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a b s t r a c t 

Background: Few proposed gene biomarkers have been satisfactory in clinical applications. That is mainly 

due to the small studies sample size. Because of the batch effect, different gene-expression studies cannot 

be merged directly. Many integrative methods have attempted to integrate various datasets to eliminate 

the batch effect while keeping biological information intact. However, due to the complexity of the batch 

effect, it cannot be eliminated, and these methods may even add new systematic errors to the data, 

further complicating integrated data. Therefore, direct analysis of the merged data may cause some issues. 

In this paper, we suggest a novel integrative analysis framework for merged gene-expression data. The 

framework adopts the self-paced learning. This method allows samples to be automatically added into the 

training period, from simple to intricate, in a purely self-paced way. Moreover, the framework includes a 

new feature selection method, the SCAD-Net regularization method, a combination of SCAD and network- 

based penalties to integrates the biological network knowledge. The simulation shows that the proposed 

method outperforms the benchmark with more accurate marker identification. The analysis of seven large 

NSCLC gene expression datasets shows that the proposed method not only results in higher accuracies, 

but also identifies potential therapeutic markers and pathways in NSCLC. In conclusion, we provide a new 

and efficient integrative analysis system of gene expression, for the search for new reliable diagnosis or 

targeted therapy biomarker. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

To date, numerous gene biomarker studies have been completed

( Dang et al., 2018; Reis-Filho & Pusztai, 2011 ). Unfortunately, few

of the proposed gene biomarkers are satisfied in clinical applica-

tions. That is mainly due to small study sample sizes ( Ali et al.,

2014; Hay, Thomas, Craighead, Economides, & Rosenthal, 2014 ).

Small sample sizes reduce statistical efficacy, which can result in

false conclusions. Sufficient sample is required to produce effective

statistical analysis and valid conclusions. 

The increasing amount and availability of large gene expres-

sion studies motivate the development of integrative analysis that

combines multiple datasets or relevant results. However, although
Abbreviations: NSCLC, non-small cell lung cancer; SCAD-Net, SCAD penalized 

network-based regularization, SCAD-NL: SCAD-Network-based penalized logistic re- 

gression model; SPS-Net, SPL-SCAD-Network-based regularization; SPS-NL, SPL- 

SCAD-Network-based penalized logistic regression model. 
∗ Corresponding author at: School of Information Science and Engineering & 

Provincial Demonstration Software Institute , Shaoguan University , Shaoguan , China. 

E-mail addresses: tomyhwang@163.com (H.-H. Huang), yliang@must.edu.mo (Y. 
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ome gene expression studies share the same goal, constituent

atasets have typically been generated using diverse processing fa-

ilities, different data platforms and return expression values on

ifferent numerical scales (often called the batch effect). Therefore,

erging information from different gene expression studies poses

 statistical challenge. 

Extensive efforts have been made to address this challenge and

an be divided into two distinct approaches: meta-analysis and in-

egrative analysis via data merging ( Ma, 2009 ). The first approach,

eta-analysis, uses statistical methods that combining results from

ifferent studies. However, meta-analysis is trivial and several con-

itions are critical for viable results, and small violations of those

onditions can lead to misleading results ( Walker, Hernandez, &

attan, 2008 ). The second approach is the integrative analysis

ethod, which merges diverse datasets into a union dataset, and

erforms analysis based on this newly integrated dataset. Its main

dvantage over meta-analysis is higher result statistical signifi-

ance due to large datasets ( Lazar et al., 2013 ). Many methods

ave been proposed based on this idea, such as, Distance-weighted

iscrimination (DWD) ( Benito et al., 2004 ), a method that seeks

o identify separating hyperplane that maximizes the separation

https://doi.org/10.1016/j.eswa.2019.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.06.016&domain=pdf
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etween each sample from the different classes, and then moves

ystematic bias along the normal direction vector until its mean

istance attains the hyperplane. Empirical Bayes (EB, also named

OMBAT) ( Johnson, Li, & Rabinovic, 2007 ), is an approach that es-

ablishes a mixed-effect correction for each gene, and estimates

he correction by merging information from multiple genes with

imilar expression traits in each batch. Cross-platform normalisa-

ion (XPN) ( Shabalin, Tjelmeland, Fan, Perou, & Nobel, 2008 ), is

 procedure that identifies blocks of gene and samples in multi-

le datasets with homogeneous expression traits. PLIDA ( Deshwar

 Morris, 2014 ), this method uses topic models to summarize the

xpression patterns in each dataset before normalizing the topics

earned from each dataset using per-gene multiplicative weights.

aveICA ( Deng et al., 2019 ), this strategy uses the time trend of

amples over the injection order, decomposes the original data into

ulti-scale data with different f eatures, extracts and removes the

atch effect information in multi-scale data, and gets clean data.

hese integrative methods seek to combine various datasets into

n integrated dataset to eliminate the batch effect while keep-

ng biological information intact. However, given the complicated

ources of the batch effect, it cannot be eliminated, and these

ethods may even add new systematic errors to the data, further

omplicating the integrated data. Thus, directly analyzing the data

ay cause some issues ( Lazar et al., 2013; Qi et al., 2016 ). There-

ore, a new learning strategy is needed to adapt to this situation. 

Recently, a novel learning strategy called self-paced learning

SPL), was proposed ( Bengio, Louradour, Collobert, & Weston, 2009;

umar, Packer, & Koller, 2010 ). This strategy begins with simple

oncepts and builds up to more complex ideas. SPL can adap-

ively recognize easy and hard samples based on what the model

as already learned, with increasingly more difficult samples used

or model training. The SPL strategy has been successfully used

n various machine learning problems ( Jiang, Meng, Mitamura, &

auptmann, 2014 ). Furthermore, some convergence properties of

PL have also been a discussion (Z. Ma et al., 2018 ), makes the

PL more theoretically rational. Therefore, SPL is a promising learn-

ng mechanism that will help us build a more accurate prediction

odel for integrated gene-expression datasets. 

An efficient feature selection method is needed to better iden-

ify disease-related biomarkers from tens of thousands of gene

eatures. The regularization method is commonly used for fea-

ure selection. It enforces small coefficients to 0 and therefore

resents a sparse representation of the result. Many regularization

rocedures have been recommended for gene selection, including

he Lasso ( Tibshirani, 1996 ), the smoothly clipped absolute devi-

tion (SCAD) technique ( Fan & Li, 2001 ), the Elastic net ( Zou &

astie, 2005 ) method, the adaptive Lasso approach ( Zou, 2006 ) and

ybrid L1/2 + 2 Regularization ( Huang & Liang, 2018 ; Huang, Liu,

 Liang, 2016; Liang et al., 2013 ). However, these methods lack a

uilt-in mechanism to fuse prior biological information regarding

enes that are frequently available in scientific applications. Inte-

rating biological network information with an analysis of gene ex-

ression data has provided useful prior knowledge for the removal

f noise and detection of confounding factors from genomics data

or many regression and classification models ( Huang, Liang, & Liu,

015; Li & Li, 2008 ). 

