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HIGHLIGHTS 

 We prioritize the classification of difficult examples over easy examples.  

 We proposed difficulty-weighted learning (DWL) for neural network training.  

 DWL uses a loss function weighted by the neural network outputs.  

 We evaluated the performance of DWL on several benchmark datasets.  

 DWL has better generalization performance for MLP or a small CNN 
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Abstract 

Curriculum learning, in which training examples gradually proceed from easy to difficulty, has been 

applied to various tasks and demonstrated better performance than other machine learning 

approaches. However, identifying the difficulty level in advance often requires domain knowledge 

and is a time-consuming process. We dynamically decide the difficulty of examples based on outputs 

from neural networks during training and propose a loss function to promote training with difficult 

examples. Experimental results verify that the proposed method improves the generalization ability 

across several datasets. 
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1. Introduction 

 Neural networks have been demonstrating excellent classification performance for various datasets 

of images, audio, language, among others. This performance has relied on the development of robust 

training methods such as fine-tuning (Hinton and Salakhutdinov, 2006; Mesnil et al., 2012; Yosinski 

et al., 2014) and generative adversarial networks (Goodfellow et al., 2014; Radford, Metz, and 

Chintala, 2015). Curriculum learning, proposed by Bengio et al. (2009), is another powerful training 

method, in which learning gradually proceeds from easy to difficult examples, aiming to resemble 

human learning. Its proponents successfully applied curriculum learning to classification of 

geometric shapes and language processing. 

 In this paper, we prioritize the classification of difficult examples over easy examples. Therefore, 

we focus on the training of difficult examples and employ the conventional curriculum learning 

(Bengio et al., 2009) to train easy examples. A training strategy based on difficulty can be easily 

implemented in neural networks, because the classification outputs represent the degree of 

confidence, that is, the difficulty of the examples. To increase the weight of difficult examples over 

easy ones, we use a loss function weighted by the network outputs. As the loss function is 

determined at each iteration, it can reflect the varying difficulty of examples, establishing the 

proposed method, which we call difficulty-weighted learning (DWL). 

 DWL is strongly related to expert systems because it automatically retrieves the difficulty level of 

examples based on the devised loss function, whereas conventional methods, such as curriculum 

learning (Bengio et al., 2009), require domain knowledge for each task. Furthermore, as DWL is 

supported by neural networks, which are powerful intelligent systems, the DWL implementation can 

be regarded as an expert and intelligent system. 

 The contributions of the proposed DWL are summarized as follows: 

(1) DWL is a novel training method for neural networks and can be easily implemented without a 

considerable burden in computation time. 

(2) DWL improves curriculum learning by adopting positive training based on a loss function 

targeting difficult examples. 

(3) The high performance of DWL is demonstrated by training a multilayer perceptron (MLP) and 

convolutional neural networks (CNNs) on the MNIST (LeCun et al., 1998a), CIFAR-10 (Krizhevsky 

and Hinton, 2009), SVHN (Netzer et al., 2011), Fashion-MNIST (Xiao, Rasul, and Vollgraf, 2017), 

and several datasets from the UCI Machine Learning Repository (Dua and Karra, 2017). 

 

2. Related Work 

 Curriculum learning (Bengio et al., 2009) requires grouping examples into several sets before 

training according to their difficulty, which is established by prior knowledge. Hence, the criteria for 

deciding difficulty depend on tasks. For instance, in shape recognition of squares, circles, and 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

equilateral triangles, Bengio et al. (2009) used the shape complexity as criterion and generated the 

BasicShapes and GeomShapes datasets, which have low and high variability, respectively. Hence, 

training proceeded from the BasicShapes to the GeomShapes dataset. Spitkovsky, Alshawi, and 

Jurafsky (2009) defined a short sentence as easy for language processing. In addition, they proposed 

“baby-step” learning, which improves conventional curriculum learning by training a model 

including previously used examples, whereas curriculum learning replaces an easy group by a 

difficult one during training. Nevertheless, curriculum learning and baby-step learning require 

domain knowledge and manual preprocessing before training. 

