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a b s t r a c t 

Forming combinations of comoving assets is a critical step in pairs trading that has only been addressed 

either manually or through enumerative procedures. Both approaches fail in the multivariate case and 

do not consider conflicting objectives in the problem structure. This paper is the first attempt to address 

these novel problems by presenting an intelligent system that recommends profitable pair combinations 

through a Mixed Integer Programming (MIP) formulation and solving the NP-Hard optimization problem 

with a multi-objective genetic algorithm (NSGA-II) containing problem specific modifications. Combina- 

tions of assets are optimized on two conflicting objectives of risk (mean-reversion) and return (spread 

variance) to form sets of profitable multivariate pairs trading opportunities. Promising results support 

the superiority of multi-objective and multivariate pairs trading strategies over their traditional single 

objective and univariate counterparts. The findings should motivate new directions for pairs trading re- 

search and also expand the applications of evolutionary multi-objective optimization for hard problems 

in finance and other industries. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Expert and intelligent systems have already made a profound

mpact on the financial industry. From “robo advisers” making au-

omated asset allocation decisions to high frequency trading algo-

ithms, the market has become ever-more dynamic, efficient, and

ompetitive. Research in the pairs trading space has in some ways

ept pace with these advancements, although there still lacks a so-

histicated approach to forming profitable pair combinations. De-

eriorating profitability of traditional approaches to the strategy

ave mostly been attributed to increased market efficiency so an

dvancement of an intelligent selection procedure should be a wel-

ome innovation. 

Existing techniques for selecting pairs remain dependent on

ither expert intuition or computationally intensive enumerative

rocedures. Not only does this restrict the trading opportunities

o univariate pairs, but the usual selection procedures fail to con-

ider conflicting objectives properly. The problem draws similari-

ies from Markowitz portfolio theory (1952) for systematic asset

election that optimizes a trade-off between conflicting risk and

eturn objectives. 
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Forming pairs of multiple assets under multiple objectives can

ot be done using existing approaches. The proposed methodol-

gy automatically generates a frontier of efficient multivariate pair

ombinations that satisfy multiple conflicting objectives. The prob-

em is formulated as a mixed integer programming (MIP) model

nd, due to the non-convex constraints and exponential solution

pace, a genetic algorithm (GA) is employed to obtain profitable

air combinations. GA is also easily extended to handle multiple

bjectives, such as the Non-dominating Sorting Genetic Algorithm

I (NSGA-II) used in this paper. 

We show how multivariate pairs from S&P 500 constituents

enerate excess returns over their univariate or single-objective

enchmarks. The methodology addresses an overlooked aspect in

airs trading through an original application of multi-objective

volutionary optimization, with contributions of: 

• Establishing a multi-objective multivariate pair formation 

model to simultaneously optimize profitability (variance) and

risk (mean-reversion) 
• Solving the problem through new solution representation and

modification procedures in NSGA-II 
• Showing the outperformance over traditional univariate and

single objective methods with empirical data 
• Expanding GA modeling capabilities in financial applications

through solution representation and crossover operations 

https://doi.org/10.1016/j.eswa.2019.05.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.05.046&domain=pdf
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Fig. 1. The top plot displays individual asset prices which are all normalized to 1 at 

the start of the formation period. The middle figure shows a weighted combination 

of those same assets to form a multivariate pair with a mean-reverting spread as 

shown in the bottom figure. The μd and σ d refer to the spread’s mean and standard 

deviation during the formation period only. These values are frequently used for the 

subsequent trading thresholds. 
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There are numerous decision phases in a complex strategy like

pairs trading. This framework only addresses one part of the sys-

tem, as will be highlighted in following sections. Nevertheless, the

practicality of expert and intelligent systems is clearly demon-

strated for difficult real-world decision processes. It shares com-

mon traits with other realistic problems that have non-convex con-

straints and multiple conflicting criteria. In addition, the core task

of identifying combinations of comoving sequence data is a preva-

lent problem unique not only to finance. 1 Therefore, implications

from this study have potential to impact a wide range of impor-

tant industries and applications. 

Sections 2-3 provide a brief background of pairs trading and

formally defines the problem addressed in this paper. Section 4 re-

views the most relevant literature to this problem as well as

similar metaheuristic applications in finance. Section 5 outlines

the framework in which the PF problem is modeled and solved

through a multi-objective genetic algorithm called NSGA-II. Em-

pirical experiments in Section 6 are conducted on S&P 500 data

to examine how the approach improves pairs trading profitability.

Finally, concluding remarks and new research directions are pro-

posed in Section 7 . 

2. Problem background 

2.1. Pairs trading 

Pairs trading places directional bets on the gap (spread) be-

tween pairs of asset prices. Stock prices have been widely ac-

cepted to follow a random walk process 2 and therefore hinders

most prediction efforts. In order to achieve a higher degree of pre-

dictability, pairs trading creates a mean-reverting spread between

coupled assets. Subsequent spread deviations and reversions are

traded through buying ( long ) one component and selling ( short )

the other component of the pair. We first clarify two principal

terms before further discussion. 

Definition 1. Pair: The combination of two components, each ex-

hibiting their own individual time-series. In the univariate case,

each component consists of one stock. In the multivariate case,

each component has more than one stock. Quasi-multivariate pairs

have one univariate component against another multivariate one. 

Definition 2. Spread: The price difference between the long and

short components of a pair. The component prices are simply the

sum of their constituent normalized price vectors. 3 The spread ( d t )

at time t is the difference of the wieghted ( w ) normalized prices

( A ) between the long ( L ) and short ( S ) components. 

d t = 

(∑ 

i ∈ L w i A i,t −
∑ 

j∈ S w j A j,t 

)
t = 1 ..m (1)

While the profit in pure arbitrage is deterministic, statistical ar-

bitrage is stochastic and only requires the expected value over a

sufficient number of trades to be profitable. There should be some

advantage where the profit likelihood must only exceed the loss

likelihood by some margin to accumulates wealth over the long

run. The statistical property cointegration arises when a stationary

linear combination exists from multiple non-stationary time series.

For a pair in which both time-series have historically moved to-

gether, we expect them to continue moving together until there is
1 For example, forming clusters of products that have comoving inventory levels. 

A deviation of some magnitude might signify an issue and trigger actions to be 

taken 
2 Also, frequently referred to as Brownian motion in the continuous time space. 

Some may dispute that assets to not follow a random walk precisely, but the lack 

of individual predictability holds true. 
3 For this paper, all prices are normalized to 1 at the start of the formation pe- 

riod. 

w  

t  

t  

r  

(

(

 fundamental change in the relationship. Given such a pair, one

ould aim to open a position once the spread between the two

eries has widened to some upper threshold and then close the

osition upon the spread’s convergence to an equilibrium level. 

Fig. 1 demonstrates an example of a multivariate pair with

FFIV, DAL) belonging to one component and (WAT, YHOO, PM,

FB, KMX) belonging to another component. The covered GICS

Global Industry Classification Standard) codes are quite diverse in-

luding Communications Equipment (FFIV), Airlines (DAL), Health

are Distributors (WAT), Internet Software & Services (YHOO),

obacco (PM), Distillers & Vintners (BFB), and Specialty Stores

KMX). 4 There is no clear relation between these seven compa-

ies, so this could very well be spurious or due to some com-

lex latent factors. Nevertheless, this example formed with histori-

al price data yields profitable opportunities for the out-of-sample

rading period denoted after the vertical line. 

Although one could certainly reduce the pair’s cardinality in

ig. 1 , it presents the potential benefit of including multivariate

airs in an overall pairs trading strategy. 

.2. Multi-objective optimization 

Most real-world problems have conflicting objectives that re-

uire trade-off decisions. For example, portfolio optimization is in-

erently a multi-objective problem with a trade-off between risk

nd return. Traditional Markowitz portfolio optimization, however,

as formulated as a single objective problem by modeling either

he expected return or variance as a target constraint. Solutions to

he problem are frequently visualized in the multi-objective space

eferred to as the efficient frontier. This frontier is obtained by iter-
4 The full names are F5 Networks (FFIV), Delta Airlines (DAL), Waters Corporation 

WAT), Yahoo! Inc.(YHOO), Philip Morris International (PM), Brown-Forman Corp. 

BFB), and Carmax Inc (KMX). 
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tively changing a target constraint and resolving for a new point

n the frontier. 

Multi-objective optimization treats each function independently

y forming a frontier of non-dominated solutions. A solution dom-

nates another if all objective values are no worse and at least one

s distinctly better. As a combination of objective functions, Pareto

ronts can be linear, convex, non-convex, and discontinuous. NSGA-

I is an algorithm proposed by Deb, Pratap, Agarwal, and Meyarivan

2002) that sorts candidate solutions in nondominated sets within

ach iteration of a genetic algorithm to form a Pareto front of non-

ominated solutions for multi-objective problems. 

efinition 3. Pareto dominance: A solution of i objectives in f a 

ominates another solution f b if and only if at least one objective

f a 
i 

is better than f b 
i 

and all other objectives f a 
i 

are no worse than

f b 
i 

for i ∈ {1, 2, ..., k }. For minimization, we have the following con-

itions for dominance: 

• f a �f b 

• { f i | f a 
i 

< f b 
i 
, f i ∈ f } 

efinition 4. Pareto optimal: A candidate solution is considered

areto optimal if it is non-dominated, such that no other candi-

ates show improvements without degrading another objective. 

