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a b s t r a c t 

Twitter is one of the most popular social platforms. It has changed the way of communication and in- 

formation dissemination through its real-time messaging mechanism. Recently, it has been used by re- 

searchers and industries as a new source of data for various intelligent systems, such as tweet sentiment 

analysis and recommendation systems, which require high data quality. However, due to its flexibility 

and popularity, Twitter has become the main target for spamming activities such as phishing legitimate 

users or spreading malicious software, which introduces new security issues and waste resources. There- 

fore, researchers have developed various machine-learning algorithms to reveal Twitter spam. However, 

as spammers have become smarter and more crafty, the characteristics of the spam tweets are varying 

over time making these methods inefficient to detect new spammers tricks and strategies. In addition, 

some of the employed methods (e.g. blacklisting) or spammer features (e.g. graph-based features) are 

extremely time-consuming, which hinders the ability to detect spammer activities in real-time. In this 

paper, we introduce a framework to deal with the volatility of the spam contents and new spamming 

patterns, called the spam drift. The framework combines the strength of unsupervised machine learning 

approach, which learns from unlabeled tweets, to retrain a real-time supervised tweet-level spam detec- 

tion model in a batch mode. A set of experiments on a large-scale data set show the effectiveness of 

the proposed online unsupervised method in adaptively discovers and learns the patterns of new spam 

activities and achieve stable recall values reaching more than 95%. Although the average spam precision 

of our method is around 60%, the high spam recall values show the ability of our proposed method in 

reducing spam drift problems compared to traditional machine learning algorithms. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The new great characteristics of Social Web that involve users

s information producers have exposed different information qual-

ty (IQ) problems ( Agarwal & Yiliyasi, 2010 ). For example, Twit-

er, which is the most popular microblogging sites, has a real-time

essaging mechanism that makes it more popular and suitable for

andling real-time public events and updates. In addition, due to

ts popularity, social-based researchers adopt it as a main source

f information in performing their experiments on related re-

earch areas ( Abascal-Mena, Lema, & Sèdes, 2015; Hoang & Mothe,

016; Mezghani et al., 2015; Mezghani, Zayani, Amous, Péninou,

 Sèdes, 2014; Zubiaga, Spina, Amigó, & Gonzalo, 2012; Zubiaga,

pina, Fresno, & Martínez-Unanue, 2011 ). However, the simplicity
∗ Corresponding author. 

E-mail addresses: mahdi.washha@irit.fr (M. Washha), aqaroush@birzeit.edu (A. 

aroush), florence.sedes@irit.fr (F. Sedes). 

h  

s  

H  

v  

ttps://doi.org/10.1016/j.eswa.2019.05.052 

957-4174/© 2019 Elsevier Ltd. All rights reserved. 
nd flexibility of using these sites, and the absence of any effective

estrictions on content posting action might be viewed as addi-

ional challenges for having IQ issues. Indeed, social spam content,

hich is published by a well-known kind of ill-intentioned users,

o-called social spammers, is one of the most common noises

ppearing on online social media (OSM) sites and is categorized

nder IQ problems. Social spammers intensively post nonsensical

ontents such as advertisements, porn materials, viruses, malware,

nd phishing websites in different contexts (e.g., topics) and in an

utomated and systematic way ( Benevenuto, Magno, Rodrigues, &

lmeida, 2010; Washha, Qaroush, & Sèdes, 2016 ). Moreover, Social

pammers exploit trending topics and available services or APIs

o lunch their spammy content in short periods (e.g., one day) to

aximize their monetary profits and speed up their spamming be-

avior. For example, on Twitter, social spammers leverage different

et of provided services to launch their spam attacks through: URL,

ashtag , and Mention services. Besides these services, Twitter pro-

ides APIs for developers to be used in their third-party applica-
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Fig. 1. An example of three correlated spam tweets posted in a consecutive way by 

three different spam accounts. 
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tions. Social spammers exploit this distinctive service as an oppor-

tunity to automate their spamming behavior. 

Social spam might be defined as a piece of irrelevant informa-

tion; however, this interpretation is quite not accurate. We jus-

tify this misinterpretation through the definition of information re-

trieval (IR) systems ( Manning, Raghavan, & Schütze, 2008 ) in which

the relevancy of the retrieved documents in the IR systems is de-

pendent on the input search query. Thus, irrelevant documents

with respect to an input query are “not” necessary to be a spam

content. Hence, as an additional definition, social spam might be

viewed as irrelevant information that doesn’t have an interpreta-

tion in any context as long as the input query is not a spam con-

tent. Since social spam is a pure IQ problem, we project the prob-

lem on five IQ dimensions including accuracy, believability, repu-

tation, value-added, and relevancy. Indeed, spam content does not

represent real-world data, and thus it has a low degree in accu-

racy and believability dimensions. Also, the reputation of spam is

also low because normal users tend to circulate accurate informa-

tion in general. Finally, spam content doesn’t deliver any benefit

for the OSM users in terms of value-added and relevancy dimen-

sions. Although projecting social spam problems on IQ world pro-

vides more insights regarding handling the problem efficiently; so-

cial spammers spend great effort s to increase the degree of IQ di-

mensions. Therefore, understanding and knowing facts about social

spammers and their behaviors can contribute to providing effective

solutions for the social spam problem. The work of spam detection

is very important to both industries and academia because social

spam is also very critical in other social media platforms. 

Social media platforms, including Twitter, has recently been

used as a new data source by researchers which potentially could

have many applications within emergency management and crisis

coordination, making the streaming of high-quality tweets a seri-

ous challenge with the continuous presence of ill-intentioned indi-

viduals ( Imran, Castillo, Diaz, & Vieweg, 2015 ). Among these plat-

forms, Twitter API is more open and accessible, which makes Twit-

ter more favorable to developers to building tools to access data.

In addition, Twitter data can contain valuable metadata including

geospatial data. Research and applications on Twitter data ranges

from sentiment analysis, time series analysis, and Network analy-

sis which can be exploited in relating intelligent systems applied

in industry, government, and universities ( Giachanou & Crestani,

2016 ). For example, Twitter uses artificial intelligence techniques

to determine what tweet recommendations to suggest on users

timelines. Also, several companies use Twitter Sentiment Analysis

to develop their business strategies, to find out customers feelings

towards products or brand, and to predict the stock market move-

ments ( Mittal, 2011 ). 