 In contrast, self-paced learning (Kumar, Packer, and Koller, 2010) automatically creates a boundary 

surface between difficult and easy examples from a training loss. It starts by training easy examples 

and gradually adds examples as training proceeds. The difficulty of examples is flexible, although it 

is fixed during training in the conventional curriculum learning. Self-paced learning with diversity, 

proposed by Jiang et al. (2014), improves the conventional approach by an automatic curriculum 

based on both diversity and difficulty. Then, Jiang et al. (2015) proposed self-paced curriculum 

learning, which considers both prior knowledge and learning progress. Although these methods do 

not require prior knowledge, they include hyperparameters that are difficult to adjust (e.g., training 

pace). 

 The abovementioned methods aim for efficiency by training easy examples before proceeding with 

difficult ones. Although this idea resembles human learning, it may not lead to improved 

classification accuracy. Unlike these methods, we aim to improve classification performance by 

reducing the training error of difficult examples. In this sense, our approach is similar to a pioneering 

algorithm called adaptive boosting (Freund and Schapire, 1997), which assigns an importance degree 

to each example and increases the degree for misclassified examples. The final prediction is decided 

by an ensemble of classifiers. However, as adaptive boosting has a training algorithm different from 

Table 1 Comparison of related learning approaches. 

Method 
Domain 

knowledge 
Manual preparation 

before training 
Hyperparameter 

adjustment 
Target examples  

for training 

Curriculum learning  
(Bengio et al., 2009) 

Yes Yes No Easy 

Baby-step learning  
(Spitkovsky, Alshawi, 
and Jurafsky, 2009) 

Yes Yes No Easy 

Self-paced learning  
(Kumar, Packer, and 
Koller, 2010) 

No No Yes Easy 

Adaptive boosting  
(Freund and Schapir, 
1997) 

No No No Difficult 

Difficulty-weighted 
learning  
(Ours) 

No No No Difficult 
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that of neural networks, it is used in other contexts compared to DWL. Table 1 summarizes the 

characteristics of DWL and related approaches. 

 

3. Difficulty-Weighted Learning 

 DWL mainly relies on (1) outputs of neural networks to determine the difficulty of examples and 

(2) a loss function weighted by difficulty. Regarding point (1), output 𝑧𝑖 from class 𝑖 of a neural 

network is determined using the softmax function as 

where 𝑁 is the number of classes and 𝑎𝑖 is the input to unit 𝑖 of the output layer. The sum over 

every aj of 𝑧𝑖 is 1, and each 𝑧𝑖 represents the degree of confidence in the example. For instance, 

large 𝑧𝑖 indicates that an example belongs to a class with high confidence, and therefore, it can be 

regarded as an easy example. In contrast, small 𝑧𝑖 indicates low confidence and increased difficulty. 

 An application of the difficulty level is knowledge distillation (Hinton, Vinyals, and Dean, 2015), 

which uses it to transfer the performance from a larger (teacher) to a smaller (student) model. The 

outputs of examples obtained from the teacher model are considered as soft labels, which take values 

in [0, 1] (in contrast, hard labels are represented by {0, 1}), and the student model is trained using 

these examples. 

 Regarding point (2), we use a loss function weighted by the example difficulty. The weights are 

expressed as 

 

where 𝑓 denotes a neural network model, 𝑥𝑑  represents the inputs of the 𝑑-th example in a 

minibatch, and 𝜃𝑡  denotes parameters 𝜃  at the 𝑡 -th update. Then, a weighted cross-entropy 

function can be given by the weighted mean using the difficulty of each example: 

 

where 𝐷 is the number of examples in a minibatch and 𝑦𝑑 is the one-hot label of the 𝑑-th example. 

Although weighted cross-entropy is useful for imbalanced training data and widely used given its 

suitability for deep learning, as demonstrated by its use in libraries such as PyTorch and TensorFlow, 

the proposed cross-entropy in Eq. (3) weighted by example difficulty constitutes a novel function. 

