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a b s t r a c t 

There is no reliable guidance available in literature so far for the selection of a suitable technique for 

denoising Magnetic Resonance (MR) images. The performance of edge-preserving denoising schemes like 

Nonlocal Means, Bilateral, Total Variation, Anisotropic Diffusion, Kuwahara, wavelet denoising, Linear Min- 

imum Mean Square Error, Smallest Univalue Segment Assimilating Nucleus and Beltrami filters on MR 

images are evaluated and compared in this paper. Performance evaluation is done on real-time MR Im- 

ages, Shepp–Logan Phantom images and simulated MR images. Image Quality Analysis indices used for 

the evaluation are Structural Similarity Index Metric, Noise Quality Measure, Peak Signal to Noise Ratio, 

Edge Preservation Index, MetricQ, Anisotropic Quality Index, Blind Reference Image Quality Evaluator and 

computational time. It has been observed that the performance of each filter is completely different on 

Shepp–Logan, simulated MR and real-time MR images. It is critically sensitive to the strength of noise 

also. No filter which can offer good performance equally on Phantom, simulated MR image and real-time 

MR images, is available in the literature. Values of the objective indices are not in concordance with 

subjective quality ratings. Filter designs optimized on Phantom or simulated MR using maximum PSNR 

between denoised and ground-truth images as an objective function (minimum error sense in general) 

do not perform well on real-time MRI. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Magnetic Resonance Imaging (MRI) is a modality extensively

sed in neuroimaging studies ( Benou, Veksler, Friedman, & Ra-

iv, 2017; Hermessi, Mourali, & Zagrouba, 2019 ). In neuroimaging,

agnetic Resonance (MR) images are helpful for both diagnosis

nd characterization of Multiple Sclerosis, Dementia, Alzheimer’s

isease, infectious diseases, intra-cranial lesions etc . MR images

re extensively used as assistive tools in image-guided stereotac-

ic surgery and Radiation Treatment (RT) planning also. Compared

o other imaging modalities, MR images contain more features

nd structural details which help the physicians for better diag-

osis. The quality of the MR images is usually hindered by ran-

om noise ( Rundo et al., 2019 ). Even though the image acquisition

echniques have undergone tremendous development in hardware

ngineering, extenuation of noise via hardware modifications is

emaining as an unreached objective in MRI. Noise reduces the
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isibility of low contrast anatomical structures, especially at low

ignal-to-noise ratio (SNR). Presence of noise adversely affects the

erformance of edge-based segmentation schemes used in soft-

are packages for computerized image analysis. The presence of

oise intervenes with the accurate computation of radiation dosage

n RT planning. As it is not trivial to address the issue of noise

n MRI through design modifications of the MR equipment, post-

rocessing techniques have a significant role in improving MR im-

ge’s quality. 

The visual quality of MR images can be improved feasibly by

enoising. The conventional neighbourhood averaging techniques 

o not preserve edges. Examples for conventional techniques are

aussian, mean and median filters. In MR denoising, preservation

f weak morphological edges while smoothing homogenous re-

ions is important. An ideal filter should be capable to suppress

oisy grey level transitions in the homogeneous regions of the im-

ge, selectively, without hindering the quality of edges. The state-

f-the-art Edge Preserving Filters (EPFs) are capable of preserving

he edges while smoothing the homogeneous regions. 

Selection of a proper denoising technique for MR image is a

hallenging task as there is no reliable guidance in the literature.

or real-time MR images, proper ground-truth is not available. So
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the performance evaluation of filters designed for MRI’s is often

done on Phantom and simulated images with the help of image

quality metrics. There is a complication that filters performing well

on Phantom and simulated images may not show good perfor-

mance on real-time MRI. Filters exhibiting good values of quality

evaluation metrics may not produce output images with apprecia-

ble visual quality. 

There is no reliable guidance available in the literature so

far for the selection of a suitable technique for denoising Mag-

netic Resonance (MR) images. The performance evaluation of edge-

preserving denoising schemes like Nonlocal Means filter (NLM)

( Singh & Bala, 2019 ), Bilateral Filter (BF) ( Akar, 2016 ), Total

Variation (TV) ( Kang, Jung, & Kang, 2018 ), Anisotropic Diffusion

(AD) ( Tong, Sun, Payet, & Ong, 2012 ), Kuwahara ( Bartyzel, 2016;

Djurovi ́c, 2017 ), wavelet denoising ( Khatami, Khosravi, Nguyen,

Lim, & Nahavandi, 2017 ), Linear Minimum Mean Square Error

(LMMSE) ( Golshan & Hasanzadeh, 2015 ), Smallest Univalue Seg-

ment Assimilating Nucleus (SUSAN) ( Smith & Brady, 1997 ), and

Beltrami ( Fernández, & Martínez, 2010 ) filters are done in this

study. Among the edge-preserving filters listed above, except the

wavelet denoising, all other filters belong to the class of ‘edge-

preserving spatial filters’. Among the edge-preserving spatial fil-

ters, AD is a denoising algorithm based on Partial Differential

Equations (PDEs) ( Lahmiri & Boukadoum, 2016 ). Wavelet denois-

ing is a ‘transform domain’ algorithm, outside the category of

‘edge-preserving spatial filters’ which is believed to have the edge-

preserving capability. Wavelet denoising belongs to the broad cat-

egory of ‘multi-resolution denoising algorithms’ ( Lahmiri, 2017a ).

Another filter widely used in medical image denoising is 2D

Wiener filter ( Lahmiri, 2017b ). Wiener is an inverse filtering algo-

rithm. Even though Wiener filter is not counted within the cate-

gory of edge-preserving filters, because of its wide applications, it

is also included in the performance evaluation discussed in this

paper. In transform domain denoising algorithms, the image is

decomposed into frequency or wavelet sub-bands and the coeffi-

cients of selected sub-bands are attenuated. There are some de-

noising techniques analogous to transform domain algorithms. For

example, in some denoising algorithms, the input image is de-

composed into distinct modes with the help of techniques like

Empirical Mode Decomposition (EMD) ( Lahmiri, 2015; Lahmiri &

Boukadoum, 2015a ) or Variational Mode Decomposition (VMD)

( Lahmiri & Boukadoum, 2014, 2015b ) and noise-free estimate is

computed from the modes after excluding the residue modes. As

denoising algorithms based on EMD and VMD are outside the cat-

egory of edge-preserving filters which is the prime focus of this

paper, they are not included in the objective analysis presented

here. 

1.2. Contribution and highlights 

This work is intended to analyze the issues and uncertainty in

choosing adequate algorithms for denoising MR images. This anal-

ysis will help as a reliable guideline for the selection of the edge-

preserving filters and their design for MR images. Performance

evaluation of edge-preserving denoising schemes on Phantom, sim-

ulated and real-time MR images is done in this study. Working

of nine edge-preserving filters and Wiener filter are assessed on

MR Images. For performance evaluation and validation, eight differ-

ent image quality metrics including various types of full-reference,

partial-reference and no-reference indices are used in this study.

Concordance of image quality indices with subjective fidelity rat-

ings is also discussed. The inferences and observations made out

from study are versatile as a roadmap for choosing restoration

schemes, for the optimization of their operational parameters and

modification. 
.3. Organization of the paper 

The paper is organized as follows: In Section 2 , the theory of

dge-persevering filters evaluated in this study is explained. Differ-

nt qualitative and quantitative methods used for the performance

valuation of denoising filters and their features are explained. De-

ails of test images used for this experiment and system require-

ents are also furnished. The images denoised with different fil-

ers, Mean Opinion Scores of denoised images and objective quality

valuation results are provided in Section 3 . Section 4 focuses on

he inferences of the study and various issues and disputes related

o the selection of filters for denoising MR images. 

