process ( Krizhevsky et al., 2012 ). 

The first published CNN, LeNet-5, was developed by LeCun et al.

1998) and was applied in alphanumeric character recognition to

ead “several million checks per day” ( LeCun et al., 1998 , p. 1) au-

omatically. 

After their introduction, CNNs remained at the sidelines of re-

earch until AlexNet won the ILSVRC-2012 challenge in the classi-

cation and localisation task by a great margin compared to the

ther approaches ( Russakovsky et al., 2015 ). For the classification

ask, AlexNet reached a top-5 error of 15.32%, whereas the next

est model architecture reached 26.17%. AlexNet ( Krizhevsky et al.,

012 ) is an 8-layer neural network that strongly resembles LeNet-5

rom Fig. 2 in its architecture. After this success, CNNs became the

tate of the art in computer vision, with more and more innovative

dditions to the networks outperforming earlier models. The next

ecisive changes to the network architecture were introduced with

oogLeNet from Szegedy et al. (2015) and VGG from Simonyan and

isserman (2014) . Both CNNs competed in the ILSVRC-2014 com-

etition, reaching a top-5 classification error of 6.67% and 7.32%

espectively ( Russakovsky et al., 2015; Szegedy et al., 2015 ). The

ain contribution of VGG was to use relatively small convolu-

ional filters combined with deeper neural networks (16–19 lay-

rs) ( Simonyan & Zisserman, 2014 ). GoogLeNet is a 22-layer net-

ork without fully-connected layers at its end. Its main contribu-

ion to subsequent model architectures is its inception module. The

nception module performs multiple parallel convolutions and en-

bles the model to determine which convolutional layer is profi-

ient ( Szegedy et al., 2015 ). Apart from computational limitations,

 roadblock to even deeper neural network architectures was the
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Fig. 2. LeNet-5 architecture from LeCun et al. (1998) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

f  

a  

g  

n  

l  

3  

l

 

F  

t  

i  

m  

t  

s  

b  

s  

r

 

m  

A  

t  

i  

t  

p  

c  

f

 

b  

a  

w  

f  

i  

r  

s  

a  

s  

b  

a  

u  

w  

t  

b  

m  

r  
fact that deeper networks empirically produced worse results on

training and test data ( He, Zhang, Ren, & Sun, 2016 ). They should,

in theory, be at least as good as their shallower counterparts. The

ResNet-152 architecture ( He et al., 2016 ) won the ILSVRC-2015

challenge with a top-5 error of 3.57%. Thus, it was the first model

to beat human performance. The solution to training deeper net-

works with 152 layers are residual blocks, which lent their name to

ResNet. Residual blocks enable connections between multiple non-

adjacent layers such that the layers in between them only need to

learn the residuals ( He et al., 2016 ). 

Further research has shown that the computationally expen-

sive last fully-connected layer can be set to constant values to re-

duce model complexity with little or no performance loss ( Hoffer,

Hubara, & Soudry, 2018 ). To illustrate their example, the re-

searchers show that about 60% of the 36 million model parame-

ters of a ResNet-50 model reside in the last fully-connected layer

for the JFT-300M dataset 1 ( Hoffer et al., 2018 ). 

Another interesting approach to reduce the complexity of the

model architectures has been developed by HasanPour, Rouhani,

Fayyaz, and Sabokrou (2016) , in which the authors showed that

they can perform on par to very large and deep neural networks

with significantly fewer parameters and smaller model sizes. They

achieved these results by applying a set of defined design princi-

ples. They proved that their networks perform similarly to state-

of-the-art 2 CNN architectures on various well-known datasets, e.g.,

MNIST ( LeCun & Cortes, 2010 ), CIFAR-100 ( Krizhevsky & Hinton,

20 09 ), CIFAR-10 0 ( Krizhevsky & Hinton, 2009 ), and ILSVRC-2012

( Russakovsky et al., 2015 ). 

2.1. Literature review 

This section presents related works where a CNN was used as

a feature extractor, and where the features extracted by the CNN

were subsequently used by a classifier to determine the correct la-

bel of an image. The main working principle of a CNN is to extract

high-level features from an image by means of a sequence of con-

volutional and max-pooling layers. Several methods were defined

in recent years for improving the performance of the standard CNN

architecture. This section aims at introducing existing works re-

lated to the method proposed in this paper. 

Chen, Jiang, Li, Jia, and Ghamisi (2016) use a deep feature ex-

traction method for hyperspectral images (HSI). The authors pro-

pose three deep feature extraction architectures, based on CNNs,

to extract the spectral, spatial, and spectral-spatial features of

HSI. The authors define a 3-D CNN to capture different kinds of
1 JFT-300M is an internal dataset from Google with more than 18k different 

classes in 300 million images, see also Sun, Shrivastava, Singh, and Gupta (2017) . 
2 As of August 2016. 

m  

b

 

a  
pectral-spatial features. The subsequent classification task is per-

ormed by taking into account a fully-connected neural network

nd by comparing its performance with the one achieved by lo-

istic regression, support vector machines (SVMs), and K-nearest

eighbors. The main reason for considering other classifiers is the

ack of sufficient training data. The authors show that the designed

-D CNN can extract the spectral-spatial features effectively, which

eads to satisfactory classification performance. 

A similar approach is presented in Liu, Sun, Meng, Wang, and

u (2018) , where the authors propose a 3D-CNN for HSI classifica-

ion. To solve the problem of insufficient samples of HSI, they also

ntroduce a technique for generating virtual samples. The experi-

ental results show the suitability of the 3D-CNN for addressing

he classification problem at hand, while the generation of virtual

amples is beneficial for improving the performance of the CNN-

ased model over unseen data (generalisation). The final HSI clas-

ification from the image features is performed by means of a neu-

al network. 

Ding, Li, Hu, Zhang, and Wang (2018) present an approach to

ake predictions based on deep features extracted from AlexNet.

part from the AlexNet features, the authors include spectral fea-

ures and gray level co-occurrence matrix (GLCM) texture features

nto the prediction process. The analysis consequently focuses on

he proficiency and predictive capability of these feature sets and

uts less emphasis on the SVM used as a predictor. The authors

ome to the conclusion that the CNN features are much more use-

ul than the other features analyzed. 

In Yang, Zhao, and Chan (2017) , the authors propose a two-

ranch CNN as a feature extractor. The two branches of the CNN

re responsible for extracting features from the spectral domain as

ell as the spatial domain. The set of learned features is then used

or extracting the joint spectral-spatial features for classification. To

mprove the classification performance of the fully-connected neu-

al network the use of a pretrained network was also considered. A

imilar approach was recently presented by Ma, Fu, Wang, Wang,

nd Yin (2018) . The authors designed a two-branch CNN with a

kip architecture to learn the spectral-spatial features. In the first

ranch, a band selection layer is designed to reduce parameters

nd limit overfitting. Unpooling and deconvolution operations are

tilized to recreate the lost information from the pooling layers,

hile the skip architecture allows the deep semantic information

o merge with the shallow appearance information. The second

ranch is responsible for learning deep spectral features. Experi-

ental results show the suitability of the proposed method, as it

educes overfitting and obtains a competitive classification perfor-

ance. Nonetheless, as in Yang et al. (2017) , this increase in ro-

ustness comes at the cost of longer training time. 

In Chen, Lin, Zhao, Wang, and Gu (2014) , the authors propose

 hybrid approach for the classification of images. The framework
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onsists of a combination of principle component analysis (PCA),

eep learning architecture, and logistic regression. In particular, the

uthors consider stacked autoencoders as the deep learning archi-

ecture for extracting the images’ features. The experimental re-

ults demonstrate that the proposed hybrid framework produces

ompetitive results over well-known datasets. The idea of using a

ybrid method for feature extraction is also pursued in the work

f Romero, Gatta, and Camps-Valls (2016) , where a CNN is com-

ined with an algorithm for unsupervised learning of features. Ex-

erimental results show the superiority of the proposed method

ith respect to standard machine learning procedures for image

lassification. In more detail, results demonstrate that single-layer

onvolutional networks can extract powerful discriminative fea-

ures, but deep architectures significantly outperform single-layer

ariants capturing increasing levels of abstraction and complexity

hroughout the feature hierarchy. Another hybrid method is pro-

osed in Cao et al. (2018) , where the authors formulate the image

lassification problem from a Bayesian perspective and address it

y means of Markov random fields and CNNs. In particular, the

NN layers are used for learning the posterior class distributions

sing a patch-wise training strategy. 

A recent semi-supervised approach for addressing image clas-

ification tasks in semi-supervised environments was proposed

y Ling, Li, Zou, and Guo (2018) . The authors propose the use of

NNs with a modified loss function. Additionally to the conven-

ional softmax loss function for labeled data, they integrate a K-

eans clustering loss function for unlabeled data. In this case, the

abeled features extracted from a CNN are not only used for train-

ng the classifier, but also provide the anchors to initialize a set

f clustering centers used by the K-means algorithm. Experimen-

al results show the suitability of this method for addressing the

roblems in which collecting labeled data is an expensive or time-

onsuming task. Another semi-supervised approach is presented

n Liu et al. (2017) , where the authors proposed a semi-supervised

etwork with a skip connection between the encoder and the de-

oder in order to solve the problem of limited labeled samples. 

The works described in Hertel, Barth, Käster, and Martinetz

2017) and in Ayinde, Inanc, and Zurada (2019) perform a more 

eneral analysis of CNNs being generic feature extractors. Both pa-

ers only look at the question of transfer learning using neural net-

orks. They do not investigate the usage of other classification al-

orithms based on the image features. In Hertel et al. (2017) , the

uthors show that CNNs are proficient in transfer learning environ-

ents where only the final classification part must be retrained.

hey use pretrained CNN models and keep the convolutional lay-

rs constant, and they only retrain the final fully-connected layers.

hey show the suitability of CNNs in transfer learning by outper-

orming the benchmark on the CIFAR-100 dataset through this ap-

roach. Furthermore, this inevitably enables lower costs for train-

ng the networks. In Ayinde et al. (2019) , the authors focus their

esearch on the properties of these extracted features, without an-

lyzing their predictive capabilities. 

With respect to the study presented in this paper, all the afore-

entioned contributions propose the use of CNNs, with or with-

ut dimensionality reduction techniques, for extracting the salient

igh-level features of the images. Anyway, these methods do no

ut an emphasis on the last layers of CNNs, namely the fully-

onnected layers that are responsible for performing the classifi-

ation of the input image based on the features extracted using

he convolutional and pooling layers. 

A first step towards the investigation of the classification perfor-

ance of a CNN when the fully-connected layer is replaced with a

ifferent classifier appeared in Tang (2013) . The authors replace

he Softmax layer with a linear support vector machine. In this

ase, the learning process minimizes a margin-based loss instead

f the cross-entropy loss. Thus, the authors used the loss from L2-
VM instead of the standard and linear hinge loss. Experimental

esults show the suitability of the proposed method over popular

atasets. 

Following the same research line, Alipourfard, Arefi, and Mah-

oudi (2018) use a CNN for extracting image features. Subse-

uently, they apply a dimensionality reduction technique for re-

ucing the number of features. They use the reduced set of fea-

ures to perform a simple binary classification by means of a

ogistic regression model. Experimental results are competitive

ith respect to the ones published in the existing literature.

onetheless, improvement in terms of classification performance

s mostly attributed to the dimensionality reduction method. 

In Lu, Yuan, and Fang (2017) , the authors discuss the applica-

ility of convolutional neural networks as feature extractors in the

rea of aerial scene classification. Instead of using fully-connected

ayers to make predictions from the image features, the final clas-

ification is performed with an SVM. In more detail, the output

eatures are clustered and the mapping of cluster centroids to the

orresponding classes is approximated using an SVM. Aerial scene

lassification is a specific learning environment that is character-

zed by the sparsity of available training images. Therefore, the au-

hors’ main motivation to replace the fully-connected layer is to

educe the number of parameters that the model needs to learn.

onvolutional neural networks have to learn a lot of parameters

nd, proportionally, most are in the fully-connected layers. There-

ore, a reasonable approach is to reduce the complexity of the net-

ork to cluster the outputs and use a shallow classifier to make

his prediction. As a result, the authors found that their approach

roduces comparable results to other state-of-the-art approaches

n this particular area, including fully-connected neural networks. 

In Alaslani and Elrefaei (2018) , the authors use AlexNet to ex-

ract high-level features associated with iris images and perform

 classification using an SVM. Although they mention that “dif-

erent types of classifiers can be used for this task, for example,

upport Vector Machine, Softmax Regression, and Neural Network”

 Alaslani & Elrefaei, 2018 , p. 72), they only try out SVMs in the

xperimental phase. Their research is limited to relatively small

atasets, consisting of between 7 to 10 samples per class. In this

nvironment, neural network based models are usually not profi-

ient due to the lack of training data. Regarding the deep feature

xtraction, the authors try out using features from different layers

f the neural networks. They extract the features before the final

lassification but not necessarily before the fully-connected layers.

 similar approach is proposed by Minaee, Abdolrashidi, and Wang

2017) . The authors use VGG-Net to extract the image features and

lso use an SVM for the final classification, showing a satisfactory

erformance in terms of accuracy. 

The work presented in Bodapati and Veeranjaneyulu (2019) ap-

ly a similar approach with respect to the one presented in our

aper. The authors use a deep convolutional neural network that

hey define for the feature extraction, and, subsequently, they per-

orm a classification using an SVM. They do not compare their

pproach with other classification algorithms, apart from fully-

onnected layers as the benchmark for a traditional full CNN ap-

roach. They come to the conclusion that the separate approach

sing SVMs performs similar or slightly better to the traditional

NN approach with fully-connected layers. 

Following a similar approach in Thomaz, Carneiro, and Pa-

rocinio (2017) , the authors try out a separate learning approach

y using a CNN as a feature extractor and then making a classi-

cation using a multilayer perceptron. Their research is based on

 breast cancer dataset that consists of only 307 images. They use

 separate learning procedure of using a CNN and extracting the

mage features and then forwarding those features to a new neural

etwork. Anyway, as pointed out by the authors, the results ob-

ained are not robust due to the small amount of data and the
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ferent neural network architectures. Section 3.2 describes the 

3 Windows 10, Intel Core i7-4510U CPU @ 2.60 GHz, 8.00 GB RAM, GPU not used; 

MacBook Pro-2017, Intel Core i7 @ 2.80 GHz, 16 GB RAM, GPU not used. 
4 https://github.com/novajon/classy-conv-features . 
5 CIFAR-10: mean of 120.707 with a standard deviation of 64.15; CIFAR-100: mean 

of 121.936 with a standard deviation of 68.389. 
memory constraints they faced. Thus, they highlight the need for

a deeper analysis that also considers different classifiers. Corchs,

Fersini, and Gasparini (2017) adopted an ensemble learning ap-

proach based on the Bayesian model averaging method that com-

bines five state-of-the-art classifiers. The proposed method con-

siders predictions given by several classification models, based on

visual and textual data, through a late and an early fusion scheme,

respectively. Experimental results show that an ensemble method

based on a late fusion of unimodal classifiers permits high classifi-

cation performance achievement with respect to a traditional CNN.

