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a b s t r a c t 

Intelligent computer systems aim to help humans in making decisions. Many practical decision-making 

problems are classification problems in their nature, but standard classification algorithms often not ap- 

plicable since they assume balanced distribution of classes and constant misclassification costs. From this 

point of view, algorithms that consider the cost of decisions are essential since they are more consistent 

with the requirements of real life. These algorithms generate decisions that directly optimize parameters 

valuable for business, for example, the costs savings. But despite on practical value of cost-sensitive al- 

gorithms, the little number of works study this problem concentrating mainly on the case when the cost 

of a classifier error is constant and does not depend on a specific example. However, many real-world 

classification tasks are example-dependent cost-sensitive (ECS), where the costs of misclassification vary 

between examples and not only within classes. Existing methods of ECS learning include just modifica- 

tions of the simplest models of machine learning (naive Bayes, logistic regression, decision tree). These 

models produce promising results, but there is a need for further improvement in performance that can 

be achieved by using gradient-based ensemble methods. To break this gap, we present the ECS gener- 

alization of AdaBoost. We study three models which differ by the ways to introduce cost into the loss 

function: inside the exponent, outside the exponent, and both inside and outside the exponent. The re- 

sults of the experiments on three synthetic and two real datasets (bank marketing and insurance fraud) 

show that example-dependent cost-sensitive modifications of AdaBoost outperform other known models. 

Empirical results also show that critical factors influencing the choice of the model are not only the dis- 

tribution of features, which is typical for cost-insensitive and class-dependent cost-sensitive problems but 

also the distribution of costs. Next, since the outputs of AdaBoost are not well calibrated posterior prob- 

abilities, we check three approaches to calibration of classifier scores: Platt scaling, isotonic regression, 

and ROC modification. The results show that calibration not only significantly improves the performance 

of specific ECS models but allows making better capabilities of original AdaBoost. Obtained results pro- 

vide new insight regarding the behavior of the cost-sensitive model from a theoretical point of view and 

prove that the presented approach can significantly improve the practical design of intelligent systems. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

In practice, decision making often comes down to the problem

f classification. The responsible person must determine to what

nown class the particular object belongs, and the assigned class

abel defines possible scenarios of actions. For example, the loan

anager first analyzes the data of the borrower to determine the

evel of risk (for example, low, medium or high) and then selects

he terms of the loan agreement based of risk level assigned. Sim-

lar tasks arise in all other areas of human activity. 

Since the number of factors influencing a decision can be huge

nd their relationships are complicated, computer methods are

idely used to solve the classification problem. But practition-
E-mail address: yzelenkov@hse.ru 

p  

t
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957-4174/© 2019 Elsevier Ltd. All rights reserved. 
rs often face problems that cannot be solved by standard al-

orithms, since these methods assume a balanced class distri-

ution and equal misclassification costs ( He & Garcia, 2009 ). In

eal life, the most typical situation is when the number of ex-

mples of one class is much smaller (10 or more times) than

he number of instances of another. Moreover, the minor class

ncludes those objects whose identification is of particular in-

erest ( Liu & Zhou, 2006; Zadrozny & Elkan, 2001a ): insurance

raudsters ( Abdallah, Maarof, & Zainal, 2016 ), dishonest borrow-

rs ( Abellan & Castellano, 2017 ), fraudulent credit card transactions

 Sahin, Bulkan, & Duman, 2013 ), patients with a specific diagnosis

 Sun, Kamel, Wong, & Wang, 2007 ), etc. Besides, it is evident that

otential financial losses depend on the type of classifier error. Ap-

roval of a loan to a fraudster leads to higher losses than the denial
o a bona fide borrower. 

https://doi.org/10.1016/j.eswa.2019.06.009
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Table 1 

Cost matrix. 

Actual positive Actual negative 

Predict positive C TP C FP 

Predict negative C FN C TN 
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There are three main categories of approaches to imbalanced

data sets classification: data processing level methods, classi-

fiers level methods, and cost-sensitive methods. The data process-

ing level methods adjust the ratio of two classes to form bal-

anced data sets by re-sampling strategies. Elkan (2001) argue that

these strategies have little effect on the classifiers generated by

the standard Bayesian methods and decision trees. He and Gar-

cia (2009) review these methods, including Random Oversampling

(extension of the dataset by repeating examples of the minor class

or generating of objects similar to the instances of the minor class),

and Random Undersampling (reducing the major class objects).

Classifier level methods deal with the setting of classes weights as

meta-parameters of the classifier. 

While sampling methods attempt to balance distributions by

considering the representative proportions of classes, cost-sensitive

learning methods consider the costs associated with classifier de-

cisions ( Elkan, 2001; He & Garcia, 2009 ). The main idea is not to

minimize the number of errors but to reduce the total cost of er-

rors. For practitioners, taking into account the costs of classifier

decisions is an additional advantage, since it allows moving from

unclear for them quality characteristics (F-score, ROC AUC …) to

estimates expressed in business terms, for example, system cost,

cost reduction, etc. 

Many researchers consider the cost-sensitive learning problem,

and most often they believe that the cost of a classifier error

does not depend on a specific example and is constant for each

type of error (false negatives and false positives). This approach

can be called a Class-dependent Cost-Sensitive (CCS) classification

problem ( Elkan, 2001 ). Many well-known classification algorithms

are adapted for this case, e.g., decision trees ( Sahin et al., 2013 ),

their ensembles ( Krawczyk, Wo ́zniak, & Schaefer, 2014 ), in par-

ticular AdaBoost ( Nikolaou, Edakunni, Kull, Flach, & Brown, 2016 )

and gradient boosting ( Xia, Liu, & Liu, 2017 ), support vector ma-

chines ( Park, Luo, Parhi, & Netoff, 2011 ), neural networks ( Zhou &

Liu, 2006 ) etc. 

But many real-world classification problems are Example de-

pendent Cost-Sensitive (ECS) since the misclassification cost varies

between examples and not only within classes ( Bahnsen, Aouada,

& Ottersten, 2014a ). For example, potential losses in the case of a

loan to a fraudster depend on the amount requested. 

Lenarcik & Piasta first formulated the ECS problem in 1998

( Lenarcik & Piasta, 1998 ), but so far there is a relatively small

amount of studies developing algorithms to solve it. Zadrozny and

Elkan (2001b ) adapted MetaCost ( Domingos, 1999 ) algorithm to

ECS problem, Brefeld, Geibel, and Wysotzki (2003) proposed cost-

sensitive SVM for non-separable classes, there are also example-

dependent cost-sensitive implementations of logistic regression

( Bahnsen et al., 2014a ), decision tree ( Bahnsen, Aouada, & Otter-

sten, 2015a ) and ensembles of random trees ( Bahnsen, Aouada,

& Ottersten, 2015b ). These studies prove the significance of ECS

methods for practice but consider the only simplest base mod-

els. The goal of our work is to expand the list of available algo-

rithms by generalizing Adaptive Boosting (AdaBoost) for example-

dependent cost-sensitive problem. 