. Problem definition 

An overall pairs trading strategy consists of two main decision

roblems: pair formation (PF) and pair trading (PT). We define the

F problem below. 

efinition 5. PF Problem: Given a set of n stocks, 5 assign weights

o a subset so that the spread between the resulting long and short

omponent, each consisting of up to v stocks, exhibits a high de-

ree of profit potential. 

.1. Decision variables 

For a total of n possible stocks to choose from, those belong-

ng to each long/short component of a pair are represented by the

oolean vectors x c ∈ B 

n ×1 , where c ∈ L, S indicates the long or short

omponent. The corresponding weights assigned to each chosen

tock in the long/short components of a pair are represented by

he positive Real vectors w 

c ∈ R 

n ×1 
+ . Therefore, there are four total

ectors of length n as the decision variables. 

If, for example, one has 100 stocks to choose from and wants to

nd an optimal multivariate pair with component sizes of 3 each,

hey need to find the optimal settings of 12 out of 400 variables.

he mixture of cardinality-constrained Real and Boolean decision

ariables from which only a small subset of assets are selected

eads to a non-convex and sparse solution space. Moral-Escudero,

uiz-Torrubiano, and Suárez (2006) prove how the cardinality con-

trained portfolio optimization problem in NP-hard due to the as-

et selection part of it, which they relate to the NP-compete Sub-

et Sum problem. The PF problem shares this same asset selection

ubproblem since one must choose stocks for each long/short com-

onents of the pair. 

.2. Constraints 

The cardinality for each component of a pair is controlled by

onstraint (2) where 1 is a n × 1 vector of ones. It ensures the

umber of chosen stocks satisfies a lower bound � and upper

ound u . 

 ≤ x 

c ′ 1 ≤ u (2) 
5 Pairs can span different types of assets, but only stocks are referenced for 

revity. 

1  

t

f

To prevent stocks belonging to both long and short components,

onstraint (3) requires each x L 
j 
+ x S 

j 
≤ 1 ∀ j ∈ 1 ...n . A chosen stock

an belong to either the long or short component of a pair, but

ot both. 

 

l + x 

s � 1 (3) 

All weights range between 0 ≤ w 

c 
j 
≤ 1 for stocks in each com-

onent, while those stocks not chosen are forced to w 

c 
j 
= 0 . This

s accomplished by constraint (4) because x c 
j 
= 0 if the asset is not

hosen for component c . Weights greater than one would result in

 leveraged position which we do not consider in this study. 

 � w 

c � x 

c (4) 

The last constraint (5) ensures that the weights for each compo-

ent sum to one. By doing so, the constraint forces equal amounts

f capital being allocated to each side of the pair, resulting in a

ollar-neutral bet. For example, this constraint avoids cases where

wice as much capital is allocated to the short side than the long

ide of a pair. 

 

c ′ 1 = 1 (5) 

A set of objectives are optimized instead of aggregating them

nto one value. The vector f = [ f 1 , f 2 , ..., f k ] represents the set of

ultiple objectives functions to be minimized over the problem

pecifications. 

.3. General multi-objective PF model 

The following formulation shows the multi-objective MIP repre-

entation of a multivariate pair formation model. If only univariate

airs are desired, parameters � and u are simply set to one in con-

traint (2) . 

minimize f = [ f 1 , f 2 , ..., f k ] 
subject to � ≤ x 

c ′ 1 ≤ u (2) 
x 

l + x 

s � 1 (3) 
0 � w 

c � x 

c (4) 
w 

c ′ 1 = 1 (5) 
and c ∈ { L, S} 

x 

c ∈ B 

n ×1 

w 

c ∈ R 

n ×1 
+ 

The spread calculation is vectorized in order to simplify the

otation in objective functions. Let A ∈ R 

n ×m be the normalized

rice matrix for n stocks across m price observations and d ∈ R 

1 ×m 

e the resulting spread vector for the pair’s formation period of

ength m . The spread vector d , as shown in Equation (6) below, is

he product of A for the selected assets x c along their respective

eights w 

c . This also simplifies the model because both compo-

ents are restricted to non-negative weights. 

 

′ (w 

l − w 

s ) = d (6)

SSD is commonly used in existing approaches, as in Gatev,

oetzmann, and Rouwenhorst (2006) , which is merely a least

quares estimation, or the spread vector’s � 2 -norm. In some tech-

iques, an additional criteria for the number of times the spread

rosses zero (NZC) is used, as shown in Equation 7 below. 

ZC = 

∑ m 

t=2 [ sgn (d t ) � = sgn (d t−1 )] (7)

.4. Benchmark single-objective model 

Although NZC is an important criteria from literature, the com-

ination of both minimizing SSD and maximizing NZC is redundant

ince a lower SSD often implies higher NZC. The two objectives are

ighly correlated which are demonstrated later in Figs. 8 , 10 , and

2 . We therefore use this combination of objectives to represent

he Benchmark Single-objective Model in Equation 8 . 
 BS = [ || d || 2 , −NZC] (8) 
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Table 1 

Pair combinations. 

Max component size (c) 

≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 

Total Stocks (n) 10 45 1225 4950 124,750 499,500 

50 1485 10 5 10 7 10 9 10 11 

100 15,225 10 8 10 10 10 14 10 16 

500 73,920 10 10 10 12 10 18 10 20 

10 0 0 10 5 10 12 10 15 10 22 10 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Pareto fronts for correlated objectives where the feasible space is con- 

strained to the 95% confidence interval of multivariate Gaussian distribution with 

correlations ρ = 0 . 9 , ρ = 0 , and ρ = −0 . 9 , respectively. 
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3.5. Distance multi-objective model 

This alone will find multivariate pairs, but against sub-optimal

search criteria. The improved model needs one criteria to max-

imize profitability and another one to minimize risk of a pair’s

spread permanently diverging. This is accomplished by simply

maximizing 6 spread volatility ( σ d ) instead of minimizing SSD. 7 . A

third objective of minimizing the final spread’s magnitude (on day

m ) is also introduced to prevent spreads that are “running away”.

The set of three objectives is shown in Equation 9 , which is refer-

enced as the Distance Multi-objective Model . 

f DM 

= [ −σd , −NZC, | d m 

| ] (9)

3.6. Cointegrated multi-objective model 

An alternative approach to pairs trading is based on the statis-

tical property of cointegration. As will be discussed in the litera-

ture review, two time series are cointegrated if there exists a sta-

tionary linear combination between them. This linear combination

represents the pair’s spread so having a stationary spread fluctuat-

ing around some average would naturally present attractive trading

opportunities. Genetic algorithms, and gradient-free approaches in

general, are capable of minimizing the test-statistic from a coin-

tegration test because they are simply evaluating the test instead

of calculating gradients. For this reason, the test-statistic from

the Augmented Dickey Fuller test for stationarity is used in the

Cointegrated Multi-objective Model which maximizes volatility and

minimizes the test statistic for stationarity, denoted by ADF in

Equation 10 . The ADF test statistic replaces the NZC measure as a

means to finding mean-reverting spreads. Lower t -stats indicated

higher likelihoods of stationarity. This model can be viewed as

a pseudo-cointegrated framework since we are testing the linear

combination of our multivariate pairs for stationarity, but not nec-

essarily placing a confidence threshold level. 

f CM 

= [ −σd , −ADF ] (10)

3.7. PF problem structure: combinatorial aspect 

The constrained search space of existing univariate methods

limit the potential trading opportunities, and one must compete

with other market participants on many of the same pairs. The

combinatorial nature lends itself to a harder problem and nullifies

existing enumerative PF techniques. 

Given n different stocks, Equation (11) yields the number of pair

combinations P for component sizes ranging up to u . Forming a

pair of two unique multivariate components can be viewed as a

combination of combinations that grows exponentially as shown

in Table 1 . 

P = 

( u ∑ 

v =1 

(
n 

v 

))
(11)
2 

6 In our algorithm, all objectives are minimized so any functions to be maximized 

have their values multiplied by −1 
7 Standard deviation and SSD have the same effect since SSD gives rise to vari- 

ance. Standard deviation is simply a better representation of volatility and therefore 

profit potential of a pair’s spread 

t  

t  

p  

r  

r  

m

Evaluating all 73,920 univariate pair combinations for 500

tocks takes only a few seconds on any modern machine, regard-

ess of evaluating Euclidean distance or for cointegration. With

omponent sizes of up to two, however, the enumeration time

umps to 58.7 hours. For sizes up to 5, just 50 candidate stocks

quate to as many combinations as there are stars in our galaxy

hile an instance with 500 candidates exceeds the grains of sand

n earth 

8 , the latter taking 1.8 × 10 8 years! 

.8. PF problem structure: multi-objective aspect 

Existing PF methods have limited profitability due to the unin-

ended minimization of spread volatility when selecting pairs with

inimum Sum of Squared Differences (SSD). One can ameliorate

his deficiency by introducing terms that encourage some degree

f mean-reversion while exhibiting higher volatility. The naïve ap-

roach of linearly combining each term leads to difficulties in de-

ermining appropriate weights but, as Deb (2014) discusses, multi-

bjective methods address this issue by treating each objective in-

ependently to build a set of Pareto-efficient non-dominated solu-

ions. 