The complexity of biological data and the suggestions above

ave prompted us to propose a new integrative analysis system or

ramework ( Fig. 1 ). 

In this framework, different gene-expression datasets are in-

egrated into a single unified dataset using a popular integration

pproach. Then, the SPL-SCAD-Network-based regularization (SPS-

et) method is coupled with a logistic regression model to fit the

ata for biomarker selection. More specifically, the SPS-Net consists

f three parts: 1) The SCAD penalty . The SCAD penalty is applied

o enforce model sparsity. This penalty offers unbiased estimates
or large coefficients. Also, model estimates by the SCAD method

ave valuable theoretical properties, for example, Oracle (if a right

ub-model were known) ( Fan & Li, 2001 ); 2) The network-based

enalty . We apply a network-based penalty (or quadratic Laplacian

enalty) to enforce smoothness between the coefficients of neigh-

oring genes on a given gene regulatory network; 3) The self-paced

earning (SPL) method . We integrate the SPL regime into the model

raining, and this technique prompts the use of easy samples (high

onfidence samples) first and increasingly guide the learning al-

orithm to more complex samples (low confidence samples). This

dea is crucial to integrative gene-expression data analysis, as this

ata often has heavy noises and outliers. 

We applied the proposed framework to seven public NSCLC

atasets for performance testing. The outcomes of the experiment

ndicate that the framework could be useful in identifying a set of

obust disease-related gene signatures. 

The rest of the paper is organized as follows. Part 2 presents a

enalized logistic regression model. Then, the SCAD-network-based

egularization method is proposed, and some theorems of this new

enalty are also discussed. Then, we present the SPL and combine

his learning strategy with the SCAD-network-based penalty, and

ouple with a logistic regression model to create the final model.

n Part 3, coefficient estimators of the SCAD-network-based penalty

re derived and we propose an efficient algorithm for solving the

nal model. In Part 4, we evaluate the performance of our pro-

osed method through a comprehensive simulation analysis and

eal mRNA expression level data experiment. A brief discussion and

onclusion are presented in Part 5. 

. Method 

.1. SCAD Network-based penalty 

Suppose that dataset D has n samples D = {( X 1 , y 1 ),( X 2 , y 2 ),…,

 X n ,y n )}, where X i = ( x i 1 , x i 2 ,…, x ip ) is the i th sample with p genes

nd y i is the corresponding dependent variable that consist of a bi-

ary value of either 0 or 1. Define a classifier f(x) = e x / (1 + e x ) and

he logistic regression is defined as: 

 ( y i = 1 | X i ) = 

(
X 

′ 
i β

)
= 

exp 
(
X 

′ 
i β

)
1 + exp ( X 

′ 
i β) 

(1)

here β = ( β1 ,…, βp ) are the estimated coefficients. Using simple

lgebra, the regression model can be presented as: 

 ( β) = −
n ∑ 

i =1 

{
y i log 

[
f 
(
X 

′ 
i β

)]
+ ( 1 − y i ) log 

[
1 −

(
X 

′ 
i β

)]}
(2) 

However, in most gene expression studies, the number of genes

ypically far exceeds the sample size. This situation refers to as a

igh-dimensional and low sample size problem, and standard lo-

istic regression method cannot be directly used to estimate the

egression parameters. The regularization method is one of the

opular techniques to resolve the issue of high dimensionality, and

an be expressed as: 

 ( λ, β) = l ( β) + P ( β) , 

here P ( β) represents the regularization term. A popular regu-

arization term is the L 1 (Lasso) method ( Tibshirani, 1996 ) which

as the penalty function P λ,Lasso (β) = λ
∑ p 

j=1 
| β j | 1 , where λ is any

on-negative value. As a result of the singularity of the L 1 penalty

unction, a L 1 penalized logistic model automatically selects fea-

ures by shrinking small coefficients to zero. However, when λ is

oo big, the estimation of large β may suffer from substantial bias,

nd if λ is too small, the solution may not be sufficiently sparse. To



104 H.-H. Huang and Y. Liang / Expert Systems With Applications 135 (2019) 102–112 

Fig. 1. Overview of the proposed integrative analysis framework. 
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overcome this issue, Fan and Li ( Fan & Li, 2001 ) proposed the SCAD

penalty, defined as: 

P λ,SCAD (β) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λ| β| , i f 0 ≤ | β| < λ, 

−β2 −2 αλ| β| + λ2 

2(α−1) 
, 

(α−1) λ2 

2 
, 

i f λ ≤ | β| < αλ, 

otherwise, 

(3)

where α is a constant value larger than 2. To deal with the

high-correlation situation, Zou and Hastie ( Zou & Hastie, 2005 )

proposed the Elastic net method P λ1 , λ2 ,enet (β) = 

∑ p 
j=1 

( λ1 | β j | 1 +
λ2 | β j | 2 ) . Zeng and Xie ( Zeng & Xie, 2012 ) proposed the SCAD-L 2 
method which combines the SCAD and L 2 penalties. Such meth-

ods achieves the grouping effect, where strongly correlated genes

tend to be in or out of the result together. However, these ap-

proaches were proposed using purely computational points with-

out any prior biological information. 

Prior information on gene regulatory interactions is valuable

for decoding modular gene patterns. The network-based penalty

has been proposed to utilize these prior network knowledge for

many applications. For example, Li and Li ( Li & Li, 2008 ), Chen

et al. ( Chen, Zhang, & C., 2016 ) and Wang et al. ( Wang et al.,

2018 ) recommend a L 1 penalized network-constrained regular-

ization procedure for feature selection and regression analysis of

genomic data. In these researches, the network-based function

is defined similarly as a quadratic form of the Laplacian matrix

connected with the genes interaction network. As we argue above,

the L 1 penalty suffers additional bias and may not be sufficiently

sparse in some situations. Compared with the L 1 penalty, the

SCAD approach avoids excessive penalties on large coefficients and

induces the oracle property. Therefore, it is reasonable to adopt

the SCAD method instead of the L 1 penalty. Here, we propose

a SCAD penalized network-based (SCAD-Net) method. It can be

formulated as follows: 

P λ1 , λ2 ,SCAD −Net (β) = P λ1 ,SCAD (β) + λ2 βLβ, (4)

where L represents the symmetric Laplacian matrix, which inte-

grates the biological network knowledge, and the βL β enforce

a smooth result of β on the network. Eq. (4) can be rewritten
s: 