AdaBoost outperforms other algorithms because it trains an en-

semble of weak classifiers moving in the direction of the negative

gradient of the loss function. Therefore, each new estimator at-

tempts to correct the error of its predecessors. We consider three

methods, which differ in the way of including the cost of the clas-

sifier error in the loss function. Since the outputs from AdaBoost

are not well calibrated posterior probabilities ( Niculescu-Mizil &

Caruana, 2005 ), we also consider three methods of probability

calibration based on Platt scaling ( Platt, 1999 ), isotonic regres-

sion ( Zadrozny & Elkan, 2001a ) and ROC modification ( Hernández-

Orallo, Flach, & Ferri, 2012 ). We tested proposed ECS AdaBoost on

three synthetic data sets, as well as on two real problems of bank
arketing and auto insurance and compared the results with stat-

f-arts methods based on decision trees ( Bahnsen et al., 2015a;

015b ) and with original AdaBoost with calibration ( Nikolaou et al.,

016 ). Results of experiments prove that proposed generalization

f AdaBoost outperform existing algorithms. 

The contribution of our work can be summarized as follows.

n the theoretical part, in addition to an in-depth review of cost-

ensitive classification problem, we concentrate on two aspects.

he first one is how the incorporation of cost into the loss func-

ion impacts the preservation of class asymmetry; the second one

s the problem of probability calibration since original AdaBoost is

rying to fit a logit of the true probabilities instead of true prob-

bilities themselves. In the practical part, we present variants of

he example-dependent cost-sensitive AdaBoost designed on base

heoretical analysis and show that empirical results are consistent

ith the theory. It proves that the proposed approach has signif-

cant potential to be used in intelligent and expert systems sup-

orting the decision-making process. 

. Related works review 

.1. Cost-sensitive classification problem 

We consider the problem of binary classification, for the clear

resentation, we establish the notation that will be used below.

onsidering a given training data set S with N examples (i.e.,

 S | = N ), we define S = {( x i ,y i )}, i = 1,…, N , where x i ∈ X is an instance

n k -dimensional feature space X = { x 1 , x 2 ,…, x k }, and y i ∈ Y = { − 1,

} is a class label associated with instance x i . The label y i = 1 cor-

esponds to the minor class. 

Usually, C FN and C FP denote the cost of misclassifying a posi-

ive and negative example respectively. C TP and C TN are the cost

f true positives and true negatives respectively. It leads to a cost

atrix presented in Table 1 . For CCS problem the elements of

ost matrix are constant for all examples. For ECS problem the

ost matrix varies between examples. Therefore, in the second

ase, we have to use augmented instances of the training dataset

 x i , C T P i , C F P i , C F N i , C T N i ] . 

Conceptually, the cost of mislabeling an example should always

e greater than the cost of labeling it correctly, i.e., C FN > C TP and

 FP > C TN . Elkan (2001) calls it ‘reasonableness’ condition. Very of-

en it is believed that the cost of correct classification is zero, i. е .
 TP = C TN = 0, and C FN > 0, C FP > 0. 

.2. AdaBoost and class dependent cost-sensitive classification 

AdaBoost ( Freund & Schapire, 1997 ) is an ensemble learning

echnique which constructs a strong classifier f AB from a weighted

ote of multiple weak classifiers G m 

usually implemented as a de-

ision stump 

f AB ( x ) = sign 

[ 

M ∑ 

m =1 

βm 

G m 

( x ) 

] 

. (1)

Here M is a number of weak classifiers or the number of rounds

f learning. It is accomplished through gradient descent with re-

pect to the exponential loss function 

 AB = 

N ∑ 

i =1 

exp ( −y i f AB ( x i ) ) . (2)
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According to Hastie, Tibshirani, and Friedman (2009) , on each

teration, one must solve 

( βm 

, G m 

) = argmin 

β,G 

N ∑ 

i =1 

w 

m 

i exp ( −βy i G ( x i ) ) (3) 

ith w 

m 

i 
= exp ( −y i f m −1 ( x i ) ) . The solution can be obtained in

wo steps. First, gradient G m 

( x i ) is the classifier that minimizes

he weighted error rate in predicting y . Second, optimal step

m 

is computed through a line search along direction G m 

( x i ),

hat causes the weights for the next iteration to be w 

m +1 
i 

= w 

m 

i 
·

xp ( −βm 

y i G m 

( x i ) ) . Since a weighted distribution guides each base

earner over training examples, that leads it to focus on the mis-

akes of its predecessors. 

Friedman, Hastie, and Tibshirani (20 0 0) prove that the boosting

oss L AB is minimized by the symmetric logistic transform ( y = 1| x )

t 

f AB ( x ) = 

1 

2 

ln 

P ( y = 1 | x ) 
P ( y = −1 | x ) . (4) 

Eq. (4) follows from the minimum of 

 

[
P ( y = 1 | x ) e − f M ( x i ) + P ( y = −1 | x ) e f M ( x i ) ]. (5) 

Nikolaou et al. (2016) note that there are, in general, two strate-

ies to make AdaBoost cost-sensitive. First one related to change

he training phase of the algorithm by specifying an alternative lost

unction to Eq. (2) and deriving what the corresponding weights

nd their update rule should be. Many authors applied this ap-

roach to CCS problem, Nikolaou et al. (2016) present the list of 13

istinct variants of this method ( Fan, Stolfo, Zhang, & Chan, 1999;

asnadi-Shirazi & Vasconcelos, 2007; Sun et al., 20 07; Ting, 20 0 0;

iola & Jones, 2002 ; and Landesa-Vázquez & Alba-Castro, 2012 ).

ikolaou et al. (2016) analyze these approaches using four theo-

etical frameworks: Bayesian decision theory, the functional gra-

ient descent view, margin theory, and probabilistic modeling.

hey conclude that only two algorithms from this group satisfy

ll requirements, namely asymmetric AdaBoost (AsymAda, Viola

 Jones, 2002 ) and cost-generalized AdaBoost (CGAda, Landesa-

ázquez & Alba-Castro, 2012 ). One of the main drawbacks of other

ethods is that weights updating rule is not derived from explic-

tly specified loss function; their authors manually modify the up-

ate rule without regard to it. 

According to the second strategy, the classifiers set is trained

ith the original AdaBoost, but decision rule is modified in a

ost-respecting manner. It is AdaBoost with Minimum Expected

ost (AdaMEC) rule ( Ting, 20 0 0 ), in the generalized formulation of

ikolaou et al. (2016) the decision rule is the following: 

f M 

( x ) = sign 

[
ˆ p ( y = 1 | x ) − C ( y ) 

]
. (6) 

Here C ( y ) = C FP /( C FP + C FN ) is the cost of the decision of CCS

roblem (here the cost of correct classification is zero, i. е .
 TP = C TN = 0) and ˆ p is probability estimation. Eq. (6) reduces to the

riginal AdaBoost decision rule of Eq. (1) when the task is symmet-

ic, i.e., C FP = C FN . 

Sun et al. (2007) note that there are three ways to introduce

ost into the weight update formula of AdaBoost: inside the expo-

ent, outside the exponent, and both inside and outside the ex-

onent. Methods that use these approaches when explicitly spec-

fying the loss function are CSAda ( Masnadi-Shirazi & Vasconce-

os, 2007 ) and CGAda ( Landesa-Vázquez & Alba-Castro, 2012 ). 

