

Accepted Manuscript

Difficulty-Weighted Learning: A Novel Curriculum-Like Approach
Based on Difficult Examples for Neural Network Training

Tomoumi Takase

PII: S0957-4174(19)30417-8
DOI: https://doi.org/10.1016/j.eswa.2019.06.017
Reference: ESWA 12729

To appear in: Expert Systems With Applications

Received date: 20 December 2018
Revised date: 6 June 2019
Accepted date: 6 June 2019

Please cite this article as: Tomoumi Takase , Difficulty-Weighted Learning: A Novel Curriculum-Like
Approach Based on Difficult Examples for Neural Network Training, Expert Systems With Applications
(2019), doi: https://doi.org/10.1016/j.eswa.2019.06.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.eswa.2019.06.017
https://doi.org/10.1016/j.eswa.2019.06.017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

HIGHLIGHTS

 We prioritize the classification of difficult examples over easy examples.

 We proposed difficulty-weighted learning (DWL) for neural network training.

 DWL uses a loss function weighted by the neural network outputs.

 We evaluated the performance of DWL on several benchmark datasets.

 DWL has better generalization performance for MLP or a small CNN

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Difficulty-Weighted Learning: A Novel Curriculum-Like Approach

Based on Difficult Examples for Neural Network Training

Author names and affiliations

Tomoumi Takase

Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and

Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan

takase_316@yahoo.co.jp

Corresponding Author

Tomoumi Takase

Abstract

Curriculum learning, in which training examples gradually proceed from easy to difficulty, has been

applied to various tasks and demonstrated better performance than other machine learning

approaches. However, identifying the difficulty level in advance often requires domain knowledge

and is a time-consuming process. We dynamically decide the difficulty of examples based on outputs

from neural networks during training and propose a loss function to promote training with difficult

examples. Experimental results verify that the proposed method improves the generalization ability

across several datasets.

Keywords

Neural network; Curriculum learning; Supervised learning; Deep learning; Multilayer perceptron;

Classification

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

 Neural networks have been demonstrating excellent classification performance for various datasets

of images, audio, language, among others. This performance has relied on the development of robust

training methods such as fine-tuning (Hinton and Salakhutdinov, 2006; Mesnil et al., 2012; Yosinski

et al., 2014) and generative adversarial networks (Goodfellow et al., 2014; Radford, Metz, and

Chintala, 2015). Curriculum learning, proposed by Bengio et al. (2009), is another powerful training

method, in which learning gradually proceeds from easy to difficult examples, aiming to resemble

human learning. Its proponents successfully applied curriculum learning to classification of

geometric shapes and language processing.

 In this paper, we prioritize the classification of difficult examples over easy examples. Therefore,

we focus on the training of difficult examples and employ the conventional curriculum learning

(Bengio et al., 2009) to train easy examples. A training strategy based on difficulty can be easily

implemented in neural networks, because the classification outputs represent the degree of

confidence, that is, the difficulty of the examples. To increase the weight of difficult examples over

easy ones, we use a loss function weighted by the network outputs. As the loss function is

determined at each iteration, it can reflect the varying difficulty of examples, establishing the

proposed method, which we call difficulty-weighted learning (DWL).

 DWL is strongly related to expert systems because it automatically retrieves the difficulty level of

examples based on the devised loss function, whereas conventional methods, such as curriculum

learning (Bengio et al., 2009), require domain knowledge for each task. Furthermore, as DWL is

supported by neural networks, which are powerful intelligent systems, the DWL implementation can

be regarded as an expert and intelligent system.

 The contributions of the proposed DWL are summarized as follows:

(1) DWL is a novel training method for neural networks and can be easily implemented without a

considerable burden in computation time.

(2) DWL improves curriculum learning by adopting positive training based on a loss function

targeting difficult examples.

(3) The high performance of DWL is demonstrated by training a multilayer perceptron (MLP) and

convolutional neural networks (CNNs) on the MNIST (LeCun et al., 1998a), CIFAR-10 (Krizhevsky

and Hinton, 2009), SVHN (Netzer et al., 2011), Fashion-MNIST (Xiao, Rasul, and Vollgraf, 2017),

and several datasets from the UCI Machine Learning Repository (Dua and Karra, 2017).