. Methodology 

The denoising schemes studied in this paper are exclusively

dge-preserving filters. Performance of filters is assessed on dif-

erent types of input images that too at different noise levels

oth qualitatively and quantitatively. The image sets used in this

tudy includes real-time MR images, Shepp–Logan Phantom im-

ges and simulated brain images from BrainWeb: Simulated Brain

atabase. 

.1. Edge preserving filters used in this study 

The popular edge preserving denoising schemes available

n literature are NLM ( Singh & Bala, 2019 ), BF ( Akar, 2016 ),

V ( Kang et al., 2018 ), AD ( Tong et al., 2012 ), Kuwahara

 Bartyzel, 2016; Djurovi ́c, 2017 ), wavelet denoising ( Khatami et al.,

017 ), LMMSE ( Golshan & Hasanzadeh, 2015 ), SUSAN ( Smith &

rady, 1997 ), Beltrami filter ( Fernández & Martínez, 2010 ) etc . 

Kuwahara filter is an immediate extension of mean filter. In

uwahara filter, neighbourhood region around central pixel is seg-

egated into partially overlapping sub-areas. The variances of the

ub-regions are compared and the central pixel is substituted by

ean grey levels in the sub-area, showing minimum variance. BF is

n extension of the conventional 2D Gaussian filter. In 2D Gaussian

lter; the restored intensity is the weighted sum of the pixel in-

ensities in a square window around the central pixel. The weight

orresponding to any pixel within the window is calculated from

he spatial distance between that pixel and contextual pixel. The

ilateral filter uses two Gaussian kernels. The first kernel, termed

s the spatial kernel, accounts for the spatial distance of the pixels

n the square window from the contextual pixel. The second ker-

el, termed as the radiometric kernel, accounts for the grey level

istance of the pixels in the square window from the contextual

ixel. SUSAN filter is closely similar to the bilateral filter, except

he aspect that, the contextual pixel is not included in SUSAN fil-

er for computing the restored intensity. 

In NLM, the denoised intensity is the weighted sum of the pix-

ls in the whole image or in a neighbourhood area of significantly

arge size, known as search window, of arbitrary radius. The weight

orresponding to any pixel in the search window depends on the

imilarity of the pixels within the square window of arbitrary ra-

ius, known as similarity window around that pixel and the con-

extual pixel. 

TV and AD filters are two edge-preserving filters outside the

roup of Kuwahara, SUSAN, bilateral and NLM filters. In TV filter,

n approximate estimate that has smaller total variation, character-

zed in terms of the variance, than the original image, constrained

y an objective criterion based on minimum error sense between

he original image and approximation, is computed. The primal-

ual method and split-Bregman method, which solves the objec-

ive constrained the partial differential equation of the TV filter are

omputationally complex. AD filter is a PDE based denoising algo-

ithm. In the AD filter, the input image is denoised via the repeated
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rocess of ‘anisotropic diffusion’, iteratively. To minimize the local

radient, average of the weighted sum of fraction of the gradient

mong contextual pixel and its connected neighbours are added to

t, in each iteration. 

Wavelet denoising or wavelet thresholding (WT) is a non-

arametric method which does involve nonlinear shrinking of co-

fficients in the transform domain. It comes under the category of

ulti-resolution image denoising. The three main steps involved in

avelet denoising are wavelet decomposition of the image, nonlin-

ar shrinkage denoising and computation of inverse wavelet trans-

orm. Beltrami filter is based on Beltrami flow, which aims at

inimising the area of the image manifold. In the LMMSE filter,

MMSE estimator is used to predicting the noise-free signal from

oisy MR acquisition. The technique has the capability to adap-

ively compute the strength of noise from the background. Estima-

ion of noise is based on the assumption that the distribution of

oise is Rician, which holds good for single coil MR acquisitions. 

In Wiener, the principle of ‘inverse filtering’ is for image de-

oising. In Wiener filter, the strength of denoising is self-adaptive

o the local image variance. When the local variance is large, the

lter offers less smoothing and when the variance is small, it of-

ers more smoothing. This is the reason behind the better denois-

ng and edge preservation of Wiener filter than other linear filters.

he Wiener filter offers the best tradeoff between noise attenu-

tion and protection of edges. It removes the additive noise and

nverts the blurring simultaneously. 

All edge-preserving filter designs discussed above are based on

he assumption that noise is additive white Gaussian. In real-time

RI, noise is proven to be additive Gaussian ( Kuppusamy, Joseph,

 Jayaraman, 2019 ). 

.2. Qualitative analysis 

For qualitative analysis output images of NLM, Bilateral, TV, AD,

eltrami, Kuwahara, WT, LMMSE, SUSAN and Wiener filters are

resented before a group of ten spectators on a Liquid Crystal Dis-

lay computer screen with a resolution of 96 dpi. The spectators

re tutored to evaluate the quality of the denoised images in terms

f three criteria, residual noise, edge-blur and structural loss. As-

essment is fully left to the individual discretion of the spectator.

pectators are asked to give scores between 1 and 5. Mean of the

cores values corresponding to each image, given by the spectators

re taken into regard as Mean Opinion Score (MOS) or the subjec-

ive quality evaluation rating. 

.3. Quantitative analysis 

Quantitative analysis is performed in terms of full reference,

o-reference and partial reference quality evaluation metrics. In

he case of full reference metrics, performance is evaluated be-

ween ground-truth and denoised image. However, for MR im-

ges, noise-free ground-truth images are not available. Only par-

ial reference or no reference metrics are possible in those cases

here the ground-truth is not available. Full reference metrics

sed here in this paper include Peak Signal to Noise Ratio (PSNR)

 Joseph & Periyasamy, 2018a ), Structural Similarity Index (SSIM)

 Kuppusamy, Joseph, & Sivaraman, 2017 ), Edge Preservation Index

EPI) ( Zhang, Feng, Wang, & Xue, 2013 ) and Noise Quality Mea-

ure (NQM) ( Damera-Venkata, Kite, Geisler, Evans, & Bovik, 20 0 0 ).

etricQ ( Gabarda, Cristóbal, & Goel, 2018 ) is a partial reference

etric. Anisotropic Quality Index (AQI) ( Gabarda & Cristóbal, 2007;

hu & Milanfar, 2010 ) and Blind Reference Image Quality Evaluator

BRISQUE) ( Chow & Rajagopal, 2017 ) are the no-reference metrics.

n addition, the computational time of the denoising schemes also

easured. 
The full-reference metric, PSNR is based on the mean squared

rror, which quantitatively measures the similarity of the restored

mage to noise-free ground-truth. Output images of good denoising

lters are expected to be more similar to the noise-free ground-

ruth and they produce comparatively larger PSNR values. The

igher the PSNR value, the better the quality of the denoised im-

ge. Full-reference metric SSIM measures the structural similarity

etween ground-truth and denoised images. It is a bounded statis-

ic with ideal value equal to one. The SSIM quantifies the degrada-

ion of geometric features of the MR images. The bounded statistics

PI measures the extent to which edges are preserved. High EPI

alues ideally equal to one are appreciable. NQM is a full reference

mage quality metric which reflects the quality of the denoised im-

ges in terms of the amount of residual noise. Consequently, NQM

eflects how far image quality is degraded by noise. High NQM val-

es are expected. 

AQI, BRISQUE and MetricQ are three indices used to quantify

he overall quality of the denoised images by taking into account

he extent of residual noise and strength of edges. Out of them,

RISQUE and AQI are no-reference indices. MetricQ is a partial ref-

rence index as noisy input is used as a reference during its com-

utation. Ideally, the values of MetricQ and AQI are supposed to be

ery high. Whereas, the value of BRISQUE comes down in response

o the increase in the quality of the image. 