In CSAda Masnadi-Shirazi and Vasconcelos (2007) suggest an al-

ernative asymmetric boosting loss, which included the class de-

endent cost of misclassification C defined in Table 1 

 CS = 

N ∑ 

i =1 

exp ( −y i f CS ( x i ) C ) . (7) 
If C TP = C TN = 0 then this loss function is minimized at 

f CS ( x ) = 

1 

C F P + C F N 
ln 

P ( y = 1 | x ) C F N 
P ( y = −1 | x ) C F P 

= 

1 

C F P + C F N 

(
f AB ( x ) −

1 

2 

ln 

C F P 
C F N 

)
. (8) 

Landesa-Vázquez and Alba-Castro (2012) derived CGAda from

he loss function 

 CG = 

N ∑ 

i =1 

C · exp ( −y i f CG ( x i ) ) , (9) 

hich has minimum at ( Landesa-Vázquez & Alba-Castro, 2015 ) 

f CG ( x ) = 

1 

2 

ln 

P ( y = 1 | x ) C F N 
P ( y = −1 | x ) C F P = f AB ( x ) −

1 

2 

ln 

C F P 
C F N 

. (10) 

So, in the last case, the optimal cost-sensitive classifier f CG ( x )

an be expressed as a threshold on the cost-insensitive optimal

redictor f AB ( x ). For CSAda relation between cost-insensitive and

ost-sensitive predictors is more complex (see Eq. (8) ). 

Another significant difference between these two methods

s that CSAda does not preserve the class asymmetry when

 i f M 

( x i ) > 0 ( Landesa-Vázquez & Alba-Castro, 2015; Nikolaou et al.,

016 ). It is easy to see that if C 1 > C 2 then exp( − y i f M 

( x i ) C 1 )

 exp( − y i f M 

( x i ) C 2 ) when y i f M 

( x i ) < 0 and exp( − y i f M 

( x i ) C 1 ) <

xp( − y i f M 

( x i ) C 2 ) otherwise. It can be a critical issue because in

ractice very often misclassification of positive example can lead

o a bigger loss than misclassification of negative example. That is

hy Nikolaou et al. (2016) excluded CSAda from the list of meth-

ds that consistent with the rules of their theoretical perspectives.

Viola and Jones (2002) introduce the ratio of false negatives and

alse positives cost k in loss function in their AsymAda algorithm: 

 AA = 

N ∑ 

i =1 

exp ( −y i f CG ( x i ) ) exp 

(
y i 

√ 

k 

)
. 

It is equivalent to pre-weighing of each example by exp ( y i 
√ 

k ) .

owever, although this algorithm meets all the requirements of

ikolaou et al. (2016) , it cannot be generalized to the case when

he cost of correct classification is not zero. 

Results discussed above are very important for understanding

he cost-sensitive classification. But CCS methods are of limited use

ince the cost of misclassification almost always varies between

he examples in real practical problems. 

Particular attention should be paid to violation of class asym-

etry in the case when cost introduced inside the exponent

 Eq. (7) ). This technique of cost incorporation should produce

orse results in the case of both the CCS and the ECS tasks. 

.3. Example-dependent cost-sensitive classification 

Domingos (1999) described MetaCost algorithm, the central

dea of which is to change the label of each training example to be

ts optimal label, and then to learn a classifier that predicts these

ew labels. Zadrozny and Elkan (2001b ) adapted this approach to

he ECS problem. Each example x is associated with a cost C ( i, j, x )

f predicting class i for x when a true class of x is j . The label to

ssign to x is the class i that leads to the lowest expected cost 
 

j 

ˆ p ( y = j| x ) C ( i, j, x ) . (11) 

Applying MetaCost requires knowledge of conditional prob-

bility ˆ p ( j| x ) for each training example. Almost always, these

robabilities are not given as a part of the training dataset. In-

tead, training data can be used to learn a classifier that esti-

ates ˆ p ( y = j| x ) for each training example x and each class j .
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Zadrozny and Elkan (2001b ) used the single decision tree to esti-

mate these probabilities instead of bagging as in the original paper

of Domingos (1999) . 

In the two-class case, the optimal prediction is class y = 1 if and

only if the expected cost of this prediction is less than or equal to

the expected cost of predicting class y = −1 ( Elkan, 2001 ), i.e. 

ˆ p ( y i = −1 | x i ) C F P i + 

ˆ p ( y i = 1 | x i ) C T P i 
≤ ˆ p ( y i = −1 | x i ) C T N i + 

ˆ p ( y i = 1 | x i ) C F N i . (12)

Eq. (12) reduces to Eq. (11) when true positive and true nega-

tive costs are zero. Later, the approach on the base of Eq. (12) was

used by Bahnsen et al. (2015b) in their Bayes minimum risk model

with the combination of differnet classifiers. 

Among other models adapted for the ECS problem, we can

mention the support vector machine ( Brefeld et al., 2003 ), logistic

regression ( Bahnsen et al., 2014a ), but the most excellent attention

of the researchers is attracted to the decision trees. 

There are three main ways to incorporate cost information

into decision trees training process ( Mac Aodha & Brostow, 2013 ).

The first option is to alter how the data is sampled, e.g.,

Zadrozny, Langford, and Abe (2003) propose cost-proportionate re-

jection sampling with aggregation. The second option is to modify

the class distribution at each node ( Ting, 2002 ). The last option is

to create a new impurity measure that is designed specifically for

the example cost-sensitive case ( Bahnsen et al., 2015a; Mac Aodha

& Brostow, 2013 ). 

Bahnsen et al. (2015a) propose an example-dependent cost-

sensitive decision trees ( CSDT ) algorithm that considers the

example-dependent costs during the training and pruning of a tree.

Instead of using traditional splitting criteria such as Gini, entropy

or misclassification, the cost of each tree node is calculated, and

the gain of using each split evaluated as the decrease in the total

cost of the algorithm. After the tree is constructed, it is pruned by

using a cost-based pruning criterion. 

In their next work ( Bahnsen et al., 2015b ) these authors pro-

pose few ECS ensemble algorithms on the base of CSDT . Their ap-

proach consists of creating different example-dependent CSDT ’s on

random subsamples of the training set and then combining them

using various methods (bagging, random forest, random patches,

and pasting). They also propose two new cost-sensitive combina-

tion approaches: cost-sensitive weighted voting and cost-sensitive

stacking. According to their results, the voting ensemble of cost-

sensitive random patches ( CSRP ) demonstrates the best results on

five practical datasets. 

Reviewed works made a significant contribution to the ECS

problem, but they consider the generalization of basic models of

machine learning and most straightforward methods of their com-

bination, namely averaging and voting. Ensembles based on gra-

dient descent show more accuracy in cost-insensitive problems so

that we can expect similar improvement in ECS tasks. From this

point of view, the most obvious candidate to the generalization is

AdaBoost; details will be present in Section 3 . 

2.4. Probability calibration 

Some approaches (e.g., presented by Eqs. (6), 11 and 12 ) to the

cost-sensitive classification suggest a modification of the results

of the model based on posterior probabilities. However, the out-

puts from AdaBoost are not well calibrated posterior probabilities,

Niculescu-Mizil and Caruana (2005) empirically show that as the

number of steps of boosting increases, the predicted values are

pushed away from marginal values and tend to collect on either

side of the decision surface. Because boosting can be viewed as an

additive logistic regression model ( Friedman et al., 20 0 0 ), a conse-

quence of this is that the predictions made by boosting are trying
o fit a logit of the true probabilities, as opposed to the true prob-

bilities themselves. 