We take into consideration the work of Verel, Liefooghe, Jour-

an, and Dhaenens (2013) when exploiting the problem structure

f the PF problem. Correlated objective functions influence the

earch space and resulting Pareto fronts, so care must be taken to

void highly correlated objectives in one model. One can see that

he Pareto front’s size is inversely related to objective correlations

n Fig. 2 . This is a natural characteristic since multiple objectives

an reduce into a single representative objective as correlations ap-

roach ρ = 1 . Therefore, the design of the PF models should ex-

loit objective correlations to yield diverse Pareto fronts. 

. Literature review 

Krauss (2017) provides a comprehensive survey of pairs trading

iterature which clusters the techniques in the following categories:

istance, Cointegration, Time-Series, Stochastic Control , and other ap-

roaches. The Distance and Cointegration categories tend towards

he PF problem while Time-Series and Stochastic Control concern

he PT problem. The latter two usually assume pairs are given a

riori and instead focus on issues concerning trading thresholds,

egime detection, and optimal trade allocations. We also briefly

eview some applications of optimization in finance, which have

ostly focused on either PT or portfolio optimization problems. 
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Fig. 3. A representative network of selected literature generated in R using the 

package igraph from Csardi and Nepusz (2006) . Key topics are represented as 

shaded square nodes while individual papers are circular white nodes. The two 

shaded regions represent the problem areas of Pairs Trading and Portfolio Opti- 

mization. As an example, our paper (highlighted in yellow as node 0) belongs to 

the pairs trading problem space but has strong connections to problems in portfo- 

lio optimization. It connects the multi-objective optimization and evolutionary al- 

gorithms to the PF problem and single/quasi/multivariate pairs. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 3 displays the relationships between selected literature

ost relevant to our study 9 . Research in the realms of univariate

air formation and portfolio optimization are evidently crowded

ut mostly disjoint from one another. Enumeration techniques

ominate existing PF approaches, while multivariate pairs liter-

ture is almost nonexistent. We connect a new combination of

roblem areas in an attempt to bridge the gap between the PF

roblem with multivariate pairs through multi-objective optimiza-

ion. No work regarding optimization for pair formation, whether

ingle or multi-objective, was encountered throughout our re-

earch. 

.1. Distance technique 

Distance measures, like SSD, are used to identify suitable pairs

nder this parameter-free approach. The most prominent study is
8 An estimated 3 × 10 11 stars and 7.5 × 10 18 grains of sand exist. 
9 Papers are categorized manually on a subjective manner so this is just an ap- 

roximation to visualize the current literature space and may not be exact. 

o  

g  

n  

d  

c  
y Gatev et al. (2006) and Goetzmann, Rouwenhorst et al. (1998) ,

ereafter GGR. Working in the univariate realm, the SSD of cumu-

ative returns is calculated between each component for all pos-

ible pair combinations over a 12-month formation period. Only

airs yielding the lowest SSD values are passed on to the trading

eriod. 

Perlin (2007) uses quasi-multivariate pairs by forming a syn-

hetic long-only index for each univariate counterpart. However,

he procedure only trades the univariate component of each pair

o this more representative of a general mean-reversion strategy

here the univariate component is expected to revert to its syn-

hetic index. 

Do and Faff (2010) review and analyze the work of GGR to find

iminishing profitability of distance approaches which are often

urdened by non-converging pairs. A consequence of traditional

istance approaches, as highlighted by Krauss (2017) , is that min-

mizing for SSD as a single objective yields lower spread volatil-

ty and therefore limited profit potential. Do and Faff (2012) later

ntroduce the number of zero-crossings (NZC) which acts as a

ean-reversion proxy measure. However, NZC adds limited value

n their application because SSD is already minimized, thus imply-

ng higher NZC values. 

Huck (2010) employs neural network to forecast multi-period

eturns and then ranks different univariate pair combinations us-

ng the multicriteria decision-making technique Electre III. Chen,

hen, Chen, and Li (2017) employ Pearson correlation over a five

ear formation period of monthly returns for quasi-multivariate

airs. For each stock, they gather the 50 most correlated coun-

erparts into a basket of paired stocks. The procedure relates to

erlin (2007) where only the univariate components trade against

he reference basket index which does not necessarily make this a

airs trade. 

.2. Cointegration technique 

Cointegration differs from distance methods by testing the re-

ulting spread series for stationarity. Most of the theory from

hese two approaches draw from the original works of Dickey

nd Fuller (1979) , Engle and Granger (1987) , and Johansen (1988) .

idyamurthy (2004) optimizes trading thresholds for pre-selected

nivariate pairs through a screening process based on statistical

nd fundamental relationships before testing for cointegration. The

creening has a dual purpose of domain reduction for expensive

ointegration tests and also a latent selection bias towards inter-

ndustry pairs. 

Galenko, Popova, and Popova (2012) present a transparent

ethodology to form a cointegrating vector from multiple assets

or multivariate pairs trading. It does not focus on the search for

ultivariate pairs but instead develops a framework to establish

 cointegrating vector from a given set of constituents. For this

eason, and the proposed trading rules for the daily rebalancing,

e believe this paper addresses the PT problem. Our methodology

ould make a natural complement to their approach as a source

f generating candidate pair constituents. 

Chan (2013) highlights the disadvantages of univariate pairs

rading in today’s market and suggests employing ETF pairs as a

iable alternative that reduces transaction costs and limits risk of

ermanent regime-shifts. Huck and Afawubo (2014) show that, on

 trade by trade basis, pairs formed through cointegration methods

re not only more reliable but also yield higher spread volatility

han those selected with distance methods. 

Rad, Low, and Faff (2016) compare large-scale implementations

f Gatev et al. (2006) and Vidyamurthy (2004) , where both strate-

ies are backtested from 1962 to 2014 using univariate pairs on the

ormalized price level. The cointegration method first filters can-

idate pairs with 12-month SSD before applying an Engle-Granger

ointegration test where only the top 20 cointegrated pairs with
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minimum SSD are traded. As noted by Krauss (2017) , the SSD sort-

ing heuristic likely hinders the returns for the cointegration strat-

egy because only the smallest SSD pairs reach the cointegration

tests. Minimizing the SSD as a single objective consequentially re-

duces spread variance so the procedure could quite possibly be se-

lecting the least-profitable cointegrated pairs. Huck and Afawubo

(2014) showed how pairs formed purely on cointegration yield

higher spread volatility, so the only benefit from overlaying a SSD

sorting procedure is the resulting domain reduction for enumera-

tion. Clegg and Krauss (2018) relax the stationarity condition for

cointegration to develop a partial cointegration model which, in

their analysis, outperforms the benchmark model of Gatev et al.

(2006) and two other cointegration variants. 

4.3. Related optimization techniques in finance 

Most applications have focused on either portfolio optimiza-

tion, forecasting, or memetic algorithms (such as optimizing a

trading strategy’s parameters). Those most related to pairs trad-

ing belong under problem areas of arbitrage, portfolio selection,

and trading. Aguilar-Rivera, Valenzuela-Rendón, and Rodríguez-

Ortiz (2015) provide a recent review of the current literature space

for evolutionary algorithms in finance. 

Burgess (20 0 0) applied evolutionary algorithms to select a port-

folio of strategies that maximize a trade-off between risk and re-

turn. Lin and Cao (2008) use a robust genetic algorithm to find ac-

tionable sets of trading rules that satisfy different constraints. Lin

notes the efficiency of a GA search mechanisms as being only 1%

of the execution time compared to enumerating algorithms. Chen,

Huang, and Hong (2013) apply a multi-objective GA to maximize

historical returns while minimizing risk for the portfolio optimiza-

tion problem. 

Woodside-Oriakhi, Lucas, and Beasley (2011) solve the single-

objective cardinality-constrained portfolio optimization problem in

a 2-step methodology. Anagnostopoulos and Mamanis (2010) eval-

uate three different multi-objective evolutionary algorithms for

the same problem but with three objectives. Similar work

by Anagnostopoulos and Mamanis (2011) compares five multi-

objective evolutionary algorithms (NSGA-II, SPEA2, NPGA-II, PESA,

e-MOEA) for the cardinality constrained portfolio optimization

problem, from which the PF problem draws similarities. 

Huang, Hsu, Chen, Chang, and Li (2015) use GA to simultane-

ously optimize capital allocation between a small set of candidate

pairs and trading signals in an overall mean-reverting trading sys-

tem. The GA runs on training data to optimize the optimization

period returns with decision variables of trade allocations and sig-

nal parameters. The approach from Huang et al. (2015) certainly

shares some commonalities with this paper, such as mixed chro-

mosome types, but some distinctions must be emphasized. Given

that only one multivariate pair is optimized within the same ten

stocks, some might argue that this reduces to a long/short portfo-

lio optimization problem since it lacks an ensemble of simultane-

ously traded pairs. This approach would be intractable for larger

sets of stocks due to the sparsity of stock weightings in their fixed

chromosome length. A variable chromosome length, as outlined in

this paper, would help amend that shortcoming. 