.4. Test images 

The test images used for the experiments belong to three dif-

erent classes, real-time MR Images, Shepp–Logan Phantom im-

ges and simulated brain images. MR images are acquired with

he help of a 1.5 Tesla 2D MRI scanner, Model: Signa HDxt, manu-

actured by GE Medical Systems, available at Hind Labs, Govern-

ent Medical College Kottayam, Kerala, India. Series of acquisi-

ion is MR Spectroscopy. The inter-slice gap and slice thickness

et during the image acquisition are 1.5 mm and 5 mm, respec-

ively. Images from T1 Fast Spin-Echo Contrast Enhanced (FS-ECE),

iffusion Weighted Imaging (DWI), T2 Fluid Attenuation Inversion

ecovery (FLAIR), Gradient Recalled Echo (GRE) and 10 0 0b Ar-

ay Spatial Sensitivity Encoding Technique (ASSET) pulse sequences

re used ( Joseph & Periyasamy, 2018b ; Joseph, Anoop, & Williams,

019; Simi, Edla, & Joseph, 2018 ). Shepp–Logan Phantom image’s

 Jain, 1989 ) ground-truth is generated by Matlab ®. Additive white

aussian noise with four different variances ( σ = 0.0 01, 0.0 025,

.005, and 0.01) is added to the ground-truth image to simulate

oisy images at four different noise levels. The benchmark simu-

ated brain data with readily available noisy free ground-truth (0%

oise level) is availed from the BrainWeb database ( Cocosco, Kol-

okian, Kwan, Pike, & Evans, 1997; Yang et al., 2015 ). The MR slices

n this database belong to T1, T2 and Proton Density (PD) pulse se-

uences with 5 mm slice thickness at different noise levels, 1%, 3%

nd 5%. 

.5. System requirements 

All experimental analysis is performed via. Matlab ® on a 64-

it Personal Computer with Intel (R) Core i7 processor, 3.60 GHz

PU, 4 GB RAM memory and Microsoft Windows 7 as Operating

ystem. 

. Results 

.1. Shepp–Logan Phantom images 

Shepp–Logan Phantom images contaminated with additive

aussian noise at four different noise levels ( σ = 0.0 01, 0.0 025,

.005 and 0.01) denoised with different edge-preserving filters
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Fig. 1. Shepp–Logan Phantom images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 0.001) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) 

Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 
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NLM, Bilateral, TV, AD, Kuwahara, wavelet thresholding, LMMSE,

SUSAN, Beltrami and Wiener are shown in Figs. 1 –4 . Visual inspec-

tion of denoised images is done based upon three criteria; they

are residual noise, edge-blur and structural loss or similarity with

ground-truth. 

While visual inspecting the denoised images in Fig. 1 , it can be

seen that the filters NLM, TV and Beltrami ( Fig. 1 (c), 1 (e) and 1 (k))

have noise-free images without blur and structural loss. Output

image of BF ( Fig. 1 (d)) has slight blur, but it is free from noise
nd structural loss. Image denoised with TV filter ( Fig. 1 (e)) is

ompletely free from noise, structural loss and blur. The denoised

mage of AD filter ( Fig. 1 (f)) has residual noise, but edge-blur and

tructural loss are absent. Fig. 1 (g), of Kuwahara filter, retains a

egligible amount noise. Edge-blur and structural loss are absent.

D, WT and LMMSE ( Fig. 1 (f), 1 (h) and 1 (i)) filters retains noise in

enoised images, but edge-blur and structural loss are absent. A

egligible amount of noise is present in Fig. 1 (j) denoised by SU-

AN filter. However, it has no edge-blur and structural loss. Image
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Fig. 2. Shepp–Logan Phantom images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 0.0025) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) 

Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 
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estored with the Wiener filter ( Fig. 1 (l)) shows edge-preservation,

ut a negligible amount of noise is present in it. Edge-blur is

bsent in it. 

Visual analysis of denoised images in Fig. 2 , shows that TV

nd Beltrami filters ( Fig. 2 (e) and 2 (k)), produce noise-free images

ithout blur and have ground-truth similarity. NLM retains slight

oise in its denoised image ( Fig. 2 (c)) without edge-blur and struc-

ural loss. Output image of BF ( Fig. 2 (d)) shows edge-blur and it re-

ains noise. Fig. 2 (e), the output image of TV filter, is noise-free and
lur-free without structural loss. Output images of AD and LMMSE

lters ( Fig. 2 (f) and 2 (i)) contain a high amount of noise, but edge-

lur and structural loss are absent. A moderate amount of noise is

resent in the output images of Kuwahara and WT based denois-

ng ( Fig. 2 (g) and 2 (h)). These images do not show blur and struc-

ural loss. A negligible amount of noise is present in Fig. 2 (j) with-

ut blur and structural loss, which is the output of SUSAN filter.

light amount of noise and blur is present in the denoised image

f Wiener filter in Fig. 2 (l). 
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Fig. 3. Shepp–Logan Phantom images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 0.005) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) 

Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 
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Considering the denoised images ( σ = 0.005) in Fig. 3 , output

images of TV and Beltrami filters ( Fig. 3 (e) and 3 (k)) are noise-free

with negligible structural loss. These images are free from edge-

blur also. Denoised images of NLM and WT ( Fig. 3 (c) and 3 (h))

contain slight residual noise but free from blur and structural loss.

The restored image of BF in Fig. 3 (d), have a slight blur and resid-

ual noise but free from structural loss. Denoised images of AD and

LMMSE ( Fig. 3 (f) and 3 (i)) contain severe noise. Structural loss and

edge-blur are not visible on those images. Average amount of noise
s noticeable in Kuwahara and SUSAN filtered images ( Fig. 3 (g) and

 (j)). These images show slight structural loss also, but no blur. In

he Fig. 3 (l) of Wiener, noise and structural loss is present. 

During the visual analysis of denoised images at noise level

= 0.01 ( Fig. 4 ), the following observations are noted. Restored im-

ge of Kuwahara filter ( Fig. 4 (c)) contains considerably low noise

nd has slight structural change with no of edge-blur. BF blurs the

mage ( Fig. 4 (d)) and it has a slight structural loss, residual noise.

V filter completely removes noise from image ( Fig. 4 (e)) and is
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Fig. 4. Shepp–Logan Phantom images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 0.01) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) 

Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 
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lur-free. However, the denoised image suffers from structural loss.

D and LMMSE filters retain a high amount of noise in restored

mages ( Fig. 4 (f) and 4 (i)) with structural loss but blur not present.

n average amount of noise is present in both WT and LMMSE de-

oised images ( Fig. 4 (h) and 4 (i)) with severe structural loss. How-

ver, edge-blur is absent in both the images. SUSAN filter preserves

 slight amount of noise ( Fig. 4 (j)) with slight structural loss. Bel-

rami filter’s denoised image ( Fig. 4 (k)) has structural loss with

egligible residual noise and shows no edge-blur. Blur and noise
re present in the output of the Wiener filter in Fig. 4 (l). Structural

oss is also visible in it. 

MOS values of Phantom images denoised by different filters

 Figs. 1 – 4 ) are given in Table 1 . At low noise level σ = 0.001, NLM,

V and Beltrami denoised images have high MOS values. Wiener,

F, Kuwahara and SUSAN filters also have shown good MOS values.

D, WT and LMMSE filters have very low MOSs. At noise level,

= 0.0025, TV and Beltrami filters have high MOS values. NLM

nd Wiener filters also have good scores. All other filters SUSAN,
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Table 1 

Mean Opinion Score of Phantom images restored with various filters. 