The procedure of converting classifier scores to actual probabil-

ty estimates is called calibration. For the symmetric classification

ask, Niculescu-Mizil and Caruana (2005) show that once prop-

rly calibrated, AdaBoost produced better probability estimates

han any other model examined. Authors correct output of Ad-

Boost using three different approaches. The first approach is to

irectly apply a logistic correction implied by the framework of

riedman et al. (20 0 0) and consists of getting back the condi-

ional probability from Eq. (4) . The second calibration method is

latt scaling ( Platt, 1999 ) that consist of finding parameters A and

 for a sigmoid mapping p ( y = 1| f ) = 1/(1 + exp ( Af + B )), such that

ikelihood of the data is maximized. The final approach is isotonic

egression ( Zadrozny & Elkan, 2001a ). Among the three methods,

latt scaling produces the best probability estimates on small sam-

le sizes, closely followed by isotonic regression. 

For the class-sensitive classification problem, Nikolaou and

rown (2015) compared the performance of the original AdaBoost

alibrated with Platt scaling to that of few CCS modifications

f boosting. According to their results, the performance of cali-

rated original AdaBoost is on par with that of other models on

ow-dimensional datasets, but on higher-dimensional datasets, cal-

brated AdaBoost clearly outperforms all other methods. 

Later Nikolaou et al. (2016) suggested that authors of all CCS

daBoost algorithms analyzed in their paper share a common flaw:

hey assume that AdaBoost produces well-calibrated probability es-

imation. So, they tested the performance of three calibrated CCS

odifications of AdaBoost that consistent with their theoretical

rameworks (namely, AdaMEC, AsymAda and CGAda). Platt scaling

as used for calibration. Results show that once calibrated, these

ree algorithms perform equivalently, and outperform all others.

he final recommendation of Nikolaou et al. (2016) is to use cali-

rated AdaMEC, i.e., the original AdaBoost algorithm with a shifted

ecision threshold ( Eq. (6) ), and calibrated probability estimates. 

Another approach to calibration was proposed by Hernández-

rallo et al. (2012) , in which calibrated probabilities are extracted

fter modifying the ROC curve in such a manner that it becomes

onvex. Bahnsen et al. (2015a , 2015b ) apply this calibration to ECS

lassifiers based on logistic regression and decision tree in combi-

ation with decision rule presented by Eq. (12) . Their results show

hat calibration improves the performance of ECS classifiers too. 

Note, that in case of solving of ECS problem with the help

f AdaBoost we also have to concern calibration of outputs, but

q. (12) should be used instead of Eq. (6) to estimate the thresh-

ld. 

.5. Cost-sensitive model quality measures 

Standard quality measures such as misclassification rate or F-

core, assume the same cost for the different misclassification er-

ors. But in case of ECS problem, costs of prediction of two clas-

ifiers with equal misclassification rate but different numbers of

alse positives and false negatives are not the same since at least

 F P i 
� = C F N i . Therefore, Bahnsen et al. (2015a) propose the measure

hat considers the actual costs C i = [ C T P i , C F P i , C T N i , C F N i ] of each ex-

mple i . Here we will use the same approach, modifying it for la-

els y i ∈ { − 1, 1}. 

Let Z be a set of N examples as established in Section 2.1 ,

nd each example is represented by augmented feature vector

 i = [ x i , C T P i , C F P i , C F N i , C T N i ] and y i ∈ { − 1, 1} is a class label asso-

iated with instance x i . A classifier f which predicts label f ( z i ) for

ach element i is trained using the set Z . Then the absolute value



Y. Zelenkov / Expert Systems With Applications 135 (2019) 71–82 75 

o

C

 

m  

B  

fi  

r  

t  

c  

e

S

 

a  

m  

y

3

 

c  

a  

a  

t  

s  

E

3

 

V  

i

 

t  

E  

{

f  

a

D

 

D

w

 

e

>

G

h

 

l  

s  

m  

c  

a

w

w

 

t  

t  

t  

b

3

 

l  

s  

w  

p  

c

 

t  

c

w  

i

w

3

e  

b  

s

w

 

s

f the cost of using f on Z is 

C ( y, f ( z ) ) = 

N ∑ 

i =1 

C ( y i , f ( z i ) ) , 

 ( y i , f ( z i ) ) = 

1 

4 

[
( 1 + y i ) 

(
( 1 − f ( z i ) ) C F N i + ( 1 + f ( z i ) ) C T P i 

)
+ ( 1 − y i ) 

(
( 1 + f ( z i ) ) C F P i + ( 1 − f ( z i ) ) C T N i 

)]
. (13) 

However, the total cost does not provide enough infor-

ation for comparing performance on various problems. In

ahnsen et al. (2015a) a savings measure was proposed. They de-

ned the savings of using an algorithm as the cost of the algo-

ithm versus the cost of using no algorithm at all. By evaluating

he cost of classifying all examples as the class with the lowest

ost C base = min { C ( y , −1), C ( y , 1)}, the cost improvement can be

xpressed as the cost savings as compared with C base 

 ( y, f ( z ) ) = 

C base − C ( y, f ( z ) ) 

C base 

. (14) 

Here C ( y , −1) refers to the cost when classifier predicts all ex-

mples of Z as belonging to the class y = −1, and similarly, C ( y , 1)

atch the case when the predicted labels of all examples of Z are

 = 1. 

. Example-dependent cost-sensitive AdaBoost algorithms 

According to Sun et al. (2007) , there are three ways to introduce

ost into the AdaBoost: inside the exponent, outside the exponent,

nd both inside and outside the exponent; they named these CCS

pproaches AdaC1, AdaC2, and AdaC3 respectively. In the next sec-

ions, we adopt these three approaches to example-driven cost-

ensitive AdaBoost (EDAB), these will be EDAB.C1, EDAB.C2 and

DAB.C3 algorithms. 

.1. EDAB.C1 algorithm 

Following the approach proposed by Masnadi-Shirazi and

asconcelos (2007) , let us define loss function as L =
N ∑ 

 =1 

exp [ −y i · f ( z i ) · C( y i , f ( z i ) ) ] where the cost of misclassifica-

ion of i th example C ( y i ,f ( z i )) is given by Eq. (13) . According to

q. (1) , the basis functions are the individual classifiers G m 

( z ) ∈
 − 1, 1}. Using the presented loss function, one must solve 

( βm 

, G m 

) = argmin 

β,G 

N ∑ 

i =1 

exp [ −y i ( f m −1 ( z i ) + βG ( z i ) ) 

×C ( y i , f m −1 ( z i ) + βG ( z i ) ) ] 

or the classifier G m 

and corresponding coefficient βm 

to be added

t each step. Let 

C ( y i , f ( z i ) + βG ( z i ) ) = C ( y i , f ( z i ) ) − βG ( z i ) D ( z i , y i ) , 

 ( z i , y i ) = 

1 
4 

[
( 1 + y i ) 

(
C F N i − C T P i 

)
+ ( 1 − y i ) 

(
C T N i − C F P i 

)]
. 

(15) 

For simplicity let f m 

= f m 

( z i ), G = G ( z i ), C i ( f ) = C ( y i ,f ( z i )) and

 i = D ( z i ,y i ). So, this can be expressed as 

( βm 

, G m 

) = argmin 

β,G 

N ∑ 

i =1 

w 

( m ) 
i 

× exp [ −y i βG ( C i ( f m −1 ) − ( f m −1 + βG ) D i ) ] (16) 

ith w 

(m ) 
i 

= exp ( −y i f m −1 C( f m −1 ) ) . 

Following standard AdaBoost algorithm, the solution to this

quation can be obtained in two steps. First, for any value of β
 0, the solution of Eq. (16) for G m 

( z ) is 

 m 

= argmin 

G 

N ∑ 

i =1 

w 

( m ) 
i 

I ( y i � = G ( z i ) ) , 
ere I ( ·) ∈ [0, 1] is indicator function. 