An ensemble learning approach was also proposed by Srivastava,

Mukherjee, Lall, and Jaiswal (2017) . In this work, the authors pro-

pose an ensemble of local and deep features for object classifica-

tion. In particular, CNNs are used for extracting different features

from the images, and these features are finally processed by an

ensemble of support vector machines. As commonly done in en-

semble learning, the final classification is obtained by considering

a majority vote obtained from the pool of SVMs. 

To the best of our knowledge, the most recent approach that

poses an alternative to traditional CNNs is the method proposed

in Zhang et al. (2019) . In this paper, the authors propose the use

of capsule networks ( Sabour, Frosst, & Hinton, 2017 ) for image clas-

sification, showing better performance with respect to traditional

CNNs for the dataset taken into account. Nonetheless, capsule net-

works are a conceptually different network structure than convo-

lutional neural networks, so this approach cannot be compared to

the approach from this paper. 

To provide the reader with an overview of the existing contri-

butions in this area, Table 1 summarizes the content of this section

by highlighting the salient points of the papers cited. The analy-

sis of the literature review demonstrated the need for exhaustive

studies aimed at testing the predictive capability of different al-

gorithms on high-level image features. This is a fundamental step

towards a better understanding of the properties of CNNs. 

2.2. Strengths and weaknesses of proposed method 

In comparison to the other approaches presented in Section 2.1 ,

this paper conducts an exhaustive study of multiple algorithms to

test their predictive capability on high-level image features. This

section takes a more in-depth look at the strengths and weak-

nesses of our proposed method in comparison to the literature pre-

sented in Section 2.1 . 

Some of the other authors use Convolutional Neural Networks

as feature extractors to perform a classification using other classifi-

cation algorithms than a fully-connected neural network, e.g. Chen

et al. (2016) , Liu et al. (2018) , Chen et al. (2014) , Srivastava et al.

(2017) , Corchs et al. (2017) , Bodapati and Veeranjaneyulu (2019) ,

Minaee et al. (2017) , Alaslani and Elrefaei (2018) , Lu et al. (2017) ,

Tang (2013) , Alipourfard et al. (2018) and Ding et al. (2018) (see

Table 1 ). Nonetheless, this is mostly done with the intention of

reducing the number of parameters to be optimized because the

authors use datasets with few training samples. In the datasets

used in this paper, the size is not a primary concern. The other ap-

proaches opt for shallower classifiers caused by the constraints of

their datasets. No other approach analyzes the proficiency of using

another classifier with respect to using regular fully-connected lay-

ers for large datasets. This paper takes different classification algo-

rithms into consideration and experimentally determines their ad-

vantages in different scenarios. This enables the establishment of a

guideline under which circumstances certain algorithms are more

likely to outperform other algorithms, as detailed in Section 4.4 . 

Other than that, some authors use CNNs as universal feature

extractors for transfer learning tasks, such that only the final clas-

sifier needs to be retrained, e.g., Hertel et al. (2017) and Ayinde

et al. (2019) . Firstly, these approaches still use neural networks in
he subsequent steps to make predictions. Secondly, this paper’s

pproach does not look at the case of transfer learning but focuses

n improving the performance on the original dataset instead. 

On the downside, this approach mainly comes at the cost of

esources. Our proposed method did not look at the possibility of

raining the subsequent classifier using backpropagation. Instead,

e designed a separate learning procedure. As the separate learn-

ng procedure includes the full training of a CNN to generate the

mage features and needs further training of a classifier, it is in-

vitably longer than simply training a CNN by itself. This limitation

ould be resolved by using a transfer learning approach or univer-

al image features. 

Finally, as discussed in more detail in Section 4 , while some

lassifiers are able to outperform fully-connected neural networks,

o classifier was consistently better than fully-connected networks.

part from logistic regression, the performance of the other clas-

ifiers presents a greater variance than the performance of fully-

onnected neural networks. Thus, improving the classifier’s perfor-

ance comes with a greater risk and also requires the testing of

ifferent methods before deciding which is the best. Following the

xperimentally established guidelines in Section 4.4 likely reduces

he risk of choosing a bad classifier in a given scenario. 

All in all, this paper proposes a complete study that aims at an-

lyzing the proficiency of fully-connected neural networks in clas-

ifying digital images based on high-level features extracted with

 CNN. This is an important contribution to the CNN field because

t experimentally shows that replacing the fully-connected neural

etworks with other classifiers can improve the accuracy of the

odel. In particular, CNN practitioners could take advantage of the

uidelines that were experimentally defined when they have to ad-

ress an image classification problem. 

. Experimental setting 

This section presents the experimental setup, providing all

he necessary information to reproduce the results discussed in

ection 4 . 

The computation was mainly done on commodity hardware, 3 

hich limits the size of the datasets, the benchmark algorithms,

nd the hyper-parameters used for the comparison to a reason-

ble degree. Nonetheless, the algorithms and ideas developed are

calable and applicable on larger datasets subject to computational

eans. 

.1. Experimental procedure 

From a technical perspective, the procedure adopted in the ex-

erimental phase is the two-step procedure from Section 1 . The

ode used to perform the experimental campaign can be found on

itHub. 4 

The first part of the algorithm generates intermediate output

eatures. These output features are produced on several image

atasets: CIFAR-10, CIFAR-100 and a subset of ILSVRC-2012. For

LSVRC-2012, the models are only trained on a reduced dataset

ontaining 100 classes instead of the original 10 0 0 classes. Prepro-

essing is applied to the images. For CIFAR-10 and CIFAR-100, the

mages are normalised using z-scaling. 5 For ILSVRC-2012, the im-

ges are scaled between −1 and 1. 

The high-level output features are generated by training dif-

https://github.com/novajon/classy-conv-features
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Table 1 

Summary of the contributions analyzed in Section 2.1 . 

Reference Feature Extraction Classification Comments 

Chen et al. 

(2016) 

CNN was compared with the Principal 

Components Analysis (PCA), factor analysis 

(FA), and locally linear embedding (LLE) to 

investigate the potential of CNN as feature 

extractor. 

Classification performed by means of 

traditional fully-connected layers. SVMs, KNN, 

and Logistic Regression are also taken into 

account to evaluate the classification 

performance achieved by using PCA, FA, and 

LLE as feature extractors. 

Use of different classifiers and feature 

extractors motivated by the lack of sufficient 

training data. 

Liu et al. (2018) 3-D CNN is used to extract the 

spectral-spatial feature information. 

Classification performed by means of 

traditional fully-connected layers. Comparison 

with SVM highlights the importance of having 

a sufficient number of training observations. 

Application characterized by a very limited 

amount of training data. 

Yang et al. 

(2017) 

A deep convolutional neural network with 

two-branch architecture is proposed to 

extract the joint spectral-spatial features from 

HSIs. The two branches of the proposed 

network are devoted to features from the 

spectral domain as well as the spatial domain. 

Classification performed by means of 

traditional fully-connected layers. 

Application characterized by a very limited 

amount of training data. The authors showed 

that transfer learning is beneficial for 

improving classification performance. 

Ma et al. (2018) The paper designs an end-to-end 

deconvolution network with skip architecture 

to learn the spectral-spatial features. 

Classification performed by means of 

traditional fully-connected layers. 

The design of the network allows to reduce 

overfitting. Additionally, to take advantage of 

information from the lower layers, the skip 

architecture is a viable choice. 

Chen et al. 

(2014) 

Stacked autoencoders used for extracting the 

high-level features. 

A single layer of neurons is used for 

performing the classification task. The 

performance are compared against SVM 

showing a greater accuracy. 

This is one of the first studies in which Deep 

Learning was used for extracting features 

from images. Several design choices look 

quite obsolete nowadays. 

Romero et al. 

(2016) 

Greedy layer-wise unsupervised pretraining 

(see the paper for the details) coupled with 

an algorithm for unsupervised learning of 

sparse features. 

Classification performed by means of 

traditional fully-connected layers. 

The proposed feature extracting algorithm 

outperforms standard principal component 

analysis (PCA) and its kernel counterpart 

(kPCA). Additionally, the authors show that 

deep architectures significantly outperform 

single-layer variants, capturing increasing 

levels of abstraction and complexity 

throughout the feature hierarchy. 

Cao et al. (2018) CNN with a smooth Markov Random Field 

(MRF) prior. The CNN is used to extract 

spectral-spatial features from 3D patches, and 

a smooth MRF prior is placed on the labels to 

further exploit spatial information. 

Classification performed by means of 

traditional fully-connected layers. 

This is the first contribution that formulates 

the image classification task in a Bayesian 

framework, where deep learning and MRF are 

considered simultaneously. Results obtained 

outperformed the ones achieved by SVMs and 

three deep learning architectures. 

Ling et al. (2018) CNN with four convolutional layers. Classification is performed using a 

semi-supervised method: for labelled images 

the traditional architecture with 

fully-connected layers is used, while a 

K-means clustering algorithm is jointly used 

with the information about the labelled 

images to perform the classification of 

unlabeled images. 

The semi-supervised method outperforms the 

accuracy obtained with a traditional 

SVM-based classifier as well as the accuracy 

achieved by state-of-the-art deep learning 

architectures. 

Liu et al. (2017) CNN with skip connections ( Valpola, 2015 ). Classification performed by means of 

traditional fully-connected layers. An encoder 

is used to assign a ground-truth label to all of 

the unlabeled images before the classification 

step. 

In order to deal with limited labeled samples, 

the CNN is trained by semi-supervised 

method to simultaneously minimize the sum 

of supervised and unsupervised cost 

functions. The architecture outperforms other 

deep learning architectures and an SVM 

classifier. 

Alipourfard et al. 

(2018) 

To overcome the curse of dimensionality a 

subspace-based feature extraction method is 

performed by calculating the orthonormal 

basis of the correlation matrix for each class 

to reduce the dimensionality of the 

hyperspectral images and increasing the 

signal to noise ratio. The CNN architecture 

and subspace reduction method are jointly 

used to extract image features. 

Logistic regression. Experimental results from two real and 

well-known hyperspectral images show that 

the proposed strategy leads to performance 

improvement, as opposed to using the 

original data and conventional feature 

extraction strategies. This is a suitable 

approach when limited training samples are 

available. 

Tang (2013) CNN with some modifications to the standard 

backpropagation algorithm are introduced to 

make the final prediction with a linear SVM. 

Linear support vector machines. The authors show that by simply replacing 

softmax with linear SVMs gives significant 

gains on popular deep learning datasets 

MNIST, CIFAR-10, and the ICML 2013 

Representation Learning Workshop’s face 

expression recognition challenge. 

Lu et al. (2017) CNN that has different size of convolutional 

kernels in the same layer and ignores the 

fully convolutional layer, so it has fewer 

parameters and can be trained well on small 

training sets. 

The fully-connected layer is replaced by a 

Cluster-SVM classifier. This is used to speed 

up the process of classification. 

The technique outperforms the 

state-of-the-art results on the dataset taken 

into account, requiring less training time. 

( continued on next page ) 
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Table 1 ( continued ) 

Reference Feature Extraction Classification Comments 

Ding et al. 

(2018) 

Pretrained AlexNet deep convolutional neural 

network model was used for feature 

extraction. 

The features extracted with AlexNet and 

spectral features are used as the input for an 

SVM-based classifier. 

The authors show that the deep convolutional 

neural networks can extract more accurate 

remote sensing image features, and 

significantly improve the overall accuracy of 

classification with respect to traditional 

feaure extraction methods. 

Alaslani and 

Elrefaei (2018) 

Pretrained AlexNet deep convolutional neural 

network model was used for feature 

extraction. 

The features extracted with AlexNet are used 

as the input for an SVM-based classifier. 

The authors focus their analysis on the 

suitability of CNN as a feature extractor. They 

show that features extracted with CNN are 

useful for improving the classification 

accuracy with respect to other techniques. 

Minaee et al. 

(2017) 

Pretrained VGGNet deep convolutional neural 

network model was used for feature 

extraction. 

The features extracted with VGGNet are used 

as the input for an SVM-based classifier. 

By using VGGNet as a feature extractor, 

authors show that it is possible to improve 

(in terms of classification accuracy) the 

results obtained by using other feature 

extraction techniques. 

Bodapati and 

Veeranjaneyulu 

(2019) 

Traditional CNN with three convolutional 

layers. 

The features extracted with the CNN are used 

as the input for an SVM-based classifier. 

The authors show that on the small dataset 

under examination, the use of a SVM 

outperforms the classification accuracy that 

can be obtained by a fully-connected neural 

network. These findings are difficult to 

generalize given that only one single dataset 

and one architecture were considered. 

Thomaz et al. 

(2017) 

Traditional CNN. Multilayer perceptron trained with the 

features extracted from the CNN. 

This work uses the same idea proposed in our 

paper. However, as pointed out by the 

authors, the results obtained are not robust 

due to the very small amount of data and the 

memory constraints they faced. Thus, they 

highlight the need for a deeper analysis that 

also considers different classifiers. 

Corchs et al. 

(2017) 

Pretrained AlexNet deep convolutional neural 

network model was used for feature 

extraction. 

Ensemble model of five state-of-the-art 

classifiers: Naive Bayes, Bayesian Network, 

Nearest Neighbor, Decision Tree, and Linear 

Support Vector Machine. 

The authors show that a deep pretrained 

network is able to extract features that 

increase the classification accuracy with 

respect to other feature extraction methods. 

Additionally, ensemble models, built by 

considering weak learners trained on these 

features, improve the classification accuracy 

with respect to single independent models. 

Srivastava et al. 

(2017) 

The authors extracted features with three 

pretrained deep convolutional neural 

networks (AlexNet, VGGNet, GoogleNet). 

Ensemble model of SVM-based classifiers. The authors show the suitability of ensemble 

models for combining the representation 

capability of features from deep networks 

with information captured from local features. 

Hertel et al. 

(2017) 

Traditional CNN architecture with five 

convolutional layers. 

Classification performed by means of 

traditional fully-connected layers. 

The authors show that convolutional 

networks are able to learn generic feature 

extractors that can be used for different tasks. 

This is an interesting study for the area of 

transfer learning. 

Ayinde et al. 

(2019) 

Modified version of the VGG architecture, 

where each layer of convolution is followed 

by a normalization layer. 