 The process of DWL is detailed in Algorithm 1, where (𝑥, 𝑦) are training examples, 𝜃0 are initial 

neural network parameters, 𝑇 denotes the number of updates, 𝐷 denotes the number of examples 

𝑤𝑑 = 1− 𝑓(𝜃; 𝑥𝑑)|𝜃=𝜃𝑡  , (2) 

𝐿(𝜃) =
 𝑤𝑑 ∙  𝑦𝑑 ∙ ln 𝑓(𝜃; 𝑥𝑑)  
𝐷
𝑑

 𝑤𝑑
𝐷
𝑑

  , (3) 

𝑧𝑖 =
exp(𝑎𝑖)

 exp 𝑎𝑗 
𝑁
𝑗=1

 , (1) 
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in a minibatch, 𝑓 is the feedforward neural network function, and 𝑔 is the backward neural 

network function. The proposed weighted cross-entropy is applied to the training phase but not to the 

test phase. During training, computation using Eqs. (2) and (3) is performed after forward 

propagation and before backpropagation. Step 6 corresponds to Eq. (2), and steps 7, 8, and 10 

correspond to Eq. (3). For step 11, parameters are updated using a weighted loss function 𝐿(𝜃). 

 Although DWL is similar to adaptive boosting by focusing training on difficult examples, these 

methods differ because DWL objectively retrieves difficulty based on the network outputs, and 

classifiers from previous epochs are discarded for final prediction. 

 Figure 1 illustrates the expected effect of DWL, where the easiness of examples is depicted as a 

dynamic process during training. An example is considered as correctly classified when it retrieves 

classification values within the region of highest output, that is, the output corresponding to the 

example class is the highest among the outputs of all classes. When the output for a difficult example 

Fig. 1 Knowledge acquisition and forgetting of examples for classifier. Highest output is the highest 

classification value among classes in the output layer for each example. 

Knowledge

acquisition
Knowledge

forgetting

an example

Correctly 

classified 

example

output

(easiness)

1

0

highest 

output
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with a large training loss increases due to the weighted loss function in Eq. (3) and the example is 

correctly classified, we consider that knowledge acquisition occurs in the classifier. As DWL 

considerably adjusts weights for difficult examples, we assume that classifying them with high 

confidence requires many acquisitions. Therefore, misclassified examples tend to be correctly 

classified as training proceeds, thus reducing the classification error. Although this approach is 

applied during training, it is expected to have a similar effect for testing. In addition, an example that 

has been correctly classified may become a misclassification as training proceeds, in a phenomenon 

we call knowledge forgetting in the classifier. Still, we expect that acquisition occurs more often 

than forgetting during DWL. 

 

4. Evaluation 

4.1 Experimental Setup 

 To evaluate the performance of the proposed DWL, we conducted experiments on several 

benchmark datasets for machine learning, namely, MNIST (LeCun et al., 1998a), CIFAR-10 

(Krizhevsky and Hinton, 2009), SVHN (Netzer et al., 2011), Fashion-MNIST (Xiao, Rasul, and 

Vollgraf, 2017), and several datasets from the UCI Machine Learning Repository (Dua and Karra, 

2017). 

 MNIST, CIFAR-10, SVHN, and Fashion-MNIST are image classification datasets containing 10 

classes, whose inputs are intensity values (from 0 to 255). Specifically, the MNIST dataset consists 

of handwritten numerical digits (from 0 to 9) and contains 60,000 training and 10,000 test examples 

of size 28 × 28 pixels. The CIFAR-10 dataset consists of images from objects in natural scenes 

(32 × 32 pixels) with 50,000 training and 10,000 test examples. The SVHN dataset consists of 

images showing digits in natural scenes (32 × 32 pixels) with 73,252 training and 26,032 test 

examples. The Fashion-MNIST dataset consists of black and white clothing images and has the same 

structure as the MNIST dataset. 