Second, βm 

is defined from a minimum of function Eq. (16) . Un-

ike the original AdaBoost in the case of example-dependent cost-

ensitive classification, it is impossible to obtain an explicit for-

ula for βm 

. However, Eq. (16) can be minimized using numeri-

al methods, for example, the Nelder-Mead simplex algorithm. The

pproximation is then updated 

f m 

= f m −1 + βm 

G m 

, 

hich causes the weights for the next iteration to be 

 

( m +1 ) 
i 

= w 

( m ) 
i 

exp [ −y i βm 

G m 

( C i ( f m −1 ) − ( f m −1 + βm 

G m 

) D i ) ] (17) 

Eq. (17) follows from 

( βm +1 , G m +1 ) = argmin 

β,G 

N ∑ 

i =1 

exp [ −y i ( f m −1 + βm 

G m 

+ βG ) 

×C i ( f m −1 + βm 

G m 

+ βG ) ] . 

Note that in EDAB.C1 algorithm we introduce the cost inside

he exponent. According to the analysis presented in Section 2.2 ,

his should violate the class asymmetry, and we can expect that

his algorithm will produce worse results than other models on the

ase of AdaBoost. 

.2. EDAB.C2 algorithm 

Yet another possible presentation of loss function for ECS prob-

em is L = 

N ∑ 

i =1 

C( y i , f ( z i ) ) · exp ( −y i · f ( z i ) ) . This loss function pre-

erves class asymmetry, so we can expect that EDAB.C2 algorithm

ill produce more accurate predictions than EDAB.C1. A similar ap-

roach is used by Landesa-Vázquez and Alba-Castro (2012) in their

lass-dependent cost-generalized algorithm (CGAda). 

Repeating logic presented in Section 3.1 , we derive the formula

hat should be used instead of Eq. (16) for the classifier G m 

and

orresponding coefficient βm 

for step m 

( βm 

, G m 

) = argmin 

β,G 

N ∑ 

i =1 

w 

( m ) 
i 

[
1 − βG 

D i 

C i ( f m −1 ) 

]
exp [ −y i βG ] (18) 

ith weight w 

(m ) 
i 

= C( f m −1 ) · exp [ −y i f m −1 ] . Weight updating rule

n that case is 

 

( m +1 ) 
i 

= w 

( m ) 
i 

[
1 − βm 

G m 

D i 

C i ( f m −1 ) 

]
exp [ −y i βm 

G m 

] . (19) 

.3. EDAB.C3 algorithm 

Third possible loss function is L = 

N ∑ 

i =1 

C( y i , f ( z i ) ) ·
xp [ −y i · f ( z i ) · C( y i , f ( z i ) ) ] . In that case, formula that should

e used instead of Eq. (16) to find the classifier G m 

and corre-

ponding coefficient βm 

for step m is 

( βm 

, G m 

) = argmin 

β,G 

N ∑ 

i =1 

w 

( m ) 
i 

[
1 − ( f m −1 + βG ) D i 

C ( f m −1 ) 

]
exp [ −y i βG ] 

(20) 

Corresponding weight update rule is 

 

( m +1 ) 
i 

= w 

( m ) 
i 

[
1 − ( f m −1 + βm 

G m 

) D i 

C i ( f m −1 ) 

]
exp [ −y i βm 

G m 

] . (21) 

The complete description of the proposed algorithms is pre-

ented in Table 2 . 



76 Y. Zelenkov / Expert Systems With Applications 135 (2019) 71–82 

T
a

b
le
 
2
 

E
x

a
m

p
le

-d
ri

v
e

n
 
co

st
-s

e
n

si
ti

v
e
 
A

d
a

B
o

o
st
 
a

lg
o

ri
th

m
s.
 

1.
 
G

iv
e

n
 
a

u
g

m
e

n
te

d
 
tr

a
in

in
g
 
se

t 
( z
 1
 

, y
 1
 

)…
( z
 N
 

,y
 N
 

) 
w

h
e

re
 
z i
 

= 
[ x
 i ,
 
C
 T 

P i
 

, 
C
 F 

P i
 

, 
C
 F 

N
 i 
, 
C
 T 

N
 i 
] ,
 
x
 i 

is
 
v

e
ct

o
r 

o
f 

fe
a

tu
re

s,
 
C
 X
 
Y
 i 

is
 
co

st
 
o

f 
cl

a
ss

ifi
ca

ti
o

n
, 

a
n

d
 
y
 i 
∈ 

{ 
−

1,
 
+ 1

} 
is
 
th

e
 
cl

a
ss
 
la

b
e

l 
o

f 
e

x
a

m
p

le
 
z i
 

. 

2
. 

In
it

ia
li

ze
 
th

e
 
e

x
a

m
p

le
s 

w
e

ig
h

ts
 
w
 i 
= 

1
/ N

, 
i =

 
1,
 
2

, 
…

, 
N
 . 

3
. 

Fo
r 

m
 
= 

1
 
to
 
M
 : 

a
. 

F
it
 
a
 
cl

a
ss

ifi
e

r 
G
 m
 

( z
 ) 

to
 
th

e
 
tr

a
in

in
g
 
d

a
ta
 
u

si
n

g
 
w

e
ig

h
ts
 
w
 i .
 

b
. 

C
o

m
p

u
te
 
co

e
ffi

ci
e

n
t 
β

m
 

m
in

im
iz

in
g
 
fu

n
ct

io
n
 
d

e
fi

n
e

d
 
b

y
 

•
E

q
. 

(1
6

) 
fo

r 
E

D
A

B
.C

1
 
a

lg
o

ri
th

m
; 

•
E

q
. 

(1
8

) 
fo

r 
E

D
A

B
.C

2
 
a

lg
o

ri
th

m
; 

•
E

q
. 

(2
0

) 
fo

r 
E

D
A

B
.C

3
 
a

lg
o

ri
th

m
. 

c.
 
U

p
d

a
te
 
w

e
ig

h
ts
 
a

cc
o

rd
in

g
 
ru

le
 
d

e
fi

n
e

d
 
b

y
 

•
E

q
. 

(1
7

) 
fo

r 
E

D
A

B
.C

1
 
a

lg
o

ri
th

m
; 

•
E

q
. 

(1
9

) 
fo

r 
E

D
A

B
.C

2
 
a

lg
o

ri
th

m
; 

•
E

q
. 

(2
1

) 
fo

r 
E

D
A

B
.C

3
 
a

lg
o

ri
th

m
. 

4
. 

O
u

tp
u

t 
f E

D
A

B
 

(x
 
) 

= 
si

g
n
 [ 

M
 ∑ m
 =1
 

β
m
 

G
 m
 

(z
) ]
 . 