Several methods were presented in the recent research litera-

ture for detecting spamming activities on Twitter. However, these

methods have several weaknesses that make them below the de-

sired level of efficiency in detecting dynamic spammer activities

in real-time. These weaknesses could be summarized as follows:

(i) most of these methods are based on supervised machine learn-

ing approach which is trained on static, human-annotated datasets

which is very human-labor cost, (ii) reliance on small and static

annotated datasets to build a model to follow-up social spammers’

patterns and their tricks, is not an efficient solution because of the

lack of information in the tweet object itself, information fabri-

cation problem, and the variation in social spammers’ behaviors

( Chen, Zhang, Xiang, Zhou, & Oliver, 2016; Grier, Thomas, Paxson,

& Zhang, 2010 ). For example, Fig. 1 shows a sequence of streamed

spam tweets that attacked the “KCA” event by three correlated

spam accounts (social spammers). From this example, various pat-

terns might be elicited: (1) same URL used in posting tweets;

(2) the same prefix was exploited in filling screen-name attribute

“voteddlovatu”; and (3) there was a high similarity in the user-
ame attribute among the three accounts, and (iii) previous studies

idn’t provide sufficient analysis and formulations regarding the

eatures used by the spam detection model to work in real-time. 

In spite of the volatility of the spam content and new spam-

ing patterns, we can exploit the high correlation among spam-

ers’ behavior when they launch their spam campaigns for aggre-

ating and analyzing continuously-streamed tweets using unsuper-

ised methods to produce annotated datasets of tweets that can

e used for repetitively retraining and updating spam classifica-

ion models. In this paper, we introduce and experiment a frame-

ork that leverages an unsupervised method in providing, auto-

atically and periodically, an annotated dataset for updating su-

ervised real-time spam tweet detection model. More precisely,

ur framework is mainly composed of two main modules: (i) an

nline collective-based unsupervised spam tweet model; and (ii) a

upervised real-time spam tweet detection model. The first mod-

le collects and stores streamed tweets. Then, it applies clustering

ethods on the stored tweets, followed by a rule-based method

hat labels each cluster of tweets to provide annotated tweets.

he second module is responsible for classifying instantly every

treamed tweet into spam or non-spam, with periodically leverag-

ng the annotated datasets that come from the first module to re-

rain and update the current classification model. We demonstrate

he effectiveness of the proposed framework through a series of

ntensive experiments conducted on a dataset streamed from 50

ifferent Twitter trending topics consisting of more than 2 million

weets. Compared to two known methods designed for real-time

pam tweets detection, the experimental evaluation shows the ef-

ciency of the proposed framework in detecting spam tweets in

erms of precision, recall, and F -measure performance measures.

lso, it provides the ability to have control of the target quality

f the tweets. In summary, the main contributions of the work in-

roduced in this paper are: (i) provide an up-to-date survey and

nalysis regarding related studies organized in a hierarchy way, (ii)

e have collected and labeled a large Twitter dataset of around

 million Tweets from 50 different Twitter trending topics to be

sed in data analysis and experimental evaluation we will also

ake this dataset available for others researchers to use, (iii) pro-

iding a complete framework based on an online unsupervised

earning method to deal with spam drift problems, by automati-

ally and periodically preparing annotated training datasets to re-

rain a supervised tweet-level spam detection model, (iv) the pro-

osed tweet-level classification model didn’t require pre-training

n the prepared annotated datasets. Additionally, no human inter-

ention is required; which saves time, cost, and resources. (v) in-

roducing an optimized set of discriminative, hardly manipulated,

nd lightweight features extracted only from the streamed tweets,

ithout requiring any external information from Twitter’s servers,

vi) compared to the state-of-the-art methods, the experimental

valuation shows the efficiency of the proposed framework in re-

ucing the impact of spam drift problems. 
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Fig. 2. A taxonomy for Social spam detection methods in Twitter ( Kabakus & Kara, 2017; Washha, Shilleh et al., 2017; Wu, Wen et al., 2017 ). 
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. Related work 

Twitter gives its users the opportunity to report spam accounts

hrough clicking ”Report: they are posting spam” option that is

vailable in all accounts. When an account is being reported, Twit-

er’s administrators manually review and deeply analyze that ac-

ount to make later suspension decision. However, such reporting

echanism is inefficient for fighting social spammers, because it

eeds significant effort s from both users and administrators when

onsidering billions of users. Moreover, many users may provide

ake reports and thus not all reports are necessary true. As an ad-

itional attempt to address the social spam problem, Twitter has

 set of rules with permanently suspending the accounts that vio-

ate those rules ( Twitter, 2016 ). Unfortunately, social spammers are

mart enough to bypass Twitter’s rules. For instance, social spam-

ers may coordinate multiple accounts by distributing the desired

orkload among these accounts to mislead the detection. Con-

equently, Twitter’s approaches are ineffective for reducing spam

rift in real-time spam filtering. 

The shortcomings in Twitter’s anti-spam mechanism have mo-

ivated researchers to introduce more robust methods to increase

ata quality for the applications that use Twitter as a main source

f information. After a deep look into a wide range of scientific re-

earch related to the spam detection methods on Twitter, we build

 detailed taxonomy for these methods as shown in Fig. 2 , which is

ased on different criteria, including: (i) type of the detection ap-

roach (Honeypot, Blacklist, and Machine Learning) and (ii) level

f detection (Tweet, Account, and Campaign) exploited in the de-

ection methods ( Kabakus & Kara, 2017; Wu, Wen, Xiang, & Zhou,

017 ). 