Woodside-Oriakhi, Lucas, and Beasley (2013) establish a method

of rebalancing established portfolios under transaction costs and

investment horizons across a variety of useful constraints. The ap-

proaches in both Valle, Meade, and Beasley (2014a) and Valle,

Meade, and Beasley (2014b) focus on building portfolios yielding

consistent returns irrespective of market conditions. Although en-

tirely different than pair formation, their MIP models share similar

characteristics to the PF problem. The model allows for long-short

combinations of asset weights, includes cardinality constraints, en-

forces dollar-neutrality, and places directional position constraints

which are important for the PF problem. 
.3.1. Literature summary. Based on the current state-of-the-art for

airs trading literature, there is an apparent absence in the multi-

ariate and multi-objective space. No technique, other than brute

orce enumeration, has used any form of optimization to find prof-

table pair combinations. Table 2 shows existing areas covered by

tate of the art literature. 

Enumeration remains a viable option for just about all exist-

ng state-of-the-art because of their constrained univariate solution

pace. Formation criteria has mostly only varied between some

equence of SSD minimization, NZC, industry classifications, and

ointegration tests. Sorting pairs on different criteria is less effec-

ive than finding Pareto-optimal pairs through multi-objective opti-

ization. Given the state of existing literature, the following points

re clear: 

• Diminishing profitability of univariate pairs, possibly due to the

limited candidate pool 
• Absence of optimization methods applied to the PF problem 

• Existing approaches are intractable for multivariate pairs 
• There exists conflicting objectives of risk (mean-reversion) and

profitability (volatility) 

. Methodology 

We solve the PF problem by forming a population of candi-

ate pairs with profitable spread characteristics through the use

f a multi-objective genetic algorithm called NSGA-II. GA is a

opulation-based method that advantageously handles both dis-

rete and continuous variables, thus making it better suited for the

F problem as opposed to other common metaheuristics. There is

lso more flexibility in designing constraints with GA and poten-

ial to parallelize for large scale computing as described in Dao,

bhary, and Marian (2017) and Sonmez and Bettemir (2012) . As

oted in Tahir and Smith (2007) , GA has also been shown to effec-

ively handle problems having exponential and noisy search spaces

ike the PF problem. 

A metaheuristic, instead of traditional scalarization techniques,

s employed for a number of reasons. The interested reader can

efer to section four of Emmerich and Deutz (2018) for a de-

ailed comparison of metaheuristics and scalarization techniques

or multi-objective problems. First, care must be taken to normal-

ze multiple objectives to the same unit of measure when com-

ining them into a single weighted linear or non-linear objective

unction. NSGA-II is more robust to such nuances since candidates

re evaluated on Pareto dominance criteria. Second, weighted max-

in models require the decision maker to choose what magnitude

o assign each weight. Small adjustments to the objective’s weights

an lead to drastically different solution types. NSGA-II allows the

reedom to swap different objective functions to test a range of

odels with minimal added effort. Lastly, a weighted approach re-

urns just one single solution, but a pairs trading strategy benefits

rom having an entire set of candidate pairs to trade. NSGA-II re-

urns a Pareto front of solutions by improving a diverse population

f candidates, which lends itself nicely to pairs trading due to the

iversifying effect. The decision maker has a range of trading op-

ortunities to choose from instead of just one solution. 

.1. Genetic representation for NSGA-II 

The genetic algorithm (GA) is a type of evolutionary algorithm

elonging to a broader class of metaheuristics. They are derivative-

ree methods that do not place any convexity requirements on

onstraints and cost functions, which is useful for non-smooth

unctions and search spaces. Originating from the notable works

f Fogel (1964) and Holland (1992) , the algorithm simulates Dar-

inian natural selection by recursively improving a set (popula-

ion) of candidate solutions (individuals). The quality of candidate
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Table 2 

Coverage of PF problem characteristics. 

Univariate Multivariate Enumeration Optimization Multi-objective 

Existing 
√ √ 

This Paper 
√ √ √ √ 

Fig. 4. Solution representation. 
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Algorithm 1 Pair Reconstruction . 

1: {} ∗ L o , S o ← P o � Original Long&Short components 

2: {} ∗ αc 
o , θ

c 
o , β

c 
o , ̂  αc 

o , ̂
 θc 
o , 

ˆ βc 
o where c ∈ {} ∗ L o , S o 

3: 
4: {} ∗ L n , S n ← P n � New Long&Short components 

5: {} ∗ αc 
n , θ

c 
n , β

c 
n , ̂  αc 

n , ̂
 θc 
n , 

ˆ βc 
n where c ∈ {} ∗ L n , S n 

6: 
7: A ← Set of potential stocks 
8: 
9: for each c ∈ {} ∗ L, S do 

10: δ ← ˆ αc 
n − ˆ αc 

o 
11: m ← ˆ αc 

n 
12: if δ < 0 then � Remove stocks with least weight 
13: β′ ← βc 

o sorted by descending β
14: θ′ ← θc 

o sorted by descending β
15: βc 

n ← β′ 
1 ..m 

16: θc 
n ← [ θ′ 

1 , ..., θ
′ 
m ] 

17: else if δ > 0 then � Add new stocks 
18: μ ← βc 

o / ̂  α
c 
o 

19: B ← {} ∗ ˆ θL 
o , ̂

 θS 
o � All stocks in Pair 

20: S ← A − B 
21: θ′ ← randomSample (δ, S ) � Without replacement 
22: β′ ← μ
23: θc 

n ← {} ∗ θc 
n , θ

′ 
24: βc 

n ← {} ∗ βc 
n , β

′ 
25: end if 
26: end for 
27: return Pair new . 
olutions depends on its solution representation where the deci-

ion variables are encoded in a phenotype and evaluated by the

bjective (fitness) function. The procedure undergoes a selection

hase at the end of each iteration (generation) where only the

ttest individuals survive to create new candidates for the next

eneration. Candidates are improved through the crossover (breed-

ng) and mutation modification procedures. 

efinition 6. Genotype: The set of variables on which crossover

nd mutation operate. Variables of a genotype are called genes.

hromosomes are sets of genes that represent different types of

ecision variable. 

efinition 7. Phenotype: The translated genotype values that rep-

esent the true decision variables. The phenotype values are used

n fitness evaluation and to ensure constraint feasibility. 

efinition 8. Solution encoding/decoding: The process of translat-

ng decision variables to a genotype and back to their representa-

ive state in the phenotype. 

.1.1. Solution representation 

Solution structures play a direct role in the fitness landscape

nd constraint handling. Fig. 4 shows how each individual solution

s structured. Floating vector sizes (or lists) are employed due to

he sparse nature of the problem. By doing so, we prevent the al-

orithm from adjusting the weights on stocks that are not included

n the pair. 

Parameters α, θ, and β are the real-valued decision variables

etween [0,1] whose values are tweaked through crossover and

utation operators. This α parameter is translated to ˆ α which is

he integer representation of the cardinality of each component,

hich also dictates the list sizes for θ and β. The parameter θ rep-

esents the selected asset indices and β contains their respective

eights. Similar to α, θ and β are translated to their actual evalu-

tion forms through encoding. The following equations show how

 candidate’s genotypes are translated to their phenotypes: 

ˆ c = min [ u, � + 
 αc · (1 + u − � ) � ] (12)

ˆ c = min [ n, 
 1 + n θc � ] (13)
ˆ c = 

βc 

| βc | (14) 

Any change in α that translates to a new ˆ α value has a

irect impact on the θ and β lengths. Therefore, the entire

enotype and phenotype must undergo a problem-specific recon-

truction step, detailed in Algorithm 1 . This is similar to how

nagnostopoulos and Mamanis (2010 , 2011) and Chang, Meade,

easley, and Sharaiha (20 0 0) employ a repair mechanism to en-

orce constraint satisfaction in their cardinality-constrained portfo-

io optimization problem. We treat this issue similarly by dropping

hose assets corresponding to the smallest weights until the con-

traint is satisfied. If the component size, ˆ αc , increases then new

tocks are added and assigned weights that match the current av-

rage βc . If the component size decreases, then assets correspond-

ng to the lowest weights are removed. 

.1.2. Crossover 

Crossover is synonymous to “breeding” and creates two new

andidate solutions from a combination of two parents. It is meant

o create an improved, but similar, combination of decision vari-

bles from both parents that ideally carry their best traits. Only

ne component from each parent is chosen because tweaking both

omponents simultaneously would likely result in random noise. It

s not component-constrained so Long-Short crossovers are just as

ikely as Long-Long and Short-Short, which enables a stock in one

andidate’s long component to crossover into another candidate’s

hort component. 

Parent selection for crossover undergoes an enhanced tourna-

ent selection procedure to encourage diversity in the crossover

perations. The first parent is selected based on normal tourna-

ent of size three, but the second parent has a roulette wheel ele-

ent to it. Instead of uniformly sampling for tournament competi-
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Fig. 5. Trading flowchart. 
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tors, probabilities are assigned based on the competitor’s similarity

to the first parent. In particular, Hamming distances are computed

between the first parent and each candidate’s set of stock indices

so that the most distinct candidates are assigned higher probabili-

ties. This biases the procedure to select the fittest, yet diverse, in-

dividuals for crossover. It both saves on redundant crossover oper-

ations and helps maintain diversity in the resulting population. 