Classification performed by means of 

traditional fully-connected layers. 

This is an interesting study for better 

understanding of the features extracted by a 

CNN. In particular, the authors show how 

size, choice of activation function, and weight 

initialization impact redundant feature 

extraction of deep neural network models. 

The results achieved on well-known dataset 

show that the wider and deeper a network 

becomes, the higher is its tendency to extract 

redundant features. 

Zhang et al. 

(2019) 

1D-convolution capsule network separately 

extracts spatial and spectral information on 

spatial and spectral domains. 

Classification Capsule Zhang et al. (2019) . The authors show that the proposed 

1D-Convolution Capsule Network is superior 

to state-of-the-art methods with respect to 

both the accuracy and training effort. 
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design choices for the neural networks. The trained CNNs are then

cut in such a way that the fully connected layers are removed,

and only the flattened outputs from the convolutional layers re-

main. A high-level image feature in this context describes the out-

put from the image filters from the last convolutional layer. The

intermediate dataset is then generated as the flattened output of

the trained convolutional layers along with the correct classifica-

tion of the input image. The networks were created with the inten-

tion of producing suitable image filters, but the hyper-parameters

were only fine-tuned to a reasonable degree, as this is not the

focus of this paper. Although a high initial benchmark score in
he first step is desirable to assure that the produced image fil-

ers are useful to the neural network, overall performance in the

rst step is not highly relevant to assess the performance in the

econd step because every classification algorithm gets the same

nput from the first step. Therefore, it is still a fair competition

etween the models’ performance in the second step. A visuali-

ation of the first step as derived from Fig. A.1 can be found in

ig. A.2 . 

The second script trains different classification algorithms on

he intermediate datasets to test whether they can perform bet-

er than the original convolutional neural network. Section 3.3
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7 In this work we used the models provided by Keras ( www.keras.io ). 
8 only counting hidden convolutional, dense and pooling layers. 
9 approximately halved depending on whether the width and height are even or 
escribes the applied classification algorithms and associated

yper-parameters. 

The quality of each classification algorithm is evaluated using

op- n accuracy. Mainly top-1 and top-5 accuracy are used in the

valuation of the models, but more numbers are disclosed. Apart

rom that, the complexity of the models is measured in terms of

he size of the models produced. For the MLP models, the size

s determined as the size of the model structure in JSON format

nd the trained weights serialised in HDF5 format. The other mod-

ls are serialised in Python Pickle format. The time complexity of

raining the individual models is not measured due to different

raining environments and conditions. Regardless, it is important

o point out that the overall approach proposed in this paper is

nevitably longer than simply training a convolutional neural net-

ork. 

A visualisation of the second step as derived from the example

n Fig. A.1 can be found in Fig. A.3 . 

To get robust and convincing results, several measures have

een put into place. The approach is tested on different datasets.

his will evaluate whether there are patterns or specific character-

stics in the datasets that make certain algorithms perform better

han others. These datasets have different sizes and different num-

ers of classes. 

All algorithms’ hyper-parameters are explored through a grid

earch with previously chosen options as outlined in Section 3.3 .

he training set is split from the test set, with a 5:1 split for CIFAR-

0 and CIFAR-100 6 and a 3:1 split for ILSVRC-2012 (75 % training,

5 % test). This is done even before training the original CNN in

he first step. The whole CNN then learns based on the data from

he training set. The intermediate data for both the training and

est sets is produced from that trained CNN model. 

In the second step, the intermediate data created from the

raining set is used to train the classification algorithms and fine-

une the hyper-parameters. Hence, the same entries are used to

rain the models in the first and second steps. 

Next, the training data is cross-validated with k-fold cross-

alidation with a value of k = 10 . The validation data in this sec-

nd step is part of the training data from the first step. The results

f the cross-validations are saved, and p -values are calculated to

ssess statistical significance (see Appendix). The final algorithms’

erformance is validated on the initial test data that the algorithm

id not previously used for training purposes. This procedure al-

ows for a fair comparability of the results and ensures statistical

alidity. 

.2. Model architecture benchmarks 

Different convolutional neural network architectures are used

or each dataset. While the same network architectures can be ap-

lied to CIFAR-10 and CIFAR-100, many architectures that were de-

igned for ILSVRC-2012 are not suitable for the much smaller im-

ges in CIFAR-10 and CIFAR-100. Through a pooling operation, the

mages are downsampled in the network. If too few pixels exist in

he input layer, larger networks that use many pooling operations

ould downsample the image more than possible. Therefore, these

etwork architectures would need to be modified in order to apply

hem to the CIFAR datasets. 

.2.1. ILSVRC-2012 architecture benchmarks 

For the ILSVRC-2012 dataset, pre-existing models designed for

he ImageNet dataset are leveraged to create the intermediate data.

hese networks are already pre-trained and thus do not require
6 Per default dataset options. 

u

s

d

he computational effort of further training. Moreover, these mod-

ls have been developed explicitly as benchmarks for the Ima-

eNet dataset and should therefore perform well on these datasets.

hree models were chosen because they achieve state-of-the-art

esults on the ImageNet dataset and are available with pre-trained

eights in software suites. 7 The following models are used: Incep-

ion V3 ( Szegedy et al., 2016 ), Xception ( Chollet, 2016 ) and Incep-

ion ResNet V2 ( Szegedy, Ioffe, Vanhoucke, & Alemi, 2017 ). 

.2.2. CIFAR architecture benchmarks 

For the CIFAR-10 and CIFAR-100 datasets, identical model archi-

ectures are used, because the two datasets have the same input

hape of 32 × 32 × 3. Only the last fully connected output layer dif-

ers since CIFAR-10 expects 10 output neurons and CIFAR-100 has

00 output classes. All custom MLPs are designed with constant

adding at the borders. For padding, the overlapping entries are

lled with 0s for the convolutional layers and with −∞ for the

ax-pooling layers. 

The following MLP architectures were chosen for both CIFAR-10

nd CIFAR-100. All networks were trained for 80 iterations. 

• CNN-1: The first CNN’s architecture is a 10-layer convolu-

tional neural network 8 with a final fully connected output

layer. The network has six convolutional layers which all

use convolutional windows of k w 

= k h = 3 and a horizon-

tal and vertical stride of 1. The first two convolutional lay-

ers have depths of 128, the following two convolutional lay-

ers have depths of 256 and the last two convolutional layers

have depths of 512. After each convolutional layer, an expo-

nential linear unit (ELU) activation is applied. After the acti-

vation of every second convolutional layer, a pooling layer

with a pooling window of 2 × 2 using max-pooling is ap-

plied. The horizontal and vertical strides are also 2, such that

the image width and height are approximately halved 

9 af-

ter each pooling operation. The pooling operations do not

use padding at the borders. 10 After every pooling operation,

a dropout layer is added. The dropout probability increases

from 0.1 after the first pooling layer to 0.25 after the second

one and 0.5 after the third pooling layer. After this, the out-

put is flattened, and two dense layers follow. The first dense

layer has 1024 neurons and is followed by an ELU activation

and a dropout layer with a probability of 0.5. The second

dense layer (output layer) makes the mapping to the num-

ber of output classes, 10 or 100. This final output is com-

pressed to between 0 and 1 through the application of a

softmax function. This network produces 2048 high-level in-

termediate features after its convolutional layers. 
• CNN-2: The second convolutional neural network is con-

structed to be smaller than the first network and only

has seven hidden layers. It follows the same design princi-

ple as the CNN-1 of creating two convolutional layers fol-

lowed by one max-pooling layer. The activation functions

after the convolutional layers are changed to rectified lin-

ear units (ReLU). This construct is only used twice instead

of three times, as in the first convolutional neural network.

This means only four convolutional and two pooling lay-

ers are used in total. The parameters for the pooling lay-

ers are left the same. The depths of the convolutional layers

are reduced to 32 for the first block (first two convolutional
neven numbers. 
10 Since the input images for both CIFAR datasets have 32 pixels in both dimen- 

ions, they can be perfectly divided by 2 five times. The width and height stay even 

uring these divisions, so border handling is not necessary. 

http://www.keras.io
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11 C is the parameter associated with the slack variables from ξ . 
12 γ is the free parameter of the RBF kernel function. 
13 Although this could be done more efficiently, the models are created from 

scratch every time to leverage the differences of random initialisation. Else, it would 

be sufficient to create a model for the maximum number of iteration and save the 

model after each indicated number of iteration 
layers) and 64 for the latter block (last two convolutional

layers). Dropout after these blocks is kept constant at 0.25.

The flattened output is then passed to a dense layer with

512 neurons, followed by a ReLU activation and a dropout

layer with a probability of 0.5. The output layer is identi-

cal in structure to that of CNN-1, making the squashed pre-

diction of 10 or 100 classes with a fully connected layer.

This network structure produces 2304 high-level intermedi-

ate features as input to the fully connected layers. 
• SimpleNet: SimpleNet has 18 hidden layers, of which 13 are

convolutional layers and five are max-pooling layers. The

output layer making the final prediction is a regular fully

connected layer. The convolutional layers use 3 × 3 convo-

lutional windows for the first 10 and the 13th layers, while

the layers 11 and 12 use 1 × 1 convolutions. The depth of

the convolutional layers increases from 64 in the first layer

to 128 for layers 2 through 6, 256 for layers 7 to 9, 512 for

layer 10, and 2048 for the 11 th convolutional layer. The con-

volutional layers 12 and 13 have a depth of k d = 256 . All

convolutional layers have horizontal and vertical strides of

1 and apply padding at the borders such that the image di-

mensions are not altered after the convolutional operation.

Batch normalisation and ReLU activation are applied after

convolutional layers 1 to 6 and 8 to 10. In layer 7, batch nor-

malisation and the activation function are only applied af-

ter the pooling operation. Convolutional layers 11 to 13 only

use a ReLU activation after the convolutional layer, with-

out batch normalisation. Dropout is consistently applied af-

ter batch normalisation, activation, or max-pooling (where

applicable) for convolutional layers 1 through 8 as well as

10 and 11, with a probability of 20%. In the ninth layer, the

dropout function was applied before the pooling operation.

The five max pooling operations were applied after convo-

lutional layers 4, 7, 9, 12, and 13. The pooling operations

all use pooling windows of 2 × 2 with horizontal and ver-

tical strides of 2 and no padding at the borders. All convolu-

tional layers are initialised with the Glorot normal initialiser

( Glorot & Bengio, 2010 ). SimpleNet produces 256 high-level

image features. 
• VGG-19: VGG-Net won the localisation task competition

on ImageNet in 2014 and placed second in the clas-

sification task after GoogLeNet. The general idea is to

build deeper networks with smaller convolutional filters

that essentially cover the same receptive fields but en-

able more transformations and non-linearities ( Simonyan

& Zisserman, 2014 ). The VGG network of this paper

is a version adapted to the CIFAR datasets with 19

hidden layers (VGG-19). Of the 19 hidden layers, 13 layers

are convolutional, five layers are max-pooling layers, and

there is one dense layer at the end before the fully con-

nected output layer. As previously mentioned, the convolu-

tional layers all use 3 × 3 image filters with padding at the

borders and with horizontal and vertical strides of 1, such

that the image dimensions are maintained. As the network

gets deeper, the depth of the convolutional layers increases

as well. The first two convolutional layers have depths of 64,

the proceeding two layers have depths of 128, the subse-

quent three layers have depths of 256, and the following six

convolutional layers have depths of 512. The final dense hid-

den layer has 512 neurons. After each convolutional layer,

a ReLU activation function is applied. The same goes for

the final hidden fully connected layer. After the activation,

batch normalisation is applied. The five max-pooling layers

are layers 3, 6, 10, 14, and 18. They all use a pooling window

of size 2 × 2 with horizontal and vertical strides of 2. Over

the whole network, dropout is only applied in some layers.
Nonetheless, the principal of increasing dropout probabilities

is adhered to. Throughout the network, dropout is applied

after layers 1, 4, 7, 8, 11, 12, 15, 16, 18, and 19. Layer 1 has

a dropout probability of 0.3, and layers 18 and 19 have a

dropout probability of 0.5. The layers between layers 2 and

18 use a dropout probability of 0.4. VGG-19 produces 512

high-level image features as input to the subsequent classi-

fier. 

.3. Classification algorithms used 

After creating the intermediate dataset, several classification al-

orithms are applied to the intermediate dataset. The following

lassification algorithms are used with the specified parameters ex-

austively tested in a grid search to enable an objective compari-

on: 

• Support vector machine (SVM) : 12 different SVM configu-

rations are tested in the grid search. The first four SVMs use

a linear kernel with C 

11 values of 1, 10, 100 and 1000. The

other eight SVM configurations use RBF as the kernel, with

C values of 1,10,10 0 and 10 0 0 and gamma ( γ ) 12 values of

1 × 10 −3 and 1 × 10 −4 . 
• Logistic regression (LR) : 12 LR configurations are tested. For

the loss function, each model either uses an � 1 or � 2 loss as

the penalty of the model, while the value for c is set in the

range of 1 × 10 −3 , 1 × 10 −2 , . . . , 1 × 10 2 . 
• K-nearest neighbours (KNN) : 6 KNN configurations are

tested. KNN can get computationally very expensive, espe-

cially for large values of k . The benchmark was done with

k ∈ 1, 5, 10 and the leaf size either being 1 or 5 as well. All

configurations use Euclidean distance as the distance metric.
• Random forests estimator (RFE) : 6 different RFE configura-

tions are tested. The number of estimators is set to either

10, 100, or 10 0 0, combined with Gini or Entropy diversion

measure. The estimators are decision trees. 
• AdaBoost classifier (ADB) : AdaBoost is benchmarked on

nine configurations. Models with either 10, 100, or 10 0 0 es-

timators are combined with learning rates of 1.0, 0.5, or 0.1.

The estimators are decision trees. 
• Gradient boosting classifier (GBC) : Gradient Boosting’s

benchmark parameter combinations total to six models. The

models have 10 or 100 estimators, with learning rates of

0.05, 0.1 or 0.5. The estimators are decision trees. 
• XGBoosting classifier (XGB) : XGBoosting is benchmarked on

16 configurations. The number of estimators is either 10 or

100. The learning rate is set to be 0.1 or 0.01. The estimators

are decision trees. The maximum depth of each weak tree

learner is limited to 1, 3, 5, or 10. 

These classification algorithms are further compared against

arious multi-layer perceptron architectures. All MLP architectures

re trained with categorical cross-entropy loss, an Adam optimiser

ith learning rates of 0.0 0 01 and 0.0 01, and with accuracy as the

ptimisation metric. The models are trained for 10,20,30,50 and

00 epochs. 13 The final layer is encoded with one neuron per out-

ut class. 