FILTERS Noise Level Summary 

σ = 0 . 001 σ = 0 . 0025 σ = 0 . 005 σ = 0 . 01 

NLM 4.5 4 3 2.5 3.50 ±0.91 

BF 4 3 2.5 3 3.13 ±0.63 

TV 4.5 4.5 4 3.5 4.13 ±0.48 

AD 2.5 2 2 2 2.13 ±0.25 

KUWAHARA 4 2.5 2.5 2.5 2.89 ±0.75 

WT 2.5 2.5 3 2.5 2.63 ±0.25 

LMMSE 2.5 2 2 2 2.13 ±0.25 

SUSAN 4 3.5 3 2.5 3.25 ±0.65 

BELTRAMI 4.5 4.5 4 3.5 4.13 ±0.48 

Wiener 4.25 3.75 2.75 2.75 3.38 ±0.75 
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BF, AD, Kuwahara, WT and LMMSE have low values of MOS at this

level. Only TV and Beltrami filters have appreciable MOS at noise

levels σ = 0.005 and 0.01. Scores of NLM, BF, AD, Kuwahara, WT,

LMMSE and SUSAN filters are not appreciable at this level. TV and

Beltrami filters have shown high MOS over all the four noise lev-

els. NLM and Wiener filters have shown good performance at low

noise levels σ = 0.001 and 0.0025. BF, Kuwahara and SUSAN filters

have good scores only at low noise level σ = 0.001. AD, WT and

LMMSE filters do not exhibit appreciable performance on any of

the four noise levels. Among the filters, only TV and Beltrami have

shown consistent performance on all noise levels. 

The PSNR, EPI, SSIM and NQM values calculated between

ground-truth and Phantom images restored with various denois-

ing schemes, at four different noise levels ( σ = 0.0 01, 0.0 025, 0.0 05

and 0.01) are given in Table 2 . At low noise levels, σ = 0.001 &

0.0025, BF, Kuwahara and SUSAN have shown high PSNR values.

NLM and Wiener filters also have appreciable PSNR values at this

noise level. At noise level σ = 0.005 and 0.01, BF shows highest

PSNR value. Kuwahara, SUSAN and NLM filters also have apprecia-

ble PSNR values at these noise levels. PSNR value of BF is consis-

tently high overall noise levels. Kuwahara and SUSAN filters also

have shown appreciable high values over the four noise levels.

NLM shows good values at low noise levels only. TV, AD, WT,

LMMSE and Beltrami filters do not show appreciable PSNR values

in any of the noise levels. 

Considering EPI values at noise level σ = 0.001, BF, Kuwahara,

SUSAN and Beltrami filters have shown high values. NLM and

Wiener filters also have good EPI values compared to other filters.

At noise level σ = 0.0025, BF has shown highest EPI. Wiener, Kuwa-

hara, SUSAN, Beltrami and NLM filters have shown good EPI values.

At σ = 0.005, highest EPI values are exhibited by BF and SUSAN fil-

ter. NLM, Kuwahara and Beltrami filters also exhibited appreciable

scores. BF, SUSAN and Beltrami filters have shown high EPI values

at noise level σ = 0.01. BF and SUSAN filter have shown high EPI

values consistently over all four noise levels. NLM, Kuwahara and

Beltrami filters also have shown appreciable scores. Wiener filter

has good scores at low noise levels. TV, AD, WT and LMMSE filters

do not show appreciable scores at any of the four noise levels. 

SSIM values of all filters except WT are appreciable at noise

level σ = 0.001. At σ = 0.0025, Kuwahara and Beltrami filters have

shown high scores. NLM, BF, SUSAN and Wiener filters also have

shown appreciable scores. At σ = 0.005, Kuwahara, SUSAN and Bel-

trami filters have high scores. Wiener, BF and NLM filters also

have good scores. The highest SSIM value at noise level σ = 0.01 is

shown by Beltrami filter. NLM, BF, Kuwahara, SUSAN and Wiener

filters have also shown appreciable scores. Kuwahara and Beltrami

have high SSIM values at all noise levels. SUSAN, NLM, BF, and

Wiener filters also have shown appreciable SSIM values. AD filter

has shown good SSIM value at low noise level only. TV, LMMSE
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nd WT filters have not shown good SSIM values for any of the

our noise levels. 

Considering NQM values at σ = 0.001, BF, Kuwahara and SU-

AN filters have high values. NLM, Wiener and AD filters also

ave shown good values. At σ = 0.0025, Kuwahara filter has high-

st NQM value. BF and SUSAN filter also have shown good scores.

F, TV, Kuwahara and SUSAN filters have good scores at noise lev-

ls σ = 0.005 and 0.01. Wiener filter’s NQM values are also appre-

iable at these noise levels. BF, Kuwahara and SUSAN filters have

onsistently good NQM values overall four noise levels. Wiener fil-

er also has shown appreciable score at all noise levels. NLM and

D filters have good NQM value at the low noise level ( σ = 0.001)

nly. The TV filter has shown appreciable value at high noise levels

 σ = 0.005 and 0.01). WT, LMMSE and Beltrami filters never exhibit

ppreciable NQM scores in any of the noise levels. 

As per MOS values, the filters performing well on Phantom im-

ges are Beltrami, TV and NLM. However, the filters which have

hown high scores equally for PSNR, EPI, SSIM and NQM, are BF,

uwahara and SUSAN. TV, AD, WT and LMMSE filters are failed

o give good scores for any of these evaluation metrics. It is very

lear that the objective evaluation of filters on Phantom images

 Table 2 ) is not on par with visual quality evaluation through MOS

 Table 1 ). Another observation is that, some filters show differ-

nt performance for different noise levels. For example, NLM and

iener filter have shown good PSNR values for low noise levels

nly. SUSAN filter has good EPI values only for two noise levels

 σ = 0.001 and 0.005). Beltrami filter have shown high EPI value

t noise level σ = 0.01 only. Kuwahara filter has high NQM values

nly at noise levels σ = 0.001 and σ = 0.0025. 

PSNR is considered as a common image quality measure metric.

owever, very low PSNR values are observed for Beltrami and TV

lters which have shown high visual quality and thus high MOS

alues. For example, Fig. 1 (e), 1 (f), 2 (e) and 2 (f) shown high vi-

ual clarity have low PSNR values among other filters. It is also

bserved that some images showing equal PSNR values have ex-

remely different visual quality. For example Fig. 3 (k) and 3 (h) of

eltrami and WT filters with PSNR values 26.49 and 26.73 respec-

ively have shown extremely different visual quality. Noise is visi-

le in Fig. 3 (h) but Fig. 3 (k) is noise-free. Another typical example

s between Fig. 2 (e) and 2 (h) of filters TV and WT. Both figures

ave almost equal PSNR values 29.42 and 29.39 respectively. How-

ver, on visual analysis, it is very evident that Fig. 2 (e) is abso-

utely noise free and Fig. 2 (h) contains a severe amount of noise.

he same problem can be observed with Fig. 3 (e) and 3 (f). Fig. 3 (e)

s completely noise free and Fig. 3 (f) is highly noise, but both have

lmost equal PSNR values. 

The values of MetricQ, AQI and BRISQUE on Phantom images

enoised by different filters and their computational time in sec-

nds are given in Table 3 . At noise level σ = 0.001, NLM, TV and

T filters have shown high MetricQ values. BF, Kuwahara and SU-

AN filters also have shown appreciable scores. NLM and TV fil-

ers have shown high MetricQ values at σ = 0.0025 and 0.005. BF,

uwahara and SUSAN filters also have good scores at these noise

evels. At noise level σ = 0.01, NLM filter has the highest score.

F and SUSAN filters also have comparably good scores at this

oise level. NLM filter has shown highest MetricQ value at all four

oise levels. TV and Kuwahara filters have shown high scores at

= 0.0 01, 0.0 025 and 0.005. At high noise level σ = 0.01, the scores

f those filters are not appreciable. WT has a good score only at

ow noise level σ = 0.001. BF and SUSAN filter exhibit appreciable

cores at all the noise levels consistently. AD, LMMSE and Beltrami

lters do not show appreciable MetricQ values in any of the four

oise levels. 

AQI values of all filters at four different noise levels are ob-

erved to be the same. Therefore AQI is improper for the quan-

itative evaluation of Phantom images. 
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Table 4 

Mean Opinion Score of simulated images denoised by different 

filters. 