Although α, θ, and β are all real-valued between [0,1], it is

important to treat each chromosome uniquely. Take α = 0 . 1 and

θ = [0 . 9 , 0 . 95] with α = 0 . 2 and θ = [0 . 2 , 0 . 2] for example. Both

parents have small α values indicating small component sizes (in

this case two stocks each). Crossover between α and θ chromo-

somes could yield drastically different phenotypes who’s compo-

nent sizes nearly doubled, even though both parents had small

component sizes. Most inter-chromosome crossovers would result

in random noise and be counterproductive to the key ideas behind

GA. 

Given two parents, P 1 and P 2 , the crossover procedure only op-

erates on either α, θ, or β with the following probabilities. Note

that, if the component sizes to be crossed are the same, then we

assign a p(α) = 0 to prevent redundancy. 

{ p(α) , p(θ) , p(β) } = 

{{ 0 , 2 
5 
, 3 

5 
} , if ˆ αP 1 = ˆ αP 2 { 1 

5 
, 2 

5 
, 2 

5 
} , otherwise 

The parameter θ undergoes Double Point Crossover with a sim-

ple adjustment from Luke (2009) to allow for the crossover be-

tween different sized vectors. The main caveat being that the max-

imum segment length to crossover must be no larger than the

smallest component size for both pairs. We use Extended Interme-

diate Recombination for both α and β genes. Since β has vary-

ing size, this operation must also be adjusted to accommodate

different sized vectors. An offspring o has its i ’th gene derived

from two parents in a linear fashion by o i = p 1 i · λ + p 2 i · (1 − λ) ,

where λ ∈ [ −0 . 25 , 0 . 25] is a bounded random variable chosen uni-

formly. Implementation is straight forward from Mühlenbein and

Schlierkamp-Voosen (1993) . 

5.1.3. Mutation 

The only mechanism that adds exploration to the stock search-

space so far is the reconstruction step if a component size in-

creases. Mutation further encourages exploration by tweaking ei-

ther α, θ, or β separately with the same chromosome-specific

probabilities as crossover. Standard Gaussian convolution is used

for α and β with a standard deviation of 0.15. Weighted integer

randomization was chosen for θ which aims to substitute stocks of

low-weight with new indices and weights as before in Algorithm 1 .

Since θ is in non-metric space, a simple re-sampling of all stocks

is sufficient, exclusive of those already in the pair. 

5.1.4. Pareto dominance 

It was necessary to introduce another scenario for Pareto dom-

inance that prevents pairs with identical fitness values and com-

ponent assets from belonging to the same frontier. A solution f a 

dominates f b if both fitness values and component-stocks are iden-

tical. 

f a = f b ∧ 

ˆ θa = 

ˆ θb 

It also prevents the algorithm from converging to a local optima

because, if omitted, multiple versions of the same pair but with

different com ponent weights might exist in the Pareto front and

retained for subsequent generations. 

5.1.5. NSGA-II parameters 

We use a population size of 50 with crossover percentage of 0.8

and mutation percentage of 0.4. The mutation probability depends
n which chromosome is chosen as noted in Section 5 . The algo-

ithm terminates when the number of pairs belonging to the first

areto-front reaches 50 at any point between the minimum (50)

nd maximum (150) generations. These parameters were chosen

ither based on common practice or trial-and-error. In particular,

ost would argue that a mutation rate of 0.4 is too high for a GA

ut this was found beneficial for the large discrete search space

f stocks. Faster convergence was needed to alleviate the burden

hen backtesting each model in the experiments. 

.2. Trading rules 

Fig. 5 shows the overall trading process for the experiments.

ll Pareto pairs from the optimization routine enter the trading

rocess and flow into one of the six categories (shown on the

ight). We discard any pairs missing a price, S t , during the trad-

ng period. This simplifying assumption is justified by the highly

iquid and established S&P 500 constituents so missing prices are

ikely due to an M&A which is equally likely to result in a good or
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Fig. 6. Trading Scenarios: The upper and lower dotted lines denote opening thresh- 

olds while the middle line represents a closing threshold. The vertical lines are (f) 

final day of the allowable opening period, (a) open signal crossed, (c) last allowable 

convergence day, and (e) expiration day. Only (f) is static whereas the rest depend 

on when the position was opened denoted by (a). The filled circles represent days 

in which the position is open. The first, if any, filled circle corresponds with the day 

a position is opened and the last corresponds to the closing day. 
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ad trade. The “Small Spread” category captures any spread whose

tandard deviation, which represents the profit potential, is less

han a threshold chosen to be ˆ σ = 0 . 025 . The “Watched Only” cat-

gory tags any pairs that entered the trading system but never

reached an open signal. “Converged” contains pairs that opened

nd also reached their specified close threshold, whereas “Expired”

rades never reached that threshold. The “Profit-Take” category is

or any pair that opened but failed to converge within the allow-

ble “convergence period” and therefore closed at the first moment

he trade became profitable. 

To further clarify the trading scenarios, Fig. 6 displays the dif-

erent cases a pair might undergo during the trading period. Each

epicts a hypothetical pair’s spread during the trading period. 

Scenarios I, II, III are all “Watch Only” pairs. In case I, the spread

rosses above the upper threshold but never reverts below. Case II

hows a spread that never crosses either open limits. The spread in

II crosses below the upper threshold but only after the allowable

pening period. Scenarios IV and V show expired trades that were

emporarily profitable but never reached the close threshold. They

lso never became profitable within the subsequence between (c)

nd (e) where it could have closed as a “profit-take”. In case V,

owever, the spread did mean-revert but after the allotted expi-

ation period. Scenario VI is a “Profit-take” because it was closed

fter the first profitable day following the convergence period (c).

ote that this also crossed the closing threshold but after the po-

ition was already closed. Scenario VII is the ideal case where the

air converged within the allowable convergence period. 

. Empirical experiment 

.1. Experiment overview 

The goal of the following experiment is to investigate the fol-

owing two points: 
• Single vs Multi-objectives: How does pair formation criteria im-

pact profitability? 
• Univariate vs Multivariate: How does pair cardinality impact

profitability? 
• Performance against benchmark: How do the models perform

against a buy-and-hold S&P 500 strategy? 

We test the three models (BS,DM,CM) formulated in

ection 3 with different perspectives on performance. The

rofitability is first analyzed on an individual pair basis and

e interpret the resulting Pareto fronts across “Convereged” and

Expired” outcomes. Statistical tests are run for individual pair

rofitability before comparing the overall strategy performance of

ach model. The strategies are compared for annual and monthly

eturns on both committed and invested capital. 

To examine the efficacy of including multivariate components in

 pairs trading strategy, we equate the cardinality constraint in the

M model to v = u = � which bounds the pair component sizes to

 ∈ {1, 2, ..., 7} for each variant. This creates seven different mod-

ls, one being a pure univariate case, all sharing the same three

bjective functions as the DM model. 

.2. Experimental design 

Daily close prices for index constituents of the S&P 500 are

sed for the stock universe which was obtained from Chan (2013) .

eal-world implementation details like transaction costs, borrow

osts, taxes, corporate actions, and trade slippage are excluded

ince they lack consistent treatment in literature. The model for-

ulations and trading system were developed and debugged using

 test sample period between 4/25/2011 and 12/31/2011, prior to

he out-of-sample period for the experiments. 

The out-of-sample experiments take place between 11/27/2012

nd 5/31/2016 where a sequence of 12 equally spaced optimiza-

ion days are executed, each with their own formation look-back

eriod of 400 days, to provide a sufficient sample size across vary-

ng market conditions. The frequency is about one formation pe-

iod per quarter. This time span mostly falls within a bull market,

ut there is a pronounced sell-off period between 2015–2016. For

ach formation period, NSGA-II runs ten different times to supply a

ufficient population of candidate pairs to the trading phase. Since

ome solutions in a formation period might be too similar, a final

orting procedure removes similar pairs within the same period. A

air is removed if at least 75% of its constituents match another

air or if one pair’s long/short component exactly matches another

air’s long/short component. For the entire test period, the num-

er of candidate pairs P for each formation period is P ≤ 500 which

eads to a total of P ≤ 60 0 0 for the whole backtest. NSGA-II and the

arious adjustments were programmed in Matlab 2017b on an In-

el Core i5-4210U processor with up to 2.40 GHz and 8 GB of RAM.

The trading parameters are uniform across all models. Open-

ng thresholds depend on the pair’s average spread, μd , and stan-

ard deviation, σ d , from the formation period. They are set to

d ± 1.5 σ d and with a closing threshold of μd . A pair is allowed

00 days to reach an open signal before being discarded. If opened,

he allowable convergence period is set to 20 days and expiration

eriod of 50 days. In other words, an opened pair has 20 days to

ompletely converge plus an additional 30 days to become prof-

table. 

The amount invested for each pair is constant at $1. There are

ore sophisticated approaches to bet sizing, such as the Kelly cri-

erion, but such decisions belong under the PT problem. The daily

eturn of pair j is given by Equation 15 where t is the pair’s spread

s defined earlier in Equation 1 . 

 j,t = ±(d t − d t−1 ) (15)
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Table 3 

BS: pair statistics. 