Regarding topology, we selected three architectures that were

nspired by the fully connected layers of existing convolutional

eural network architectures. These architectures were fine-tuned
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fter a preliminary process in which several architectures were

ested. 

• MLP-1 : MLP-1 is a neural network with one fully connected

hidden layer and one output layer. Its hidden layer is a

dense layer with 1024 neurons, followed by an ELU activa-

tion function and a dropout layer with a probability of 0.5.

The output layer, with as many neurons as final classes, is

followed by a softmax activation to squash the values to be-

tween 0 and 1. 
• MLP-2 : MLP-2 has one fully connected hidden and one out-

put layer. Its hidden dense layer has 512 neurons, followed

by a ReLU activation function and a dropout layer with a

probability of 0.5. The dense output layer (with as many

neurons as final classes) is squashed to between 0 and 1

with a softmax activation function. 
• MLP-3 : MLP-3 only has one fully connected output layer.

Hence, it directly performs the mapping from the flattened

image features to the output. The only layer has as many

neurons as final classes, followed by a softmax activation

function. Technically, this is not an MLP since it consists only

of an input and an output layer. 

Since these three architectures are combined with two possi-

le learning rates and five different epochs, the total number of

reated models is 30. During training, all model architectures con-

erged (thus suggesting that the hyper parameters selected with

rid-search have suitable values). 

. Results 

This section summarises and interprets the results that were

chieved using the experimental setup outlined in Section 3 . The

xperimental setup consists of an initial step of creating candi-

ate intermediate datasets through different CNNs, followed by a

enchmark of different classifiers on these intermediate datasets.

irst, the results and observations from the intermediate data cre-

tion step are displayed in Section 4.1 . After that, the results from

he second classification step on these intermediate datasets are

resented and described in Sections 4.2 and 4.3 . The achieved re-

ults are then further analysed and interpreted in Section 4.4 . 14 

.1. Output from convolutional neural network structures 

The following section discusses the main findings from the cre-

tion of the intermediate datasets through the training of CNNs on

he initial datasets. 

The networks were trained for 80 iterations, and they all

eem to have converged for both the training and the test

atasets. As described in Section 3.2.2 , the algorithms’ architec-

ures were selected after trying out different architectures and

yper-parameters, which is why the set of CNN models does not

ontain any entirely erroneously trained models. 

.1.1. CIFAR-10 intermediate observations 

For CIFAR-10, the results can be found in Table 2 . VGG-19 is not

rained separately because it is available as a pre-trained model for
15 
IFAR-10. 

14 CIFAR-10, CIFAR-100, and the used subset of ILSVRC-2012 are referred to as 

nitial or original datasets. The CNNs trained or obtained on these initial datasets 

e.g., CNN-1) are called original, trained, or benchmark CNNs. The produced datasets 

rom the CNNs are referred to as intermediate datasets, usually denoted with the 

orresponding CNN and original dataset (e.g., ”CNN-1 intermediate dataset trained 

n CIFAR-10”). This information is omitted when it can be inferred from context. 

he benchmarked classification algorithms are named benchmark classifiers or, gen- 

rally, classification algorithms. When top- n accuracy is mentioned, we refer refer 

o the top- n accuracy on test data, unless explicitly stated differently. 
15 Pre-trained model from https://github.com/geifmany/cifar-vgg . 
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From the results reported in Table 2 , it is notable that VGG-

9 has the best final accuracy. From the manually trained mod-

ls, SimpleNet reaches the highest testing and training accuracy

alues. It also converges the fastest on both training and test

ata. Nonetheless, the CNN-1 architecture achieves only marginally

orse results, with SimpleNet outperforming the test accuracy of

NN-1 by 3.5 percentage points. CNN-2 performs worse than the

forementioned two architectures, which could be caused by the

educed complexity of the model, making CNN-2 unable to observe

ore complex patterns. Overall, there are some indications of over-

tting of the algorithms on the training data compared to the test

ata. Nonetheless, this does not worsen the test datasets’ accu-

acy scores. Since the test accuracy did not decrease, but stayed

teady or even improved slightly, the networks are considered to

e well suited for further analyses. Compared to the results from

he pretrained VGG-19 network, the three benchmark models per-

ormed slightly worse (between 5 to 12 percentage points) on un-

een data. 16 From the size of the VGG-19 network, it can be seen

hat it is more complex than the other networks, which is likely

hy it can observe more complex patterns in the image data. 

.1.2. CIFAR-100 intermediate observations 

The results for CIFAR-100 can be found in Table 3 . As for CIFAR-

0, a pre-trained VGG-19 model is used. 17 

To summarise the results of Table 3 , CNN-1 and SimpleNet

chieve a similar accuracy on their training data (around 0.93).

onetheless, SimpleNet can learn more quickly and generalises

etter over unseen data, and its test data accuracy is about 2 per-

entage points higher. As on CIFAR-10, CNN-2 performs worse than

he other architectures, probably because it can capture fewer non-

inear relationships. The results from the custom-trained neural

etworks are worse than the ones achieved with the pre-trained

nd more complex VGG-19. VGG-19 seems to detect more patterns

n the training data and produces good results over unseen data, 18 

eaching an accuracy of 0.7048. This is almost 10 percentage points

igher than the second best from SimpleNet. Apart from the in-

reased complexity of VGG-19, another reason for its superiority

ould lie within the data preprocessing stage. 

.1.3. ILSVRC-2012 subset intermediate observations 

An overview of the model specifications created from the

enchmarked CNN architectures on the subset of ILSVRC-2012 with

00 classes can be found in Table 4 . Compared to the CIFAR

atasets, the intermediate datasets from the ILSVRC-2012 CNN net-

orks contain many more high-level image features (intermediate

eatures). 

The best performing model on both top-1 and top-5 is Incep-

ion ResNet V2 with a top-1 accuracy of 0.8030 and a top-5 ac-

uracy of 0.9530. In terms of size, it is also the biggest and most

omplex model. Apart from the structural advantages that the In-

eption ResNet architecture brings, the additional model complex-

ty enables the model to learn more complex non-linear relation-

hips within the data. Contrarily to the model’s size, the produced

raining and test data sizes for the subsequent step are the small-

st, with 1620 MB for training and 539 MB for the test data. This

ndicates that the network’s complexity does not substantially lie

n its last fully connected layers. The number of produced features
16 VGG-19 was not trained by the author thus it is not possible to determine 

hich data points were used as training and test data. A comparison between the 

nal model’s performance and the performance of the other models on unseen data 

s therefore not completely accurate. 
17 Pre-trained model from https://github.com/geifmany/cifar-vgg . 
18 VGG-19 was not trained by the author; thus, it is not possible to determine 

hich data points were used as train and test data. A comparison between the final 

odel’s performance and the performance of the other models on unseen data is 

herefore not completely accurate. 

https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg
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Table 2 

CIFAR-10 intermediate dataset results. 

Architecture Top-1 test accuracy Top-1 train accuracy Model size [MB] Train data size [MB] Test data size [MB] lIntermediate features Param 

CNN-1 0.8504 0.9846 26.5 636.8 127.7 2048 6.7M 

CNN-2 0.8113 0.9155 5 520.2 104.4 2304 1.3M 

SimpleNet 0.8852 0.9869 22.1 69.6 14.3 256 5.5M 

VGG-19 0.9359 0.9359 60.1 143.2 28.9 512 15M 

Table 3 

CIFAR-100 intermediate dataset results. 

Architecture Top-1 test accuracy Top-1 training accuracy Model size [MB] Training data size [MB] Test data size [MB] Intermediate features Param 

CNN-1 0.5834 0.9297 26.5 602.5 120.5 2048 6.7M 

CNN-2 0.4750 0.6308 5 501.9 100.4 2304 1.3M 

SimpleNet 0.6099 0.9303 22.1 72.0 14.4 256 5.5M 

VGG-19 0.7048 0.7048 60.3 141.3 28.3 512 15M 

Table 4 

ILSVRC-2012 intermediate dataset results for 100 classes. 

Architecture Top-1 accuracy Top-5 accuracy Model size [MB] Training data size [MB] Test data size [MB] Intermediate features Param 

Inception V3 0.7790 0.9370 92 2200 732 131,072 21.8M 

Xception 0.7900 0.9450 88 3240 1080 204,800 20.8M 

Inception ResNet 0.8030 0.9530 215 1620 539 98,304 54.3M 
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from the flattened convolutional layer is also the lowest among

the compared models. Inception ResNet V2 produces 98,304 fea-

tures for the intermediate dataset. Inception V3 and Xception

seem to be similar in overall model complexity with Inception

V3 having 21.8M parameters while Xception only has 20.8M pa-

rameters. Nonetheless, Xception can outperform Inception on both

top-1 and top-5 test accuracy. Xception reaches a top-1 test accu-

racy of 0.7900, while Inception V3 only reaches a top-1 test ac-

curacy of 0.7790. The top-5 test accuracy of Xception is 0.9450

while the top-5 test accuracy of Inception V3 is 0.9370. Regard-

ing the complexity of the produced intermediate datasets, Xcep-

tion generates the intermediate dataset with the most features:

204,800. Inception V3’s intermediate dataset has 131,072 features.

The train and test intermediate data sizes for Inception V3 are

2200 MB and 732 MB respectively. For Xception, the training in-

termediate dataset size is 3240 MB, and its test set has a size of

1080 MB. 

4.2. MLP architecture comparison on intermediate datasets 

This section describes the main findings from retraining MLP

architectures on the intermediate datasets. This benchmark mainly

shows how well a separated learning process can imitate the orig-

inal learning process of a full CNN. Because the intermediate data

is created by removing the fully connected layers from the trained

CNNs, training a fully connected neural network on this interme-

diate dataset should be able to achieve at least comparable results

to the initially trained models, given that the network structure

used in the second step is similar to the one that is used for the

final classification in the first step. The observations in this sec-

tion are based on the intermediate datasets created from CIFAR-

100. Nonetheless, the findings generalise to other datasets because

the observations on CIFAR-100 are similar to the ones on the other

benchmarked datasets. 

As described in Section 3.3 , the MLP architectures are trained

on the intermediate output data for 10, 20 and 50 epochs com-

bined with learning rates of 0.001 and 0.0001. Because this is done

with 10-fold cross-validation, this leads to 60 neural networks be-

ing created per architecture with a total of 1600 epochs of train-

ing 45,0 0 0 entities per epoch. Nonetheless, it can be observed that

some of these hyper-parameters do not work well on the interme-
iate dataset. To exemplify this, the results on the first intermedi-

te dataset, created through CNN-1, can be found in Appendix H .

ost networks already converge after 10 epochs, and further train-

ng does not lead to any improvements, neither on the training nor

n the validation set (during cross-validation). Fig. C.1 shows the

ehaviour of MLP-1 being trained on CNN-1 intermediate data af-

er 10 epochs, whereas Fig. C.2 shows the same training procedure

fter 50 epochs. It can be seen that the networks seemingly can-

ot detect any new patterns after 10 iterations. As for the learn-

ng rate, a lower learning rate works better than a higher learning

ate. Both on the training and the validation set, a higher learning

ate leads to less smooth learning curves with the networks mak-

ng rather big jumps without converging to an optimal value. This

an be seen by comparing Fig. C.2 (illustrating MLP-1 being trained

n CNN-1 intermediate data for 50 epochs with a learning rate

f 0.0 0 01) to Fig. C.3 (illustrating the same network being trained

ith a higher learning rate of 0.001). The same behaviour is ob-

ervable for the other MLP architectures. Experimentation with an

ven lower learning rate than 0.0 0 01 did not lead to any significant

mprovements. 

For the three MLP architectures, the results in Tables 5–8 were

chieved on the intermediate datasets from CNN-1, CNN-2, Sim-

leNet and VGG-19 respectively. Tables E.1 , E.2 , E.3 and E.4 in

ppendix E show the p -value of a two-sided student’s t -test for

he respective validation results. From the p -values, the statistical

ignificance levels of the results can be derived. 

A comparison of the models from Tables 5–8 , show that the

est accuracy scores of some intermediate datasets are consistently

ower than others. For example, the accuracy scores on CNN-2 in-

ermediate data in Table 6 are between 0.3687 (MLP-3, LR-0.001)

nd 0.4498 (MLP-1, LR-0.0 0 01) on the test dataset, while the accu-

acy scores on VGG-19 intermediate data in Table 8 are between

.6927 (MLP-1, LR-0.001) and 0.7080 (MLP-2, LR-0.0 0 01) on the

est dataset. The VGG-19 network already performed much bet-

er in the previous step of creating the intermediate dataset (see

able 3 ). This emphasises the importance of the previously learned

mage features for the overall model performance in this subse-

uent step. 