.1. Honeypot approach 

Traditional supervised learning methods require an initial hu-

an labeled dataset which cannot work efficiently with spam

rift issues. Alternatively, some spam discovery approaches rely on

ommunity reporting mechanism by using Social honeypot. A so-

ial honeypot is viewed as an information system resource that

an monitor social spammers’ behavior through logging their in-

ormation such as the information of their accounts and any avail-

ble content ( Lee, Caverlee, & Webb, 2010 ). Social honeypots are

aluable tool for gathering and understanding spamming activities,

pecifically community-based online activities. However, there is

o significant difference between Twitter’s anti-spam mechanism

nd the social honeypot approach. Both of them need administra-

ive control to make a decision regarding the accounts that have

een fallen into the honeypot trap to reduce the false positive rate,

hich in turns is time-consuming. Lee et al. (2010) deployed a

et of honeypots for MySpace and Twitter and they used an up-

ated trained classifier to identify spammers. Stringhini, Kruegel,

nd Vigna (2010) deployed 900 honeypots in Facebook, MySpace,

nd Twitter and they manually identified spammers from all re-

uests. 
.2. Blacklist approach 

Most spammers promote their services/products by embedding

RL links in the spam tweet. Therefore, an effective way of spam

etection is to detect tweets containing spam links which rely on

he third party blacklisting techniques. For example, Twitter em-

loyed Googles Safe Browsing API to prevent malicious links ( Grier

t al., 2010 ). In fact, blacklist methods detect spam by searching

he list and it can be applied for domain level rather than spe-

ific URL. Blacklisting techniques are commonly deployed in web

ltering services such as Twitter spam detection or for dataset

abeling. In addition, it provides a lightweight approach with a

ower cost than existing classifiers ( Ma, Saul, Savage, & Voelker,

011 ). However, it cannot deal with the dynamic behavior of spam-

ing activities and thus it’s not appropriate for real-time detec-

ion because in average it takes 4 days for the blacklist to include

he new spam URLs. In addition, many spammers try to embed-

ed shortened URLs, which disable the performance of blacklisting

echniques ( Wu, Wen et al., 2017 ). Moreover, some URLs detection

echniques are based on the correlations between the extracted

RLs from several tweets in which require more time to retrieve

weets from Twitter servers ( Lee & Kim, 2013 ). 

.3. Machine learning approach 

To automate the task of spam detection, most of the Twitter

pamming detection methods are based on machine learning tech-

iques. However, the main difference between these methods is in

he selected features along with their formulations. In fact, almost

very paper in these methods introduce a group of distinct features

nd apply a set of well-known machine learning methods to detect

pamming activities. Features used by machine learning methods

or Twitter spam detection are varying and differ in terms of their

evel (e.g account, tweet, and campaign), formulations, powerful-

ess, ease of manipulation, and their suitability for real-time detec-

ion. Authors in Sedhai and Sun (2017a) and Yang, Harkreader, and

u (2013) provide a comprehensive study and analysis regarding

ashtag, tweet, account, graph, and timing features with respect to

heir performance in Twitter spam detection. 

Selection of the machine learning method (e.g. supervised, un-

upervised, or semi-supervised) is mainly based on the availability

f annotated dataset. In fact, most of the spam detection meth-

ds have employed supervised machine learning algorithms, which

re trained on one or more types of spam features, that are

istributed between tweet-based features, account-based features, 

nd campaign-based features. Account-based methods are based

n the features extracted from a Twitter account such as user

ame, creation date, location, number of followings, number of

weets, number of mentions, number of moments, number of likes,

nd number of retweets. The works introduced in Benevenuto et al.

2010) , Washha et al. (2016) , Wu, Liu, Zhang, and Xiang (2017) ,

ang (2010) , McCord and Chuah (2011) , Stringhini et al. (2010) ,

eda et al. (2016) , Bara, Fung, and Dinh (2015) , Hu, Tang, and Liu
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(2014) and Hu, Tang, Zhang, and Liu (2013) have been focused on

extracting features (e.g., the number of friends, number of follow-

ers, similarity between tweets, and ratio of URLs in tweets) from

users’ accounts. In more dedicated studies, the works presented

in Cao and Caverlee (2015) and Wang and Pu (2015) have iden-

tified the spam URLs through analyzing the behavior of shorten-

ing URLs such as the number of clicks and the length of the redi-

rection chain. Features extracted from a single Twitter account are

simple and lightweight. However, they are easily manipulated by

social spammers using a group of bots. In addition, account-level

detection is less effective for spammers who may act as legitimate

users by posting nonspam content regularly. This behavior moti-

vated researchers to leverage graph theory to extract more com-

plex features from a set of Twitter accounts. For instance, the stud-

ies presented in Yang, Harkreader, and Gu (2011) , Yang, Harkreader,

Zhang, Shin, and Gu (2012) and Almaatouq et al. (2016) have ex-

amined the relation among users through using some graph the-

ories and metrics to measure three features, including node be-

tweenness, local clustering, and bi-directional relation ratio. Lever-

aging such complex features gives high spam accounts detection

rate; however, they are not suitable for real-time Twitter-based ap-

plications, because of the huge volume of data that must be re-

trieved from Twitter’s servers as well as graph operations, that re-

quire exponential time. 

Tweet-level spam detection is a lightweight method that re-

quires instant analysis and they are based on the features ex-

tracted from tweets such as tweet contents (e.g. text and links),

sender, mentions, hashtags, links, number of retweets, number of

replays, send dates, location ( Kabakus & Kara, 2017; Wu, Wen

et al., 2017 ). Tweet-level spam detection is essential to fight against

spamming activities at a more fine-grained level. Most of these

methods are based on using language models (e.g TF-IDF and bag-

of-words) to compute the similarity between a tweet and other

tweets in the same trending topic, or based on detecting malicious

URLs embedded in the tweets ( Lee & Kim, 2012; Martinez-Romo

& Araujo, 2013; Thomas, Grier, Ma, Paxson, & Song, 2011 ). How-

ever, these methods may not be suitable for real-time filtering be-

cause it needs the tweets that have been posted on the same topic

from Twitter’s servers. Moreover, the traditional ways to filter URLs

are based on blacklisting and HTML parsing which cannot handle

shortened URLs, and take significant time to update blacklist. Other

tweet features like sender, mentions, hashtags, links, number of

retweets, number of replays, send dates, and location are simple

and lightweight. 