2. Related Work

 Curriculum learning (Bengio et al., 2009) requires grouping examples into several sets before

training according to their difficulty, which is established by prior knowledge. Hence, the criteria for

deciding difficulty depend on tasks. For instance, in shape recognition of squares, circles, and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

equilateral triangles, Bengio et al. (2009) used the shape complexity as criterion and generated the

BasicShapes and GeomShapes datasets, which have low and high variability, respectively. Hence,

training proceeded from the BasicShapes to the GeomShapes dataset. Spitkovsky, Alshawi, and

Jurafsky (2009) defined a short sentence as easy for language processing. In addition, they proposed

“baby-step” learning, which improves conventional curriculum learning by training a model

including previously used examples, whereas curriculum learning replaces an easy group by a

difficult one during training. Nevertheless, curriculum learning and baby-step learning require

domain knowledge and manual preprocessing before training.

 In contrast, self-paced learning (Kumar, Packer, and Koller, 2010) automatically creates a boundary

surface between difficult and easy examples from a training loss. It starts by training easy examples

and gradually adds examples as training proceeds. The difficulty of examples is flexible, although it

is fixed during training in the conventional curriculum learning. Self-paced learning with diversity,

proposed by Jiang et al. (2014), improves the conventional approach by an automatic curriculum

based on both diversity and difficulty. Then, Jiang et al. (2015) proposed self-paced curriculum

learning, which considers both prior knowledge and learning progress. Although these methods do

not require prior knowledge, they include hyperparameters that are difficult to adjust (e.g., training

pace).

 The abovementioned methods aim for efficiency by training easy examples before proceeding with

difficult ones. Although this idea resembles human learning, it may not lead to improved

classification accuracy. Unlike these methods, we aim to improve classification performance by

reducing the training error of difficult examples. In this sense, our approach is similar to a pioneering

algorithm called adaptive boosting (Freund and Schapire, 1997), which assigns an importance degree

to each example and increases the degree for misclassified examples. The final prediction is decided

by an ensemble of classifiers. However, as adaptive boosting has a training algorithm different from

Table 1 Comparison of related learning approaches.

Method
Domain

knowledge
Manual preparation

before training
Hyperparameter

adjustment
Target examples

for training

Curriculum learning
(Bengio et al., 2009)

Yes Yes No Easy

Baby-step learning
(Spitkovsky, Alshawi,
and Jurafsky, 2009)

Yes Yes No Easy

Self-paced learning
(Kumar, Packer, and
Koller, 2010)

No No Yes Easy

Adaptive boosting
(Freund and Schapir,
1997)

No No No Difficult

Difficulty-weighted
learning
(Ours)

No No No Difficult

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

that of neural networks, it is used in other contexts compared to DWL. Table 1 summarizes the

characteristics of DWL and related approaches.

3. Difficulty-Weighted Learning

 DWL mainly relies on (1) outputs of neural networks to determine the difficulty of examples and

(2) a loss function weighted by difficulty. Regarding point (1), output 𝑧𝑖 from class 𝑖 of a neural

network is determined using the softmax function as

where 𝑁 is the number of classes and 𝑎𝑖 is the input to unit 𝑖 of the output layer. The sum over

every aj of 𝑧𝑖 is 1, and each 𝑧𝑖 represents the degree of confidence in the example. For instance,

large 𝑧𝑖 indicates that an example belongs to a class with high confidence, and therefore, it can be

regarded as an easy example. In contrast, small 𝑧𝑖 indicates low confidence and increased difficulty.

 An application of the difficulty level is knowledge distillation (Hinton, Vinyals, and Dean, 2015),

which uses it to transfer the performance from a larger (teacher) to a smaller (student) model. The

outputs of examples obtained from the teacher model are considered as soft labels, which take values

in [0, 1] (in contrast, hard labels are represented by {0, 1}), and the student model is trained using

these examples.

 Regarding point (2), we use a loss function weighted by the example difficulty. The weights are

expressed as

where 𝑓 denotes a neural network model, 𝑥𝑑 represents the inputs of the 𝑑-th example in a

minibatch, and 𝜃𝑡 denotes parameters 𝜃 at the 𝑡 -th update. Then, a weighted cross-entropy

function can be given by the weighted mean using the difficulty of each example:

where 𝐷 is the number of examples in a minibatch and 𝑦𝑑 is the one-hot label of the 𝑑-th example.

Although weighted cross-entropy is useful for imbalanced training data and widely used given its

suitability for deep learning, as demonstrated by its use in libraries such as PyTorch and TensorFlow,

the proposed cross-entropy in Eq. (3) weighted by example difficulty constitutes a novel function.