4

 

o  

u  

a  

t  

s  

i  

t  

E  

p  

o  

Z  

O  

s

 

w  

b  

t

4

 

s  

a  

w  

m  

(  

x  

c  

i  

t  

t  

a  

c  

f

C  

h  

i

 

c

a  

fi  

p  

p  

t

 

d  

o  

T  

t  

b  

t

 

C  

c  

E  

b  

m  

v  

i  
. Experiments 

In this section, we apply the proposed algorithms to ECS task

n the base of three synthetic and two real datasets. First, we eval-

ate the performance of proposed EDAB algorithms and compare it

gainst the state-of-art-methods namely the cost-sensitive decision

ree ( CSDT , Bahnsen et al., 2015a ), the voting ensemble of cost-

ensitive random patches ( CSRP , Bahnsen et al., 2015b ) and orig-

nal cost-incentive AdaBoost ( AB ). We use the stump (i.e., decision

ree with max depth 1) as the basic classifier for the algorithms

DAB.C1 - EDAB.C3 . Next, we apply three calibration methods to

redictions for each classification problem. These calibration meth-

ds are Platt (Platt scaling, Platt, 1999 ), Iso (isotonic regression,

adrozny & Elkan, 2001a ) and ROC (ROC modification, Hernández-

rallo et al., 2012 ). For a prediction on the base of calibrated clas-

ifiers, we use rule defined by Eq. (12) . 

The CSDT and CSRP algorithms and ROC calibration method

ere trained using the implementations of costcla 1 software li-

rary, AB algorithm, Platt and Iso calibrations were trained using

he scikit-learn library ( Pedregosa et al., 2011 ). 

.1. Synthetic datasets 

First, we tested all the algorithms on three synthetic data

ets whose properties are presented in Table 3 . These unbal-

nced datasets were created as follows. Twenty thousand examples

ere generated for each dataset using function make_circles ,
ake_moons and make_blobs from the library scikit-learn

 Pedregosa et al., 2011 ). Each dataset includes two features x 1 and

 2 and target variable y . Then, for each instance of the positive

lass, we have generated a random number n uniformly distributed

n [0,20], and selected examples with n < 3. It should ensure that

he proportion of positive instances is less than 15%. The sizes of

he obtained data sets, the percentage of positive examples as well

s a distribution of the target variable are presented in Table 3 . The

osts of false positives and false negatives errors were calculated

or each instance as (index i for simplicity is omitted) 

 F P = ( | x 1 | + | x 2 | ) · N ( 0 . 05 , 0 . 1 ) ;C F N = ( | x 1 | + | x 2 | ) · N ( 0 . 05 , 0 . 8 ) ,

ere N ( a, b ) is a normal distribution, a and b being boundaries of

ts 95% confidence interval. 

Bahnsen et al. (2015a) introduce the classification problem cost

haracteristic b i = ( C F N i − C T P i ) / ( C F P i − C T N i ) and its mean μb 

nd variance σ b respectively. In the case of cost-insensitive classi-

cation problem μb = 1, σ b = 0. For class-dependent cost-sensitive

roblems μb � = 1, σ b = 0, for example-dependent cost-sensitive

roblems σ b � = 0. Table 3 lists values of μb and σ b for all syn-

hetic datasets. 

Each synthetic problem was divided into training and test

atasets in the ratio of 0.67: 0.33. Table 4 presents the results

f checking the models on the test data. For every algorithm,

able 4 lists the mean time of training compared with the time of

raining of original AdaBoost, the value of cost savings computed

y Eq. (14) and value of the F1 score. The results of the algorithm

hat provides the maximum cost savings are highlighted in bold. 

As expected, algorithms based on decision trees ( CSDT and

SRP ) are not able to solve the problem presented by the Cir-

les dataset. Also, entirely predictable, that modifications of the

DAB.C2 algorithm (with or without calibration) demonstrate the

est performance on synthetic datasets (see discussion of asym-

etry preservation in Section 2.2 ). However, EDAB.C3 does not con-

erge on the Blobs dataset, since an overflow occurred while min-

mizing the functions Eq. (20) . It is also worth noting that the cal-
1 http://albahnsen.github.io/CostSensitiveClassification/index.html 

http://albahnsen.github.io/CostSensitiveClassification/index.html
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Table 3 

Summary of synthetic datasets. 

Dataset Circles Moons Blobs 

Example distribution 

Examples 11,499 11,464 11,522 

% positives 13.04 12.77 13.21 

μb 10.866 12.933 12.394 

σ b 161.51 253.07 197.32 

Table 4 

Performance on synthetic datasets. 

Algorithm Circles Moons Blobs 

Time Savings F1 Time Savings F1 Time Savings F1 

EDAB.C1 44,5 0,593 0,609 11,5 0,907 0,659 4,7 0,748 0,695 

EDAB.C1-ROC 0,586 0,557 0,912 0,611 0,810 0,685 

EDAB.C1-Platt 0,558 0,558 0,914 0,604 0,766 0,607 

EDAB.C1-Iso 0,580 0,586 0,920 0,649 0,809 0,691 

EDAB.C2 44,8 0,557 0,590 23,0 0,925 0,748 20,1 0,868 0,777 

EDAB.C2-ROC 0,582 0,554 0,932 0,680 0,863 0,697 

EDAB.C2-Platt 0,548 0,557 0,916 0,617 0,859 0,695 

EDAB.C2-Iso 0,616 0,619 0,931 0,678 0,847 0,669 

EDAB.C3 26.6 0.538 0.612 15.75 0.912 0.726 N/A N/A N/A 

EDAB.C3-ROC 0.566 0.548 0.929 0.668 N/A N/A 

EDAB.C3-Platt 0.545 0.556 0.920 0.625 N/A N/A 

EDAB.C3-Iso 0.586 0.583 0.928 0.682 N/A N/A 

CSDT N/A N/A N/A 5,0 0,792 0,560 9,4 0,821 0,612 

CSDT-ROC N/A N/A 0,795 0,497 0,829 0,584 

CSDT-Platt N/A N/A 0,793 0,487 0,824 0,583 

CSDT-Iso N/A N/A 0,796 0,514 0,824 0,588 

CSRP N/A N/A N/A 40,9 0,620 0,456 34,6 0,768 0,468 

CSRP-ROC N/A N/A 0,703 0,448 0,743 0,596 

CSRP-Platt N/A N/A 0,672 0,441 0,728 0,609 

CSRP-Iso N/A N/A 0,675 0,445 0,712 0,586 

AB 1,0 0,436 0,714 1,0 0,784 0,739 1,0 0,769 0,850 

AB-ROC 0,582 0,565 0,922 0,669 0,854 0,689 

AB-Platt 0,596 0,568 0,922 0,658 0,861 0,690 

AB-Iso −0,712 0,208 0,628 0,459 0,560 0,567 

Table 5 

Summary of real datasets. 

Dataset Bank marketing Insurance fraud 

Examples 37,931 8400 

% positives 12.62 8.79 

μb 9.306 6.248 

σ b 19.90 1.67 

No of features 32 31 
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I  
brated original AdaBoost outperform CSDT and CSRP , this is con-

istent with the results of Nikolaou et al. (2016) for the class-

ependent problem. 

.2. Real datasets 

Next, we tested all the algorithms on two real data sets, the

escription of which is presented in Table 5 . The first dataset is

ank marketing that is included in the costcla library. It contains
ata of Portuguese bank clients who received an offer to open a

ong-term deposit account. The dataset contains features such as

ge, job, marital status, education, average yearly balance, current

oan status and the label indicating whether or not the client ac-

epted the offer ( Bahnsen, Stojanovic, Aouada, & Ottersten, 2014b ).

he peculiarity of this dataset is in the fact that the costs of true

ositives are greater than zero (i.e., C T P i > 0 ) since the bank incurs

he administrative expenses of contacting the client in that case. 