In campaign-level, researchers treated spam problem from a

collective perspective view. Therefore, instead of detecting spam

tweets one by one, they clustered spam into a set of groups ac-

cording to their similarity on tweet contents or URLs ( Wu, Wen

et al., 2017 ). Chu, Widjaja, and Wang (2012) clustered a set of

desired accounts according to the URLs available in the posted

tweets. Then, a defined set of features from the accounts clus-

tered is designed to build a binary classification model using ma-

chine learning algorithms to identify spam campaign. Chu, Gian-

vecchio, Wang, and Jajodia (2012) have proposed a classification

model to capture the difference between bot, human, and cyborg

with taking into consideration the content of tweets and spam-

ming behavior. Campaign-based methods are not appropriate for

real-time filtering due to the high volume of data required from

Twitter’s servers. In addition, some campaigns are classified man-

ually which is extremely time-consuming ( Thomas, Grier, Song, &

Paxson, 2011 ). Finally, in hybrid-based methods, researchers use

a combination of features extracted from Twitter accounts and

tweets contents in order to provide more robust spam detection

method ( Chen, Zhang, Chen, Xiang, & Zhou, 2015; Chu, Gianvec-

chio, Wang, & Jajodia, 2010; Inuwa-Dutse, Liptrott, & Korkontzelos,

2018; Wang, Zubiaga, Liakata, & Procter, 2015 ). However, using hy-
rid features, requires careful features selection to make a trade-

ff between detection rate and detection time, in addition to the

eeded information from Twitter servers to compute features. 

In general, supervised machine learning methods that have

een used to detect spam tweets in real-time require a set of dis-

riminative, lightweight, and not easy manipulated features, in ad-

ition to the existence of an annotated datasets for the training

hase ( Benevenuto et al., 2010; Chen, Zhang, Xie et al., 2015 ). Since

weet object has a limited amount of content or information, a few

umbers of the features described in Table 1 are adopted in real-

ime spam tweet detection. Moreover, the major drawback of this

pproach is in the process of training classifiers, which is based

n static datasets that reflect current spammer strategies without

aying attention to the spam drift issues. To overcome this prob-

em, we need to retrain classifiers periodically based on up-to-

ate datasets that catch the new spamming strategies ( Chen et al.,

017 ). Authors in Chen, Zhang, Xiang, and Zhou (2015) proposed

symmetric self-learning method to update classifier periodically.

hey added the incoming classified tweets, which were classified

sing an initial trained model to the training dataset. Then, after

 defined period (e.g., 1 day or 2 days), the classification model is

etrained using the old training tweets along with the recent clas-

ified tweets. However, this approach is completely dependent on

he initial trained model, and there is no guarantee about its per-

ormance in effectively detecting new social spammers’ patterns.

imilar approach are proposed in Lee et al. (2010) . The authors

mployed honeypots as an information resource to monitor and

ollect spammers behaviors and log their information. They pass

etected candidate spam profiles to the trained classifier and then

eturn back profiles that are classified as a spammer to periodi-

ally update classifiers. However, the initial dataset used for train-

ng classifier is small. In addition, the approach includes human

nspectors for validating the quality of the extracted spam candi-

ates. Surendra and Aixin ( Sedhai & Sun, 2017b ) proposed a semi-

upervised spam detection method consisting of two main mod-

les: four-level spam tweet-based detection module which oper-

tes in real-time mode and an updating module which operates

n batch mode. After finding the confidently labeled tweets, the

etection module including blacklisted, near-duplicate, ham tweet

etector, and tweet classification models are updated accordingly.

he proposed detector uses tweet-based features which are suit-

ble for real-time detection. However, some discriminative features

hat can be derived from the user account and historical tweets of

he users are missing. In addition, among four detectors, the classi-

cation model contributes to 87% of tweets labeling, for which the

erformance is dependent on the initial data set. Chao et. al. ( Chen

t al., 2017 ) proposed a scheme called Lfun that can automati-

ally detect changed spam tweets from new unlabeled tweets and

ncorporate them into classifiers retraining process. The proposed

ethod employed 12 lightweight features and uses two compo-

ents to extract changed spam tweets including learn from de-

ected spam tweets and learn from human labeling. However, the

erformance of the scheme is mainly dependent on the first com-

onent which trained on an initialized labeled dataset. In addition,

uman labeling is time consuming. 

To sum up, the above studies have the following weaknesses: (i)

hey assume that all pre-information (e.g., a blacklist of spamming

omains and annotated dataset or trained classification models) to

abel tweets exist, (ii) most of them are based on updating dataset

sing the output of the classifier which can’t guarantee to learn

ew spamming activities, since the classifier is trained on an initial

ataset, and (iii) some of them are missing important lightweight

ccount-level features, and (iv) some of them require human in-

pectors for validating the quality of the detector. Unlike these

tudies, our proposed framework have the following strengthens:

i) it didn’t require pre-information like e.g., a blacklist of spam-
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Table 1 

A description of content and user features exploited in spam tweets detection, with classifying them based on their suitability for real-time filtering. 

Feature Name Description Real-Time Suitability 

Content Features 

Number of Hashtags The number of words that begin by “#” symbol ( Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 

2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013 ). 

√ 

Number of URLs The number of links, including shorten links ( Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; 

Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013 ). 

√ 

Number of Words The number of words written in tweet where white-space is used a separator among words 

( Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo 

& Araujo, 2013 ). 

√ 

Number of Characters The number of characters used in creating the tweet, including numbers and symbols ( Benevenuto 

et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 

2013 ). 

√ 

Number of Mentions The number of accounts mentioned in the tweet through looking for words starting by “@”

( Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; Chen, Zhang, Xie et al., 2015; Martinez-Romo 

& Araujo, 2013 ). 

√ 

Number of Retweets The number of retweets that the tweet has gained ( Benevenuto et al., 2010 ). 
√ 

Number of Spam Words The number of spam words that exist in the tweet according to a define list of spam words 

( Benevenuto et al., 2010; Martinez-Romo & Araujo, 2013 ). 

√ 

Number of Trending Topics The number of words that represent trending topics circulated in Twitter ( Benevenuto et al., 2010; 

Martinez-Romo & Araujo, 2013 ). 

√ 

Number of hashtags per words The ratio of the number of hashtags to the number of words in the tweet ( Benevenuto et al., 2010 ). 
√ 

Number of URLs per Words The ratio of the number of URLs to the number of words in the tweet ( Benevenuto et al., 2010 ). 
√ 

Number of Numeric Characters The number of numeric digits in the tweet ( Benevenuto et al., 2010; Chen, Zhang, Xiang et al., 2015; 

Chen, Zhang, Xie et al., 2015; Martinez-Romo & Araujo, 2013 ). 