 The process of DWL is detailed in Algorithm 1, where (𝑥, 𝑦) are training examples, 𝜃0 are initial

neural network parameters, 𝑇 denotes the number of updates, 𝐷 denotes the number of examples

𝑤𝑑 = 1− 𝑓(𝜃; 𝑥𝑑)|𝜃=𝜃𝑡 , (2)

𝐿(𝜃) =
 𝑤𝑑 ∙ 𝑦𝑑 ∙ ln 𝑓(𝜃;𝑥𝑑)
𝐷
𝑑

 𝑤𝑑
𝐷
𝑑

 , (3)

𝑧𝑖 =
exp(𝑎𝑖)

 exp 𝑎𝑗
𝑁
𝑗=1

 , (1)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in a minibatch, 𝑓 is the feedforward neural network function, and 𝑔 is the backward neural

network function. The proposed weighted cross-entropy is applied to the training phase but not to the

test phase. During training, computation using Eqs. (2) and (3) is performed after forward

propagation and before backpropagation. Step 6 corresponds to Eq. (2), and steps 7, 8, and 10

correspond to Eq. (3). For step 11, parameters are updated using a weighted loss function 𝐿(𝜃).

 Although DWL is similar to adaptive boosting by focusing training on difficult examples, these

methods differ because DWL objectively retrieves difficulty based on the network outputs, and

classifiers from previous epochs are discarded for final prediction.

 Figure 1 illustrates the expected effect of DWL, where the easiness of examples is depicted as a

dynamic process during training. An example is considered as correctly classified when it retrieves

classification values within the region of highest output, that is, the output corresponding to the

example class is the highest among the outputs of all classes. When the output for a difficult example

Fig. 1 Knowledge acquisition and forgetting of examples for classifier. Highest output is the highest

classification value among classes in the output layer for each example.

Knowledge

acquisition
Knowledge

forgetting

an example

Correctly

classified

example

output

(easiness)

1

0

highest

output

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

with a large training loss increases due to the weighted loss function in Eq. (3) and the example is

correctly classified, we consider that knowledge acquisition occurs in the classifier. As DWL

considerably adjusts weights for difficult examples, we assume that classifying them with high

confidence requires many acquisitions. Therefore, misclassified examples tend to be correctly

classified as training proceeds, thus reducing the classification error. Although this approach is

applied during training, it is expected to have a similar effect for testing. In addition, an example that

has been correctly classified may become a misclassification as training proceeds, in a phenomenon

we call knowledge forgetting in the classifier. Still, we expect that acquisition occurs more often

than forgetting during DWL.

4. Evaluation

4.1 Experimental Setup

 To evaluate the performance of the proposed DWL, we conducted experiments on several

benchmark datasets for machine learning, namely, MNIST (LeCun et al., 1998a), CIFAR-10

(Krizhevsky and Hinton, 2009), SVHN (Netzer et al., 2011), Fashion-MNIST (Xiao, Rasul, and

Vollgraf, 2017), and several datasets from the UCI Machine Learning Repository (Dua and Karra,

2017).

 MNIST, CIFAR-10, SVHN, and Fashion-MNIST are image classification datasets containing 10

classes, whose inputs are intensity values (from 0 to 255). Specifically, the MNIST dataset consists

of handwritten numerical digits (from 0 to 9) and contains 60,000 training and 10,000 test examples

of size 28 × 28 pixels. The CIFAR-10 dataset consists of images from objects in natural scenes

(32 × 32 pixels) with 50,000 training and 10,000 test examples. The SVHN dataset consists of

images showing digits in natural scenes (32 × 32 pixels) with 73,252 training and 26,032 test

examples. The Fashion-MNIST dataset consists of black and white clothing images and has the same

structure as the MNIST dataset.

 We also used the Car Evaluation, Wine, Letter Recognition, and Epileptic Seizure Recognition

(Andrzejak et al., 2001) datasets from the UCI Machine Learning Repository (Dua and Karra, 2017)

for multiple classification. The Car Evaluation dataset contains 1,728 examples and four classes for

overall evaluation. It comprises six features such as buying price and number of doors. The wine

dataset contains 178 examples and three classes. It comprises 13 features from chemical analyses

such as those for alcohol and malic acid. The Epileptic Seizure Recognition dataset contains 11,500

examples, five categories regarding the conditions under which the subjects had an epileptic seizure,

and 178 features corresponding to data chunks from brain activity. We used 35% of the training

examples from these datasets for testing. The Letter Recognition dataset contains 20,000 examples,

and we used the first 16,000 examples as training data and the remaining 4,000 examples for testing,

as recommended by Dua and Karra (2017). The dataset contains 26 classes, from A to Z in the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

English alphabet, and 16 features mainly related to statistical moments and edge counts.