FILTERS Noise Level Summary 

σ = 1% σ = 3% σ = 5% 

NLM 4 4 3.75 3.92 ±0.14 

BF 2.5 3 3 2.83 ±0.29 

TV 2 2 2 2 ± 0 

AD 2.5 2.5 3.5 2.83 ±0.58 

KUWAHARA 2 2 2 2 ± 0 

WT 3.75 3.75 4 3.83 ±0.14 

LMMSE 3 3 3 3 ± 0 

SUSAN 4 4 4 4 ± 0 

BELTRAMI 3.5 3.5 3.5 3.5 ± 0 

Wiener 3.75 3.5 3.5 3.58 ±0.1443 
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At noise level σ = 0.001, Kuwahara filter has appreciable low

BRISQUE value. WT also has shown good BRISQUE score at this

noise level. TV and WT filters express good scores at noise level

σ = 0.0025 and σ = 0.005. At σ = 0.01, TV and BF filters have

shown good scores. BF have appreciable score only at σ = 0.01. At

the same time, Kuwahara filter has shown good scores only at low

noise level σ = 0.001. The TV filter has appreciable scores at noise

levels σ = 0.0 025, 0.0 05 and 0.01. WT have appreciable scores at

σ = 0.0 01, 0.0 025 and 0.005. NLM, AD, LMMSE, SUSAN, Wiener and

Beltrami filters do not exhibit good scores at any of the four noise

levels. 

As per MetricQ values, NLM, TV, BF, Kuwahara and SUSAN

filters have shown appreciable scores. But these observations in

Table 3 are not on par with those MOS values given in Table 1 . AQI

may not suit for quality evaluation of Phantom images as it offers

constant value for all filters. Even BRISQUE values are not on con-

cordance with visual quality evaluation. None of the quality metric

evaluation values on Phantom images is on par with the subjective

evaluation. 

While analyzing the computational time of all filters used in

this work, Wiener filter is observed to be the fastest one. Another

filter showing less computational time is LMMSE, but its denoising

performance is not appreciable. The filter which has good denois-

ing performance, NLM, is computationally very complex. Kuwahara

filter is also has high computational time. TV and Beltrami filters

which have good MOS values have moderate computational time. 

3.2. Simulated MR images 

Simulated MR images at three different noise levels ( σ = 1%,

3% and 5%) restored with NLM, Bilateral, TV, AD, Kuwahara, WT,

LMMSE, SUSAN and Beltrami filters are shown in Figs. 5 –7 . On

the visual evaluation of denoised images at noise level σ = 1%

( Fig. 5 (b)), NLM and SUSAN filters ( Fig. 5 (c) and 5 (j)) have shown

noise-free images without blur and structural loss. Fig. 5 (d), 5 (e)

and 5 (f) of BF, TV and AD filters have not shown residual noise.

But images are blurred and they have no ground-truth similarity.

Cartoon-like effect is visible in Kuwahara filter’s image ( Fig. 5 (g)).

As though residual noise is not there in the image, the similarity

with ground-truth is very less. Noise is not visible on Fig. 5 (h), 5 (i),

5 (k) and 5 (l) corresponds to WT, LMMSE, Beltrami and Wiener fil-

ters respectively. Images are not blurred but it does not maintain

ground-truth similarity as such. 

At noise level σ = 3% ( Fig. 5 (b)), NLM and SUSAN filters

( Fig. 6 (c) and 6 (j)) have produced noiseless, blur-free images with-

out structural loss. Restored image of BF in Fig. 6 (d) have shown

residual noise and blur. Fig. 6 (e) and 6 (f) of TV and AD fil-

ters are over-blurred but noise is absent. Kuwahara filtered image

( Fig. 6 (g)) is suffered from cartoon-effect and thus it loses sim-

ilarity with ground-truth. Residual noise is also present in this

image. Slight noise and blur are visible in image denoised with

WT ( Fig. 6 (h)). Fig. 6 (i) of LMMSE filter has shown a moderate

amount of noise but blur-free. Fig. 6 (k) of the Beltrami filter is

over-smoothened but noise-free. Fig. 6 (l) of the Wiener filter is

slightly noisy. It is free from blur and preserves similarity with

ground-truth. 

At noise level σ = 5% ( Fig. 7 (b)), NLM filter has produced noise-

free image ( Fig. 7 (c)) without blur. But it has no ground-truth

similarity. Image denoised by BF filter is ( Fig. 7 (d)) blur-free but

it retains noise. TV and AD filter have produced blurred images

( Fig. 7 (e) and 7 (f)) without residual noise. Fig. 7 (g) of Kuwahara

contains noise and has cartoon artefact. Slight amount of noise and

blur is visible in WT’s image ( Fig. 7 (h)). Output of the LMMSE fil-

ter contains a slight amount of noise in Fig. 7 (i). SUSAN filter has

produced a noise-free image ( Fig. 7 (j)) with no blur and structural

loss. Fig. 7 (k) of Beltrami filter is over-smoothened but noise is ab-
ent. The Wiener filter ( Fig. 7 (l)) has produced a slightly nosily im-

ge with negligible structural loss. The image is free from blur. 

MOS of each denoised images in Figs. 5 –7 are given in Table 4 .

t low noise level ( σ = 1%), denoised images of NLM and SUSAN

lters have shown high MOS score. Beltrami, Wiener and WT fil-

ers also have appreciable MOS values. MOS values expressed by

ther filters at low noise level are not appreciable. At σ = 3%, NLM

nd SUSAN filters have shown high scores. WT, Wiener and Bel-

rami filters are also expressed appreciable MOS values. At σ = 5%,

T and SUSAN filters have shown high MOS values. NLM, Wiener,

eltrami and AD filters also have good scores. Considering MOS

f all filters at three different noise levels, SUSAN has the high-

st MOS score. The MOS value of NLM filter is also good. NLM has

igh scores at σ = 1% and 3% level, but its score reduced slightly on

= 5%. WT and Beltrami filters have shown good scores at three

oise levels. BF, TV and Kuwahara filters do not show appreciable

OS at any of the noise levels. AD filter has shown good score only

t σ = 5%. At all other noise levels, its MOS is not good. 

The PSNR, EPI, SSIM and NQM metrics values of simulated im-

ges denoised with different filters are given in Table 5 . On ana-

yzing PSNR values at noise level σ = 1%, LMMSE and SUSAN filters

ave exhibit high values. WT and Beltrami filters also have shown

ppreciable PSNR values at this noise level. NLM and SUSAN fil-

ers have shown good performance at noise level σ = 3%. AD, WT,

MMSE, Wiener and Beltrami filters are also exhibited good PSNR

cores. At noise level σ = 5%, NLM and AD have high PSNR val-

es. WT, LMMSE, SUSAN and Wiener filters also have appreciable

SNR values at this level. BF, TV and Kuwahara filters have not

hown appreciable PSNR values at any of the three noise levels.

T, LMMSE and SUSAN filters have shown appreciable scores at

ll the three noise levels. NLM filter has good scores at noise lev-

ls σ = 3% and 5%. Beltrami filter has good scores at σ = 1% and

= 3%. 

Considering EPI scores at noise level σ = 1%, LMMSE and Bel-

rami filters have high scores. Other filters showing appreciable

erformance at this level are WT and SUSAN. NLM has the highest

PI value at noise level σ = 3%. WT, LMMSE and SUSAN filters also

ave appreciable scores. At noise level σ = 5% NLM has highest EPI

alue. Other filters shown good scores at this noise level are WT,

F and AD. WT filter has shown good EPI values over three noise

evels. NLM filter has shown good scores at σ = 3% and σ = 5%. BF

nd AD have shown good values only at high noise level σ = 5%.

MMSE, SUSAN and Beltrami filters have appreciable EPI scores

ver noise levels σ = 1% and 3%. 

LMMSE filter has highest SSIM value at noise level σ = 1%.

ther filters have good scores at this noise level are NLM, WT, SU-

AN and Beltrami. NLM also has an appreciable score at this noise

evel. WT, Wiener and LMMSE filters have high values at noise

evel σ = 3%. Beltrami, NLM, BF and SUSAN filters also have appre-

iable good scores at this level. WT and Wiener filters have high
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Fig. 5. Simulated noisy MR images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 1%) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) 

Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 

Table 5 

PSNR, EPI, SSIM, NQM values between ground-truth and simulated MR images restored with different filters, at three different noise levels. 