 We also used the Car Evaluation, Wine, Letter Recognition, and Epileptic Seizure Recognition 

(Andrzejak et al., 2001) datasets from the UCI Machine Learning Repository (Dua and Karra, 2017) 

for multiple classification. The Car Evaluation dataset contains 1,728 examples and four classes for 

overall evaluation. It comprises six features such as buying price and number of doors. The wine 

dataset contains 178 examples and three classes. It comprises 13 features from chemical analyses 

such as those for alcohol and malic acid. The Epileptic Seizure Recognition dataset contains 11,500 

examples, five categories regarding the conditions under which the subjects had an epileptic seizure, 

and 178 features corresponding to data chunks from brain activity. We used 35% of the training 

examples from these datasets for testing. The Letter Recognition dataset contains 20,000 examples, 

and we used the first 16,000 examples as training data and the remaining 4,000 examples for testing, 

as recommended by Dua and Karra (2017). The dataset contains 26 classes, from A to Z in the 
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English alphabet, and 16 features mainly related to statistical moments and edge counts. 

 For evaluation, we used an MLP with one hidden layer and CNNs with the structures listed in 

Table 2. A rectified linear unit (Glorot, Bordes, and Bengio, 2011) was inserted after each layer 

except for the output layer, which used a softmax function. The Glorot uniform initializer (LeCun et 

al., 1998b; Glorot and Bengio, 2010) established the first set of weights in the neural network. In 

addition, we used stochastic gradient descent with initial learning rate of 0.01 for optimization. In the 

CNNs, the convolutional layers in Table 2(b) maintain the size of input data by padding. To avoid 

overfitting, we inserted batch normalization (Ioffe and Szegedy, 2015) after each layer in the CNNs. 

We did not use dropout (Srivastava et al., 2014) to follow the recent findings by Li et al. (2018), who 

noted that using both dropout and batch normalization can degrade performance. Moreover, we did 

not perform data augmentation. 

 Training proceeded with a batch size of 64 for 1,000 epochs when using either the MLP or small 

CNN (Table 2(a)) and with a batch size of 128 for 200 epochs when using the large CNN (Table 

2(b)). The test accuracies were calculated at every epoch. We represented the standard error over five 

trials for different initial weights using error bars. The simulation was implemented and conducted 

using the Theano and Numpy Python libraries. 

 We compared the results for four methods, namely, DWL, default learning (without curriculum), 

conventional curriculum learning (Bengio et al., 2009), and baby-step learning (Spitkovsky, Alshawi, 

and Jurafsky, 2009). Although comprehensive and adaptable, self-paced learning (Kumar, Packer, 

and Koller, 2010) is difficult to implement given its task-dependent hyperparameter selection. 

Instead, we used the conventional curriculum learning with a curriculum based on training loss. 

 

4.2 Data Preprocessing for Comparison Methods 

Table 2 Structures of convolutional neural networks (CNNs). (𝑎: image size before flattening) 

Layer type Channels/Units 

Input 3 

3 × 3 convolutional 64 

3 × 3 convolutional 64 

2 × 2 max pooling 64 

3 × 3 convolutional 128 

3 × 3 convolutional 128 

3 × 3 convolutional 128 

2 × 2 max pooling 128 

3 × 3 convolutional 256 

3 × 3 convolutional 256 

3 × 3 convolutional 256 

3 × 3 convolutional 256 

2 × 2 max pooling 256 

Flattened 𝑎 × 𝑎 × 256 

Fully connected 1024 

Fully connected 10 

 

(a) Small CNN. (b) CNN similar to VGGNet 

(Simonyan and Zisserman, 2015). 