 λ1 , λ2 ,SCAD −Net (β) = P λ1 ,SCAD (β) + λ2 

∑ 

1 ≤i<k ≤p;
w ik ( 

βi √ 

d i 
− βk √ 

d k 
) 

2 

, 

(5)

here gene i and gene k are linked, then w ik = 1 or a value ranging

rom 0 to 1, else w ik = 0; d i and d k represent the degrees of genes

 and k respectively, meaning the number of edges linked with i

or k ); λ1 and λ2 adjust the sparsity and smoothness of the model

espectively. Then, the SCAD penalized network-based logistic

egression model (SCAD-NL) is defined as: 

ˆ = argmi n β

{ 

l(β) + P λ1 ,SCAD (β) + λ2 

∑ 

1 ≤i<k ≤p;
w ik ( 

βi √ 

d i 
− βk √ 

d k 
) 

2 
} 

, 

(6)

here the first term is the logistic regression loss function, result-

ng in a classification prediction model. The second term is the

CAD penalty, which ensures sparsity, allowing the solutions to

ave better biological interpretations. The last term is the network-

ased penalty, which captures critical prior knowledge, and makes

he connected genes in the network to be smoothed-regression

oefficients. 

.2. The grouping effect of the SCAD-NL 

In this section, we show the SCAD-NL share grouping effect. The

roofs of following Lemma and Theorem are provided in the Sup-

lement File except for a short statement for Theorem 1 . 

Lemma 1 Assume P j, λ1 , λ2 
(β) is the SCAD-Net function of the

ingle feature β j , with the remaining items of β fixed. For the

CAD-Net penalty with λ2 > 

1 
( 2( a −1 ) ) 

, P j, λ1 , λ2 
(β) is a convex func-

ion of β j for all j. 

The following Theorem, which is the explicit argument from the

emma 2 of ( Zou & Hastie, 2005 ) since the SCAD-NL is a convex

unction, ensure the grouping effect for a situation when two pre-

ictor variables are equal. 

heorem 1. Suppose that ˆ β is calculated by Eq. (6) , and suppose

hat x j = x i , then we have ˆ βi = 

ˆ β j for any λ2 > 

1 
( 2( a −1 ) ) 

. 
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The following Theorem demonstrates a quantitative description

f the grouping effect of the SCAD-NL. 

heorem 2. Suppose that ˆ βi . 
ˆ β j > 0 and λ2 > 

1 
( 2( a −1 ) ) 

. Define 

 ( i, j ) = 

∣∣∣ ˆ βi − ˆ β j 

∣∣∣
| y | 1 

Then, 

 ( i, j ) ≤ 1 (
2 λ2 − 1 

a −1 

)√ 

2 ( 1 − ρ) . 

here ρ = x T 
i 

x j is the sample correlation. 

Theorem 2 shows the upper bound of the difference between

he coefficients of two genes. If ρ is approach to 1, then the

heorem 2 ensures that the coefficients of the two genes are very

lose. 

.3. Self-paced learning 

Although the regularization method plays a crucial role in the

ene-expression data analysis especially gene selection, only a few

f the selected biomarkers are used in clinical applications. This

ssue is mainly because these studies are based on small sample

ize data, which reduces the validity of the conclusions. Several

roposals have been proposed to solve this issue by integrating

arious datasets into an integrated dataset to generate sufficient

ample sizes ( Benito et al., 2004; Johnson et al., 2007; Shabalin

t al., 2008 ). However, these integration methods cannot eliminate

nternal bias, and may even add a new random noise and estima-

ion errors to the dataset, reducing the statistical power of the in-

egrative analysis ( Qin, Huang, & Begg, 2016 ). A learning strategy

nvolves learning from the low-level noise samples first to develop

 basic or universal biological knowledge, and when it is “power-

ul” enough, then learning the high-level noise samples to improve

nowledge structure. This strategy may substantially increase the

tatistical power of integrative analysis. 

Self-paced Learning (SPL) or curriculum learning (CL) was first

uggested in ( Bengio et al., 2009; Kumar et al., 2010 ), inspired

y human learning mechanism. Kumar et al. ( Kumar et al., 2010 )

howed the SPL could be a concise optimization model by intro-

ucing a penalty term. A typical SPL framework can be expressed

s: 

 ( β, V ) = 

n ∑ 

i =1 

{ v i l ( y i , d ( x i , β) ) + f ( v i ; τ ) } , (7) 

here v i l ( y i ,d ( x i , β)) is a weighted loss term for every sample,

 ( y i ,d ( x i , β)) represents a specific loss function; d ( x i , β) is the de-

ision function, V = ( v 1 , v 2 ,…v n ) is a weight vector for the whole

ample set; τ represents an age variable for adjusting the learning

ace, and f ( v i ; τ ) is the SP penalty influence on the sample

eight. A common SP penalty is the original hard regularization

unction f ( v ; τ ) = −τv , and some variants of this function are

iscussed in ( Meng, Zhao, & Lu, 2017 ). 

By solving the weight vector V with increasing age parameter,

PL allows more samples to be automatically added into the train-

ng period, from simple to intricate, in a purely self-paced way. 

.4. Combine the SPL mechanism with the SCAD-NL model 

To increase robustness and accuracy in integrative analysis, we

ombined the SPL mechanism with the SCAD-NL model (SPS-NL),

hat is 

min 

β, v ∈ [ 0 , 1 ] n 
S ( β, v ; τ, λ1 , λ2 ) = 

n ∑ 

i =1 

{ v i l ( β) + f ( v i ; τ ) } 
+ P λ , λ ,SCAD −Net ( β) (8) 
1 2 
here the first term is the weighted logistic model. The second

erm f ( v ; τ ) = −τv i is the SP penalty influence on the weight term

 i and the age parameter τ . The age parameter adjusts the learn-

ng pace, with smaller values discouraging complex samples into

he training process. The last term P λ1 , λ2 ,SCAD −Net (β) represents the

CAD-Net regularization term on β . 

. Calculation 

.1. Coefficient estimators of the SCAD-Net 

In this section, we present a novel coordinate-wise update form

or the SCAD-Net penalty. Consider the regression model: 

 = x 1 β1 + x 2 β2 + . . . + x p βp , 

here the response y is predicted by p predictors x 1 , x 2 ,…, x p .

ithout loss of generality, the predictors and response are all nor-

alized and centered. A normal penalized least-squares function

an be expressed as: 

 ( β) = 

1 
2 ‖ 

y − X β‖ 

2 + P ( β) 

 

1 
2 

∥∥y − ˆ y 
∥∥2 + 

1 
2 ‖ 

X β − X β‖ 

2 + P ( β) 

 

1 
2 

∥∥∥ ˆ βOLS − β
∥∥∥2 

+ 

p ∑ 

j=1 

P 
(
β j 

) (9) 

here ˆ y = X ̂

 βOLS and 

ˆ βOLS = X T y is the ordinary least-squares

OLS) solution. 