Concerning MLP architectures, it is hard to pick a configura-

ion that works best for all datasets. Of the six compared con-

gurations (3 MLP architectures, 2 learning rates), MLP-1 with

 learning rate of 0.0 0 01 performs the best on CNN-2 and
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Table 5 

CIFAR-100 MLP classification results on CNN-1 intermediate data, where LR-1 is a learning rate of 0.0 0 01 and LR-2 is a learning rate of 0.001. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

Accuracy 

Model size 

MLP-1 LR-1 0.5585 0.6770 0.8117 0.8790 0.9349 0.9896 0.9997 8611KB 

MLP-2 LR-1 0.5630 0.6860 0.8148 0.8874 0.9422 0.9884 0.9997 4313KB 

MLP-3 LR-1 0.5592 0.6753 0.8002 0.8717 0.9310 0.9888 0.9998 811KB 

MLP-1 LR-2 0.5415 0.5976 0.6277 0.6521 0.6922 0.9680 0.9929 8161KB 

MLP-2 LR-2 0.5500 0.6381 0.7006 0.7305 0.7645 0.9738 0.9979 4313KB 

MLP-3 LR-2 0.5293 0.6466 0.7803 0.8593 0.9288 0.9681 0.9979 811KB 

Table 6 

CIFAR-100 MLP classification results on CNN-2 intermediate data, where LR-1 is a learning rate of 0.0 0 01 and LR-2 is a learning rate of 0.001. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP-1 LR-1 0.4498 0.5773 0.7272 0.8279 0.9060 0.4494 0.9069 9635KB 

MLP-2 LR-1 0.4402 0.5692 0.7311 0.8235 0.9058 0.4402 0.8191 4825KB 

MLP-3 LR-1 0.4223 0.5439 0.7051 0.8144 0.9055 0.4235 0.7330 911KB 

MLP-1 LR-2 0.4017 0.5247 0.6844 0.7843 0.8807 0.4102 0.8852 9635KB 

MLP-2 LR-2 0.3741 0.4974 0.6616 0.7748 0.8740 0.3762 0.6694 4825KB 

MLP-3 LR-2 0.3687 0.4911 0.6520 0.7653 0.8717 0.3713 0.8906 911KB 

Table 7 

CIFAR-100 MLP classification results on SimpleNet intermediate data, where LR-1 is a learning rate of 0.0 0 01 and LR-2 is a learning rate of 0.001. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP-1 LR-1 0.6326 0.7549 0.8744 0.9320 0.9683 0.9838 0.9970 1443KB 

MLP-2 LR-1 0.6265 0.7531 0.8777 0.9354 0.9715 0.9589 0.9825 729KB 

MLP-3 LR-1 0.6067 0.7394 0.8642 0.9276 0.9699 0.9417 0.9694 111KB 

MLP-1 LR-2 0.6066 0.7277 0.8549 0.9172 0.9638 0.9430 0.9711 1443KB 

MLP-2 LR-2 0.6027 0.7316 0.8601 0.9220 0.9653 0.9275 0.9643 729KB 

MLP-3 LR-2 0.6137 0.7410 0.8602 0.9207 0.9593 0.9557 0.9707 111KB 

Table 8 

CIFAR-100 MLP classification results on VGG-19 intermediate data, where LR-1 is a learning rate of 0.0 0 01 and LR-2 is a learning rate of 0.001. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP-1 LR-1 0.7048 0.7960 0.8646 0.9069 0.9423 0.9962 0.9980 2467KB 

MLP-2 LR-1 0.7080 0.8051 0.8817 0.9193 0.9533 0.9968 0.9984 1241KB 

MLP-3 LR-1 0.7052 0.8034 0.8782 0.9183 0.9525 0.9969 0.9982 211KB 

MLP-1 LR-2 0.6927 0.7574 0.8059 0.8312 0.8583 0.9940 0.9957 2467KB 

MLP-2 LR-2 0.6994 0.7767 0.8387 0.8798 0.9150 0.9955 0.9966 1241KB 

MLP-3 LR-2 0.6973 0.7829 0.8498 0.8938 0.9317 0.9948 0.9978 211KB 
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impleNet intermediate data in terms of top-1 test accuracy. For

he other two intermediate datasets, MLP-2 achieves higher accu-

acy scores. 

To sum up, this section shows that the separation of the learn-

ng process to create image features and train fully connected neu-

al networks on those image features performs comparably to the

nitial training process of an entire CNN. Although the final top-1

est accuracy was slightly lower on CNN-1 and CNN-2 intermedi-

te data than on the initially trained CNN-1 and CNN-2 models, the

ontrary was the case for the VGG-19 and SimpleNet intermediate

ata. Therefore, it can be concluded that a detached final classi-

er is in general still able to learn as well as the full network in

ractice. These observations were also confirmed during the other

raining processes on CIFAR-10 and the ILSVRC-2012 subset. 

.3. Comparing different classification algorithms on image features 

The following section lists the accuracy values that were

chieved in the second step on the intermediate datasets produced

n CIFAR-10, CIFAR-100, and ILSVRC-2012. The tables are split by

he intermediate datasets. Each table presents a comparison of dif-

erent classifiers trained on the respective intermediate datasets.

ecause four CNNs were used on the CIFAR networks to create

he intermediate datasets and three CNNs were used on ILSVRC-

012, the number of intermediate datasets benchmarked in this
ection totals 11. Each section contains a textual description of

he findings, pointing out the key points from the tables to fo-

us on and comparing the performance of the different classifiers.

part from the top- n test accuracies, the tables list the average

alidation and average training accuracy achieved over the 10-fold

ross-validation. Moreover, the model size of the best perform-

ng parameter selection that achieved these results is included in

ach row. The best performing model parameters can be found in

ppendix G and Appendix H . 

.3.1. CIFAR-10 results 

The performance results of the classification algorithms on the

ntermediate datasets produced from CNN-1, CNN-2, SimpleNet

nd VGG-19 on CIFAR-10 can be found in Tables 9–12 respec-

ively. The corresponding model configurations for the best per-

orming models of each architecture can be found in Tables G.1 ,

.2 , G.3 and G.4 in Appendix G . The significance matrices on

he validation data benchmarks are presented in Tables D.5 , D.6 ,

.7 and D.8 . 

To summarise the results reported in Tables 9–12 , the mod-

ls of most intermediate datasets were not able to consistently

roduce better values than the initially benchmarked CNN mod-

ls. Only for SimpleNet intermediate data, six of the eight bench-

arked models score better than the SimpleNet benchmark score.

or most intermediate datasets, the best top-1 accuracy values are
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Table 9 

CIFAR-10 final classification results on CNN-1 intermediate data. 

Model Top-1 test accuracy Top-2 test accuracy Top-5 test accuracy Average validation accuracy Average training accuracy Model size 

MLP 0.8490 0.9367 0.9880 0.9987 0.9994 4200KB 

SVM 0.8454 0.9321 0.9850 0.9819 1.0000 497,200KB 

LR 0.8469 0.9339 0.9868 0.9998 0.8130 191KB 

KNN 0.7369 0.8503 0.9385 0.8245 0.8691 1,300,000KB 

RFE 0.8120 0.9202 0.9893 0.9254 1.0000 1,990,000KB 

ADB 0.7967 0.9086 0.9833 0.9119 0.9614 843KB 

GBC 0.8175 0.9204 0.9874 0.9722 1.0000 1200KB 

XGB 0.8182 0.9198 0.9877 0.9527 0.9985 2400KB 

Table 10 

CIFAR-10 final classification results on CNN-2 intermediate data. 

Model Top-1 test accuracy Top-2 test accuracy Top-5 test accuracy Average validation accuracy Average training accuracy Model size 

MLP 0.7686 0.8974 0.9851 0.7908 0.8893 4800KB 

SVM 0.7952 0.9140 0.9869 0.7851 1.0000 724,600KB 

LR 0.7622 0.8933 0.9810 0.7750 0.8130 191KB 

KNN 0.6170 0.6577 0.8050 0.5789 1.0000 1,460,000KB 

RFE 0.6994 0.8496 0.9736 0.6962 1.0000 206,300KB 

ADB 0.6446 0.8306 0.9699 0.6456 0.6616 844KB 

GBC 0.7022 0.8539 0.9735 0.7015 0.7818 1300KB 

XGB 0.7353 0.8788 0.9790 0.7331 1.0000 22,100KB 

Table 11 

CIFAR-10 final classification results on SimpleNet intermediate data. 

Model Top-1 test accuracy Top-2 test accuracy Top-5 test accuracy Average validation accuracy Average training accuracy Model size 

MLP 0.8941 0.9591 0.9929 0.9994 0.9997 1100KB 

SVM 0.8945 0.9605 0.9921 0.9995 1.0000 2800KB 

LR 0.8806 0.9572 0.9945 1.0000 1.0000 27KB 

KNN 0.8960 0.9366 0.9682 0.9982 0.9987 162,900KB 

RFE 0.8933 0.9632 0.9958 0.9986 1.0000 221,600KB 

ADB 0.8766 0.9472 0.9916 0.9909 0.9950 843KB 

GBC 0.8907 0.9594 0.9937 0.9982 1.0000 1300KB 

XGB 0.8881 0.9586 0.9940 0.9971 1.0000 1500KB 

Table 12 

CIFAR-10 final classification results on VGG-19 intermediate data. 

Model Top-1 test accuracy Top-2 test accuracy Top-5 test accuracy Average validation accuracy Average training accuracy Model size 

MLP 0.9352 0.9696 0.9835 0.9999 0.9999 1100KB 

SVM 0.9349 0.9797 0.9952 0.9999 0.9999 3500KB 

LR 0.9346 0.9772 0.9932 0.9999 0.9999 46KB 

KNN 0.9350 0.9541 0.9757 0.9999 0.9999 324,800KB 

RFE 0.9350 0.9661 0.9864 0.9999 1.0000 868KB 

ADB 0.9330 0.9659 0.9927 0.9998 1.0000 844KB 

GBC 0.9318 0.9523 0.9803 0.9996 1.0000 1100KB 

XGB 0.9327 0.9683 0.9890 0.9998 1.0000 273KB 
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similar to the benchmarked values. Apart from the retrained MLP

models, the models from SVMs and LR frequently appear among

the best performing models. LR has the advantage of small model

sizes. Although SVMs outperforms MLPs at times, the model sizes

of SVMs have high variance. For example, the best performing

model on SimpleNet intermediate data is an SVM model of 2800KB

size, while the best performing model on the CNN-2 intermedi-

ate data is an SVM model of size 724,600KB. Considering model

size and performance, MLPs and LR perform best. Regarding the

tree-based models, ADB performs the worst among these. Overall,

XGB manages to produce slightly better results than GBCs, partic-

ularly on CNN-2 intermediate data. Nonetheless, GBCs are remark-

ably constant in model size between 1100 and 1300KB, whereas

XGB fluctuates more. Between RFEs and XGB, it is hard to choose

whether the bagging or the boosting approach performs better

overall. While RFEs reach slightly higher top-1 test accuracies on

VGG-19, SimpleNet, and CNN-1 intermediate data, XGB performs

much better on CNN-2 intermediate data. Nonetheless, all mod-
 c  
ls produced from boosting algorithms are much smaller in size

han RFEs. The KNN model exhibits some interesting behaviour:

lthough it performs comparably to the best model on VGG-19

nd outperforms all other models on SimpleNet, its performance

n CNN-1 and CNN-2 is much lower than the other benchmarked

odels. While the CNN-2 intermediate data uses a model with

nly 1 neighbour, all other intermediate datasets use models with

0 neighbours. Apart from these observations, KNN generally pro-

uces huge models, sometimes even over 1GB in size, for example,

n CNN-1 and CNN-2. For higher values of n, the top- n accuracy of

NN gets worse in comparison to the other models. 

.3.2. CIFAR-100 results 

The results of the classification algorithms on the intermediate

atasets from CNN-1, CNN-2, SimpleNet and VGG-19 on CIFAR-100

an be found in Tables 13 respectively. The corresponding model

onfigurations for the best performing models of each architecture

an be found in Tables H.1 , H.2 , H.3 and H.4 in Appendix H . The
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Table 13 

CIFAR-100 final classification results on CNN-1 intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.5630 0.6860 0.8148 0.8874 0.9422 0.9884 0.9997 4313KB 

SVM 0.6030 0.7250 0.8515 0.9146 0.9623 0.9820 0.9998 791,833KB 

LR 0.5706 0.6797 0.7994 0.8705 0.9269 0.9935 0.9996 1605KB 

KNN 0.3284 0.3320 0.3547 0.3929 0.4694 0.3769 0.9998 1,266,158KB 

RFE 0.3192 0.4173 0.5485 0.6525 0.7514 0.3576 0.9998 3,223,027KB 

ADB 0.2042 0.3058 0.4851 0.6325 0.7876 0.2482 0.2758 335KB 

GBC 0.2547 0.3602 0.5422 0.6111 0.7493 0.4369 0.9994 12,150KB 

XGB 0.3326 0.4397 0.5692 0.6801 0.8115 0.4721 0.9996 4100KB 

Table 14 

CIFAR-100 final classification results on CNN-2 intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.4498 0.5733 0.7272 0.8279 0.9060 0.4494 0.9988 9635KB 

SVM 0.4741 0.6020 0.7554 0.8499 0.9242 0.4576 0.9770 890,827KB 

LR 0.4518 0.5702 0.7266 0.8281 0.9089 0.4417 0.6336 1805KB 

KNN 0.2878 0.2912 0.3139 0.3538 0.4308 0.2666 0.9998 1,424,346KB 

RFE 0.2931 0.3822 0.5211 0.6243 0.7298 0.2793 0.9998 3,518,103KB 

ADB 0.1728 0.2682 0.4336 0.5793 0.7313 0.1732 0.1845 335KB 

GBC 0.2880 0.3402 0.5041 0.6034 0.7021 0.3044 0.9555 12,150KB 

XGB 0.3009 0.3798 0.5386 0.6403 0.7567 0.3518 0.9993 3400KB 

Table 15 

CIFAR-100 final classification results on SimpleNet intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.6326 0.7549 0.8744 0.9320 0.9683 0.9838 0.9970 1443KB 

SVM 0.6380 0.7615 0.8826 0.9419 0.9772 0.9801 0.9989 80,543KB 

LR 0.6247 0.7439 0.8554 0.9141 0.9543 0.9937 0.9997 205KB 

KNN 0.6066 0.7286 0.8237 0.8465 0.8646 0.8380 0.8904 158,842KB 

RFE 0.5955 0.7216 0.8436 0.9029 0.9460 0.8258 0.9998 2,049,021KB 

ADB 0.3850 0.5275 0.7259 0.8408 0.9261 0.5165 0.5377 335KB 

GBC 0.5532 0.6802 0.7947 0.8834 0.9339 0.8812 0.9995 12,150KB 

XGB 0.5894 0.7107 0.8473 0.9132 0.9450 0.9683 0.9996 2200KB 

Table 16 

CIFAR-100 final classification results on VGG-19 intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.7080 0.8051 0.8817 0.9193 0.9533 0.9968 0.9984 1241KB 

SVM 0.7114 0.8113 0.8950 0.9336 0.9651 0.9972 0.9978 32,203KB 

LR 0.7071 0.8056 0.8768 0.9133 0.9568 0.9969 0.9983 406KB 

KNN 0.7095 0.7644 0.7892 0.8016 0.8262 0.9970 0.9972 317,030KB 

RFE 0.7095 0.8086 0.8886 0.9266 0.9568 0.9969 0.9999 2,397,625KB 

ADB 0.6629 0.7505 0.8453 0.8939 0.9403 0.9854 0.9897 335KB 

GBC 0.6747 0.7502 0.8147 0.8534 0.8939 0.9911 0.9999 12,150KB 

XGB 0.6897 0.7707 0.8423 0.8851 0.9260 0.9948 0.9999 4787KB 
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ignificance matrices on the validation data benchmarks are pre-

ented in Tables E.5 , E.6 , E.7 and E.8 . 