Layer type Channels/Units 

Input 1 or 3 

3 × 3 
convolutional 32 

3 × 3 
convolutional 32 

2 × 2 max 
pooling 32 

3 × 3 
convolutional 64 

3 × 3 
convolutional 64 

2 × 2 max 
pooling 64 

Flattened 𝑎 × 𝑎 × 64 

Fully connected 512 

Fully connected 10 

 

Layer type Channels/Units 

Input 3 

3 × 3 convolutional 64 

3 × 3 max pooling 64 

3 × 3 convolutional 192 

3 × 3 max pooling 192 

3 × 3 convolutional 384 

3 × 3 convolutional 384 

3 × 3 convolutional 256 

3 × 3 max pooling 256 

Flattened 𝑎 × 𝑎 × 256 

Fully connected 4096 

Fully connected 4096 

Fully connected 10 

 

(c) AlexNet (Krizhevsky, 

Sutskever, & Hinton, 2012). 
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 In conventional curriculum and baby-step learning, difficulty is decided before training and 

examples must be grouped based on the difficulty, whereas in DWL, difficulty can be dynamically 

decided during training, as described in Section 3. Hence, we conducted the preprocessing illustrated 

in Fig. 2 for the comparison methods. First, training data were divided into two datasets, A and B, 

containing equal number of examples. For example, in the MNIST dataset, the first 30,000 examples 

defined dataset A and the last 30,000 defined dataset B. Then, a neural network was trained using 

dataset A, and dataset B was input in the resulting trained neural network. The difficulty levels of the 

examples in dataset B can be obtained from the network outputs. Finally, dataset B is divided into 

groups containing easy and increasingly difficult examples. Training for evaluation proceeds from 

easy to difficult examples, by gradual example replacement for conventional curriculum learning and 

example addition for baby-step learning. In this study, we used two groups of difficult and easy 

examples according to the experimental conditions described in (Bengio et al., 2009). 

 DWL and default learning do not require this time-consuming preprocessing, and all examples can 

be used for training, whereas only half of the training examples can be used for conventional 

curriculum and baby-step learning. For fair comparison, we used half of the examples for DWL and 

default learning, besides using all the examples for a complete evaluation. 

 

Fig. 2 Preprocessing to establish difficulty levels of a dataset to apply conventional curriculum and 

baby-step learning. Only half of the original training examples can be used for training, whereas all the 

examples are available for DWL. 

dataset A

dataset B

training data

neural network
trained neural 

network

dataset B 

with difficulty

training

input

output

divide

Easy examples

Difficult 

examples

divide
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(f) MNIST (Structure: Table 

2(a)) 

(g) CIFAR-10 (Structure: Table 2(a)) (h) SVHN (Structure: Table 2(a)) 

(a) MNIST (Structure: 784–1,000–10) (b) Wine (Structure: 13–10–3) 

(c) Car (Structure: 6–10–4) (d) Letter (Structure: 13–100–

 

Fig. 3 Test error rates when using different methods on evaluated datasets. Error bars represent 

standard error. Half and all indicate the amount of examples used for training of DWL and default 

(e) Epileptic (Structure: 178–100–5) 

(j) Fashion-MNIST (Structure: Table 2(a)) 

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.015 0.017 0.019 0.021 0.023 0.025 0.05 0.15 0.25 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.10 0.15 0.20 0.25 0.30 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.10 0.15 0.20 0.25 0.30 0.35

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.35 0.40 0.45 0.50 0.55

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.0045 0.0055 0.0065 0.0075

0.1945 0.2145 0.2345 0.2545 0.2745 0.2945

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.18 0.20 0.22 0.24 0.26 0.28

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.065 0.075 0.085 0.095 0.105

(i) SVHN (Structure: Table 2(b)) 

DWL (half)

default (half)

curriculum

baby steps

DWL (all)

default (all)

0.15 0.18 0.21 0.24 0.27
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5. Results and Discussion 

 Figure 3 shows the test error rates using the evaluated methods on the selected datasets. In many 

cases with MLP, judging from the overlapping error bars, DWL with half the training examples 

shows significantly lower error rates than the comparison methods, namely, default learning with the 

same number examples, curriculum learning, and baby-step learning. Moreover, with all the training 

examples, DWL shows significantly lower error rates than default learning. For the CNNs, DWL 

tends to retrieve lower error rates than the comparison methods, but when using the large CNN 

model, DWL does not perform well, as seen by comparing Fig. 3(h) and (i). 