First partial derivative concerning β j of Eq. (9) is given by: 

∂ 

∂ β j 

L ( β) = β j − ˆ β j,OLS + p ′ 
(
β j 

)
, 

here ˆ β j,OLS is the j th item of ˆ βOLS . By setting all first partial

erivatives equal to 0, we get the solution with its j th item given

y: 

ˆ 
j = 

ˆ β j,OLS − p ′ 
(
β j 

)
. 

For the L 1 (Lasso) method, its estimator is given by 

ˆ 
j,Lasso = sign 

(
ˆ β j,OLS 

)(∣∣∣ ˆ β j,OLS 

∣∣∣ − λ
)

+ 
, 

here ( ∂) + = ∂ if ∂ ≥ 0 and ( ∂) + = 0 otherwise. 

The penalty function of SCAD is defined as P j,SCAD (β) =
 p 
j=1 

g λ( β j ) , where g λ(.) is provided in Eq. (2) . The j th item of the

CAD estimator is given by: 

ˆ 
j,SCAD = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

sign ( ̂  β j,OLS ) ( 

∣∣∣ ˆ β j,OLS 

∣∣∣ − λ) 
+ 
, i f 

∣∣∣ ˆ β j,OLS 

∣∣∣ ≤ 2 λ, 

(α−1) ̂ β j,OLS −αλ.sign ( ̂ β j,OLS ) 

(α−2) 
, 

ˆ β j,OLS , 
i f 2 λ ≤

∣∣∣ ˆ β j,OLS 

∣∣∣ < αλ, 

otherwise, 

here ˆ β j,OLS is unbiased when the estimator has an absolute value

igger than a λ. 

Recall P λ1 , λ2 ,SCAD −Net (β) = P λ1 ,SCAD (β) + 

2 

∑ 

1 ≤i<k ≤p;
w ik ( 

βi √ 

d i 
− βk √ 

d k 
) 

2 
, and it can be rewritten as: 

 λ1 , λ2 ,SCAD −Net (β) = P λ1 ,SCAD (β) + λ2 

p ∑ 

i =1 

w i j ( 
βi √ 

d i 
− β j √ 

d j 
) 

2 

+ λ2 

∑ 

1 ≤i<k ≤p;i,k 	 = j 
w ik ( 

βi √ 

d i 
− βk √ 

d k 
) 

2 

. (10) 
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Its first derivative concerning β j is: 

P ′ λ1 , λ2 ,SCAD −Net ( β j ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

sign ( β j ) − β j + 2 λ2 β j − t, i f 0 < 

∣∣β j 

∣∣ ≤ λ1 , 

αλ1 .sign ( β j ) −β j 

(α−2) 
+ 2 λ2 β j − t, 

2 λ2 β j − t, 
i f λ1 ≤

∣∣β j 

∣∣ < αλ1

otherwise, 

(11)

where t = λ2 

∑ p 
i =1 

w i j βi √ 

d i d j 
. 

By setting the first partial derivatives of the SCAD-Net penalty
equal to 0, we get a solution for the naive SCAD-Net estimator with
the j th item given by: 

ˆ β j,nai v e = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

sign ( ̂ β j,OLS ) ( | ̂ β j,OLS + t | −λ1 ) + 
1+2 λ2 

, i f 

∣∣∣ ˆ β j,OLS 

∣∣∣ ≤ 2 λ1 (1 + λ2 ) − t

(α−1) ̂ β j,OLS −αλ1 .sign ( ̂ β j,OLS )+(α−1) t 

(α−2)(1+2 λ2 ) −1 
, 

ˆ β j,OLS + t 
1+2 λ2 

, 

i f 2 λ1 (1 + λ2 ) − t ≤
∣∣∣ ˆ β j,OLS 

∣∣∣
< αλ1 (1 + 2 λ2 ) − t, 

otherwise. 

(12)

When | ̂  β j,OLS | has a large value, ˆ β j, nai v e is a biased estimator. Thus,

to obtain an unbiased solution, the final SCAD-Net estimator is de-

fined as rescale: 

ˆ β j = ( 1 + 2 λ2 ) ̂  β j, nai v e − t. (13)

3.2. Solution of the SPS-NL model 

We use the alternate optimization search algorithm to optimize

the SPS-NL model. Supposing we have training dataset X n × p and

its corresponding binary dependent variables y n , the detailed op-

timization procedure is shown as follows: 

Initialize . Some optimization variables and parameters are ini-

tialized in this process. 

Remark : Note that the samples used in the first round

V 

o = ( v 1 ,…, v n ) are crucial to the success of the framework. The fol-

lowing procedures are adopted to select the confidential samples

used in the startup. 

1) 70% samples of the training set X are randomly selected and de-

noted as E i . 

2) The classifier is trained based on E i using the SCAD-NL method,

and applied to the training set X using a proper cut-off point to

determine a predicted classification result ˆ y (i ) . 

3) The above procedures are repeated n times, to generate

ˆ y (1) , ̂  y (2) , . . . , ̂  y (n ) . 

4) Let P = y. ∗, ̂  y (1) . ∗ ˆ y (2) . ∗, . . . , ∗ ˆ y (n ) ; F = ∼ y . ∗ ∼ ˆ y (1) . ∗
∼ˆ y (2) . ∗, . . . , . ∗ ∼ ˆ y (n ) , where . ∗ is dot product operator and

∼ is the NOT logical operator. 

5) K = P + F ; 

Set V 

o = K , and τ is set to a small value to promoted easy sam-

ples in the first round of training. 

Fix V and update βt . When V is fixed, the SPS-NL problem is

solved as a standard SCAD-NL problem: 

βt = argmi n β

{
l( βt−1 ) + P λ1 , λ2 ,SCAD −Net ( β

t−1 ) 
}
. 

With the coefficient estimators of SCAD-Net as devised

in Eq. (13) and the coordinate descent algorithm (CDA)

( Friedman, Hastie, & Tibshirani, 2010 ; H.-H. Huang et al., 2016 ; H.

H. Huang, Liu, Li, & Liang, 2017 ), we can easily solve the SCAD-NL

model. 