√ 

Number of Replies The number of times that the tweet has been replied by other users ( Benevenuto et al., 2010; 

Martinez-Romo & Araujo, 2013 ). 

√ 

Number of Favourites The number of accounts/users that have favorited the tweet ( Chen, Zhang, Xiang et al., 2015; Chen, 

Zhang, Xie et al., 2015 ). 

√ 

Tweet and URL Page Title Divergence The Kullback Leibler Divergence value computed between the text of the tweet and the title of the 

URL website, if any ( Martinez-Romo & Araujo, 2013 ). 

✗ 

Tweet and Topic Content Divergence The average value of the Kullback Leibler Divergence values computed between each tweet of the 

considered tweet topic and the text of the considered tweet, if any ( Martinez-Romo & Araujo, 2013 ). 

✗ 

Tweet and User’s Tweets Divergence The average value of the Kullback Leibler Divergence values computed between each tweet posted by 

the tweet user and the considered tweet content ( Martinez-Romo & Araujo, 2013 ). 

✗ 

User Features 

Number of Followings The number of accounts/users that the user of the tweet follows ( Chen, Zhang, Xiang et al., 2015; 

Chen, Zhang, Xie et al., 2015 ). 

√ 

Number of Lists The number of accounts/users that has listed the user of the tweet ( Chen, Zhang, Xiang et al., 2015; 

Chen, Zhang, Xie et al., 2015 ). 

√ 

Number of Followers The number of accounts/users that follow the user of the tweet ( Chen, Zhang, Xiang et al., 2015; Chen, 

Zhang, Xie et al., 2015 ). 

√ 

Account Age The number of milliseconds spent since the creation date of the account of the tweet ( Chen, Zhang, 

Xiang et al., 2015; Chen, Zhang, Xie et al., 2015 ). 

√ 

Number of Tweets The number of tweets that the user of the tweet has tweeted ( Chen, Zhang, Xiang et al., 2015; Chen, 

Zhang, Xie et al., 2015 ). 

√ 
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ing domains and trained classifier, (ii) our proposed framework

s capable of continuously updating itself by using unsupervised

earning method, which is based on a set of discriminative account

nd tweet-level features without any human intervention, and (iii)

ntroducing an optimized set of discriminative, and lightweight ac-

ount and tweet-level features extracted from only the streamed

weets, without requiring any external information from Twitter’s

ervers. 

. Problem definition and formalization 

Any Twitter stream can be represented as a finite set of chrono-

ogically sorted tweets, defined as S t = { T 1 , T 2 , . . . , T t−1 , T t } , where

 ∈ N 

+ represents the number of seconds since starting the stream-

ng process, and T 1 and T t are the first and latest tweets that

as been streamed. Indeed, the Tweet object contains different at-

ributes related to the tweet content and its user. Therefore, we

epresent the tweet element T • by a 6-tuple of attributes, T • =
(User, # Retweets , # Replies , # Favourites, Text, Time ), where # Retweets

epresents the number of retweets that the tweet has gained,

 Replies is the number of comments performed as a reply on

he tweet, # Favourites is the number of likes that the tweet has,

 ime ∈ Z ≥0 is the posting date of the tweet in seconds time unit
omputed since January 1, 1970, 0 0:0 0:0 0 GMT, while the Text and

ser attributes are defined as follows: 

• Text: The textual content of the tweet is represented as a finite

set of ordered words, T ext = { w 1 , w 2 , . . . } . This set of words is

extracted by segmenting the tweet content using the whites-

pace separator. The word element w • might be a hashtag, URL,

user’s account mentioned, and more. 
• User: Twitter provides simple meta-data about the user who

posted a tweet. Hence, we further represent the user object

by 7-tuple of attributes defined as, U ser = (SN, U N, UA, # Tweets ,

# Followers , # Followees , # Lists ), where # Tweets is the number of

tweets that the user has posted on his account, # Followers is

the number of accounts that follow the user, # Followees is the

number of accounts that the user follows, # Lists is the number

of accounts that list the user. The rest of the attributes, SN, UN,

UA , are further defined as follows: 

– Username (UN): Twitter allows users to name their ac-

counts with a maximum length of 20 characters. Users can

use whitespace, symbols, special characters, and numeric

numbers in filling their username attribute. This field is not

necessary for being unique and thus the users can name

their accounts by already used names. We represent this
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attribute as a set of ordered characters, defined as UN =
{ d 1 , . . . , d i } , where d • ∈ { Printable Characters } 1 is the charac-

ter and i ∈ Z ≥0 is the position inside the username string. 

– Screen Name (SN): This attribute is a mandatory field and

it must be filled at the creation time of the account. Users

must choose a unique name that hasn’t been used previ-

ously by other users, with a maximum length of 16 char-

acters. Twitter also restricts the space of allowed charac-

ters to include only the alphabetical letters, numbers, and

“ _ ” character. Similar to the username attribute, we rep-

resent this field as an ordered set of characters, defined

as UN = { d 1 , . . . , d i } , where d – ∈ { Printable Characters } is the

character and i ∈ Z ≥0 is the position inside the username

string. 

– User Age (UA): When a user creates an account on Twitter,

the creation date of the account is registered on Twitter’s

servers without providing any permissions to modify it in

the future. We exploit the creation date, as an accessible and

available property in the user’s object, to compute the age

of the account. Formally, we calculate the age in days time

unit through subtracting the current time from the creation

date of the account, define as UA = 

T ime now −T ime creation 

864 ∗10 5 
, where

T ime now 

, T ime creation ∈ Z ≥0 are number of milliseconds com-

puted since January 1, 1970, 0 0:0 0:0 0 GMT. 

According to this representation, the problem of real-time

tweet-level spam detection can be defined as follows; Given a

tweet streamed at time t, T t , and a set of already streamed tweets,

S t−1 , our problem is to predict whether the tweet T t is a spam or

non-spam, with leveraging only the available information in both

T t and the set of already streamed tweets S t−1 . More formally, we

aim at designing a model, F : x → { spam, non − Spam } , which takes

a feature vector of the streamed tweet T • as an input and predicts

its class label as an output. 