 For evaluation, we used an MLP with one hidden layer and CNNs with the structures listed in

Table 2. A rectified linear unit (Glorot, Bordes, and Bengio, 2011) was inserted after each layer

except for the output layer, which used a softmax function. The Glorot uniform initializer (LeCun et

al., 1998b; Glorot and Bengio, 2010) established the first set of weights in the neural network. In

addition, we used stochastic gradient descent with initial learning rate of 0.01 for optimization. In the

CNNs, the convolutional layers in Table 2(b) maintain the size of input data by padding. To avoid

overfitting, we inserted batch normalization (Ioffe and Szegedy, 2015) after each layer in the CNNs.

We did not use dropout (Srivastava et al., 2014) to follow the recent findings by Li et al. (2018), who

noted that using both dropout and batch normalization can degrade performance. Moreover, we did

not perform data augmentation.

 Training proceeded with a batch size of 64 for 1,000 epochs when using either the MLP or small

CNN (Table 2(a)) and with a batch size of 128 for 200 epochs when using the large CNN (Table

2(b)). The test accuracies were calculated at every epoch. We represented the standard error over five

trials for different initial weights using error bars. The simulation was implemented and conducted

using the Theano and Numpy Python libraries.

 We compared the results for four methods, namely, DWL, default learning (without curriculum),

conventional curriculum learning (Bengio et al., 2009), and baby-step learning (Spitkovsky, Alshawi,

and Jurafsky, 2009). Although comprehensive and adaptable, self-paced learning (Kumar, Packer,

and Koller, 2010) is difficult to implement given its task-dependent hyperparameter selection.

Instead, we used the conventional curriculum learning with a curriculum based on training loss.

4.2 Data Preprocessing for Comparison Methods

Table 2 Structures of convolutional neural networks (CNNs). (𝑎: image size before flattening)

Layer type Channels/Units

Input 3

3 × 3 convolutional 64

3 × 3 convolutional 64

2 × 2 max pooling 64

3 × 3 convolutional 128

3 × 3 convolutional 128

3 × 3 convolutional 128

2 × 2 max pooling 128

3 × 3 convolutional 256

3 × 3 convolutional 256

3 × 3 convolutional 256

3 × 3 convolutional 256

2 × 2 max pooling 256

Flattened 𝑎 × 𝑎 × 256

Fully connected 1024

Fully connected 10

(a) Small CNN. (b) CNN similar to VGGNet

(Simonyan and Zisserman, 2015).

Layer type Channels/Units

Input 1 or 3

3 × 3
convolutional 32

3 × 3
convolutional 32

2 × 2 max
pooling 32

3 × 3
convolutional 64

3 × 3
convolutional 64

2 × 2 max
pooling 64

Flattened 𝑎 × 𝑎 × 64

Fully connected 512

Fully connected 10

Layer type Channels/Units

Input 3

3 × 3 convolutional 64

3 × 3 max pooling 64

3 × 3 convolutional 192

3 × 3 max pooling 192

3 × 3 convolutional 384

3 × 3 convolutional 384

3 × 3 convolutional 256

3 × 3 max pooling 256

Flattened 𝑎 × 𝑎 × 256

Fully connected 4096

Fully connected 4096

Fully connected 10

(c) AlexNet (Krizhevsky,

Sutskever, & Hinton, 2012).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 In conventional curriculum and baby-step learning, difficulty is decided before training and

examples must be grouped based on the difficulty, whereas in DWL, difficulty can be dynamically

decided during training, as described in Section 3. Hence, we conducted the preprocessing illustrated

in Fig. 2 for the comparison methods. First, training data were divided into two datasets, A and B,

containing equal number of examples. For example, in the MNIST dataset, the first 30,000 examples

defined dataset A and the last 30,000 defined dataset B. Then, a neural network was trained using

dataset A, and dataset B was input in the resulting trained neural network. The difficulty levels of the

examples in dataset B can be obtained from the network outputs. Finally, dataset B is divided into

groups containing easy and increasingly difficult examples. Training for evaluation proceeds from

easy to difficult examples, by gradual example replacement for conventional curriculum learning and

example addition for baby-step learning. In this study, we used two groups of difficult and easy

examples according to the experimental conditions described in (Bengio et al., 2009).