Fix β and update v t 
i 
. The mechanism of this process measures

the sample “quality” according to v i . By calculating the first deriva-

tive with respect to v i of SPS-NL, we have: 

∂S 

∂ v 
= l 

(
y i , x i 

T βt 
)

− τ

i 
With simple algebra, the closed-form updating equation for v i 
s given by: 

 

t 
i = 

{
1 , l i ≤ τ, 

0 , otherwise. 
(14)

For specific sample i , it is considered as “easy” if its losses

maller than age parameter τ , and the v i will be assigned as 1;

therwise, it will be assigned as v i = 0. Samples with loss values

f no more than age parameter τ will be selected for the training

eriod. 

Once V is measured, we enlarge the value of τ to include more

amples with bigger losses in the training period. The iteration will

top until convergence. The whole algorithm for solving the SPS-NL

odel is presented in Algorithm 1 . 

Algorithm 1. 

Input: Training dataset { X n × p , y n }, τ and a step size: ϖ
Output: Model parameter β

Step 1: Set v i 
o = 1 ( i = 1, 2, …, n ) and τ . 

Step 2: Update β t based on Eq. (13) and the CDA. 

Step 3: Update V t based on Eq. (14) . 

Step 4: τ ← ϖτ . 

Step 5: Let t ← t + 1, if t < E then repeat Steps 2 – 4. 

.3. Time complexity analysis 

The coordinate descent algorithm (CDA) is used to updates β
n the Algorithm 1 , The CDA algorithm is a powerful technique

or deal with regularization model especially with high dimen-

ional data, because its asymptotic time complexity is only O( mnp ),

here m is the number of iterations, n is the number of training

ample size, p is the number of genes, and the values of m and n

re generally small. When updates V in Algorithm 1 , its asymptotic

ime complexity is O( n ). The whole asymptotic time complexity for

lgorithm 1 is O(( mnp + n ) ∗E ) = O ( mnpE ), where E is the number

f iterations and usually small (less than 110 in our experiment).

herefore, the final asymptotic time complexity for Algorithm 1 is

( mnp ) which is similar to the standard CDA. It is noted that

he Lasso, L 1/2 , SCAD-L 2 , Elastic-net and SCAD-Net methods are

olved by CDA respectively in this paper, which implies that the

omputational time for solving the SPS-NL is similar to these

pproaches. 

. Results 

.1. Simulation 

In this part, we perform a simulation study to evaluate the

eature selection, and prediction capacity of the framework. Five

parse logistic model techniques: Lasso, L 1/2 , SCAD-L 2 , Elastic-net

nd SCAD-Net are compared in the experiment. Simulation scheme

s similar to Li’s work ( Li & Li, 2008 ). 

We simulated a network with 200 different transcription factors

TFs). Each TF in this test regulated 10 genes with add up to 2200

enes in the simulated network. The dependent variable y was as-

igned to a binary value 0 or 1, and was related with the first 4

Fs and their target genes. 

We presented four scenarios in the simulation. For each sce-

ario, we simulated 200 samples in which half of them for training

nd the other half for testing. 

In scenario 1, there are two of the TFs and their target genes

ere positively related with the dependent variable and the rest

f two TFs and their target genes were negatively related with the
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Table 1 

Gene selection result of the simulation study. 

ρ Lasso L 1/2 SCAD-L 2 ElasticNet SCAD-Net SPS-NL 

P TP P TP P TP P TP P TP P TP 

1 0.3 51.8 5.9 51.1 8.6 378.0 22.4 338.0 17.8 116.0 23.2 100.6 30.1 

0.6 57.0 10.4 54.3 17.1 436.4 32.2 371.5 29.6 116.0 22.2 107.1 32.6 

0.9 60.0 12.4 58.0 19.7 493.2 39.2 396.6 34.1 147.5 30.1 123.2 39.3 

2 0.3 43.2 5.0 36.3 7.1 363.0 14.6 302.7 15.7 93.5 30.2 84.3 32.0 

0.6 49.7 7.6 41.6 9.2 276.5 26.5 336.5 22.6 124.8 25.3 103.9 36.6 

0.9 51.6 8.8 43.5 9.2 363.9 31.0 363.5 28.4 205.7 38.6 115.5 41.9 

3 0.3 60.6 6.1 48.2 10.8 535.6 20.8 409.3 17.5 168.0 22.5 102.3 26.9 

0.6 59.4 8.2 42.8 11.0 354.4 21.5 410.6 23.5 180.3 26.4 157.7 38.0 

0.9 61.9 10.0 51.5 13.8 500.2 36.4 438.4 28.3 197.7 17.9 102.7 29.4 

4 0.3 57.8 0.7 40.5 4.8 461.1 15.7 403.6 12.7 119.3 19.8 95.9 23.4 

0.6 59.6 7.8 47.0 6.4 572.0 24.6 416.0 20.9 154.5 26.1 118.5 26.4 

0.9 56.0 5.9 54.4 8.0 447.0 25.3 436.3 20.1 230.8 30.6 137.2 34.5 
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Table 2 

Classification prediction result of the simulation study. 

ρ Lasso L 1/2 SCAD-L 2 ElasticNet SCAD-Net SPS-NL 

Accuracy 

1 0.3 83.9% 83.8% 83.4% 83.3% 85.4% 93.2% 

0.6 79.6% 81.4% 79.4% 79.3% 80.6% 90.8% 

0.9 78.5% 81.6% 80.7% 79.3% 81.2% 90.3% 

2 0.3 86.9% 89.8% 89.1% 86.9% 88.8% 95.5% 

0.6 84.8% 87.2% 85.6% 84.9% 85.4% 94.3% 

0.9 82.7% 84.8% 82.3% 82.0% 84.8% 95.9% 

3 0.3 81.2% 82.0% 77.5% 72.9% 76.5% 86.5% 

0.6 81.4% 79.7% 80.3% 73.4% 74.4% 85.1% 

0.9 78.6% 81.5% 80.0% 71.4% 82.5% 86.7% 

4 0.3 81.8% 84.0% 83.5% 73.4% 77.8% 91.1% 

0.6 81.4% 82.1% 82.7% 72.0% 74.6% 86.9% 

0.9 81.4% 83.4% 83.2% 72.6% 80.1% 88.8% 
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ependent variable: 

= 

⎛ 

⎜ ⎝ 

3 , 3 √ 

10 
, ..., 3 √ 

10 ︸ ︷︷ ︸ 
10 

, −3 , −3 √ 

10 
, ..., −3 √ 

10 ︸ ︷︷ ︸ 
10 

, 5 , 5 √ 

10 
, ..., 5 √ 

10 ︸ ︷︷ ︸ 
10 

, 

−5 , −5 √ 

10 
, ..., −5 √ 

10 ︸ ︷︷ ︸ 
10 

, 0 , ..., 0 

⎞ 

⎟ ⎠ 

Expression levels for the 200 TFs were simulated using a stan-

ard normal distribution. Each TF and its target genes were jointly

istributed as a bivariate normal with a correlation of ρ . We gener-

ted the dependent variable as y = [Prob ( y = 1| X ; β) > 0.5]. Then,

0% samples were randomly selected to given an extra noise 5 ε,

here ε ∼ U( 0 , 1 ) . 