4. Dataset description and ground truth 

A dataset with ground-truth is required to train and evalu-

ate a supervised machine learning spam detection methods. In

fact, most of the researchers use their own dataset and some of

them didn’t make it publicly available ( Benevenuto et al., 2010;

Martinez-Romo & Araujo, 2013 ). In addition, for privacy reasons,

when social-network-based researchers publish a dataset, they

only provide the target object IDs (e.g., tweets and accounts) to

retrieve them from servers of the desired social network. However,

providing the IDs of the spam tweets or accounts is not enough

because Twitter might already have suspended the corresponding

accounts and thus nothing to retrieve from the servers. 

The most challenging task in creating a large dataset is the an-

notation process. Currently, researchers are using four ways to gen-

erate ground truth, including: manual inspection, blacklists, sus-

pended accounts, and clustering ( Chen, Zhang, Chen et al., 2015;

Hu et al., 2014; Hu et al., 2013; Sedhai & Sun, 2017a; Thomas,

Grier, Song et al., 2011; Wu, Liu et al., 2017 ). Manual inspection is

costly, time-consuming, and some times subjective. Blacklists (e.g.

google safebrowsing) are an effective automated method. However,

not all spam tweets contain URLs and also some spam tweets con-

tain URLs that may direct to legitimate content. Therefore, Black-

list can be applied only for tweets containing URLs. On the other

hand, suspended accounts are also automated method and work

by labeling all of the suspended accounts tweets as spam. In fact,

Twitter decides to suspend an account if it engaging spamming ac-

tivities including posting misleading, deceptive, or malicious links. 2 
1 http://web.itu.edu.tr/sgunduz/courses/mikroisl/ascii.html . 
2 https://help.twitter.com/en/rules- and- policies/twitter- rules . 

a  

fi  

o  

s  
owever, sometimes, suspended accounts may contain non-spam

weets. Finally, in clustering methods (e.g. near-duplicate and ex-

ectation maximization), all tweets in the same cluster will be an-

otated with the same label. Up to our knowledge, there are two

ublicly available datasets suitable for tweet-level spam detection

 Chen, Zhang, Chen et al., 2015; Sedhai & Sun, 2015 ). In Chen,

hang, Chen et al. (2015) the authors used the blacklist method

o annotate collected tweets, and thus they are concerned only on

weets containing URLs. On the other hand, authors in Sedhai and

un (2015) used four main stages in the annotation process. How-

ver, due to the way the tweets were collected, the collection does

ot contain full user profiles, which limits extracting account-level

eatures. In addition, the data set was collected based on popu-

ar hashtags, not on user basis, which does not guarantee to con-

ain all tweets of any user. Therefore, since our methodology: (i)

ses hybrid features (tweet-level and account-level) to train a real-

ime spam detection model, (ii) deals with all tweets not only

he tweets having URLs, and (iii) uses tweets writing style simi-

arity and tweets posting behavior similarity features to label new

treamed tweet which require retrieving user tweets, both datasets

re not suitable for our proposed approach. As a result, we decided

o collect our own dataset and generate ground-truth. 

Building large tweet dataset consists of two main stages, the

ollection stage, and the annotation stage. For the collection stage,

e have developed a crawler that uses the Twitter Streaming

PIs. Actually, real-time spam detection methods are applied on

 stream of tweets related to one or more entities (hashtag, user-

ame, and URL). Therefore, to simulate and investigate such cases,

e have chosen the hashtag as a target entity since most of the

esearches and applications stream the tweets from a particular

ashtag or topic ( Chellal, Boughanem, & Dousset, 2016; Hoang &

othe, 2016; Sedhai & Sun, 2015; Zubiaga et al., 2012 ). We have

aunched our crawler for four months, started since 1/Jan/2015,

here 2.1 million of relevant tweets from 50 trending hashtags

ave been collected and also stored based on their posting time. In

he annotation stage, since manual labeling is expensive and black-

ists are used only for tweets containing URLs, we have leveraged

he suspended accounts method which is widely used in social

pam detection to annotate our collected tweets ( Hu et al., 2014;

u et al., 2013; Thomas, Grier, Song et al., 2011; Washha, Qaroush,

ezghani, & Sèdes, 2017a; Wu, Liu et al., 2017 ). The process checks

hether the user of each tweet was suspended by Twitter. In case

f suspension, both the user and his tweets are labeled as spam.

e have performed this process for one year after crawling the

weets in order to have a large number of spam users and their

weets. 

In total, as reported in Table 2 , we have found about 78,0 0 0

sers (accounts) labeled as social spammer, and 881,0 0 0 legitimate

sers. Also, the number of spam tweets existing in our dataset

s more than 208,0 0 0 tweets, forming about 10% of 2.1 million

weets. The number of tweets posted is obviously greater than the

umber of tweets retrieved since the former number represents

he tweets that have been streamed into the hashtags selected,

hile the latter number corresponds to the ultimate tweets that

ave been posted since the creation of the accounts. As the dataset

s not balanced at the class level, we compute the normalized ver-

ion of the statistics per 100 users to have a more fair compari-

on between social spammers and legitimate users. The normal-

zed version of the number of URLs shows an obvious misusing of

RLs in spreading social spammers’ content, compared to the le-

itimate users. It is expected that the number of verified users is

ero since having a verified account requires to contact Twitter’s

dministrators; thus the spam accounts are too difficult to be veri-

ed. Another interesting possible conclusion is that the distribution

f spam tweets is not necessary to be uniform, meaning that social

pammers may have some hidden preferences for selecting hash-

http://web.itu.edu.tr/sgunduz/courses/mikroisl/ascii.html
https://help.twitter.com/en/rules-and-policies/twitter-rules
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Table 2 

Distribution of different statistics for social spammers (spam accounts) and legitimate users (non-spam accounts) existing in our dataset. 