All Traded Converged Profit take Expired 

Count 1192 667 124 427 116 

Proportion (%) 56 10.4 35.8 9.7 

σ d Min 0.012 0.025 0.025 0.025 0.025 

Max 0.358 0.333 0.133 0.333 0.236 

Median 0.037 0.041 0.034 0.043 0.043 

Mean 0.05 0.053 0.041 0.055 0.057 

NZC Min 1 1 6 1 1 

Max 76 74 71 68 74 

Median 26 23 28.5 22 19.5 

Mean 27.4 24.2 29.4 23.2 22.3 

t-stat Min −5.29 −5.2 −5.2 −3.7 −4.71 

Max 2.73 2.36 2.36 2.23 2.33 

Median −1.47 −1.3 −1.81 −1.15 −1.2 

Mean −1.47 −1.24 −1.76 −1.13 −1.12 

Return Min −0.263 0.009 0 −0.263 

Max 0.193 0.193 0.14 −0.001 

Median 0.017 0.052 0.017 −0.093 

Mean 0.009 0.059 0.025 −0.103 

Std. Dev. 0.063 0.028 0.025 0.059 
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Fig. 7. BS model: violin plots for return distributions across formation periods. 

Fig. 8. Resulting Pareto pairs for the BS model against each formation objective. 

Only traded pairs from the ”Converged” and ”Expired” categories are displayed 

along with their marginal density distributions. 
The ± sign is negative only if the spread was shorted. Pair j ’s

total return tr (the cumulative gain or loss) can be expressed as

the summation of daily returns r j,t . 

r j,t = 

n ∏ 

t=1 

(1 + r j,t ) (16)

6.3. Results 

Tables 3 –5 present descriptive statistics for individual pairs in

each model. The “All Pairs” column covers all pairs generated,

“Opened Pairs” only contains pairs that reached an open-signal

in the trading period, and the remaining columns are as de-

scribed earlier. The number of pairs represented for each category

is shown in the top row. Below each table are violin plots for the

pair returns across all 12 formation days to show how the returns

are distributed. The black line shows the overall mean return for

each formation day. The violin plots, which are box-plots that also

show the probability density distributions, were generated with

the R package ggplot2 from Wickham (2016) . 

The marginal scatter plots were created using the R package gg-

pubr from Kassambara (2017) . They display regions of the Pareto

front that are more profitable by marginalizing the pairs in the

”Converged” and ”Expired” categories. Correlation between objec-

tive functions are also calculated, but across all pairs returned for

that model. 

6.3.1. Benchmark single-objective model (BS) 

For the baseline model in Table 3 , the optimization routines

created 1192 unique pairs across the entire testing period, 667 of

which reached an open signal. Out of the traded pairs, 124 fully

converged and 116 expired with the most frequent category being

427 partially converged trades under the Profit-Take category. It is

clear that the converged trades exhibited lower volatility, σ d , and

higher NZC than both Profit-Take and Expired categories. The av-

erage t-statistics for ADF tests are also lower for converged pairs,

indicating a stationary behavior of the spreads. The violin plots in

Fig. 7 display relatively uniform return distributions across all for-

mation periods with a limited range between maximum and min-

imums. Ten out of the 12 days yielded profitable average returns. 

The plot of traded Pareto pairs in Fig. 8 indicates a larger pres-

ence of converged pairs in the region of low SSD and higher NZC.

The marginal distributions peak in the same region for both cate-

gories on each axis, but the likelihood of converged trades is visibly
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Table 4 

DM: return statistics. 

All Traded Converged Profit take Expired 

Count 2529 1471 131 1069 271 

Proportion (%) 58.2 5.2 42.3 10.7 

σ d Min 0.018 0.025 0.026 0.025 0.028 

Max 0.826 0.826 0.337 0.826 0.689 

Median 0.152 0.124 0.058 0.135 0.134 

Mean 0.188 0.169 0.068 0.181 0.167 

NZC Min 1 1 5 1 1 

Max 70 70 70 56 53 

Median 9 11 28 9 11 

Mean 12.7 14.3 28 12.6 14.4 

t-stat Min −4.8 −4.34 −4.34 −3.9 −3.47 

Max 3.59 3.48 1.85 3.48 3.29 

Median −0.184 −0.403 −1.73 −0.238 −0.385 

Mean −0.141 −0.364 −1.73 −0.184 −0.417 

Return Min −0.727 −0.024 0 −0.727 

Max 0.568 0.568 0.495 −0.001 

Median 0.026 0.085 0.036 −0.139 

Mean 0.022 0.099 0.058 −0.156 

Std. Dev. 0.116 0.077 0.068 0.109 

Fig. 9. DM model: violin plots for return distributions across formation periods. 
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Fig. 10. Resulting Pareto pairs for the DM model against each formation objec- 

tive. Only traded pairs from the ”Converged” and ”Expired” categories are displayed 

along with their marginal density distributions. 
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reater than the expired category as NZC exceeds 30 in the for-

ation period. The correlation coefficient for all optimized pairs,

egardless of trading outcome, is ρ = 0 . 59 . The high correlation

etween objectives supports how this model is used as a single-

bjective benchmark. 

.3.2. Distance multi-objective model (DM) 

The DM model yields the highest proportion of traded pairs

rom minimizing the final formation spread. Table 4 shows that

bout 80% of traded pairs are profitable even though the amount

f expired trades more than doubles the converged category. The

pread variance and zero-crossing behavior are similar to the other

odels where converged pairs generally exhibit lower volatility

nd more zero-crossings during their formation period. We see a

ery high average return of 9.9% for converged trades and an im-

ressive 2.2% for all trades. Fig. 9 shows all but one formation pe-

iod had positive average returns and with higher averages than

he other models. 

Two plots of Pareto pairs are displayed in Fig. 10 to visual-

ze the three objectives for DM. Both plots suggest that converged

airs are somewhat clustered along the same regions of the Pareto

ronts. Converged pairs show more zero-crossings in the formation

eriod and a smaller final formation spread | d m 

|. As for volatility,

here is a stronger concentration of converged pairs with lower

olatility than expired pairs. For all optimized pairs, the correla-

ions between σ d and NZC is ρ = −0 . 43 , and between | d m 

| and

ZC is ρ = 0 . 39 , which confirms how the chosen PF objectives are

ndeed conflicting criteria. 
.3.3. Cointegrated multi-objective model (CM) 

The spread volatility and ADF t -statistic for converged pairs

s much lower than both profit-take and expired categories in

able 5 . ADF t -statistics of expired pairs are slightly lower than

he partially-converged profit-take class which is counterintuitive.

here is a substantial difference in NZC for converged pairs against

he other two categories as well. The return distributions in Fig. 11

uggest another wide dispersion of returns like in the DM model

ut with only one formation period yielding a negative average re-

urn. 

Fig. 12 shows how most pairs that fully converged had a t -stat

ess than −2 and volatility under σ d < 0.1. Once again, there is

lear region in the full Pareto front that is more desirable and has

 higher presence of converged pairs. The correlation coefficient
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Table 5 

CM model: return statistics. 

All Traded Converged Profit take Expired 

Count 1860 1138 132 787 (n = 219) 

Proportion (%) 61.2 7.1 42.3 11.8 

σ d Min 0.016 0.025 0.025 0.025 0.026 

Max 0.825 0.825 0.258 0.825 0.529 

Median 0.148 0.126 0.054 0.149 0.112 

Mean 0.185 0.172 0.07 0.195 0.151 

NZC Min 1 1 6 1 1 

Max 67 67 67 66 54 

Median 12.5 15 31.5 12 18 

Mean 16.2 18 31.3 15.5 18.7 

t-stat Min −4.98 −4.65 −4.65 −4.38 −4.23 

Max 5.01 4.15 0.845 4.15 3.46 

Median −0.793 −1.02 −2.41 −0.747 −1.22 

Mean −0.747 −0.925 −2.37 −0.618 −1.16 

Return Min −0.784 0.026 0 −0.784 

Max 0.585 0.362 0.585 −0.009 

Median 0.032 0.078 0.04 −0.154 

Mean 0.022 0.098 0.065 −0.178 

Std. Dev. 0.133 0.068 0.081 0.126 

Fig. 11. CM Model: Violin plots for return distributions across formation periods. 

Fig. 12. Resulting Pareto pairs for the CM model against each formation objec- 

tive. Only traded pairs from the ”Converged” and ”Expired” categories are displayed 

along with their marginal density distributions. 

Fig. 13. Normal Q-Q plots before (left) and after (right) transforming trades by bins 

of 10. This suggests the transformed data is approximately normally distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between the two objectives is ρ = −0 . 7 so, naturally, there is a

strong negative correlation between stationarity and volatility. 

6.4. Pair performance 

In order to verify whether the optimized pairs from each model

are profitable, we conduct Student’s t -test with a null hypothesis

of the average return being 0. The returns must first undergo a

transformation to provide more Gaussian-like distributions for the

t -test. We randomly sample all trades into subgroups of size 10,

where those average return distributions are used for the t -test

samples. The quantile-quantile plot in Fig. 13 demonstrates the be-

fore and after comparison of the transformed return data. All tests

were conducted in R and the Q-Q plot was generated with the gg-

pubr package from Kassambara (2017) . 