In scenario II, gene expression data were simulated as same as

he scenario I except that a TF could be both an activator and re-

ressor at the meantime. The coefficient vector was defined as: 

= 

⎛ 

⎜ ⎝ 

3 , −3 √ 

10 
, −3 √ 

10 
, −3 √ 

10 
, 3 √ 

10 
, ..., 3 √ 

10 ︸ ︷︷ ︸ 
7 

, −3 , 3 √ 

10 
, 3 √ 

10 
, 3 √ 

10 
, −3 √ 

10 
, ..., −3 √ 

10 ︸ ︷︷ ︸ 
7 

,

 , −5 √ 

10 
, −5 √ 

10 
, −5 √ 

10 
, 5 √ 

10 
, ..., 5 √ 

10 ︸ ︷︷ ︸ 
7 

, 

−5 , 5 √ 

10 
, 5 √ 

10 
, 5 √ 

10 
, −5 √ 

10 
, ..., −5 √ 

10 ︸ ︷︷ ︸ 
7 

, 0 , ..., 0 

⎞ 

⎟ ⎠ 

Scenario III was similar to scenario I except that we decreased

he impact of the target genes on the dependent variable. More-

ver, 20% samples were randomly selected and are given an extra

oise 8 ε. 

= 

⎛ 

⎝ 3 , 3 
10 

, ..., 3 
10 ︸ ︷︷ ︸ 

10 

, −3 , −3 
10 

, ..., −3 
10 ︸ ︷︷ ︸ 

10 

, 5 , 5 
10 

, ..., 5 
10 ︸ ︷︷ ︸ 

10 

, 

−5 , −5 
10 

, ..., −5 
10 ︸ ︷︷ ︸ 

10 

, 0 , ..., 0 

⎞ 

⎠ 
w  
Scenario IV was similar to scenario III except we allowing tran-

cription factors to react to both activators and repressors. 

= 

⎛ 

⎝ 3 , −3 
10 

, −3 
10 

, −3 
10 

, 3 
10 

, ..., 3 
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10 
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7 

, 0 , ..., 0 

⎞ 
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In practice, k ( k = 3, 5 or 10)-fold cross-validation (CV) method

s a popular approach to tune the parameter. Different k -fold CV

chemes may yield very similar prediction results ( Singh-Blom

t al., 2013; Zeng, Liao, Liu, & Zou, 2017 ). Moreover, reducing the

umber of CV intervals from ten to three leads reducing the com-

utation time of the algorithm by over half. Therefore, A 3-fold

ross-validation on one dimension or multi-dimensions procedure

as applied to the training data set to identify the optimal tuning

arameter(s). Genes with a non-zero coefficient in the estimated

odel were recognized to be related to the clinical variable. 

The correlation coefficient ρ of genes are set to 0.3, 0.6, 0.9 re-

pectively. The simulation procedure was repeated 10 0 0 times. We

eport the method’s feature selection capacity with two indicators,

 and TP respectively. The P indicates the number of the non-zero

oefficient in the model, and the TP indicates the number of the

rue non-zero coefficient in the real model. We also computed the

lassification accuracy on the test data set. Results are summarized

or each model in Tables 1 and 2 . 

As shown in Table 1 , our method was much accurate in

dentifying true genes (TP) compared to the other algorithms.

or example, when in scenario 2 with ρ = 0.9, the average TP

elected by the SPS-NL method was 41.9, almost reach the

hole true 44 genes. Our method also has good performance in
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Table 3 

The datasets used in this paper. 

Datasets [GEO] Platforms NSCLC Controls Samples 

GSE18842 HG-U133-Plus2 46 45 91 

GSE19804 HG-U133-Plus2 60 60 120 

GSE31547 HG-U133A 30 20 50 

GSE32863 HumanWG-6 v3.0 58 58 116 

GSE40419 HiSeq 20 0 0 87 77 164 

GSE10072 HG-U133A 58 49 107 

GSE43458 HuGene-1.0-st 80 30 110 

Total 419 339 758 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Model training performances for each method. 

Method Training error No. of selected genes 

Lasso 5.12% 63 

L 1/2 5.01% 49 

SCAD-L 2 4.39% 96 

Elastic net 4.64% 127 

SCAD-Net 3.35% 138 

SPS-NL 1.97% 90 

Table 5 

Performances on the validation sets. 

Dataset Method Accuracy AUC 

GSE10072 Lasso 91.59% 92.32% 

L 1/2 92.52% 93.26% 

SCAD-L 2 94.39% 96.19% 

Elastic net 93.46% 94.11% 

SCAD-Net 94.39% 96.54% 

GSE43458 Lasso 90% 91.74% 

L 1/2 93.64% 95.8% 

SCAD-L 2 93.64% 95.95% 

Elastic net 92.73% 95.61% 

SCAD-Net 94.45% 97.3% 
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classification prediction. As shown in Table 2 , in all four scenar-

ios, the proposed technique presented much higher precision com-

pared to Lasso, L 1/2 , SCAD-L 2 , Elastic net and SCAD-Net logistic

regression. 

We also performed the simulation tests based on holdout

and Leave-One-Out Cross Validation (LOOCV) methods. Results

of gene selection and classification prediction by holdout and

LOOCV were similar with the results under 3-fold CV, that the

SPS-NL method is comparable or better efficient than the other

methods. 

There results indicate that the proposed method is an efficient

prediction and gene selection tool to deal with the complex data

such as small n , big p , highly correlated and noised. 

4.2. Non-small cell lung cancer data analysis 

4.2.1. Model development 

To verify the proposed framework performance, we gathered

and preprocessed several non-small cell lung cancer (NSCLC) gene

expression datasets ( Table 3 ). 

Every dataset was mapped to a unique official gene symbol,

and we summarized multiple probes sets that mapped to the same

gene by their mean expression value. We used the subset of com-

mon genes represented among them, with a total of 10,881 re-

maining genes. After that, the training data (GSE18842, GSE19804,

GSE31547, GSE40419) was homogenized with ComBat (a function

in sva , R), and merged into a single large dataset with N = 541 sam-

ples includes 281 NSCLCs and 260 healthy controls. The validation

data includes GSE10072 and GSE43458 respectively. 

We downloaded the biological interaction network from the Bi-

oGrid ( https://thebiogrid.org ). The network is comprised of 14,355

genes or proteins and 324,663 interactions. By integrating the gene

expression data with the prepared network, the final network L in-

cludes 10,881 genes and 207,934 edges. 