Social spammers Legitimate users 

Statistic Name Number Percentage Number (per 100 users) Percentage Number Percentage Number (per 100 users) Percentage 

Number of users 78,074 8.1% – – 881,207 91.9% – –

Number of geo-enabled users 5986 1.8% 8 18.2% 316,617 98.2% 36 81.8% 

Number of verified users 0 0.0% 0 0.0% 2978 100% 1 100% 

Number of users’ followers 78,143,567 2.9% 100,089 25.8% 2,526,736,521 97.1% 286,735 74.2% 

Number of users’ followees 50,839,084 3.6% 651,165 81.5% 1,302,269,081 96.4% 147,782 18.5% 

Number of tweets posted 944,566,070 5.4% 1,209,834 39.1% 16,604,525,699 94.6% 1,884,293 60.9% 

Number of tweets retrieved 208,546 10.1% 267 55.8% 1,857,479 89.9% 211 44.1% 

Number of retweeted tweets 80,773 9.1% 104 53.3% 808,263 90.9% 92 46.6% 

Number of replied tweets 855 2.4% 1 33.3% 24,895 97.6% 3 66.6% 

Number of URLs 127,655 1.9% 163 55.1% 1,166,666 98.1% 133 44.9% 

Table 3 

Distribution of 50,0 0 0 spam and non-spam tweets streamed into the top 20 hashtags existing in our dataset, showing an obvious variation in the number of spam tweets 

of 20 hashtags. 

Non-spam tweets Spam tweets Non-spam tweets Spam tweets 

Topic name Number Percentage Number Percentage Topic name Number Percentage Number Percentage 

#iHeartAwards 39,478 78.9% 10,522 21.1% #Harmonizers 38,844 77.7% 11,156 22.3% 

#KCA 38,992 77.9% 11,008 22.1% #quote 46,076 92.2% 3924 7.8% 

#BestFanArmy 40,982 81.2% 9018 18.8% #NowPlaying 47,841 95.7% 2159 4.3% 

#TreCru 49,541 99.1% 459 0.9% #BTS 48,798 97.6% 1202 2.4% 

#Periscope 48,831 97.7% 1169 2.3% #VoteMaineFPP 47,756 95.5% 2244 4.5% 

#SoundCloud 46,709 93.4% 3291 6.6% #gameinsight 45,492 90.9% 4508 9.1% 

#np 47,150 94.3% 2850 6.7% #VoteKathrynFPP 47,427 94.8% 2573 5.2% 

#RT 36,922 73.8% 13,078 26.2% #android 46,162 92.3% 3838 7.7% 

#5SOSFam 41,476 82.9% 8524 17.2% #love 46,802 93.6% 3198 6.4% 

#Directioners 44,704 89.4% 5296 10.6% #giveaway 47,602 95.2% 2398 4.8% 
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ags. More precisely, Table 3 reports the distribution of the spam

nd non-spam tweets streamed into top 20 hashtags and shows a

lear variation in the number of spam tweets. The stream of some

ashtags such as # RT has been intensively polluted with an esti-

ated ratio of 1 spam tweet to 3 non-spam tweets, while there

re hashtags that haven’t been polluted too much like # TreCru . In-

eed, there is no clear interpretation behind this high variation in

he distribution of spam tweets; however, the importance of the

ashtag, and how long time the hashtag has been trending are the

ost possible reasons. 

. Unsupervised collective-based and real-time spam filtering 

odel 

.1. Model design: an overview 

Supervised learning methods are the classical approach adopted

n literature for building spam tweets detection models. As com-

only known in the machine learning field, applying these meth-

ds need an annotated dataset. Unfortunately, having such data

s often very expensive in terms of annotation time, and/or hu-

an resources. In addition, social spam classification models re-

uire continuous adaption using new training datasets to follow-

p new social spammers’ patterns and behaviors. Thus, obtaining

 static training dataset to train a classification model is not an ef-

cient solution at all. 

Therefore, we propose a design of an online collective-based

pam tweets classification framework that utilizes the great bene-

ts of unsupervised machine learning methods, to periodically and

utomatically provide an annotated dataset by which updated su-

ervised classification models can be produced. The model em-

loys the correlation between social spammers’ tweets in a short

eriod to predict spamming behavior. As described in Fig. 3 , our

ramework consists of two main modules: (i) real-time tweet filter-

ng model; and (ii) periodic classification model learning. The first

odule prepares a feature vector for a streamed tweet through ex-
racting a set of predefined light features and then passes the vec-

or to an already learned classification model to predict the class

abel of the streamed tweet. The second module, which is the core

f the framework, stores incrementally the streamed tweets in a

torage component (e.g., database) and then frequently creates a

ewly labeled training dataset using unsupervised methods once a

ertain number of new tweets is stored in the storage component.

pon satisfying the condition of streamed tweets, a new feature

pace is prepared using all annotated tweets in the storage compo-

ent. Finally, a classical supervised learning method (e.g., Random

orest, SVM, J48) is applied to the new labeled feature space to

uild a binary classification model to replace the current classifier

odel. 

.2. Collective-based unsupervised predictive model 

Leveraging Twitter REST APIs to retrieve more information

bout users of the streamed tweets is the best solution to pre-

isely label each tweet as spam or not. However, the impractically

f this approach in terms of time brings serious challenges to de-

ign an efficient method suitable for processing large scale (some-

imes endless) of streamed tweets. Therefore, instead of inspecting

ach tweet individually, we overcome this shortcoming by propos-

ng an automatic approach that inspects the correlation between

pam accounts and their tweets at different levels using unsuper-

ised clustering methods. The design of the proposed approach

omes in five-stages as illustrated through an example in Fig. 4 . For

 given set of streamed tweets, the first stage extracts the users

ho posted the tweets streamed. The second stage clusters the

sers set based on the age of each user’s account. In the next stage,

or each generated cluster, a defined number of communities is de-

ected through an optimization process. In the fourth stage, we ex-

ract hand-designed features for each community using only users’

weets and accounts information. The last stage makes a decision

bout each community using a simple discriminative feature-based
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Fig. 3. A diagram showing the flow and the steps of the two main components in our framework: (i) periodic classification function learning; (ii) and real-time tweet 

detection or filtering. 

Fig. 4. An example describing the functionality of the 5-stage unsupervised classification: (i) user set extraction; (ii) account age clustering; (iii) community detection; (iv) 

community-based features extraction; (v) and community-based classification. 
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Fig. 5. CDF of 12 tweet features drawn for a randomly selected 10 days of streaming spam and non-spam tweets. 
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lassification model that labels each tweet of spam communities as

pam tweets. 