 DWL and default learning do not require this time-consuming preprocessing, and all examples can

be used for training, whereas only half of the training examples can be used for conventional

curriculum and baby-step learning. For fair comparison, we used half of the examples for DWL and

default learning, besides using all the examples for a complete evaluation.

Fig. 2 Preprocessing to establish difficulty levels of a dataset to apply conventional curriculum and

baby-step learning. Only half of the original training examples can be used for training, whereas all the

examples are available for DWL.

dataset A

dataset B

training data

neural network
trained neural

network

dataset B

with difficulty

training

input

output

divide

Easy examples

Difficult

examples

divide

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(f) MNIST (Structure: Table

2(a))

(g) CIFAR-10 (Structure: Table 2(a)) (h) SVHN (Structure: Table 2(a))

(a) MNIST (Structure: 784–1,000–10) (b) Wine (Structure: 13–10–3)

(c) Car (Structure: 6–10–4) (d) Letter (Structure: 13–100–

Fig. 3 Test error rates when using different methods on evaluated datasets. Error bars represent

standard error. Half and all indicate the amount of examples used for training of DWL and default

(e) Epileptic (Structure: 178–100–5)

(j) Fashion-MNIST (Structure: Table 2(a))

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.015 0.017 0.019 0.021 0.023 0.025 0.05 0.15 0.25 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.10 0.15 0.20 0.25 0.30 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.10 0.15 0.20 0.25 0.30 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.35 0.40 0.45 0.50 0.55

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.0045 0.0055 0.0065 0.0075

0.1945 0.2145 0.2345 0.2545 0.2745 0.2945

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.18 0.20 0.22 0.24 0.26 0.28

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.065 0.075 0.085 0.095 0.105

(i) SVHN (Structure: Table 2(b))

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.15 0.18 0.21 0.24 0.27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Results and Discussion

 Figure 3 shows the test error rates using the evaluated methods on the selected datasets. In many

cases with MLP, judging from the overlapping error bars, DWL with half the training examples

shows significantly lower error rates than the comparison methods, namely, default learning with the

same number examples, curriculum learning, and baby-step learning. Moreover, with all the training

examples, DWL shows significantly lower error rates than default learning. For the CNNs, DWL

tends to retrieve lower error rates than the comparison methods, but when using the large CNN

model, DWL does not perform well, as seen by comparing Fig. 3(h) and (i).

 The preprocessing to obtain easy and difficult example groups based on outputs might not be

appropriate for conventional curriculum learning, as shown by the high error rates. However, this

preprocessing is not always inappropriate for baby-step learning, and difficulty determination is

suitable for DWL, which weights the loss functions by the outputs.

 We also trained the VGG-like CNN with the architecture detailed in Table 2(b) and AlexNet

(Krizhevsky, Sutskever, & Hinton, 2012) with the architecture detailed in Table 2(c) using all data

from the CIFAR-10 dataset. In this case, the test error rates for default learning were 0.219 for the

VGG-like CNN and 0.207 for AlexNet, whereas the rate was 0.200 for the small CNN (Table 2(a)).

Hence, larger CNNs do not necessarily improve performance, and hence such models are not

appropriate for evaluating DWL.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
 Table 3 lists the training error rates and training losses when using DWL and default learning

(without curriculum). DWL tends to retrieve lower training error rates for MLP and higher training

losses for MLP and CNN than default learning. The lower training error rates in DWL are expected,

because DWL focuses training on examples classified with small confidence. The higher training

loss in DWL is also expected, because the loss function weighs more heavily examples with high

loss. However, using CNN, the training error rate tends to become larger in DWL than in default

learning, indicating that DWL does not always retrieve the lower test error rates, as shown in Fig. 3.

Table 3 Training error rates and training losses when using DWL and default learning (no curriculum). The

information in parentheses in column dataset indicates the structures of the MLP or CNN. The numbers in

bold in columns training error rate and loss denote significantly smaller values than those of the other

methods.