FILTERS PSNR EPI SSIM NQM 

σ = 1% σ = 3% σ = 5% σ = 1% σ = 3% σ = 5% σ = 1% σ = 3% σ = 5% σ = 1% σ = 3% σ = 5% 

NLM 34.79 30.58 27.09 0.9578 0.9380 0.9071 0.9967 0.9819 0.9502 27.24 22.15 18.65 

BF 28.44 27.17 25.87 0.8921 0.8810 0.8536 0.9869 0.9817 0.9744 19.77 17.60 15.85 

TV 24.73 23.91 22.98 0.7297 0.6871 0.6301 0.9687 0.9624 0.9533 18.46 17.47 15.82 

AD 30.25 29.07 27.02 0.9085 0.8910 0.8510 0.9896 0.9751 0.9467 24.13 20.98 17.93 

KUWAHARA 27.08 25.78 23.82 0.7891 0.7486 0.6927 0.9830 0.9691 0.9405 21.15 18.30 15.39 

WT 37.33 29.57 26.27 0.9793 0.9299 0.8756 0.9984 0.9896 0.9771 29.37 19.70 16.97 

LMMSE 38.81 29.87 26.28 0.9836 0.9120 0.8218 0.9986 0.9851 0.9576 29.12 20.47 16.64 

SUSAN 38.37 30.54 26.97 0.9792 0.9122 0.8371 0.9983 0.9817 0.9471 29.71 21.72 17.88 

BELTRAMI 37.56 29.15 25.60 0.9801 0.9021 0.8119 0.9982 0.9820 0.9439 28.87 20.00 15.90 

Wiener 32.03 29.14 26.70 0.9435 0.9067 0.8425 0.9944 0.9886 0.9793 24.29 19.99 17.04 
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SIM values at noise level σ = 5%. BF’s score is also appreciable at

his noise level. SSIM value of WT is observed to be appreciable

t all noise levels. BF and Wiener filter have appreciable scores at

= 3% and 5%. SUSAN, NLM and Beltrami filters have good scores

t σ = 1% and 3%. 

While analysing NQM scores at noise level σ = 1%, it is observed

hat the filters WT, LMMSE and SUSAN have high values. Beltrami

ler also has the appreciable score at this noise level. NLM filter

as the highest NQM values at σ = 3% and 5%. SUSAN and AD fil-

ers also have good scores at these noise levels. SUSAN and NLM
lters have shown good NQM scores over all the three noise levels.

D filter has shown good scores at noise levels σ = 3% and σ = 5%.

MMSE, WT and Beltrami filters have good scores only at σ = 1%.

F, TV, Wiener and Kuwahara filters have not shown good NQM

cores over any of the three noise levels. 

MetricQ, AQI and BRISQUE values of simulated MR images de-

oised by different filters and their computational time are given

n Table 6 . NLM filter has shown the highest MetricQ value at noise

evel σ = 1%, 3% and 5%. LMMSE, SUSAN and WT filters also have

hown good scores at σ = 1%. At noise level, σ = 3% SUSAN filter
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Fig. 6. Simulated noisy MR images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 3%) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara 

(h) Wavelet thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 

Table 6 

MetricQ and AQI values of simulated images restored with various filters, at different noise levels and the computational time in 

seconds of all filters. 

FILTERS Metric Q AQI BRISQUE COMP. TIME (s) 

σ = 1% σ = 3% σ = 5% σ = 1% σ = 3% σ = 5% σ = 1% σ = 3% σ = 5% 

NLM 0.3030 0.2909 0.2385 0.0059 0.0057 0.0054 25.87 31.58 39.69 7.9203 ±0.0579 

BF 0.2356 0.2108 0.1742 0.0053 0.0052 0.0051 43.41 43.46 43.46 0.2470 ±0.0011 

TV 0.1878 0.1657 0.1303 0.0057 0.0056 0.0053 43.46 43.46 43.46 0.1697 ±0.0110 

AD 0.2570 0.2356 0.1926 0.0060 0.0059 0.0056 37.03 42.92 42.63 0.1898 ±0.0058 

KUWAHARA 0.2459 0.2098 0.1635 0.0064 0.0064 0.0060 43.46 43.46 43.46 6.7821 ±0.1149 

WT 0.2904 0.2457 0.1957 0.0055 0.0056 0.0052 28.44 23.15 14.39 0.0316 ±0.0 0 04 

LMMSE 0.2917 0.2441 0.1864 0.0056 0.0054 0.0051 33.76 42.50 42.70 0.0501 ±0.0037 

SUSAN 0.2948 0.2571 0.1938 0.0058 0.0059 0.0054 32.70 38.31 39.68 0.4 456 ±0.04 4 4 

BELTRAMI 0.2880 0.2374 0.1821 0.0055 0.0055 0.0054 28.08 26.6 29.44 0.7239 ±0.7988 

Wiener 0.2604 0.2283 0.1826 0.0056 0.0056 0.0053 30.31 28.95 31.13 0.0 050 ±0.0 051 

 

 

 

 

 

 

 

 

 

a  

L  

e  

g

 

W  

n  

t  

s  

s  
also exhibit good values. At σ = 5% AD, WT and SUSAN filters also

have shown appreciable MetricQ values. AD filter has good score

only at noise level 5%. Beltrami filter has shown good score only at

noise level σ = 1%. BF, Kuwahara, Beltrami, Wiener and TV filters

do not show good scores at any of the three noise levels. 

While analyzing AQI values of different filters, it is observed

that Kuwahara filter has the highest value at noise levels σ = 1%,

3% and 5%. AD and NLM filters also have appreciable scores at

noise levels σ = 1%. Moreover, AD and SUSAN filters also have

shown good scores at noise level σ = 3%. AD filter has exhibited
ppreciable scores at σ = 5%. BF, TV, WT, Beltrami, Wiener and

MMSE filters have not shown good scores at any of the noise lev-

ls. Beltrami filter has good score only at σ = 5%. NLM filter has

ood score only at noise level σ = 1%. 

NLM has appreciable BRISQUE value (low) at noise level σ = 1%.

T and Beltrami filters also have shown good scores at this

oise level. But at noise level, σ = 3% and 5% WT have shown

he appreciable scores. Beltrami filter also has shown appreciable

cores good at noise level 3%. Beltrami, SUSAN and NLM have

hown good scores at this level σ = 3% and 5%. The filters which
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Fig. 7. Simulated noisy images denoised with different filters (a) Ground-truth (b) Noisy image ( σ = 5%) (c) NLM (d) Bilateral filter (e) TV (f) AD (g) Kuwahara (h) Wavelet 

thresholding (i) LMMSE (j) SUSAN (k) Beltrami (l) Wiener. 
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ave not shown good BRISQUE at any of the noise levels are BF,

V, AD, Kuwahara, SUSAN, Wiener and LMMSE. NLM filter has

ood score only at noise level σ = 1%. Beltrami filter has shown

ood scores at all three noise levels. WT has good scores at noise

evel σ = 3% and 5%. 

On simulated images also, Wiener filter is the computation-

lly fastest one. LMMSE filter also have shown less computational

ime but its denoising performance is not appreciable. NLM and

uwahara filters are computationally very complex filters. WT and

USAN filters shown good restoration result on simulated images

ave appreciable processing time also. 