The second dataset is Insurance fraud , which contains data of

lients of a Russian company that provides car insurance services.

his dataset includes features such as the type of policyholder

individual or company), the address of the policyholder and the

wner of the car, the type of insurance policy, conditions and coef-

cients, the model and age of the insured vehicle, the time elapsed

rom the contract signing to the time of the insured event, the

umber of payments etc. The target variable indicates whether or

ot the insurance claim was recognized as an attempt of fraud. 

Table 6 lists the same data as Table 4 but for real datasets.

n this case, the EDAB. С 3 algorithm produces best results, and
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Table 6 

Performance on real datasets. 

Algorithm Bank marketing Insurance fraud 

Time Savings F1 Time Savings F1 

EDAB.C1 27,4 0,298 0,343 2,4 0,184 0,252 

EDAB.C1-ROC 0,498 0,298 0,179 0,262 

EDAB.C1-Platt 0,486 0,277 0,173 0,262 

EDAB.C1-Iso 0,499 0,296 0,170 0,249 

EDAB.C2 26,6 0,301 0,345 5,1 0,079 0,267 

EDAB.C2-ROC 0,497 0,297 0,141 0,255 

EDAB.C2-Platt 0,487 0,277 0,160 0,260 

EDAB.C2-Iso 0,495 0,295 0,168 0,247 

EDAB.C3 17,1 0,304 0,347 4,0 0,184 0,252 

EDAB.C3-ROC 0,500 0,299 0,179 0,262 

EDAB.C3-Platt 0,487 0,277 0,172 0,261 

EDAB.C3-Iso 0,501 0,296 0,170 0,249 

CSDT 5,7 0,471 0,266 178,2 0,162 0,259 

CSDT-ROC 0,472 0,267 0,162 0,257 

CSDT-Platt 0,471 0,267 0,166 0,257 

CSDT-Iso 0,354 0,251 0,164 0,260 

CSRP 37,4 0,468 0,258 416,8 0,146 0,256 

CSRP-ROC 0,490 0,280 0,149 0,256 

CSRP-Platt 0,479 0,274 0,167 0,257 

CSRP-Iso 0,495 0,284 0,170 0,260 

AB 1,0 −0,354 0,258 1,0 0,014 0,045 

AB-ROC 0,498 0,298 0,130 0,281 

AB-Platt 0,497 0,294 0,133 0,278 

AB-Iso 0,495 0,284 0,170 0,260 
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the performance of the calibrated original AdaBoost is comparable

with the performance of CST and CSRP. 

5. Discussion 

5.1. Performance of example-dependent cost-sensitive AdaBoost 

The first issue that should be discussed is the relative per-

formance of various implementations of EDAB algorithms. As dis-

cussed above, loss function defines properties of the classifier, e.g.,

the introduction of costs inside the exponent violates asymmetry

preservation ( Section 2.2 ). 

From this point of view, it is interesting to compare the dis-

tribution of decision of various EDAB models. Table 4 presents the

test data on synthetic datasets. More in-depth insight can be ob-

tained through a confusion matrix. Also, we introduce a new con-

fusion matrix which represents the costs associated with various

elements of the original matrix. These data for Moons dataset are

presented in Table 7 . In each cell, the numerator represents the

value of the confusion matrix; denominator corresponds to the as-

sociated costs. 

As follows from Table 7 no single model provides a better com-

bination of false positive and false negative faults. Decisions of

each model are shifted in one direction or another. Moreover, the

results in Table 4 show that the better value of Savings ( Eq. (14) )

very often corresponds to the lower F1 score. It is why traditional

metrics of classification quality are not applicable in case of ECS

problem. 
Table 7 

Confusion matrix with associated costs for Moons dataset (test data 378

Predicted 

EDAB.C1 EDAB.C2 

Negative Positive Negative Pos

Actual Negative 2917 
0 

400 
7 . 789 

3098 
0 

21
4 . 4

Positive 41 
3 . 886 

426 
0 

57 
4 . 844 

410
0 
EDAB.C2 algorithm outperforms the EDAB.C1 for both Savings

nd F1 scores (see Table 4 ). As follows from Table 7 , this is

chieved by shifting the decision boundary toward increasing false

egatives values. It significantly reduces the cost of false positives

ith slightly grows of cost of false negative. Further improvement

n the Savings is achieved after calibration EDAB.C2 via ROC modifi-

ation ( Bahnsen et al., 2015b; Hernández-Orallo et al., 2012 ). Note

hat ROC modification in this particular case reduces the C FP and

 FN simultaneously. At the same time, the number of errors and

orrect solutions of the algorithm EDAB.C2-ROC takes an interme-

iate position between the results of EDAB.C 1 and EDAB.C2 , so, its

1 score is reduced comparing with EDAB.C2 . 

Among the ECS modifications of AdaBoost , EDAB.C3 is the best

o identify negative examples, but at the same time, its capability

o detect positive objects is the worst. Thus, this model produces

he most significant value of C FN , which can be a problem in prac-

ice, since the most significant financial losses are associated with

ositive objects. 

To visualize the cost distribution of incorrectly detected exam-

les, we propose a diagram that can be constructed in the follow-

ng way. The false negative cost space is discretized into ten bins.

or each bin, the prediction error rate and costs associated with

he incorrectly classified examples are plotted. Fig. 1 presents this

iagram for the Moon dataset. The top chart on Fig. 1 gives the

istribution of error rate depending on the cost of false negatives.

ther charts show the distribution of actual values of negative,

ositive and total costs of misclassification for various models. La-

els on the horizontal axis correspond to the average value of the

 FN in the bins. 

We can conclude from Fig. 1 that the errors rate of EDAB.C2

odel generally tends to reduce with growing C FN . For the algo-

ithms EDAB.C1 and EDAB. С 3 , the error rate decreases to the center

f the C FN range, but then it starts to grow again. It is a conse-

uence of the asymmetry violation (see Section 2.2 ) since, in the

oss function of both these models, the cost is inside the exponent.

alibration increases the error in the entire C FN range but reduces

he total cost of the classifier decisions. 

Confusion matrix and associated costs for the Insurance fraud

ataset are presented in Table 8 . Fig. 2 shows the cost distribution.

nlike the previous example, in this case, the decision boundary

n the transition from EDAB.C1 to EDAB.C2 shifts towards increasing

he false positives, which leads to an increase in cost. Calibration

f EDAB.C2 again helps to receive a model that is mean between

DAB.C1 and EDAB.C2 . Models EDAB.C1 and EDAB.C3 , in this case,

re identical and they produce the best results. Note, that EDAB.C1

nd EDAB.C3 show the more or less uniform distribution of error

ate over the range of C FN . At the same time, the error rate of

DAB.C2 and EDAB.C2-ROC first decreases, and then again grows in

he field of large C FN . 

We should conclude that the EDAB models demonstrate the op-

osite behavior in two considered cases. To explain this let us an-

lyze the cost distribution in both datasets. As follows from Fig. 3 ,

istribution of C FN in the Moons dataset is unimodal, while the dis-

ribution of C FN in the Insurance fraud dataset is bimodal. Besides,

istributions of costs have very different levels of asymmetry; this

mpacts on the predictive capabilities of the models. The skew-
4 examples). 

EDAB.C2-ROC EDAB.C3 

itive Negative Positive Negative Positive 

9 
96 

2964 
0 

353 
4 . 316 

3195 
0 

122 
3 . 778 

 45 
4 . 219 

422 
0 

131 
7 . 200 

336 
0 



Y. Zelenkov / Expert Systems With Applications 135 (2019) 71–82 79 

Fig. 1. Distribution of decision costs for Moons dataset. 