Dataset Method
Training

error rate

Training

loss

MNIST

(784–1,000–

10)

DWL (half) 0 29.6

Default (half) 0 49.5

DWL (all) 0 36.0

Default (all) 0 63.9

Wine

(13–10–3)

DWL (half) 5.52 × 10−2 37.1

Default (half) 0.114 34.5

DWL (all) 2.93 × 10−2 45.1

Default (all) 3.45 × 10−2 32.9

Car

(6–10–4)

DWL (half) 𝟎. 𝟏𝟒𝟓 4.20 × 102

Default (half) 0.174 𝟐.𝟒𝟒 × 𝟏𝟎𝟐

DWL (all) 𝟎. 𝟏𝟏𝟏 7.45 × 102

Default (all) 0.146 𝟒.𝟎𝟕 × 𝟏𝟎𝟐

Letter

(13–100–26)

DWL (half) 0.163 9.60 × 103

Default (half) 0.191 𝟓.𝟕𝟑 × 𝟏𝟎𝟑

DWL (all) 𝟗.𝟔𝟖 × 𝟏𝟎−𝟐 1.49 × 104

Default (all) 0.150 𝟖.𝟔𝟗 × 𝟏𝟎𝟑

Epileptic

(178–100–5)

DWL (half) 𝟎. 𝟑𝟑𝟏 4.10 × 103

Default (half) 0.353 𝟑.𝟏𝟕 × 𝟏𝟎𝟑

DWL (all) 𝟎. 𝟐𝟕𝟖 7.16 × 103

Default (all) 0.308 𝟓.𝟐𝟗 × 𝟏𝟎𝟑

Dataset Method
Training

error rate

Training

loss

MNIST
(Table 2(a))

DWL (half) 0 2.89

Default (half) 0 0.914

DWL (all) 0 23.7

Default (all) 0 1.41

CIFAR-10
(Table 2(a))

DWL (half) 0 58.7

Default (half) 0 17.7

DWL (all) 8.00 × 10−5 1.23 × 103

Default (all) 𝟑.𝟐𝟎 × 𝟏𝟎−𝟓 49.2

SVHN
(Table 2(a))

DWL (half) 2.02 × 10−4 1.66 × 103

Default (half) 𝟏.𝟑𝟏 × 𝟏𝟎−𝟒 61.6

DWL (all) 6.28 × 10−4 7.92 × 103

Default (all) 𝟐.𝟖𝟕 × 𝟏𝟎−𝟒 𝟏.𝟑𝟓 × 𝟏𝟎𝟐

SVHN
(Table 2(b))

DWL (half) 2.29 × 10−3 1.16 × 104

Default (half) 𝟖.𝟏𝟗 × 𝟏𝟎−𝟓 43.5

DWL (all) 1.39 × 10−3 2.16 × 104

Default (all) 𝟓.𝟒𝟔 × 𝟏𝟎−𝟓 43.5

Fashion-MNI

ST

(Table 2(a))

DWL (half) 0 20.5

Default (half) 0 7.88

DWL (all) 0 1.09 × 102

Default (all) 1.67 × 10−5 𝟐𝟕.𝟒

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 To demonstrate that knowledge acquisition and forgetting in the classifier increase when using

DWL, Fig. 4 shows transitions of outputs for correct classifications of the first 10 examples in the

CIFAR-10 dataset. The transitions were tracked over 100 epochs during CNN training with DWL

and default learning. The outputs for DWL show high variability, whereas those for default learning

are mostly constant and convergent.

 We further investigated the results of knowledge acquisition and forgetting on the Epileptic Seizure

Recognition dataset, which retrieved the largest training error rate among datasets (Table 3).

Specifically, we trained an MLP using all the examples and counted the numbers of knowledge

acquisition and forgetting occurrences per epoch. The number of acquisitions per example for 1,000

epochs were 7,618 in DWL and 7,022 in default learning, and those of forgetting were 3,526 in

DWL and 3,131 in default learning. Thus, the differences between the occurrences of knowledge

acquisition and forgetting were 4,092 in DWL and 3,891 in default learning. The larger difference in

DWL might explain the lower training and test error rates. These results suggest that the DWL

performance strongly depends on the dataset. If the model is overfit to difficult examples using

DWL, it correctly classifies such examples but may incorrectly classify others, thus undermining

classification accuracy.

6. Summary and future work

 Based on a novel curriculum-like approach of positive learning for difficult examples, we propose

DWL, which weights the loss function using the difficulty of examples. By focusing on the training

of difficult examples, this approach differs from conventional curriculum and baby-step learning.