From the above analysis, it is very clear that filters performance

n simulated images is different for different noise levels. The

SNR values of different filters produced in Table 5 are not on par

ith observations of MOS in Table 4 . The TV and Beltrami filters

ave shown high MOS values on all noise levels and have good vi-

ual clarity. However, image quality metrics have failed to produce

alues on par with quality evaluation results. For example, while

bserving the PSNR values on Table 5 ; it is seen that LMMSE and

D filters have high scores. However, the denoised images corre-

pond to these filters ( Figs. 5 (f), 5 (i), 6 (f) and 6 (i) do not offer high

isual clarity and edge-preservation as per the PSNR values. EPI,

SIM, NQM, MetricQ values given in Table 5 are on par with MOS

alues in Table 4 . AQI and BRISQUE metrics have shown completely
ismatching scores with MOS values. Example AQI and BRISQUE

cores show KUWAHARA and WT as best filters and this is not on

ar with MOS values. 

.3. Real-time MR images 

Real MR images denoised with different edge-preserving filters

LM, Bilateral, TV, AD, Kuwahara, wavelet thresholding, LMMSE,

USAN and Beltrami are shown in Figs. 8 –10 . Among denoised im-

ges in Fig. 8 , the output image of NLM filter ( Fig. 8 (b)) contains

o residual noise, no blur and negligible structural loss. Fig. 8 (c)

f BF is blurred and it contains noise and structural loss. Slight

tructural loss is there in image denoised with TV filter ( Fig. 8 (d)),

ut it is free from noise and blur. Mean brightness of the im-

ge is slightly changed by TV filter. Fig. 8 (e) of AD filter has ex-

ibited no blur, no residual noise and negligible structural loss.

ig. 8 (f), image denoised by Kuwahara, is suffered from cartoon-

rtefact and structural loss. But it does not contain residual noise.

T over smoothens the image ( Fig. 8 (g)), but noise is not visi-

le in it. LMMSE filter’s denoised image ( Fig. 8 (h)) contains noise

ut without blur. Image 1 denoised by SUSAN filter ( Fig. 8 (i)) con-

ains slight noise. But it has no edge-blur or structural loss. Bel-

rami filter’s denoised image ( Fig. 8 (j)) is completely free from

esidual noise, edge-blur and structural loss. Slight blur is visible
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Fig. 8. Real MR images denoised with different filters (a) MR Image 1 (b) NLM (c) Bilateral filter (d) TV (e) AD (f) Kuwahara (g) Wavelet thresholding (h) LMMSE (i) SUSAN 

(j) Beltrami (k) Wiener. 
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in Wiener filter’s denoised image. Image is not absolutely noise

free. 

In Fig. 9 , NLM filter ( Fig. 9 (b)) has generated a noise-free im-

age with structural loss. Output image of BF ( Fig. 9 (c)) has exhib-

ited slight noise, edge-blur and structural loss. Fig. 9 (d), the output

image of TV filter is free from noise and blur. But minute struc-

tural loss is there in it. Output image of AD filter ( Fig. 9 (e)) is

noise-free but edge blur and structural loss are visible. In Kuwa-
ara filter’s denoised image ( Fig. 9 (f)) cartoon artefact is severe.

t has edge-blur and structural loss but the image is free from

oise. Fig. 9 (g)), the output image of WT filter is noise free but

hows over-smoothening with structural loss. Slightly noisy image

 Fig. 9 (h)) is generated by the LMMSE filter. Edges are not pre-

erved well in that image but free from blur. The output image

f SUSAN filter ( Fig. 9 (i)) has shown a negligible structural loss,

ontains no noise and no edge-blur. Beltrami filter generates a
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Fig. 8. Continued 
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omplete noise-free image ( Fig. 9 (j)) without edge-blur and struc-

ural loss. Wiener filter has generated a noise-free image ( Fig. 9 (k)).

ut it has edge-blur. 

Image denoised by NLM ( Fig. 10 (b)) is observed to be free from

oise, blur and structural loss. Edge-blur and structural loss are

isible in the denoised image of BF ( Fig.10 (c)), but it is free from

oise. It is noticeable that TV filter changes the mean brightness

f the image 2 while denoising ( Fig. 10 (d)). Even though mean
rightness changed, denoised image is free from noise, blur and

tructural loss. AD filtered image ( Fig. 10 (e)) shows structural loss

nd slight edge-blur, but noise free. Image denoised by Kuwahara

 Fig. 10 (f)) is noise-free but it has cartoon artefact. Mean brightness

f the image is slightly changed and have structural loss. Fig. 10 (g)

f WT has slight blur and structural loss but it is free from noise.

MMSE filter’s denoised image ( Fig. 10 (h)) retains noise and shows

tructural loss but blur-free. Fig. 10 (i), denoised image of SUSAN
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Fig. 9. Real MR images denoised with different filters (a) MR Image 3 (b) NLM (c) Bilateral filter (d) TV (e) AD (f) Kuwahara (g) Wavelet thresholding (h) LMMSE (i) SUSAN 

(j) Beltrami (k) Wiener. 
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filter, is observed to be free from noise and blur. But it has a

slight structural loss. Output image of Beltrami filter ( Fig. 10 (j)) has

noise-free image without blur but a slight structural loss is there.

Wiener filter has generated noise-free, blur-free images with struc-

tural loss. 

Mean Opinion Score (MOS) of the denoised MR images is given

in Table 7 . Considering image 1, Beltrami filter has high MOS. NLM

and AD also have good MOS values. On image 2, both SUSAN and

Beltrami filters have shown high scores. NLM and TV also have

equally good MOS values. On image 3, NLM shows better perfor-
ance. SUSAN and Beltrami filters also have an equally good per-

ormance on image 3. NLM and Beltrami filters have consistently

ppreciable performance on three images. The performance of BF,

uwahara, WT and LMMSE filters are not appreciable on three im-

ges. TV filter’s MOS is appreciable only in image 2. AD filter has

ood performance on image 1 only. SUSAN filter’s MOS is good in

mage 2 and image 3, but not appreciable in image 1. 

The quality metric (MetricQ, AQI and BRISQUE) values on real-

ime MRI’s denoised by different filters are given in Table 8 . On im-

ge 1, highest MetricQ value is shown by NLM and TV filters. WT
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Fig. 9. Continued 
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nd SUSAN filters have also shown good MetricQ values. On image

 also NLM filter has highest MetricQ value. AD, WT and SUSAN

lters are also exhibited good scores. On image 3, TV, Kuwahara,

nd NLM filters have shown first, second and third highest Met-

icQ values respectively. AD, Beltrami and LMMSE filters scores are

ot good for any of the MR images. 

Considering AQI values on image 1, TV filter has the highest

alue. Kuwahara has shown good score. On image 2, TV and Kuwa-

ara have good AQI values than other filters. BF and NLM filter

lso have shown good scores. On image 3, TV filter has the highest
alue. AD and SUSAN filters also have good scores. All other filters

ave equal AQI values. 

On three MR images (Image 1, Image 2 and Image 3) Kuwa-

ara has shown appreciable (low) value. TV and NLM filters also

ave shown appreciable scores on image 1. On image 2, TV and

USAN filters also have good scores. In image 3, TV filter has good

RISQUE value other than Kuwahara. 

In terms of computational time, LMMSE filter is the fastest

mong others. But LMMSE’s restoration performance is not appre-

iable on real-time MR images. Wiener filter also has shown less
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Fig. 10. Real MR images denoised with different filters (a) MR Image 3 (b) NLM (c) Bilateral filter (d) TV (e) AD (f) Kuwahara (g) Wavelet thresholding (h) LMMSE (i) SUSAN 

(j) Beltrami (k) Wiener. 
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computational time. NLM filter whose performance is good in real-

time MR images has shown the highest computational time. An-

other filter performing well on MR images, Beltrami, have shown

appreciable computational time. 

On real-time MR images, NLM and Beltrami have shown bet-

ter performance on denoising as well as edge-preservation. NLM is

computationally complex but Beltrami filter’s computational time

is appreciable. Susan and TV filer also have shown good perfor-

mance. It can be observed that TV, AD, and SUSAN filter’s perfor-
ance on real-time MR images are image specific also. MetricQ,

QI and BRISQUE values of real-time MR images are not on par

ith MOS values. 