To summarise the results reported in Tables 13–16 , the best per-

orming model on all intermediate datasets from CIFAR-100 is an

VM model. After that, LR and MLPs follow, with LR being supe-

ior on CNN-1 and CNN-2 intermediate data and MLPs perform-

ng better on SimpleNet and VGG-19 intermediate data. SVMs also

utperform the top-1 accuracy of the CNN benchmarks from the

rst step ( Table 3 ) on CNN-1, SimpleNet, and VGG-19 intermediate

ata. On SimpleNet and VGG-19 intermediate data, the retrained

LP and LR models are also superior in performance to the ini-

ial benchmark. Considering the external benchmarks on CIFAR-100

rom Table B.2 , the achieved top-1 test accuracy scores on VGG-

9 intermediate data from Table 16 rank among the best available

odel benchmarks on CIFAR-100. 
The bagging and boosting approaches perform similarly con-

erning top-1 accuracy, but their performance is generally worse

han the other benchmarked algorithms. Similar performance to

he other classification algorithms is only achieved by RFEs on

GG-19 intermediate data. Among the boosting algorithms, XGB is

he best algorithm on all intermediate datasets. ADB has the low-

st top-1 test accuracy among all classifiers on every intermedi-

te dataset. Regarding model size, RFEs produce much larger mod-

ls than all other models, with the largest model being 3.5GB in

ize from CNN-2 intermediate data. The boosting algorithms gen-

rally produce rather small models. The smallest in each interme-

iate dataset benchmark is either ADB or LR. The latter additionally

as good performance values despite being very small in size, up

o seven times smaller than MLPs (see Table 15 ). The top-5 accu-

acy scores generally follow the same trend as the top-1 accuracy
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Table 17 

ILSVRC-2012 final classification results on inception V3 intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.7936 0.8984 0.9480 0.9672 0.9808 0.7760 0.8920 537,300KB 

SVM 0.3552 0.6184 0.6576 0.70 0 0 0.7576 0.3168 0.9997 1,204,0 0 0KB 

LR 0.8512 0.9304 0.9768 0.9920 0.9944 0.8459 0.9997 104,900KB 

KNN 0.7608 0.7680 0.7792 0.7904 0.8064 0.7509 0.9997 4,580,0 0 0KB 

RFE 0.8256 0.9176 0.9656 0.9792 0.9880 0.8157 0.9997 1,780,0 0 0KB 

ADB 0.2024 0.2856 0.4360 0.5560 0.7048 0.1341 0.3835 3800KB 

GBC 0.4152 0.5488 0.6912 0.7448 0.7816 0.4515 0.9997 6100KB 

XGB 0.7888 0.8848 0.9336 0.9560 0.9752 0.7461 0.9973 4700KB 

Table 18 

ILSVRC-2012 final classification results on Xception intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.8208 0.9128 0.9488 0.9664 0.9800 0.8245 0.9136 419,700KB 

SVM 0.7608 0.8800 0.9216 0.9512 0.9696 0.7483 0.9997 1,530,0 0 0KB 

LR 0.8528 0.9336 0.9792 0.9936 0.9976 0.8528 0.9976 163,800KB 

KNN 0.8296 0.9152 0.9464 0.9552 0.9592 0.8184 0.8667 5,921,0 0 0KB 

RFE 0.8496 0.9336 0.9776 0.9920 0.9960 0.8429 0.9997 1,640,0 0 0KB 

ADB 0.3552 0.4912 0.6360 0.7304 0.8352 0.1874 0.5829 3800KB 

GBC 0.3760 0.5008 0.6496 0.70 0 0 0.7536 0.3885 0.9992 6300KB 

XGB 0.7888 0.8912 0.9416 0.9568 0.9728 0.7744 0.9987 60 0 0KB 

Table 19 

ILSVRC-2012 final classification results on inception ResNet V2 intermediate data. 

Model Top-1 test 

accuracy 

Top-2 test 

accuracy 

Top-5 test 

accuracy 

Top-10 test 

accuracy 

Top-20 test 

accuracy 

Average validation 

accuracy 

Average training 

accuracy 

Model size 

MLP 0.8424 0.9248 0.9568 0.9704 0.9816 0.8459 0.9211 201,500KB 

SVM 0.7360 0.8184 0.8512 0.8736 0.9136 0.7334 0.9997 984,0 0 0KB 

LR 0.8712 0.9472 0.9768 0.9960 0.9992 0.8632 0.9957 70,100KB 

KNN 0.8504 0.9344 0.9528 0.9568 0.9600 0.8451 0.8816 78,600KB 

RFE 0.8536 0.9384 0.9792 0.9856 0.9896 0.8629 0.9997 1,530,0 0 0KB 

ADB 0.4296 0.5512 0.6720 0.7544 0.8256 0.2347 0.5965 3800KB 

GBC 0.5056 0.5976 0.6776 0.7192 0.7776 0.4549 0.9997 6200KB 

XGB 0.8216 0.9056 0.9456 0.9608 0.9728 0.8117 0.9984 4200KB 
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s  
scores. SVMs have the highest top-5 accuracy on every interme-

diate dataset. Interestingly, MLPs perform better than LR in top-

5 accuracy on every dataset, although the same is not always the

case for top-1 accuracy. For larger values of n , the top- n accuracy

of KNN gets worse in comparison to other models. 

4.3.3. ILSVRC-2012 results 

The results of the classification algorithms on the intermediate

datasets from Inception V3, Xception and Inception ResNet V2 on

the ILSVRC-2012 subset can be found in Tables 17 respectively. The

corresponding model configurations for the best performing mod-

els of each architecture can be found in Tables I.1 , I.2 and I.3 in

Appendix. The significance matrices on the validation data bench-

marks are presented in Tables F.1 , F.2 and F.3 . 

Because the original models for Inception V3, Xception and In-

ception ResNet were trained on 10 0 0 classes, there is no bench-

mark for the CNN performance on the ILSVRC-2012 dataset with

100 classes as used in this paper. Therefore, the other classifica-

tion models can only be compared to the respective MLP models

for the intermediate datasets. 

To summarise the results reported in Tables 17–19 , on ILSVRC-

2012 intermediate datasets, LR constantly reaches the highest ac-

curacy results among the benchmarked models. LR outperforms

MLPs by about 3 percentage points for top-1 accuracy or more

on all ILSVRC-2012 intermediate datasets. The same observation is

true for top-5 accuracy, although the minimal difference between

MLPs and LR is 2 percentage points on this measure in Table 19 .

Moreover, the LR models are much smaller than the correspond-

ing MLP models, thus enabling a reduction of size and better per-

formance. Apart from LR, the RFE model also manages to outper-

form MLPs but with much larger model sizes. For example, the
FE model reaches an accuracy of 0.8536 on ResNet V2 interme-

iate data with a model size of 1,530,0 0 0KB. The corresponding

LP model is more than seven times smaller at 201,500KB. The

erformances of KNN models vary. On Inception ResNet V2 and

ception intermediate data, KNN is the third best model on top-1

est accuracy, outperforming MLPs. Interestingly, the performance

n other metrics such as top-5 test accuracy is not as good for KNN

s for other models. KNN models do not improve that much be-

ween top-1 and higher values of n. To illustrate this, on Inception

3 in Table 17 , KNN performs almost 10 percentage points better

han ADB regarding top-1 test accuracy with a score of 0.76608 for

NN and 0.6629 for ADB. On top-10 test accuracy, ADB performs

bout 10 percentage points better than KNN with a performance of

.8938 versus 0.7904. The same pattern can be observed between

ther models and KNN and on other intermediate datasets. On ev-

ry ILSVRC-2012 intermediate dataset, bagging manages to reach

ccuracy values of at least 3 percentage points higher than any

f the boosting algorithms. Among the boosting approaches, XGB

s consistently more proficient than ADB and GBCs, outperforming

he latter by more than 30 percentage points. GBC still consistently

erforms better than ADB on all datasets. The ADB model’s top-1

est accuracy was less than half of the score of the best perform-

ng model (LR) on every dataset. On all datasets, the accuracy on

alidation data is similar to the test data. This shows that the im-

ge filters from the benchmarked CNNs are not overfitted on the

alidation dataset. 

.4. Results interpretation and guidelines 

This section provides an interpretation of the previously ob-

erved and described results, and it further analyses under which
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onditions specific classification algorithms outperform MLPs and

an be considered superior to the traditional approach. Lastly, the

ection reveals which initial and intermediate datasets are more

uitable for testing different classification algorithms. The main ob-

ective is to derive a guideline of when to test which classification

lgorithms on high-level image features, based on the observations

rom Section 4.3 . The evaluation is based on the top- n test accu-

acy values and the model sizes. 19 

First of all, Section 4.2 proves that separately training the fully

onnected layers does not worsen the overall results, neither does

t lead to an improvement in classification accuracy. It follows that

he performance during the separated learning process is only de-

endent on the chosen classifier and is not worse than a unified

earning procedure. Among the benchmark classifiers, the findings

f Section 4.3 reveal a set of Pareto-optimal algorithms over all

atasets. The Pareto-optimum is derived with respect to top-1 test

ccuracy and model size. Top-5 test accuracy is not used to build

his set because some models randomly reach slightly higher top-5

ccuracy values. For example, GBCs would only be Pareto-optimal

n CNN-1 intermediate data from CIFAR-10 because of a marginally

igher top-5 accuracy than LR. This would make the set of Pareto-

ptimal classifiers noisier. 

On CIFAR-10 intermediate datasets, the set of Pareto-optimal

lassifiers is MLPs, LR, SVMs, and RFEs. On CIFAR-100 intermedi-

te datasets, the set of classifiers is SVMs, LR, MLPs, and ADB and

n the ILSVRC-2012 intermediate datasets, it is LR, ADB and XGB. 

The following analysis of classification algorithms will focus on

he union of these Pareto-optimal sets: LR, SVMs, MLPs, XGB, RFEs,

nd KNN. These algorithms have unique characteristics that can

e reasons for applying them to high-level image features. ADB

s discarded from the comparison. ADB is only Pareto-optimal on

ome intermediate datasets because of its small model sizes, but

DB consistently underperforms on top- n accuracy scores on all

atasets. The following unique features can be identified among

he models: 

• Logistic regression: LR produces very small models that

usually have very high and consistent top- n accuracy values 
• Support vector machines: The overall top- n accuracy of

SVMs varies. On certain intermediate datasets, SVMs are

very good. SVMs are the best classifier on all intermediate

datasets from CIFAR-100. On the other hand, SVMs seem to

perform worse for datasets with more input features, such

as the intermediate datasets from ILSVRC-2012. Additionally,

the produced models are up to 100 times larger than the

ones from MLPs. 
• Multi layer perceptron: An MLP consistently has good per-

formance values among the top performing models with

moderate model sizes. On some benchmarks, MLPs even

outperform all other models on top-1 accuracy (see Table 9 ).

An LR model can, in theory, be reproduced by an MLP

model. Nonetheless, LR models can be advantageous because

they have fewer parameters to learn. Although this takes

away complexity and limits the ability to detect more non-

linear structures, this can be positive for fewer training sam-

ples. 
• eXtreme gradient boosting: XGB produces reasonable top-

n accuracies at small model sizes. In most cases, both top- n

accuracy and model size are worse than LR, but XGB man-

ages to perform better on some intermediate datasets. XGB

can be proficient on many input features and output classes,
19 The model size depends on the choice of parameters and is therefore only an 

ndicator of the general complexity of a given classification algorithm. As can be 

een in the observations from the previous section, for some classification algo- 

ithms, the model size has a high variance depending on the chosen parameters 

nd the dataset. 

 

 

 

 

because the produced model is still relatively small. For ex-

ample, XGB keeps the model size very small on ILSVRC-2012

intermediate datasets while achieving reasonable accuracy 

scores. 
• Random forests estimator: The only benchmark run where

the RFE is Pareto-optimal is on the VGG-19 intermediate

dataset from CIFAR-10. This superiority is caused by the

small model size. Although a small model size is an atypi-

cal characteristic of an RFE model, the RFE was still included

in this set of optimal classifiers because it can be superior

to the benchmark model, MLP, in many cases (e.g., on all

ILSVRC-2012 intermediate benchmarks). 
• K-nearest neighbours: KNN produces very good top-1 accu-

racies on some benchmark datasets. Nonetheless, the top- n -

accuracies for higher values of n are much worse than the

compared classification algorithms. This indicates that the

KNN model has more trouble detecting similarities among

images because similar images should be more likely to be

included in the top- n accuracy scores. KNN typically pro-

duces very large models. 

Regarding model properties, the 11 benchmarked intermediate

atasets differentiated between their number of input features and

utput classes. While CIFAR-10 produces 10 output classes, CIFAR-

00 and the subsample of ILSVRC-2012 predict among 100 possi-

le classes. For CIFAR-10 and CIFAR-100, the intermediate datasets

ad comparably few input features. SimpleNet intermediate data

as the lowest number of input features (256 features), followed

y VGG-19 intermediate data with 512 features. CNN-1 interme-

iate data has 2048 input features, and CNN-2 intermediate data

as 2304. In comparison, the intermediate datasets from ILSVRC-

012 have much more input features. The Inception ResNet V2

ntermediate dataset has 98,304 input features, the Inception V3

ntermediate dataset has 131,072 input features, and the Xcep-

ion intermediate dataset has 204,800 input features. This provides

our intermediate datasets with relatively few input features and

ew output classes (CIFAR-10 intermediate datasets), four interme-

iate datasets with relatively few input features and many out-

ut classes (CIFAR-100 intermediate data), and three intermedi-

te datasets with relatively many input features and many output

lasses (ILSVRC-2012 intermediate datasets). The following obser-

ations were made: 

• CIFAR-10 intermediate dataset: On CIFAR-10 intermediate 

datasets, the initial CNN model’s top-1 test accuracy was

only outperformed on the SimpleNet intermediate dataset.

Nonetheless, the differences between the MLP and the out-

performing models are rather small, with the MLP only

performing 0.2% worse than the best model (KNN). Apart

from the SimpleNet intermediate dataset, the retrained MLP

benchmark is only outperformed by SVMs on the CNN-2 in-

termediate dataset. 
• CIFAR-100 intermediate dataset: On CIFAR-100 intermedi- 

ate datasets, the CNN model’s top-1 test accuracy is beaten

on every intermediate dataset, apart from CNN-2. Many

models outperform the CNN benchmark on SimpleNet and

VGG-19 intermediate datasets, including MLPs, SVMs, LR,

KNN, and RFEs. The MLP model is outperformed on ev-

ery intermediate dataset, although the differences on Sim-

pleNet and VGG-19 intermediate datasets are comparably

smaller. In general, the accuracy values on those interme-

diate datasets are closer. SVMs have the highest top-1 test

accuracy on every intermediate dataset. 
• ILSVRC-2012 intermediate dataset: On ILSVRC-2012 inter- 

mediate datasets, LR and RFEs outperform the MLP bench-

mark on every dataset, while LR still performs better than

RFEs. Additionally, KNN outperforms MLPs on top-1 test
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accuracy on the Xception and Inception ResNet V2 inter-

mediate datasets. SVMs, on the other hand, perform much

worse on all intermediate datasets compared to previ-

ous performance on CIFAR-10 and CIFAR-100 intermediate

datasets. 