Table 8 

Confusion matrix with associated costs for Insurance fraud dataset (test data 2770 examples). 

Predicted 

EDAB.C1 EDAB.C2 EDAB.C2-ROC EDAB.C3 

Negative Positive Negative Positive Negative Positive Negative Positive 

Actual Negative 2356 
0 

177 
12155 

1856 
0 

677 
45155 

2039 
0 

494 
30846 

2356 
0 

177 
12155 

Positive 179 
65164 

60 
0 

98 
42086 

141 
0 

132 
50547 

107 
0 

179 
65164 

60 
0 
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d  
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t  
ess (third standardized moment) of costs in the Moons dataset is

 C F P 
= 1 . 83 and S C F N = 1 . 28 , in the Insurance fraud datasets respec-

ively S C F P = 1 . 93 and S C F N = 1 . 77 . 

So, we can conclude that models with asymmetry preservation

 EDAB.C2 ) show better performance on datasets with unimodal cost

istribution. It is consistent with theoretical analysis of Landesa-

ázquez and Alba-Castro (2015) and Nikolaou et al. (2016) for

CS problem. In our experiments, models with the violation of

symmetry ( EDAB.C1 and EDAB.C3 ) showed better performance on

atasets with bimodal cost distribution. This fact requires further

heoretical analysis and confirmation. 

Also, we should note, that in the case of bimodal cost distribu-

ion training time of EDAB algorithms significantly better that time

f decision tree-based algorithms (see Table 6 ). 
Summing up the performance analysis, we would like to high-

ight the following. First, AdaBoost-based algorithms produce bet-

er results both in terms of accuracy and computational time than

xisting ECS methods on all dataset tested. It proves the practi-

al implications of the proposed algorithms. Second, as we noted

n the theoretical discussion, it is impossible to explicitly repre-

ent the ECS classifier as a combination of a cost-insensitive opti-

al predictor and a threshold, as done for the CCS model (see Eqs.

8) and 10 ). However, two proposed presentations, namely confu-

ion matrix with associated costs and graph of the decision cost

istribution, help to analyze the shift of the threshold for ECS al-

orithms. We can see that no single rule that can help to predict

he behavior of the threshold for each model. Moreover, the cost
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Fig. 2. Distribution of decision costs for Insurance fraud dataset. 

Fig. 3. Cost distribution in Moons and Insurance fraud datasets. 
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Fig. 4. Relative performance improvement after calibration. 
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istribution also impacts model performance and should be con-

idered in the system design. 

.2. Impact of calibration 

The next issue to be discussed is the impact of calibration on

odel performance for the ECS problem. We can see from Tables

 and 6 that in most cases calibration improves performance of all

onsidered models. Fig. 4 presents summary data for all datasets

bout relative performance improvement for two groups of algo-

ithms, namely the EDAB family introduced here, and original Ad-

Boost. 

The calibration has an especially strong effect on the proper-

ies of the original AdaBoost. On synthetic datasets with unimodal

ost allocation, calibrated AdaBoost outperforms methods based

n decision trees ( CSDT and CSRP ). On a data set with a non-

ero C TP ( Bank marketing ) and with bimodal cost allocation ( Insur-

nce fraud ), it shows performance comparable to these methods.

mong the three considered methods, Platt scaling produced the

est results for original AdaBoost, closely followed by ROC modifi-

ation. Isotonic regression in one case ( Circles dataset) sharp dete-

iorated the quality, in all other cases, it produces results compa-

able with other methods. Thus, calibrated original AdaBoost can

e used for solving ECS tasks; this is consistent with the results of

ikolaou et al. (2016) obtained for CCS problem. 

As for the specialized ECS models ( EDAB family, CSDT, CSRP ), all

alibration methods also increase productivity, but to a lesser ex-

ent than for the original AdaBoost. It can be explained by the fact

hat these models have a sufficiently good initial tuning for the

CS problem and the possibilities to increase their performance

re limited. The only exception is the use of calibration to the al-

orithms EDAB.C1 and EDAB.C3 in the case of Insurance fraud , that
ed to a worsening of the results. We can assume that this is also

aused by the bimodal distribution of costs in the data set. 

. Conclusion and future works 

Cost-sensitive learning has prime importance for practice since

he optimal decision in real life often depends on costs relating

o a specific situation. However, the main research flow that stud-

es this problem concerns mainly on the case when the misclas-

ification costs depend on the class. Known methods of example-

ependent cost-sensitive learning include just modifications of the

asic models of machine learning and the most straightforward

ules of their combinations. Form this point of view the theoret-

cal contribution of our work can be summarized as follows: 

• We present generalizations of AdaBoost that based on an ex-

plicit definition of the loss function and deriving the corre-

sponding formula for weights update; 
• We highlight the limitations of the algorithm based on the

introduction of costs into the exponent since it violates class

asymmetry in training dataset; 
• We prove that calibration improves the performance of ECS Ad-

aBoost models; moreover, it radically enhances the performance

of original AdaBoost when solving cost-sensitive problems; 
• We show that the critical factors influencing the choice of the

model are not only the distribution of features, what is typi-

cal for cost-insensitive and class-dependent cost-sensitive tasks,

but also the distribution of costs. So, no single ECS AdaBoost

model produces the best performance on all datasets. 

The main practical contribution of presented work is that the

xample-driven cost-sensitive AdaBoost allows to significantly im-

rove the ECS problem solving comparing with existing methods
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among which the cost-sensitive modifications of simple models of

machine learning and the original AdaBoost with output calibra-

tion. Note that the proposed algorithms are superior to other ECS

methods not only in performance but also in computation time.

So, these algorithms potentially can be used in a new generation

of expert and intelligent systems that will produce more accurate

results. 

Regarding future research, there are few critical issues to be in-

vestigated. First of all, it is necessary to study how the bi-modality

(or, more general, multi-modality) of cost distribution impacts the

performance of ECS models since this problem is ECS-specific and

new for the research community. Here we can identify three pos-

sible directions. 

First one concerns the example-dependent cost-sensitive learn-

ing in general; we need to understand how various models cope

with multimodality. Significant effort s in this area should f ocus on

the underlying machine learning models (e.g., decision tree); it also

should shed light on the expectable behavior of their homogeneous

and heterogeneous combinations. 

The second direction should concentrate on AdaBoost-based

models proposed here; it is necessary to find out how the mul-

timodality affects the violation of the class asymmetry, i.e., assess

the suitability of various loss function options. This direction can

develop independently of the previous one because the proposed

algorithms use the standard decision tree as the basic classifier.

The cost is taken into account by modifying the ensemble genera-

tion rule. 

In the third direction, it is necessary to investigate as many as

possible practice problems to find out how often non-unimodal

costs distributions appear in real life. Also, there are virtually no

publicly available datasets regarding cost-sensitive problems today.

It is one of the reasons that prevent the development of this area

of research. 

The last but not least research direction can focus on ensembles

generated on the base of cost-sensitive underlying models. In the

present work, we combined standard decision trees with the help

of cost-sensitive ensemble generation rule. There are two other

possible variants. First is to produce ensemble integrating cost-

sensitive underlying models on base of the standard rules. Sec-

ondly, it is possible to combine cost-sensitive loss functions both

on the level of basic classifiers as on the level of the ensemble si-

multaneously. It is a non-explored area that promises exciting re-

sults. 
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