 Experiments using MLP and CNN training with several datasets verify that DWL has better

generalization ability for MLP or a small CNN, but not for a large CNN. To correctly classify

difficult examples, knowledge acquisition for examples increases with DWL, but knowledge

(a) DWL outputs (b) Default learning outputs

Fig. 4 Output transitions of first 10 examples in the CIFAR-10 dataset for 100 epochs during CNN

training with weighting and no curriculum.

training epoch

O
u
tp

u
t

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

training epoch

O
u

tp
u

t

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

forgetting also increases. The training and test accuracies improve when the difference between

occurrences of knowledge acquisition and forgetting for DWL is larger than that of default learning

(without curriculum).

 DWL can be further improved and extended for realizing more effective neural network training.

Directions of future work are provided below:

 Explore more representative expressions for example difficulty than the multiplication of the

loss function by difficulty (Eq. (3)).

 As the loss function is defined for each minibatch, the effect of batch size on training with

DWL should be investigated.

 Perform a theoretical analysis of DWL that may provide information regarding the conditions

required for successful learning.

 Apply DWL to various classification models including binary classification and recurrent

neural networks.

Acknowledgement

This paper is based on results obtained from a project commissioned by the New Energy and

Industrial Technology Development Organization (NEDO), Japan.

References

Andrzejak, R. G., Lehnertz, K., Rieke, C., Mormann, F., David, P., & Elger C. E. (2001). Indications

of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity:

Dependence on recording region and brain state, Physical Review E, 64, 061907.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of

the 26th Annual International Conference on Machine Learning (ICML '09), pp. 41–48

Dua, D. & Karra Taniskidou, E. (2017). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and

Computer Science.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences. 55(1):119–139.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of Artificial Intelligence and Statistics Conference (AISTATS), 9, pp. 249–

256.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of

Artificial Intelligence and Statistics Conference, pp. 315–323.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &

Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing

Systems 27 (NIPS), pp. 2672–2680.

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural

networks. Science, 313(5786):504–507.

Hinton, G. E., Vinyals, O., & Dean J. (2015). Distilling the knowledge in a neural network. arXiv:

1503.02531.

Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning

(ICML). arXiv: 1502.03167.

Jiang, L., Meng, D., Yu, S., Lan, Z., Shan, S., & Hauptmann, A. (2014). Self-paced learning with

diversity. In Advances in Neural Information Processing Systems 27 (NIPS).

Jiang, L., Meng, D., Zhao, Q., Shan, S., & Hauptmann, A. G. (2015). Self-paced curriculum learning.

In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2694–2700.

Krizhevsky, A. & Hinton, G. (2009). Learning Multiple Layers of Features from Tiny Images.

Technical report, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems 25 (NIPS).

Kumar, M. P., Packer, B., & Koller, D. (2010). Self-paced learning for latent variable models. In

Advances in Neural Information Processing Systems (NIPS), pp. 1189–1197.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based learning applied to

document recognition. In Proceedings of the IEEE, 86(11):2278–2324.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. (1998b). Efficient BackProp. Neural networks:

Tricks of the Trade, pp. 9–48.

Li, X., Chen, S., Hu, X., & Yang, J. (2018). Understanding the disharmony between dropout and

batch normalization by variance shift. arXiv: 1801.05134.

Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I. J., Lavoie, E., Muller, X.,

Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A. & Bergstra, J. (2012). Unsupervised and

transfer learning challenge: a deep learning approach. ICML Unsupervised and Transfer Learning,

27, pp. 97–110.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural

images with unsupervised feature learning. In Proceedings of NIPS Workshop on Deep Learning and

Unsupervised Feature Learning.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv: 1511.06434.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image

recognition. In Proceedings of the International Conference on Learning Representations (ICLR).

arXiv: 1409.1556.

Spitkovsky, V. I., Alshawi, H., & Jurafsky, D. (2009). Baby Steps: How “Less is More” in

Unsupervised Dependency Parsing. In NIPS: Grammar Induction, Representation of Language and

Language Learning, pp. 1–10.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A

simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,

15(1):1929–1958.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking

machine learning algorithms. arXiv: 1708.07747.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural

networks? In Advances in Neural Information Processing Systems (NIPS), pp. 3320–3328.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Credit Author Statement

Tomoumi Takase: Conceptualization, Methodology, Software, Validation, Formal Analysis,

Investigation, Writing – Original Draft, Writing – Review & Editing