Five approaches are compared with our proposed method: lo-

gistic regression with the Lasso, L 1/2 , SCAD-L 2 , Elastic-net and

SCAD-Net. The optimal regularization parameters, or tuning param-

eters (which balance the tradeoff between data fit and model com-

plexity), of the SPS-NL were tuned using 3-fold cross-validation

(CV) on multi-dimensions in the training set ( N = 521 samples).

The final classifier model (with 90 genes and 1.97% training clas-

sification error) was built with the estimated tuning parameters

using all the training data. The model’s cut-off point was deter-

mined by the point that yielded the highest sum of sensitivity and

specificity. 

As demonstrated in Table 4 , the SPS-NL approach provided the

best training performance, with only 1.97% training error. This

result is much better than competing approaches. For example,

Lasso achieved 5.12% training error almost 2.6 times that of the

method proposed here. Also, the SPS-NL method also outperforms

the SCAD-Net method, which did not include an SPL mechanism,

suggesting that the SPL strategy works well for combined gene ex-

pression data. 
.2.2. Evaluation of validation sets 

In this section, validation testing is performed on our NSCLC

odel. Classification accuracy and AUC under the receiver operat-

ng characteristic (ROC) analysis are reported. 

We first applied our SPS-NL model to the clinical data

SE10072, the sample size N = 107 including NSCLC n = 58 and

ealthy controls n = 49. The AUC for the diagnostic test of NSCLC

n this data was calculated to be 0.999 ( Fig. 2 -A1). We selected

he threshold that achieved the highest sum of sensitivity and

pecificity in the data. The model achieved a sensitivity of 98.3%,

 specificity of 100%, and an accuracy of 99.1% with only one

isclassified sample. Moreover, the test scores were significantly

ifferent between cases and healthy controls ( p < 0.001, t -test;

ig. 2 -A2). 

We then applied the model to the clinical data GSE43458, the

ample size N = 110 including NSCLC n = 80 and healthy controls

 = 30. The AUC for the diagnostic test of NSCLC in this data was

etermined to be 0.996 ( Fig. 2 -B1). Again, the selected cutoff point

as the point that achieved the highest sum of sensitivity and

pecificity in the data. With the cutoff point selected, we observed

 sensitivity of 97.5%, a specificity of 100%, and an accuracy of

8.2% with only two misclassified samples. We also observed a

ighly significant difference in the test score to be an NSCLC pa-

ient for cases compared with healthy controls ( p < 0.001, t -test;

ig. 2 -B2). 

Table 5 shows competitor performance with the two valida-

ion datasets, for which the proposed method is very competitive.

or example, the best accuracy result for the GSE10072 is 94.39%

hich is worse than our method (99.1%), with similar results from

SE43458. 

This outcome indicates that the model built by the SPS-NL

ethod from a large integration training dataset has a strong gen-

ralization capacity. 

.2.3. A brief biological discussion on signature genes by the SPS-NL 

We observe that the selected genes are associated with NSCLC

n many previous studies. For example, TP53 (Tumor protein p53)

nd KRAS (K-ras), play a critical role in cell proliferation, as well

s cancer development and prognosis ( Ling, Fabbri, & Calin, 2013 ).

LDN-5 (Claudin-5), helps regulate the rate of molecular move-

ent in the intercellular space between the cells of an epithe-

ium, and could be used as an additional diagnostic tool for

https://thebiogrid.org
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Fig. 2. Performance of the SPS-NL classifier when applied to the independent datasets GSE10072 and GSE43458. A1: receiver operating characteristic (ROC) curve analysis 

for the SPS-NL classifier applied to the GSE10072 (sample size N = 107 including NSCLC n = 58 and healthy controls n = 49); A2: test scores to be a case of all samples from 

GSE10072 were ranked. Healthy control cases are colored in green and NSCLC in red; B1: ROC curve analysis for the SPS-NL classifier applied to the GSE43458 (sample size 

N = 110 including NSCLC n = 80 and healthy controls n = 30); B2: test scores to be a case of all samples from GSE43458 were ordered. Red for NSCLC and green for healthy 

controls. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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denocarcinoma as shown in the study by ( Paschoud, Bongio-

anni, Pache, & Citi, 2007 ). CA12 (Carbonic anhydrase 12) is over-

xpressed in various tumors, and it helps maintain extracellular

cidic pH and may play a role in the cancer cell microenvironment

y helping cancer cell reproduction and metastasis ( Ivanov et al.,

001 ). SDC1 (Syndecan-1) is an omnipresent and essential extra-

ellular matrix proteoglycan that affects basic fibroblast growth

actor binding and activity. SDC1 is suggested to be involved in

any major processes of tumorigenesis ( Kim et al., 2015 ). MMP-12

Matrix metalloproteinase-12) plays a key role in the decomposi-

ion of the extracellular matrix in cell reproduction, and tissue re-

odeling processes. MMP-12 expression is significantly correlated

ith NSCLC development and metastasis, and may be a valuable

herapeutic target ( Hofmann et al., 2005; Peng & Yang, 2017 ). 

Fig. 3 shows the difference in the selected 90-signature gene

xpression between NSCLCs and healthy controls in primitive

atasets GSE18842, GSE19804, GSE31547, GSE32863 and GSE40419

y using heat map analysis, respectively. For example, the expres-

ion of genes AGER and KARS is much higher in NSCLC patients

han in healthy control patients. The expression of gene FABP4 is

ignificantly lower in NSCLC patients than in healthy control pa-

ients. The heat map analysis for validation sets GSE10072 and

SE43458 is shown in Supplementary Figure S1, in which the sim-

lar differences were also observed. These results imply that the

oles of these genes are more prominent in other genomic levels. 

.2.4. Network analysis 

The 90 signature genes selected by SPS-NL were mapped to the

ioGird network and analyzed using the Reactome pathways anal-

sis ( http://www.reactome.org ). We reported the connected biolog-

cal subnetworks in Fig. 4 A. Subnetworks identified by SPS-NL al-

ow investigators more easily to focus on key genes for subsequent

ownstream functional analyses. For example, the subnetwork con-

ecting MEN1 and TP53, in which MEN1 encodes the nuclear pro-
ein menin, acts as a tumor suppressor in lung cancer and is of-

en inactivated in human primary lung adenocarcinoma ( Wu et al.,

012 ), implying that MEN1 and the other tumor suppressor TP53

ay play a synergistic role in governing tumor activation and sup-

ression in the development of lung cancer. 