The original returns are undoubtedly non-normal, where the

profit-take rule in our trading system probably causes the sharp

departure from normality. Results from a Shapiro–Wilk test for

normality are included in Table 6 to demonstrate how this sim-

ple transformation yields approximately normal distributions. The

purpose of this is to show how the transformed data is rea-

sonable enough for the normality assumption in Student’s t -test.

Table 6 combines results from both tests along with the estimated

confidence interval from the t -test. 

The BS model presents the weakest case for generating prof-

itable pairs since a p -value of 0.03 barely rejects the null at the

α = 0 . 05 significance level. The multi-objective models are both

significantly different from an average return μr = 0 with their
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Table 6 

The null hypotheses for the Shapiro–Wilk test (left) and t -test (right) are H o : 

N (μ, σ 2 ) and H o : μr = 0 , respectively. Smaller values of test statistic, W, indi- 

cate a departure from normality. 

Shapiro–Wilk Student’s t -test 

Model W p -value t -stat df p -value 99% C.I. 

BS 0.977 0.243 2.17 65 0.0334 [ −0 . 0 0 08 , 0 . 0 082] 

DM 0.988 0.249 5.62 146 9 × 10 −8 [0.0061, 0.0167] 

CM 0.993 0.846 4.42 112 2 × 10 −5 [0.0047, 0.0183] 
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Fig. 14. Comparison of Strategy Performances. The blue line labeled SP represents 

the S&P buy-and-hold benchmark strategy. The top plot shows cumulative excess 

returns on committed capital, the middle plot shows the same but for fully-invested 

returns, and the bottom plot displays the amount of open trades for each strategy. 

The red line outlines the BS model’s trades, which has the least positions, and the 

largest number of open positions corresponds to the DM model. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Table 7 

Monthly returns for fully-invested capital. 

S&P BS DM CM 

Mean 0.0085 0.0071 0.011 0.0172 

SE (Newey-West) 0.003 0.002 0.004 0.005 

t -Statistic (Newey-West) 2.72 3.07 2.64 3.22 

Return Distribution 

Median 0.001 0.006 0.015 0.006 

Std. Dev. 0.03 0.018 0.039 0.051 

Skewness −0.13 0.18 0.15 1.38 

Kurtosis −0.030 0.778 −0.10 2.89 

Minimum −0.068 −0.041 −0.069 −0.064 

Maximum 0.081 0.062 0.18 0.29 

Neg. Ret. % 0.38 0.36 0.38 0.42 

Relative to S&P 

Avg Excess Return −0.0013 0.0029 0.0086 

SE (Newey-West) 0.003 0.0043 0.0053 

t -statistic (Newey-West) −0.455 0.576 1.163 

Beta 0.17 −0.19 −0.03 
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10 We used the S&P to represent market returns 
ntire 99% confidence intervals in the profitable range. Given the

bove results, it is reasonable to infer that the use of multi-

bjective optimization is a valuable contribution to pair formation

outines. 

.5. Strategy performance 

We compare daily, monthly, and annualized returns on both

ommitted and fully-invested capital to evaluate the overall per-

ormance of each model’s trading strategy. These two return mea-

ures are used in other studies like Gatev et al. (2006) , Do and Faff

2010) , and Rad et al. (2016) . Return on committed capital is more

onservative and offers a better comparison between model vari-

nts whereas the fully-invested returns provide an adequate com-

arison against the S&P 500 benchmark. 

Equation 17 calculates a strategy’s daily return on committed

apital. We observed that no strategy exceeded 100 open positions

n any given day, so committed capital is set as C = $100 . 

CC t = 

1 

C 

∑ 

j∈ P t 
r j,t (17) 

Equation 18 calculates a strategy’s daily return on fully-invested

apital, where P t is the set of open positions and | P t | represents

he total number of open positions on day t . 

IC t = 

1 

| P t | 
∑ 

j∈ P t 
r j,t (18) 

Fig. 14 shows the performance of each optimization model as

 trading strategy. For comparison, the highlighted blue line rep-

esents the benchmark S&P 500 index. Since the system is placing

1 trades for each pair, this bottom figure can also be viewed as

he proportion of committed capital invested throughout the test

eriod. 

The buy-and-hold benchmark strategy has a distinct advan-

age over the alternative models because it remains fully invested

hroughout the testing period. Return on invested capital highlights

he outperformance of multi-objective models over both bench-

ark S&P strategy and the single-objective model. Not only does

he BS strategy suffer from a lower return on invested capital, but

t even lacks sufficient trading opportunities as indicated by the

ow level of invested capital. We can attribute this to the corre-

ated objectives and also the trading filter that removes any trades

ith low formation variance. 

The multi-objective models DM and CM grow by over 150% on

ully-invested cumulative returns over the four year period, while

he BS model underperforms the S&P. When observing the returns

n committed capital, the DM model appears to perform best due

o both the higher average returns and trading volume. The bottom

hart shows that this model generally has the most capital invested

t any given time and the BS has the least. There are recurring

eaks across all models due to the quarterly pair formation rou-

ine. Running the optimization on a more frequent basis (perhaps

onthly) could have increased the amount of invested capital. 
.5.1. Monthly returns 

Monthly returns are presented in a similar format as Gatev

t al. (2006) where each model’s monthly return series is

ested using Newey-West to account for autocorrelation and het-

roskedasticity ( Table 7 ). Only fully-invested returns are reported

y compounding daily returns within each month and then re-

ressing on an intercept-only linear model for the Newey-West test

n R using the sandwich package from Zeileis (2004) . 

All models are profitable based on the t -statistics with the high-

st monthly average returns generated by the DM model. The row

abeled “Neg. Ret. %” displays the proportion of months that expe-

ienced losses, which appears to be fairly constant across all four

trategies. The BS model is the only one that does not beat the S&P

enchmark in the relative return section. The CM model outper-

orms by an average of 0.86% per month. Beta is a popular mea-

ure that indicates correlation with overall market returns. 10 The

ow magnitudes support a market-neutrality characteristic for all
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Table 8 

Strategy comparisons on performance of Employed Capital. 

Year S&P BS CM DM 

Return 1 27.20% 2.62% 12.15% 6.88% 

2 13.20% 1.48% 8.60% 1.25% 

3 −1.37% −0.21% 5.56% 10.55% 

4 3.90% 2.19% 6.35% 6.26% 

All 10.28% 1.56% 8.23% 6.38% 

Volatility 1 11.24% 1.35% 7.08% 7.74% 

2 10.80% 1.22% 7.18% 5.62% 

3 15.21% 1.07% 9.18% 7.16% 

4 13.97% 0.81% 5.98% 3.29% 

All 12.95% 1.13% 7.45% 6.18% 

Sharpe Ratio 1 2.20 1.92 1.65 0.90 

2 1.20 1.20 1.18 0.25 

3 −0.01 −0.19 0.63 1.43 

4 0.34 2.66 1.06 1.86 

All 0.82 1.37 1.10 1.03 

Table 9 

Strategy comparisons on performance of Invested Capital. 

Year S&P BS DM CM 

Return 1 27.2% 9.5% 27.8% 15.6% 

2 13.2% 6.8% 14.5% 9.8% 

3 −1.4% 3.3% 13.6% 44.2% 

4 3.9% 16.5% 11.7% 20.6% 

All 10.3% 9.1% 16.9% 22.1% 

Volatility 1 11.2% 6.2% 15.6% 18.6% 

2 10.8% 6.4% 15.6% 16.2% 

3 15.2% 6.3% 19.1% 21.4% 

4 14.0% 7.3% 13.6% 14.7% 

All 13.0% 6.6% 16.1% 17.9% 

Sharpe Ratio 1 2.20 1.50 1.65 0.87 

2 1.20 1.04 0.94 0.66 

3 −0.01 0.55 0.76 1.81 

4 0.34 2.12 0.88 1.34 

All 0.82 1.36 1.05 1.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Comparison between cardinality-constrained variants. The blue line labeled 

“0” represents the S&P buy-and-hold benchmark strategy. The label “1” represents 

the univariate strategy which is constrained to only one asset per component. The 

top plot shows cumulative excess returns on committed capital, the middle plot 

shows the same but for fully-invested returns, and the bottom plot displays the 

number of open trades for each strategy. The red line was added for contrast and 

corresponds to trades of the univariate version, while the largest number of open 

positions are clustered among variants 3–7. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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models, with the CM strategy exhibiting almost no market correla-

tion at all. 

6.5.2. Annual returns 

Tables 8 - 9 display annualized performance measures for each

year within the testing period. No annualized tests are conducted

due to the limited sample size, but annualized volatility and

Sharpe ratio are provided. The Sharpe ratio (1994) is the ratio of

excess return to volatility which represents the trade-off between

risk and return for a strategy. We consider excess return over zero

instead of the risk-free rate since it was negligible during the time-

frame. 11 

The risk-adjusted returns (Sharpe ratios) outperform the S&P

benchmark for the entire testing period. The multi-objective mod-

els generate positive returns over each year while the single-

objective model experiences one down-year. We see that the BS

model has the lowest volatility while DM has the largest annual-

ized return of 8.23% over the period. No models surpass the S&P

benchmark return of 10.28% per year, although they do achieve a

higher risk-adjusted return, which can be attributed to the lower

volatility within each model. 