. Discussions 

Filters which have shown good performance on subjective

ssessment have not shown good performance on objective

valuation. The quantitative evaluation indices computed from
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Fig. 10. Continued 
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enoised Phantom, simulated and MR images are not on par with

he qualitative evaluations done with MOS. Similarly, no-reference

mage quality indices often used in denoising studies were not in

orrespondence with full-reference image quality metrics. There

s an urgent need for a no-reference image quality metric to

easure the quality of restored image for MR image denoising

pplications. 
Even though PSNR between ground-truth and denoised images

s a full-reference metric commonly used objective measure for

enoised image quality, sometimes PSNR values show significant

ifference between two visually similar or indistinguishable im-

ges. Similarly, denoised images with equal values of PSNR show

ignificant difference on visual inspection. None of the quantita-

ive measures discussed in this work are not particularly well at
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Table 7 

Mean Opinion Score of MR images denoised by different filters. 

FILTERS MOS on different images Summary 

Image 1 Image 2 Image 3 

NLM 4 4 4.5 4.17 ±0.29 

BF 2 3 2.5 2.50 ±0.50 

TV 3.5 4 3.5 3.67 ±0.29 

AD 4 3 3.5 3.50 ±0.50 

KUWAHARA 3 3 3 3 ± 0 

WT 2.75 3.5 3 3.08 ±0.38 

LMMSE 2.5 3.5 2.75 3.08 ±0.80 

SUSAN 3 4.5 4 3.83 ±0.76 

BELTRAMI 4.5 4.5 4 4.33 ±0.29 

Wiener 2.75 3.25 3.5 3.17 ±0.38 
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predicting human visual response to quality of denoised MR im-

ages. Filters which have shown high PSNR values between de-

noised and ground-truth images do not show good visual quality. 

There is a usual practice of doing design and validation of the

filters on Phantom or simulated MR images based on the assump-

tion that they are the best alternatives of real-time MR images.

It has been observed that the performance of each filter is com-

pletely different on Shepp–Logan, simulated MR and real-time MR

images. The filter performance is critically sensitive to the strength

of noise also. No filter which can offer good performance equally

on Phantom, simulated MR image and real-time MR images, is

available in literature. Filter designs optimized on Phantom or sim-

ulated MR using maximum PSNR between denoised and ground-

truth images as objective function (minimum error sense in gen-

eral) do not perform well of real-time MRI. As the performance of

filters on MR images and simulated or Phantom images are dif-

ferent, the assumption that Phantom or simulated MR images are

best alternatives of real-time MR images is not valid. Even on real-

time MR images also, there is no consistency in the performance

of filters. 

Even though the performance of filters are sensitive to the

type of the image (Phantom, simulated MR or real-time MR),

their merits and demerits can be generalized up to a certain ex-

tent as follows. Among the edge preserving spatial filters, Kuwa-

hara filter is the one which is very simple to implement. Be-

cause of high smoothing characteristics, Kuwahara filter causes

shading or cartoon artefacts. Dislocation of edges and gradient re-

versal are other two major issues associated with Kuwahara fil-

ter. Among the edge preserving spatial filters, NLM filter offers

the best trade-off between edge reservation and noise removal.

It selectively smoothens homogenous regions in the input image

without compromising sharpness of edges. The search procedure

for finding similar pixels within the search window makes the

NLM computationally complex. However, the performance of the

NLM filter is not appreciable at higher noise levels. Bilateral and
Table 8 

MetricQ, AQI and BRISQUE values on MR images denoised with different fi

FILTERS MetricQ AQI 

Image 1 Image 2 Image 3 Image 1 Image 2 

NLM 0.0673 0.0998 0.0267 0.0012 0.0020 

BF 0.0568 0.0797 0.0232 0.0014 0.0021 

TV 0.0673 0.0893 0.0314 0.0017 0.0022 

AD 0.0637 0.0922 0.0256 0.0013 0.0020 

KUWAHARA 0.0595 0.0812 0.0282 0.0015 0.0022 

WT 0.0659 0.0952 0.0262 0.0013 0.0019 

LMMSE 0.0574 0.0773 0.0231 0.0014 0.0018 

SUSAN 0.0657 0.0931 0.0256 0.0013 0.0017 

BELTRAMI 0.0633 0.0907 0.0245 0.0012 0.0017 

Wiener 0.0560 0.0832 0.0233 0.0012 0.0017 
USAN filters have very good edge preserving characteristics. Stair-

ase artefacts and gradient reversal are two limitations of bilat-

ral and SUSAN filters. Both of them introduce false edges. To-

al variation and Beltrami filters are faster than NLM, bilateral,

USN and AD filters. TV and Beltrami filters have the ability to

estore comparatively better noise-free estimates, at higher noise

evels. However, the sharpness of edges is compromised both in

V and Beltrami filters. This makes TV and Beltrami filters infe-

ior to bilateral, NLM and AD filters at low SNR. Beltrami filter sig-

ificantly alters mean brightness characteristics of the input im-

ge during the restoration. However, Beltrami regularisation is free

rom staircase artefacts usually seen on TV. AD is computation-

lly slow as it is an iterative denoising algorithm. Edge preserva-

ion capability of AD filter is less than NLM, SUSAN and bilateral

lters. 

Apart from the class of edge-preserving spatial filters compris-

ng Kuwahara, AD, bilateral, SUSAN, NLM, Beltrami and TV fil-

ers, wavelet thresholding is a transform domain denoising tech-

ique which is believed to have edge preservation characteristics.

n fact, WT is not up to the mark of AD, bilateral, NLM filters in

erms of edge preservation at low SNR. Similarly, the quality of

utput images produced by WT is comparatively less than those

roduced by TV or Beltrami filters at a high noise level. More-

ver, the selection of mother wavelet, level of decomposition and

he wavelet sub-band to be thresholded determine the reliability

f WT. Wiener filter is a simple and computationally fast inverse

ltering algorithm outside the category of edge-preserving filters.

he inverse filter algorithm in wiener needs the prior of local and

lobal noise estimates. Hence, the performance of Wiener filter

ritically depends on the accuracy of the noise estimation model

sed. 

. Conclusion 

Performance of different edge reserving filters was evaluated

oth objectively and subjectively on Phantom, simulated and real-

ime MR images. It was observed that the performance of denois-

ng filters heavily depends on type of the image and the strength of

oise in it. No filter which can offer good performance equally on

he Phantom, simulated MR and real-time MRI, at all noise levels

as found. Objective indices generally used to quantify the quality

f the denoised images were not in concordance with subjective

uality ratings. Similarly, no-reference image quality indices often

sed in denoising studies were not in correspondence with full-

eference image quality metrics. There is always a probability that

he performance of the filters designed on Phantom or simulated

R images can be sub-optimal on real-time MR images. Above in-

erences are helpful as reliable guidelines for the selection of edge-

reserving filters, formulation of new denoising algorithms and op-

imization of operational parameters of denoising filters, for MR

mages. 
lters, and the computational time in seconds for all filters. 

BRISQUE COMP. TIME (s) 

Image 3 Image 1 Image 2 Image 3 

0.0 0 0 02 37 41.69 47.55 231.72 ±1.21 

0.0 0 0 02 51.28 56.23 52.73 2.07 ±0.21 

0.0 0 0 04 33.48 37.12 34.62 3.73 ±0.03 

0.0 0 0 03 41.81 42.53 50.94 0.95 ±0.04 

0.0 0 0 02 30.28 26.73 33.17 43.52 ±0.32 

0.0 0 0 02 46.87 45.48 49.75 0.18 ±0.002 

0.0 0 0 02 44.41 42.03 46.71 0.10 ±0.006 

0.0 0 0 03 37.94 37.35 52.38 2.87 ±0.06 

0.0 0 0 02 40.14 48.04 48.91 0.42 ±0.10 

0.0 0 0 02 40.12 39.91 42.12 0.018 ±0.003 
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