A subnetwork includes GATA1, GATA2, GATA3 and LMO2,

nd mainly relates to hematopoietic function. GATA1, GATA2

nd GATA3 are expressed mainly in hematopoietic cell lineages

 Vicente, Conchillo, García-Sánchez, & Odero, 2012 ). GATA1 is

 critical transcription factor for the maturation of erythroid

nd megakaryocytic cells. GATA2 expression has a wide dis-

ribution among hematopoietic cells, with prominent expres-

ion in early progenitors, megakaryocytes and in mast cell

ineages. GATA3 mainly influence the development of T lympho-

ytes. Lmo2 is a small protein composed of two LIM domains

nd is expressed in many tissues including hematopoietic precur-

ors ( Love, Warzecha, & Li, 2014 ). This hematopoietic-related sub-

etwork could be an important interplay in the development of

SCLC. 

We summarized key pathways for the 90 signature genes

 Fig. 4 B) and all significant ( p < 0.05) pathways (Supplementary File

). In total, these 90 signature genes are enriched in 49 distinct

athways. Some of the most significant biological processes in-

lude degradation of the extracellular matrix, syndecan interac-

ions, collagen degradation and interleukin-4 and interleukin-13

ignaling. 

The extracellular matrix (ECM) serves various functions and is

 critical component of the cellular microenvironment. ECM re-

odeling is a key mechanism for regulating cell differentiation,

ncluding processes such as branching morphogenesis, angiogene-

is, bone remodeling, wound repair, the establishment and main-

enance of stem cell niches ( Lu, Takai, Weaver, & Werb, 2011 ). The

ore syndecan protein has three to five heparan sulfate or chon-

roitin sulfate chains, which interact with many ligands including

http://www.reactome.org
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Fig. 3. The heat map of the gene signatures selected by SPS-NL approach for the original profiles . N: samples with NSCLC; H: samples with healthy controls. Red 

indicates high expression and blue indicates low expression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4. The biological sub-network (A) and pathway analysis (B). Ratio enrichment indicates the functional significance of a gene module with -log( p -value). 
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fibroblast growth factors (FGFs), vascular endothelial growth fac-

tor (VEGF), transforming growth factor-beta (TGF-beta), fibronectin

(FN), collagen, vitronectin (VTN) and several integrins. Such in-

teractions may induce cancer cell proliferation of cancer cells

( Alexopoulou, Multhaupt, & Couchman, 2007 ). Collagen is the key

structural component of connective tissue and its degradation is

a crucial mechanism in morphogenesis, tissue remodeling, and

repair, and may reflect disease pathogenesis ( Jabło ́nska-Trypu ́c,

Matejczyk, & Rosochacki, 2016 ). Interleukin-4 (IL-4) is a typical

pleiotropic T helper 2 cytokine involved in immunology during

carcinogenesis. IL-4 causes G1-phasecell-cycle arrest of NSCLC cell

lines expressing the interleukin 4 receptor, and can regulate mod-

est to moderate antiproliferative activity in vitro and in vivo in an-
mal models of human lung tumors ( Essner, Huynh, Nguyen, Mor-

on, & Hoon, 20 0 0 ). 

Cancer biomarkers have key potential benefits for patients, es-

ecially in contributing to personalized medicine and improved

iomarkers should fundamentally lead to improvements in out-

omes and more efficient, safe and cost-effective use of health

esources ( Ghosh, Begum, Sarkar, Chakraborty, & Maulik, 2019;

ayed, Nassef, Badr, & Farag, 2019; Zareizadeh, Helfroush, Rahideh,

 Kazemi, 2018 ). Combining the results from Figs. 2-4 , the

ene-signatures selected by the SPS-NL have provided potential

iomarkers in NSCLC. Moreover, the proposed method has identi-

ed the potential relationships in NSCLC with biologic significance.

n a word, the proposed method has allowed the researcher to
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ore easily identifies a potential biomarker for functional studies

r downstream applications. 

. Discussion and conclusion 

In cancer genomic research with high-dimensional genetic

easurements, the integrative analysis offers an effective solution

f pooling information across various independent datasets and

an lead to improved biomarker selection. In this paper, we have

roposed a novel integrative analysis framework. In particular, the

ramework utilizes a new learning strategy (self-paced learning,

PL) and a novel feature selection method (SCAD-Net penalty).

he traditional integrative analysis methods seek to combine

ultiple datasets into an integrated dataset and then analyze

he data directly. However, such integration methods cannot

liminate internal bias, and may even add a new random noise

nd estimation errors to the integrated dataset, reducing the

tatistical power of the integrative analysis. Advancing from the

ublished studies, we consider the SPL into our framework. This

pproach allows learning from the low-level noise samples first

o develop a basic or universal biological knowledge, and when it

s “powerful” enough, then learning the high-level noise samples

o improve knowledge structure. Biomarker selection is a crucial

art of the integrative analysis. The SCAD method is a popular

iomarker selection method. However, the SCAD is proposed using

urely computational points without any prior biological structure

nformation. Advancing from the published studies, in this paper,

e propose the SCAD-Net penalty to integrates the biological

etwork knowledge. Moreover, some theoretical investigations of

he SCAD-Net penalty are discussed. We combine the SPL with the

CAD-Net penalty, and couple with a logistic regression model to

ulfill the integrative analysis framework (SPS-NL). We conduct a

omprehensive simulation analysis, and an experiment on several

arge lung cancer datasets. The experimental results show that

he proposed framework is promising. The proposed framework

elects gene sets that are more coherent across datasets. Moreover,

he selected genes have satisfactory stability and better prediction

erformance. Together, we have provided a new and efficient inte-

rative method for biological research that help turns information

rom various gene-expression datasets into knowledge. 

We use the hard regularization function f ( v ; τ ) = −τv as the

elf-paced (SP) penalty. It may be promising to adopt the vari-

nts of this function to the proposed framework, i.e. , the linear

unction f ( v ; τ ) = τ ( 1 2 v 
2 − v ) or the mixture function f ( v ; τ ;ψ ) =

ψ 

2 

v + ψ/τ
( Meng et al., 2017 ). The SPS-NL method needs to tune

cross multiple penalized parameters, which are tuned by the grid

earch method with 3-fold cross-validation (CV) in this paper. Re-

ently, evolutionary computations (EC) approaches have been used

o tune the penalized parameter in the regularization problem for

heir global optimization capabilities (S. Wang, Shen, Chai, & Liang,

019 ). The use of EC method instead of the CV approach to tune

he penalized parameters in our SPS-NL model may improve the

erformance of the proposed framework. The logistic regression

odel involves the proposed framework for the lung cancer data.

he applicability of the framework is relatively “independent” of

he loss function. Therefore, alternative models, such as the Cox

odel or the AFT model, can be suggested. A more comprehensive

xamination of the framework with other cancer data/models will

e pursued in the future. Limitations of this study also include a

ack of more detailed analysis of the selected genes or pathways. 
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