When considering annualized returns on invested capital, al-

most all models exceed the benchmark S&P with the maximum

returns corresponding to the DM model. The invested return cal-

culation, however, yields higher volatility for each strategy leading

to similar Sharpe ratios as before. Unlike the S&P’s performance in
11 3 Month U.S. T-Bills were historically low, remaining below 0.1% for most of the 

period and eventually climbing to 0.51% by the end of 2016 

6

he sell-off period of years 3 and 4, the multi-objective models do

ot experience a year of less than 7% returns, thus further support-

ng their market-neutrality. 

.6. Cardinality comparison 

Fig. 15 and Tables 10 & 11 compares cardinality variants of the

M model against the same S&P benchmark. Note that instead of

 = $100 , we use C = $144 in the returns on committed capital be-

ause that was the maximum number of open positions on one of

he variants. 

The top performers on committed capital are variant sizes v =
 , 3 , 4 . As indicated by the bottom plot, the k = 2 variant produced

he second least tradeable pairs, only behind the univariate case.

he low volume of trades for univariate pairs explains the poor

erformance on committed capital due to the limited trading op-

ortunities. When looking at fully-invested returns, however, the

nivariate case trends strongly above the rest of the strategies. In-

reasing component cardinality has a diminishing benefit since the

arger variants start underperforming the benchmark across both

erformance measures. 

Higher cardinality benefits return on committed capital, but

ame does not hold for fully-invested returns. As indicated by the

isk-adjusted performance, there is no clear benefit to include pairs

f component sizes v > 4. Increasing the cardinality reduces volatil-

ty for both committed and invested returns but yields lower an-

ualized returns, not to mention the higher transaction costs that

re ignored. The univariate framework outperforms all multivari-

te cases for fully-invested performance, thus suggesting that uni-

ariate pairs are of higher quality with volatile and mean-reverting

preads. The univariate case yields an impressive Sharpe ratio but,

ue to the limited trading opportunities, suffers in performance

n committed capital. Multivariate pairs can therefore offer more

rading opportunities, albeit of lesser quality. 

.6.1. Main results 

The main results can be summarized as follows: 
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Table 10 

Performance on committed capital across cardinality-constrained variants. 

Year 1 2 3 4 5 6 7 

Return 1 5.6% 17.6% 18.3% 21.1% 7.4% 8.7% 6.4% 

2 7.4% 10.4% 4.6% 10.7% -0.2% 3.7% 5.0% 

3 0.2% 1.4% 15.4% 7.1% 6.6% -1.5% 1.7% 

4 4.0% 0.3% 4.3% 6.0% 3.5% 3.7% 3.0% 

All 4.2% 7.2% 10.6% 11.1% 4.6% 3.9% 4.2% 

Volatility 1 2.5% 6.7% 9.0% 9.1% 7.3% 7.3% 5.9% 

2 2.7% 8.8% 11.5% 9.4% 8.9% 8.2% 6.6% 

3 2.8% 9.7% 14.0% 9.9% 9.1% 6.5% 6.9% 

4 2.1% 4.3% 6.2% 5.2% 4.7% 4.2% 3.5% 

All 2.6% 7.7% 10.6% 8.6% 7.7% 6.7% 5.9% 

Sharpe Ratio 1 2.20 2.46 1.91 2.14 1.03 1.18 1.09 

2 2.62 1.16 0.45 1.12 0.02 0.48 0.77 

3 0.08 0.19 1.09 0.74 0.75 -0.20 0.28 

4 1.85 0.10 0.70 1.14 0.75 0.89 0.86 

All 1.62 0.95 1.01 1.27 0.62 0.60 0.73 

Table 11 

Performance on invested capital across cardinality-constrained variants. 

Year 1 2 3 4 5 6 7 

Return 1 51.5% 43.4% 27.4% 34.2% 8.1% 12.3% 10.9% 

2 91.3% 32.5% 15.9% 21.1% -4.5% 5.5% 9.1% 

3 18.1% 8.1% 35.4% 13.2% 14.0% -2.7% 3.5% 

4 29.1% -3.8% 1.1% 12.0% 0.8% 15.1% 5.9% 

All 44.5% 18.7% 19.4% 19.9% 4.7% 7.7% 7.5% 

Volatility 1 20.4% 17.9% 13.8% 13.5% 10.4% 10.1% 8.9% 

2 20.3% 20.5% 18.7% 16.4% 14.4% 13.7% 12.2% 

3 21.0% 23.5% 25.6% 16.5% 15.5% 10.2% 11.3% 

4 20.6% 14.4% 13.6% 9.9% 15.8% 9.0% 11.0% 

All 20.6% 19.4% 18.6% 14.3% 14.2% 10.9% 10.9% 

Sharpe Ratio 1 2.14 2.10 1.82 2.25 0.80 1.20 1.21 

2 3.29 1.47 0.88 1.24 -0.25 0.46 0.77 

3 0.89 0.45 1.31 0.83 0.92 -0.22 0.36 

4 1.34 -0.20 0.15 1.20 0.13 1.60 0.57 

All 1.89 0.98 1.05 1.34 0.40 0.73 0.72 
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• Single vs Multi-objectives: Multi-objective models (DM, CM) out-

performed the benchmark single-objective (BS) model across all

measures 
• Univariate vs Multivariate: Univariate pairs are more profitable

but multivariate pairs present greater trading opportunities 
• Performance against benchmark: For returns on invested capi-

tal, multi-objective pair formation significantly outperforms the

S&P 500 benchmark 

In addition to the above findings, we have demonstrated a

ew methodology for creating profitable combinations of assets for

airs trading through a multi-objective optimization framework.

he pairs are not restricted to univariate size so the system is capa-

le of recommending more trading opportunities where traditional

numeration techniques fail. The larger volume of trading oppor-

unities is beneficial for realistic applications of pairs trading be-

ause it offers higher capacity to invest committed capital across

airs. This is clear when analyzing the returns on committed capi-

al across cardinality variants, although the return on invested cap-

tal for the univariate case appears far superior. 

. Conclusions and future research 

Pairs trading presents a variety of important decisions to eval-

ate. However, any improvements in the selection and trading

hases are always bounded by the quality and quantity of can-

idate pairs generated within the PF problem. This research ad-

resses the issue of subset selection to form pairs that yield

olatile and mean-reverting spreads for a multivariate pairs trading

trategy. The proposed framework is capable of forming both uni-
ariate and multivariate pairs on conflicting criteria through multi-

bjective optimization. Necessary modifications to NSGA-II and so-

ution representation are described and implemented on S&P 500

arket data to empirically evaluate different model designs. The

esults indicate that multivariate pairs formed on competing objec-

ives significantly outperform existing single-objective techniques. 

This new application of intelligent systems directly benefits

he pairs trading community and should also extend to different

roblem areas in finance and other industries. Evolutionary multi-

bjective optimization has proved particularly useful for the PF

roblem structure. Most realistic problems typically share the same

raits of conflicting criteria, mixed variable types, and non-convex

onstraints. This application demonstrates the usefulness of intelli-

ent systems for addressing real-world problems without sacrific-

ng practicality for simplifying assumptions. 

.1. Future research directions 

The work done in this paper lends itself to many problems of

airs trading, both new and old. The most explicit direction is the

urther evaluation of returned Pareto pairs. As shown in Figs. 8,

0 , and 12 , there is a number of ways in which classification al-

orithms can help discriminate between pair types, whether it be

ixture models, support vector machines, or clustering techniques.

Researchers are also encouraged to explore new objective

unctions and optimal component sizes now that we have pro-

ided a framework for finding such complex combinations. New

onstraints, such as a restricted covariance for same-component

tocks, trade lot sizing, and minimum component weights would

ll be practical extensions to the model. 
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The methodology only employs NSGA-II but there might be

other algorithms that are better suited for the problem. A sim-

plification of the PF problem so that different algorithms can be

tested without too many adjustments would be beneficial. For ex-

ample, a combined approach of Tabu Search for subset selection

and then traditional QP to address the asset weight sub-problem

would likely improve the solution quality and convergence of the

overall algorithm. Furthermore, we solve an inherently stochastic

problem using a deterministic technique, thus ignoring any notion

of uncertainty in the problem structure. Stochastic and continuous

time methods should therefore be considered in future pair forma-

tion alternatives. 

The proposed system is incomplete without an intelligent trad-

ing decision phase. A static set of rules are used to determine

which pairs to trade and when. There is much to be done on this

end of a pairs trading strategy that expert and intelligent systems

can address. Either a unified framework between formation and

trading or separate research specifically on the trading phase in-

troduces a new set of problems for researchers to overcome. 

Lastly, this methodology only applied an intelligent system to

one problem. Other application areas like transportation, inven-

tory control, and marketing should see similar characteristics to

the core problem of forming combinations of co-moving sequential

data. This application should hopefully inspire readers to pursue

similar uses of intelligent systems to solve other hard optimization

problems. 
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