From the above descriptions, one can derive a guideline to

choose the best classification algorithms, depending on the in-

termediate dataset attributes. For intermediate datasets with few

high-level image features as inputs and few output classes, such as

CIFAR-10 intermediate datasets, an MLP seems to be proficient or

equal to the other benchmarked algorithms. LR is a good choice if

the model size needs to be kept small. On intermediate datasets

with few output classes and relatively many input features, such

as the CNN-2 and CNN-1 intermediate datasets, SVMs are able to

perform better than MLPs. 

For datasets with few input features and many output classes,

such as CIFAR-100 intermediate datasets, it is advisable to use clas-

sification algorithms other than an MLP. The best choice of model

is SVMs, although this comes at the cost of large model sizes. For

the models with fewer input features (SimpleNet, VGG-19), the

choice of the final classifier does not have such a big impact on

top- n accuracy. On the other hand, the effect of the model choice

on the final performance is larger for intermediate datasets with

more input features (CNN-1, CNN-2). The superior performance of

the benchmarked classification algorithms over an MLP could also

be caused by the fewer training samples (600 samples per class

compared to 60 0 0 samples per class for CIFAR-10). For example,

SVMs generally learn well on small datasets. 

For datasets with many input features and many output classes,

such as ILSVRC-2012 intermediate datasets, more proficient models

than MLP are available. The LR and RFE models consistently out-

perform MLPs in the benchmark and can thus be considered su-

perior for these datasets. LR has the additional advantage of small

model sizes whereas RFEs should not be used if model complexity

is an issue. However, even some of the other benchmarked mod-

els, including KNN and XGB, should be considered to replace MLPs

because they can be advantageous depending on the problem at

hand. 

Overall, other classification algorithms are usually more profi-

cient than MLPs if the intermediate dataset has many input fea-

tures or if the classification problem has many output classes. An-

other decisive factor can be the number of samples per class for

the classifier to learn from. The number of output classes is de-

termined by the problem at hand. The number of input features

from the intermediate dataset can be controlled for in the config-

uration of the CNN that is used to create the intermediate dataset.

Therefore, whether fewer high-level output features are created is

a design choice, and a higher likelihood of an MLP being the best

choice or more output features in combination with other classifi-

cation algorithms is desirable. 

Apart from the established guidelines, it is always good prac-

tice to benchmark as many different classification algorithms and

setups as possible, subject to time and computational constraints. 

5. Conclusion 

Over the course of research on CNN architectures, few modifi-

cations have been made to the fully connected layers at the end of

the networks. In image classification, these neural network layers

are responsible for creating the final classification results based on

the output of the last layer of high-level image filters. Tradition-

ally, this final classification is performed with fully connected neu-

ral network layers (MLPs). The advantage is that these models can

be integrated into the learning process of CNNs because both can

use backpropagation as their training procedure. The choice of the
est classifier for a given problem is not a deterministic decision.

hile the overall CNN architecture, independently from the final

lassifier, plays a fundamental role in the final classification perfor-

ance and is responsible for extracting high-level image features,

ne can choose different setups for the final classification step of

he high-level image features. 

To investigate this aspect, this paper proposes a two-step ap-

roach to assess the possibility of improving the performance of

omputer vision classification models by using different classifi-

ation algorithms on high-level image features. In the first step,

ifferent CNN configurations are trained on several benchmark

atasets. In the second step, the fully connected neural network

ayers that make the final prediction are removed from the CNNs,

uch that the last remaining layer produces a flattened output from

he last layer of image filters. On this intermediate output, multiple

lassification algorithms are benchmarked. 

Experimental results from different datasets and CNN archi-

ectures showed that other classification algorithms, namely LR,

VMs, XGB, RFEs, and KNN, have unique characteristics that can

ead to a better performance than MLP models. In particular, the

ikelihood of a model outperforming an MLP model is higher

or high-dimensional intermediate datasets. However, setups with

any output classes, as is the case in the CIFAR-100 interme-

iate models, also proved to have better classification accuracy

ith models other than MLPs. While the classification algorithms

argely perform on par with MLPs and the initial CNN bench-

ark on CIFAR-10, some models clearly perform better than those

wo benchmarks on CIFAR-100 or ILSVRC-2012. Particularly, LR and

VMs show strong performances throughout the benchmark. While

R works well for high-dimensional datasets (e.g., the interme-

iate datasets from ILSVRC-2012), SVMs work better for lower-

imensional datasets with many output classes (e.g., CIFAR-100).

R produces among the smallest models in the benchmarks, while

he SVM models are rather large. From the remaining classifiers

ith unique characteristics, RFEs and KNN tend to produce very

arge models. KNN also gets worse on top- n accuracy for higher

alues of n. The used configurations of XGB have the advantage of

roducing small model sizes, even for high-dimensional datasets

e.g., on the ILSVRC-2012 intermediate datasets). For datasets with

ery few input features (e.g., SimpleNet and VGG-19 intermedi-

te data from CIFAR-10 and CIFAR-100), the final classification

erformance is less reliant on the actual classification algorithm

sed in the end. All in all, it is recommended to benchmark

ther classification algorithms on the produced high-level image

eatures. 

The insights from this paper offer various opportunities for fur-

her research. This paper focuses on the classification task in com-

uter vision and shows that replacing the fully-connected neural

etwork layers with a different classifier could enhance the clas-

ification performance. This insight alone is valuable for further

esearch and for industry applications. Nonetheless, the scope of

hese findings can be expanded from image classification to the

lassification step of the other computer vision tasks introduced

n Section 1 . Furthermore, the same procedure can be applied to

egression tasks instead of classification, thus replacing the final

ully-connected layers with classification algorithms that produce

ontinuous outputs. 

Additionally, the set of benchmark classification algorithms can

e enlarged to include more classification algorithms to evaluate

heir predictive capability on high-level image features, i.e., the

enchmark in this paper did not look at evolutionary algorithms. 

Another future contribution could be the unification of the two-

tep procedure described in this paper. The classification algorithm

rom the second step would have to be integrated into the over-

ll learning process of the CNN. This is easily implementable for

lassification algorithms that make use of an iterative process to
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ptimize the value of a loss function. Tang (2013) exemplifies how

his can be done for linear SVMs optimising a margin-based loss

unction. 

Moreover, from an input features perspective, it would be an in-

eresting approach to use image filters from multiple layers. In this

ase, the classification algorithm would not only learn on the last

ayer of image features but can also make predictions on lower-

evel image features, if they contain any unique information. 

Regarding the structure of the convolutional layers to ex-

ract the image features, the findings from the work of Jagusch,

onçalves, and Castelli (2018) can be useful to determine effec-

ive network structures to build up feature extractors. The authors

se an evolutionary approach to build up neural network struc-

ures over multiple generations (neuroevolution). The most inter-

sting characteristic of this approach, called semantic learning ma-

hine (SLM), is that it searches over unimodal error landscapes in

ny supervised learning problem where the error is measured as a

istance to the known targets. This means, with the exception of

he global optimum, every point in the search space has at least

ne neighbor with better fitness, and that neighbor is reachable

hrough the application of the variation operators. The first appli-

ation of the SLM in the field of image analysis appeared in Lapa,

onçalves, Rundo, and Castelli (2019) , where authors showed that

he SLM outperforms a state-of-the-art CNN trained with back-

ropagation on the classification of high-resolution multiparamet-

ic Magnetic Resonance Imaging with statistical significance. While

he work presented in Lapa et al. (2019) tries to optimize the

opology of the fully connected network part, this idea can be ex-

ended to the convolutional layers and, subsequently, to the opti-

ization of the hyperparameters of the CNN. 
Fig. A.1. Visualisation of the gen
The literature review in Section 2.1 reveals that several authors

hose other classifiers than fully-connected neural networks for the

nal classification because of the limited number of training data.

hile the scarceness of training data was not an issue for the

atasets considered in this study, it could be interesting to investi-

ate the performance of the different algorithms when varying the

ize of the input datasets. 

Lastly, in current research, the extraction of universal image fea-

ures is commonly used in transfer learning environments. In these

pplications, the convolutional layers from one network trained

n a given dataset are frozen and applied to a different dataset

here the network is trained further or only the last classifier is

etrained. It would be interesting to investigate whether different

lassifiers can outperform neural networks in this environment. 
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ppendix A. Visualisation of the steps of the proposed 

pproach 

Figs. A .1 , A .2 , and A .3 show the steps of the proposed approach.
eral architecture of a CNN. 
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Fig. A.2. Visualisation of intermediate data creation. 

Fig. A.3. Visualisation of intermediate data classification. 
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Fig. C.1. Learning curve of MLP-0 on CNN-1 intermediate data for 10 iterations with 

learning rate 0.0 0 01. 

Fig. C.2. Learning curve of MLP-0 on CNN-1 intermediate data for 50 iterations 

with learning rate 0.0 0 01. 

Fig. C.3. Learning curve of MLP-0 on CNN-1 intermediate data for 50 iterations 

with learning rate 0.001. 
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ppendix B. External dataset benchmarks 

able B.1 

IFAR-10 benchmarks. 

Model Source Param Accuracy 

SimpleNet HasanPour et al. (2016) 5.48M 95.32 % 

SD-110L Huang, Sun, Liu, Sedra, and 

Weinberger (2016) 

1.7M 94.77 % 

VGG-19 (local 

benchmark) 

Simonyan and Zisserman 

(2014) 

15M 93.59 % 

WRN Zagoruyko and Komodakis 

(2016) 

600K 93.15 % 

ALLCNN Springenberg, Dosovitskiy, 

Brox, and Riedmiller (2014) 

1.3M 92.75 % 

DSN Lee, Xie, Gallagher, Zhang, and 

Tu (2015) 

1M 92.03 % 

FitNet Srivastava, Greff, and 

Schmidhuber (2015) 

1M 91.61 % 

ResNet-32 (depth of 

32) 

HasanPour et al. (2016) 475K 91.60 % 

NiN Lin, Chen, and Yan (2013) 1M 91.19 % 

dasNet Stollenga, Masci, Gomez, and 

Schmidhuber (2014) 

6M 90.78 % 

Maxout (k = 2) Goodfellow, Warde-Farley, 

Mirza, Courville, and Bengio 

(2013) 

6M 90.62 % 

SimpleNet (local 

benchmark) 

HasanPour et al. (2016) 5.48M 88.52 % 

able B.2 

IFAR-100 benchmarks. 

Model Source Param Accuracy 

SD-110L Huang et al. (2016) 1.7m 75.42 % 

SimpleNet HasanPour et al. 

(2016) 

5.48M 73.42 % 

VGG-19 (local 

benchmark) 

Simonyan and 

Zisserman (2014) 

15M 70.48 % 

WRN Zagoruyko and 

Komodakis (2016) 

600K 69.11 % 

ResNet-32 (depth of 

32) 

HasanPour et al. 

(2016) 

475K 67.37 % 

ALLCNN Springenberg et al. 

(2014) 

1.3M 66.29 % 

dasNet Stollenga et al. (2014) 6M 66.22 % 

Maxout (k = 2) Goodfellow et al. 

(2013) 

6M 65.46 % 

DSN Lee et al. (2015) 1M 65.43 % 

FitNet Srivastava et al. (2015) 1M 64.96 % 

NiN Lin et al. (2013) 1M 64.32 % 

SimpleNet (local 

benchmark) 

HasanPour et al. 

(2016) 

5.48M 60.99 % 

Table B.3 

ILSVRC 2012 benchmarks. 

Model Source Top-5 accuracy 

Inception ResNet V2 Szegedy et al. (2017) 95.1 % 

Xception Chollet (2016) 94.5 % 

Inception V3 Szegedy et al. (2016) 94.4 % 

ResNet-152 He et al. (2016) 92.9 % 

ResNet-101 He et al. (2016) 92.6 % 

ResNet-50 He et al. (2016) 92.0 % 

VGG-16 Simonyan and Zisserman (2014) 89.9 % 

GoogLeNet Szegedy et al. (2015) 89.1 % 

Network in Network Lin et al. (2013) 81.2 % 

CaffeNet Jia et al. (2014) 79.9 % 

AlexNet Krizhevsky et al. (2012) 79.8 % 

ppendix C. Learning curves for CNN networks 
ppendix D. CIFAR-10 significance tests 

In the diagonal lines of the tables, the mean accuracy of the

alidation data over 10 cross-validation folds is displayed. In the

ther cells, the p -value of the comparison of the two indicated



32 J. Janke, M. Castelli and A. Popovi ̌c / Expert Systems With Applications 135 (2019) 12–38 

Table D.1 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

CNN-1 intermediate data from CIFAR-10 with different learning rates (LR). Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.9987 1.00 

MLP-2_LR-0.0001 1.00 0.9987 

MLP-3_LR-0.0001 0.0004 0.0004 0.9913 0.0078 0.0017 0.0007 

MLP-1_LR-0.001 0 0 0.9948 0.0043 0 

MLP-2_LR-0.001 0.1651 0.1608 0.9974 0.5691 

MLP-3_LR-0.001 0.0037 0.0002 0.9979 

Table D.2 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

CNN-2 intermediate data from CIFAR-10 with different learning rates (LR). Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.7781 0.0491 0.8565 

MLP-2_LR-0.0001 0.7908 

MLP-3_LR-0.0001 0.0172 0.0004 0.7638 0.0021 0.0011 

MLP-1_LR-0.001 0.3577 0.0027 0.7742 0.0315 

MLP-2_LR-0.001 0.0195 0.7789 

MLP-3_LR-0.001 0 0 0.0001 0 0 0.7364 

Table D.3 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

SimpleNet intermediate data from CIFAR-10 with different learning rates (LR). Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.9993 1 

MLP-2_LR-0.0001 0.4923 0.9992 0.6016 

MLP-3_LR-0.0001 0.0315 0.1494 0.9990 0.1143 

MLP-1_LR-0.001 0.0888 0.117 0.1933 0.9983 0.3623 0.0964 

MLP-2_LR-0.001 0.2169 0.3136 0.591 0.9988 0.2381 

MLP-3_LR-0.001 1 0.9993 

Table D.4 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

VGG-19 intermediate data from CIFAR-10 with different learning rates (LR). Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.9999 0.8135 1 1 1 

MLP-2_LR-0.0001 0.9999 

MLP-3_LR-0.0001 1 0.8135 0.9999 1 1 

MLP-1_LR-0.001 1 0.6328 1 0.9999 1 

MLP-2_LR-0.001 0.6382 0.5465 0.6382 0.6272 0.9998 0.6272 

MLP-3_LR-0.001 1 0.6328 1 1 0.9999 

Table D.5 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on CNN-1 intermediate data from CIFAR- 

10. Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9987 0.0004 

SVM 0 0.9819 0 

LR 0.9998 

KNN 0 0 0 0.8245 0.0001 0.0001 0 0.0001 

RFE 0 0 0 0.9254 0 0.0001 

ADB 0 0 0 0.0018 0.9119 0 0.0001 

GBC 0.0001 0.0018 0.0001 0.9722 

XGB 0 0.0001 0 0.0004 0.9527 

Table D.6 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on CNN-2 intermediate data from CIFAR-10. 

Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.7908 

SVM 0.2201 0.7851 

LR 0.0796 0.1822 0.775 

KNN 0 0 0 0.5789 0 0.0001 0 0 

RFE 0 0 0.0001 0.6962 0.1331 0.0001 

ADB 0 0 0 0.0001 0.6456 0.0001 0. 

GBC 0 0 0.0001 0.7015 0.000379 

XGB 0.0001 0 0.0004 0.7331 
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Table D.7 

Pairwise p -values of performance on validation set with performance on validation set displayed on the 

diagonal for different classification algorithms on SimpleNet intermediate data from CIFAR-10. Values 

lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9994 0.309181 0.000622 

SVM 0.9995 0.000276 

LR 1.0000 

KNN 0.0731 0.0601 0.0188 0.9982 0.5655 

RFE 0.0007 0.0004 0.0001 0.9986 

ADB 0.0009 0.0009 0.0007 0.0017 0.0013 0.9909 0.002936 

GBC 0.0005 0.0004 0.0001 0.7883 0.0357 0.9982 

XGB 0 0 0 0.011 0.0001 0.0003 0.9971 

Table D.8 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on VGG-19 intermediate data from CIFAR-10. 

Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9999 1 1 1 1 

SVM 1 0.9999 1 1 1 

LR 1 1 0.9999 1 1 

KNN 1 1 1 0.9999 1 

RFE 1 1 1 1 0.9999 

ADB 0.3606 0.3701 0.3651 0.3828 0.382835 0.9998 1 

GBC 0.0313 0.0337 0.0324 0.0376 0.0372 0.1305 0.9996 0.1108 

XGB 0.2263 0.2424 0.234 0.2663 0.2637 1 0.9998 
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etworks/techniques is given. Since the comparisons are symmet-

ic, the p -value is only displayed for those values where the esti-

ated population mean of the network/technique in the column

ame is higher than the estimated population mean of the net-

ork/technique in the row name that it is compared to. The other

orresponding cell is left empty. 

ppendix E. CIFAR-100 significance tests 

In the diagonal lines of the tables, the mean accuracy of the

alidation data over 10 cross-validation folds is displayed. In the
Table E.1 

Pairwise p -values of performance on validation set with performance on v

CNN-1 intermediate data from CIFAR-100 with different learning rates (LR).

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR

MLP-1_LR-0.0001 0.9896 

MLP-2_LR-0.0001 0.4952 0.9884 0.911870 

MLP-3_LR-0.0001 0.768 0.9887 

MLP-1_LR-0.001 0.0001 0.0001 0.0007 

MLP-2_LR-0.001 0.0009 0.0027 0.0069 

MLP-3_LR-0.001 0.0001 0.0001 0.0007 

Table E.2 

Pairwise p -values of performance on validation set with performance on v

CNN-2 intermediate data from CIFAR-100 with different learning rates (LR).

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR

MLP-1_LR-0.0001 0.4494 

MLP-2_LR-0.0001 0.048 0.4402 

MLP-3_LR-0.0001 0.0004 0.0092 0.4235 

MLP-1_LR-0.001 0.0001 0.0004 0.0191 

MLP-2_LR-0.001 0 0.0001 0.0001 

MLP-3_LR-0.001 0 0 0 
ther cells, the p -value of the comparison of the two indicated

etworks/techniques is given. Since the comparisons are symmet-

ic, the p -value is only displayed for those values where the esti-

ated population mean of the network/technique in the column

ame is higher than the estimated population mean of the net-

ork/technique in the row name that it is compared to. The other

orresponding cell is left empty. 
alidation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

 Values lower than 10 −4 reported as 0. 

-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

0.9680 0.1172 0.9643 

0.9738 

0.111 0.9681 

alidation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

 Values lower than 10 −4 reported as 0. 

-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

0.4102 

0.0004 0.3762 

0.0001 0.2668 0.3713 
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Table E.3 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

SimpleNet intermediate data from CIFAR-100 with different learning rates (LR). Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.9838 

MLP-2_LR-0.0001 0.0001 0.9589 

MLP-3_LR-0.0001 0 0.0005 0.9417 0.7857 0.0642 

MLP-1_LR-0.001 0.0001 0.0103 0.943 0.1233 

MLP-2_LR-0.001 0 0.0002 0.01404 0.0296 0.9275 0.0067 

MLP-3_LR-0.001 0.0034 0.6226 0.9557 

Table E.4 

Pairwise p -values of performance on validation set with performance on validation set displayed on the diagonal for MLP-1, MLP-2, MLP-3 on 

VGG-19 from CIFAR-100 intermediate data with different learning rates (LR),. Values lower than 10 −4 reported as 0. 

MLP-1_LR-0.0 0 01 MLP-2_LR-0.0 0 01 MLP-3_LR-0.0 0 01 MLP-1_LR-0.001 MLP-2_LR-0.001 MLP-3_LR-0.001 

MLP-1_LR-0.0001 0.9962 0.1436 0.0464 

MLP-2_LR-0.0001 0.9968 0.63 

MLP-3_LR-0.0001 0.9969 

MLP-1_LR-0.001 0.0006 0.0001 0 0.9940 0.0078 0.1228 

MLP-2_LR-0.001 0.134 0.0046 0.0007 0.9955 

MLP-3_LR-0.001 0.0008 0 0 0.037 0.9948 

Table E.5 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on CNN-1 intermediate data from CIFAR-100. 

Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9884 0.017690 

SVM 0.011099 0.9820 0.000015 

LR 0.9935 

KNN 0 0 0 0.3769 0.0009 0 

RFE 0 0 0 0.0028 0.3576 0.0002 0 

ADB 0 0 0 0 0 0.2482 0 0 

GBC 0 0 0 0.4369 0.0097 

XGB 0 0 0 0.4721 

Table E.6 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on CNN-2 intermediate data from CIFAR- 

100.Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.4494 0.0071 0 

SVM 0.4576 0 

LR 0.0113 0.0001 0.4417 0 

KNN 0 0 0 0.2666 0.0172 0.0001 0 

RFE 0 0 0 0.2793 0.0001 0 

ADB 0 0 0 0 0 0.1732 0 0 

GBC 0.0007 0.0003 0.0013 0.3885 0 

XGB 0.7744 

Table E.7 

Pairwise p -values of performance on validation set with performance on validation set dis- 

played on the diagonal for different classification algorithms on SimpleNet intermediate data 

from CIFAR-100. Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9838 0.0001 

SVM 0.0317 0.9801 0 

LR 0.9937 

KNN 0 0 0 0.8380 

RFE 0 0 0 0.0002 0.8258 

ADB 0 0 0 0 0 0.5165 0 

GBC 0 0 0 0 0 0.0001 0.3885 0 

XGB 0 0 0 0 0 0.7744 
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Table E.8 

Pairwise p -values of performance on validation set with performance on validation set displayed 

on the diagonal for different classification algorithms on VGG-19 intermediate data from CIFAR- 

100. Values lower than 10 −4 reported as 0. 

MLP SVM LR KNN RFE ADB GBC XGB 

MLP 0.9968 0.5389 0.8449 0.7807 0.8372 

SVM 0.9972 

LR 0.5912 0.9969 0.9167 1 

KNN 0.6729 0.997 

RFE 0.4357 1 0.8895 0.9969 

ADB 0.0034 0.0028 0.0032 0.0031 0.0031 0.9854 0.0339 0.0065 

GBC 0.0001 0 0.0001 0.0001 0.0001 0.9911 0.0001 

XGB 0.0099 0.0009 0.0043 0.0039 0.00214 0.9948 
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ppendix F. ILSVRC-2012 significance tests 

In the diagonal lines of the tables, the mean accuracy of the

alidation data over 10 cross-validation folds is displayed. In the

ther cells, the p -value of the comparison of the two indicated
Table F.1 

Pairwise p -values of performance on validation set w

on the diagonal for different classification algorithm

from ILSVRC-2012 with 100 classes. Values lower t

MLP SVM LR KNN 

MLP 0.8459 0.0669 

SVM 0.0048 0.7334 0.0048 0.0048 

LR 0.8632 

KNN 0.6409 0.0613 0.8451 

RFE 0.9662 

ADB 0.0003 0.0006 0.0003 0.0003 

GBC 0.0021 0.0048 0.002 0.0021 

XGB 0.0131 0.0132 0.0136 

Table F.2 

Pairwise p -values of performance on validation set w

on the diagonal for different classification algorith

ILSVRC-2012 with 100 classes. Values lower than 1

MLP SVM LR KNN 

MLP 0.7760 0.0136 

SVM 0.0007 0.3168 0.0003 0.0004 

LR 0.8459 

KNN 0.0903 0.0006 0.7509 

RFE 0.0044 

ADB 0.0007 0.0094 0.0005 0.0006 

GBC 0.0008 0.0002 0.0003 

XGB 0.0923 0.0035 0.4908 

Table F.3 

Pairwise p -values of performance on validation s

played on the diagonal for different classification

from ILSVRC-2012 with 100 classes. Values lower t

MLP SVM LR KNN 

MLP 0.8245 0.0169 

SVM 0.0146 0.7483 0.0073 0.0237 

LR 0.8528 

KNN 0.4929 0.037 0.8184 

RFE 0.037 

ADB 0.0002 0.0005 0.0001 0.0003 

GBC 0.001 0.0019 0.0008 0.0012 

XGB 0.0054 0.0011 0.0237 
etworks/techniques is given. Since the comparisons are symmet-

ic, the p -value is only displayed for those values where the esti-

ated population mean of the network/technique in the column

ame is higher than the estimated population mean of the net-

ork/technique in the row name that it is compared to. The other

orresponding cell is left empty. 
ith performance on validation set displayed 

s on Inception ResNet V2 intermediate data 

han 10 −4 reported as 0. 

RFE ADB GBC XGB 

0.0386 

0.0042 0.0118 

0.035 

0.8629 

0.0003 0.2347 0.0085 0.0003 

0.0019 0.4549 0.0026 

0.0095 0.8117 

ith performance on validation set displayed 

ms on Inception V3 intermediate data from 

0 −4 reported as 0. 

RFE ADB GBC XGB 

0.014 

0.0003 0.0057 0.0006 

0.0002 

0.8157 

0.0005 0.1341 0.0026 0.0007 

0.0002 0.4515 0.0007 

0.0034 0.7461 

et with performance on validation set dis- 

 algorithms on Xception intermediate data 

han 10 −4 reported as 0. 

RFE ADB GBC XGB 

0.0295 

0.0085 0.0999 

0.0663 

0.8429 

0.0002 0.1847 0.0059 0.0002 

0.0008 0.3885 0.0012 

0.0008 0.7744 
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C

Appendix G. Best parameters for classification algorithms on 

CIFAR-10 intermediate data 
Table G.1 

Best parameters for classification algorithms on 

CIFAR-10 intermediate data on CNN-1. 

model best model parameters on test 

MLP MLP-2, LR: 0.0001 

SVM C: 10, γ : 0.001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 10 

RFE 1000 estimators, gini criterion 

ADB 1000 estimators, LR: 0.5 

GBC 100 estimators, LR: 0.5 

XGB 100 estimators, LR: 0.1, max. depth: 5 

Table G.2 

Best parameters for classification algorithms on CIFAR- 

10 intermediate data on CNN-2. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 10, γ : 0.001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 1 

RFE 1000 estimators, gini criterion 

ADB 1000 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1, max. depth: 10 

Table G.3 

Best parameters for classification algorithms on 

CIFAR-10 intermediate data on SimpleNet. 

Model Best parameters 

MLP MLP-1, LR: 0.0001 

SVM C: 10, γ : 0.001, kernel: rbf 

LR C: 0.1, penalty: � 2 

KNN neighbours: 10 

RFE 1000 estimators, entropy criterion 

ADB 1000 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1,max. depth: 5 

Table G.4 

Best parameters for classification algorithms on 

CIFAR-10 intermediate data on VGG-19. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 1, γ : 0.0001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 10 

RFE 100 estimators, gini criterion 

ADB 1000 estimators, LR: 0.5 

GBC 100 estimators, LR: 0.05 

XGB 100 estimators, LR: 0.1, max. depth: 1 
ppendix H. Best parameters for classification algorithms on 

IFAR-100 intermediate data 
Table H.1 

Best parameters for classification algorithms on 

CIFAR-100 intermediate data on CNN-1. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.1, penalty: � 2 

KNN neighbours: 1 

RFE 100 estimators, entropy criterion 

ADB 100 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.05 

XGB 100 estimators, LR: 0.1, max. depth: 5 

Table H.2 

Best parameters for classification algorithms on 

CIFAR-100 intermediate data on CNN-2. 

Model Best parameters 

MLP MLP-1, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 1 

RFE 100 estimators, entropy criterion 

ADB 100 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1, max. depth: 1 

Table H.3 

Best parameters for classification algorithms on 

CIFAR-100 intermediate data on SimpleNet. 

Model Best parameters 

MLP MLP-1, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.1, penalty: � 2 

KNN neighbours: 10 

RFE 100 estimators, entropy criterion 

ADB 100 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.05 

XGB 100 estimators, LR: 0.1, max. depth: 5 

Table H.4 

Best parameters for classification algorithms on 

CIFAR-100 intermediate data on VGG-19. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 1, γ : 0.001, kernel: rbf 

LR C: 0.1, penalty: � 2 

KNN neighbours: 10 

RFE 1000 estimators, gini criterion 

ADB 100 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.05 

XGB 100 estimators, LR: 0.1, max. depth: 5 
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ppendix I. Best parameters of classifiers on high-level image 

eatures 

Table I.1 

ILSVRC-2012: best parameters on Inception ResNet 

V2. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 10 

RFE 1000 estimators, gini criterion 

ADB 1000 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1, max. depth: 1 

Table I.2 

ILSVRC-2012 best parameters on Inception V3. 

Model Best parameters 

MLP MLP-1, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 1 

RFE 1000 estimators, entropy criterion 

ADB 1000 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1, max. depth: 1 

Table I.3 

ILSVRC-2012 best parameters on Xception. 

Model Best parameters 

MLP MLP-2, LR: 0.0001 

SVM C: 10, γ : 0.0001, kernel: rbf 

LR C: 0.001, penalty: � 2 

KNN neighbours: 10 

RFE 1000 estimators, entropy criterion 

ADB 1000 estimators, LR: 0.1 

GBC 100 estimators, LR: 0.1 

XGB 100 estimators, LR: 0.1, max. depth: 1 
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