 The preprocessing to obtain easy and difficult example groups based on outputs might not be 

appropriate for conventional curriculum learning, as shown by the high error rates. However, this 

preprocessing is not always inappropriate for baby-step learning, and difficulty determination is 

suitable for DWL, which weights the loss functions by the outputs. 

 We also trained the VGG-like CNN with the architecture detailed in Table 2(b) and AlexNet 

(Krizhevsky, Sutskever, & Hinton, 2012) with the architecture detailed in Table 2(c) using all data 

from the CIFAR-10 dataset. In this case, the test error rates for default learning were 0.219 for the 

VGG-like CNN and 0.207 for AlexNet, whereas the rate was 0.200 for the small CNN (Table 2(a)). 

Hence, larger CNNs do not necessarily improve performance, and hence such models are not 

appropriate for evaluating DWL. 
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 Table 3 lists the training error rates and training losses when using DWL and default learning 

(without curriculum). DWL tends to retrieve lower training error rates for MLP and higher training 

losses for MLP and CNN than default learning. The lower training error rates in DWL are expected, 

because DWL focuses training on examples classified with small confidence. The higher training 

loss in DWL is also expected, because the loss function weighs more heavily examples with high 

loss. However, using CNN, the training error rate tends to become larger in DWL than in default 

learning, indicating that DWL does not always retrieve the lower test error rates, as shown in Fig. 3. 

Table 3 Training error rates and training losses when using DWL and default learning (no curriculum). The 

information in parentheses in column dataset indicates the structures of the MLP or CNN. The numbers in 

bold in columns training error rate and loss denote significantly smaller values than those of the other 

methods. 

Dataset Method 
Training  

error rate 

Training  

loss 

MNIST 

(784–1,000–

10) 

DWL (half) 0 29.6 

Default (half) 0 49.5 

DWL (all) 0 36.0 

Default (all) 0 63.9 

Wine 

(13–10–3) 

DWL (half) 5.52 × 10−2 37.1 

Default (half) 0.114 34.5 

DWL (all) 2.93 × 10−2 45.1 

Default (all) 3.45 × 10−2 32.9 

Car 

(6–10–4) 

DWL (half) 𝟎. 𝟏𝟒𝟓 4.20 × 102 

Default (half) 0.174 𝟐. 𝟒𝟒 × 𝟏𝟎𝟐 

DWL (all) 𝟎. 𝟏𝟏𝟏 7.45 × 102 

Default (all) 0.146 𝟒. 𝟎𝟕 × 𝟏𝟎𝟐 

Letter 

(13–100–26) 

DWL (half) 0.163 9.60 × 103 

Default (half) 0.191 𝟓. 𝟕𝟑 × 𝟏𝟎𝟑 

DWL (all) 𝟗. 𝟔𝟖 × 𝟏𝟎−𝟐 1.49 × 104 

Default (all) 0.150 𝟖. 𝟔𝟗 × 𝟏𝟎𝟑 

Epileptic 

(178–100–5) 

DWL (half) 𝟎. 𝟑𝟑𝟏 4.10 × 103 

Default (half) 0.353 𝟑. 𝟏𝟕 × 𝟏𝟎𝟑 

DWL (all) 𝟎. 𝟐𝟕𝟖 7.16 × 103 

Default (all) 0.308 𝟓. 𝟐𝟗 × 𝟏𝟎𝟑 

Dataset Method 
Training 

error rate 

Training 

loss 

MNIST 
(Table 2(a)) 

DWL (half) 0 2.89 

Default (half) 0 0.914 

DWL (all) 0 23.7 

Default (all) 0 1.41 

CIFAR-10 
(Table 2(a)) 

DWL (half) 0 58.7 

Default (half) 0 17.7 

DWL (all) 8.00 × 10−5 1.23 × 103 

Default (all) 𝟑. 𝟐𝟎 × 𝟏𝟎−𝟓 49.2 

SVHN 
(Table 2(a)) 

DWL (half) 2.02 × 10−4 1.66 × 103 

Default (half) 𝟏. 𝟑𝟏 × 𝟏𝟎−𝟒 61.6 

DWL (all) 6.28 × 10−4 7.92 × 103 

Default (all) 𝟐. 𝟖𝟕 × 𝟏𝟎−𝟒 𝟏. 𝟑𝟓 × 𝟏𝟎𝟐 

SVHN 
(Table 2(b)) 

DWL (half) 2.29 × 10−3 1.16 × 104 

Default (half) 𝟖. 𝟏𝟗 × 𝟏𝟎−𝟓 43.5 

DWL (all) 1.39 × 10−3 2.16 × 104 

Default (all) 𝟓. 𝟒𝟔 × 𝟏𝟎−𝟓 43.5 

Fashion-MNI

ST 

(Table 2(a)) 

DWL (half) 0 20.5 

Default (half) 0 7.88 

DWL (all) 0 1.09 × 102 

Default (all) 1.67 × 10−5 𝟐𝟕. 𝟒 
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 To demonstrate that knowledge acquisition and forgetting in the classifier increase when using 

DWL, Fig. 4 shows transitions of outputs for correct classifications of the first 10 examples in the 

CIFAR-10 dataset. The transitions were tracked over 100 epochs during CNN training with DWL 

and default learning. The outputs for DWL show high variability, whereas those for default learning 

are mostly constant and convergent. 

 We further investigated the results of knowledge acquisition and forgetting on the Epileptic Seizure 

Recognition dataset, which retrieved the largest training error rate among datasets (Table 3). 

Specifically, we trained an MLP using all the examples and counted the numbers of knowledge 

acquisition and forgetting occurrences per epoch. The number of acquisitions per example for 1,000 

epochs were 7,618 in DWL and 7,022 in default learning, and those of forgetting were 3,526 in 

DWL and 3,131 in default learning. Thus, the differences between the occurrences of knowledge 

acquisition and forgetting were 4,092 in DWL and 3,891 in default learning. The larger difference in 

DWL might explain the lower training and test error rates. These results suggest that the DWL 

performance strongly depends on the dataset. If the model is overfit to difficult examples using 

DWL, it correctly classifies such examples but may incorrectly classify others, thus undermining 

classification accuracy. 

 

6. Summary and future work 

 Based on a novel curriculum-like approach of positive learning for difficult examples, we propose 

DWL, which weights the loss function using the difficulty of examples. By focusing on the training 

of difficult examples, this approach differs from conventional curriculum and baby-step learning. 

 Experiments using MLP and CNN training with several datasets verify that DWL has better 

generalization ability for MLP or a small CNN, but not for a large CNN. To correctly classify 

difficult examples, knowledge acquisition for examples increases with DWL, but knowledge 

(a) DWL outputs (b) Default learning outputs 

Fig. 4 Output transitions of first 10 examples in the CIFAR-10 dataset for 100 epochs during CNN 

training with weighting and no curriculum. 
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forgetting also increases. The training and test accuracies improve when the difference between 

occurrences of knowledge acquisition and forgetting for DWL is larger than that of default learning 

(without curriculum). 

 DWL can be further improved and extended for realizing more effective neural network training. 

Directions of future work are provided below: 

 Explore more representative expressions for example difficulty than the multiplication of the 

loss function by difficulty (Eq. (3)). 

 As the loss function is defined for each minibatch, the effect of batch size on training with 

DWL should be investigated. 

 Perform a theoretical analysis of DWL that may provide information regarding the conditions 

required for successful learning. 

 Apply DWL to various classification models including binary classification and recurrent 

neural networks. 
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