Stage 1: Users Set Extraction. We design the clustering and the

ommunity detection stages based on leveraging the users’ infor-

ation that is available in the streamed tweets. Formally, for the

atest streamed tweets set, S t , the unique set of users is defined as

sers = { T .User| T ∈ S t } where | Users | ≤ | S t |. 

Stage 2: User Age-based Clustering. Social spammers have the

bility to create hundreds or thousands of the Twitter accounts in

 short period not exceeding few days, for launching their spam

ampaigns ( Benevenuto et al., 2010; Washha et al., 2016 ). Also, the

mpact of the creation time has shown its effectiveness in detect-

ng spam accounts so that when a set of accounts have a close

nd recent creation date, the probability of being a spam accounts

ncreased. Fig. 5 show the Cumulative Distribution Function (CDF)

f 12 tweet-level features which extracted for spam and non-spam

weets. These CDFs are computed for a randomly selected 10 days

f tweet streaming to study the strength of these features. The CDF

f the features shows that social spammers tend to behave exactly

s legitimate users to avoid detection. An interesting point worth

o mention is that the CDF of account age feature is the most ro-

ust one compared to the rest of the features since the creation

ate of accounts is non-editable by users. 

Thus, the creation date of Twitter accounts can be an effec-

ive means for grouping the spam accounts that might have a cor-

elation between them. According to that, the Users set is clus-

ered based on the user age (UA) attribute. In a formal way, let

 

Age 
a = { u | u ∈ Users, u.UA = a } be a day-cluster containing the users

ho have an account age equaling a ∈ Ages , where Ages = { u.UA | u ∈
sers } is a set of distinct users ages. Obviously, the number of day

lusters is dynamically determined, which exactly equals to the

ize of the Ages set (i.e., | Ages |). 

Stage 3: Community Detection. Social spammers might create

ncorrelated spam campaigns at the same time ( Stringhini et al.,

010; Wang & Pu, 2015; Washha, Shilleh, Ghawadrah, Jazi, & Sèdes,

017 ). In other words, we might have an age cluster containing

pam accounts belonging to different spam campaigns. Also, many

on-spam users join Twitter daily, which increase the probabil-

ty of having non-spam users created on the same day as the

pam ones. Therefore, to distinguish between different uncorre-

ated spam campaigns and non-spam accounts, a community de-

ection stage is performed on each cluster resulted by age-based

lustering stage. We define each spam campaign as a community

aving a high correlation between its users, where the correla-
ion in a given community can be measured over naming accounts

evel, duplicated tweets content, or similar posting behavior. 

In this paper, we adopt the Non-negative Matrix Factorization

NMF) as an unsupervised method, to infer communities’ struc-

ure because of its outstanding performance in clustering problems

 Yang & Leskovec, 2013 ). NMF has turned into one of the preferable

ools for decomposing data into low-rank factorizing matrices to

ield a parts-based representation. It has distinct features of pre-

erving the structure of the original input data and keeping the

on-negativity in both weight and basis. The latent semantic space

f the NMF method has a very intuitive explanation in some clus-

ering problems. For instance, in NMF based document clustering,

ach axis of the latent semantic space stands for the basic topic

f a particular cluster where each document is represented by the

dditive combination of the basic topics. 

For the given community detection problem, NMF works

hrough partitioning or factorizing one or more information matri-

es into hidden factor matrices for an aging cluster, C a , a ∈ Ages , of

sers. Formally, the factorization of information matrices is mathe-

atically defined as an optimization minimization problem as: 

in 

H≥0 
|| X − HH 

T || 2 F = min 

H≥0 

⎛ 

⎝ 

√ √ √ √ 

| C Age 
a | ∑ 

i =1 

| C Age 
a | ∑ 

j=1 

| x i j − h i h 

T 
j | 2 

⎞ 

⎠ 

2 

= min 

H≥0 

| C Age 
a | ∑ 

i =1 

| C Age 
a | ∑ 

j=1 

| x i j − h i h 

T 
j | 2 (1) 

here || •|| F is the Frobenius norm of the considered matrix, X ∈
 

| C Age 
a |×| C Age 

a | is an information matrix representing the strength of

he social connections (i.e., similarity among a pair of users) be-

ween users, H = [ h 1 . . . h K ] ∈ R | C Age 
a |×K is the community structure

idden factor matrix of K communities, and the j th row vector

 j = [ h j1 , . . . , h jK ] ∈ R 1 ×K . The entry x ij reflects the strength of the

ocial connection between the u i ∈ C 
Age 
a user and u j ∈ C 

Age 
a user. The

ntry h ij in the hidden factor matrix can be interpreted as the con-

dence degree of user u i ∈ C 
Age 
a belonging to the j th community. It

s important to mention that each user belongs to one community

nly, not more than one. 

Obviously, inferring the hidden matrix H requires a formal def-

nition of the information matrix X . For example, X might be an

djacency matrix representing the social connections or the links

mong users of a given age cluster C 
Age 
a . However, obtaining the
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adjacency matrix in our case is not possible since the available

information about users is limited to simple meta-data that de-

scribe accounts, which did not give enough information about the

followers and the followees. Hence, in this paper, we leverage the

available and accessible information to estimate social connections

between users through proposing three definitions of the informa-

tion matrix X denoted as X 

SN 
, X 

UN 
, and X 

W S where each of which

is formally defined as follows: 

• Screen Name Similarity ( X 

SN ): Since the screen name field must

be unique, social spammers tend to adopt a particular fixed

pattern when creating multiple accounts acting as a spam cam-

paign. For example, in Fig. 1 , the spammer has adopted the

name “voteddlovatu” as a fixed pattern and repeated it in fill-

ing the screen name field. Intuitively, the high matching in the

screen name between users (or accounts) increases the proba-

bility of the users to belong to the same community. Therefore,

we define the information matrix X 

SN to measure the degree of

matching between the screen name attribute. More precisely,

for each two users u i , u j ∈ C 
Age 
a , a ∈ Ages , the degree of match-

ing for a particular entry in the matrix X 

SN is defined as: 

x SN 
i j = 

max {| m | : m ∈ N − gram (u i .SN) ∩ N − gram (u j .SN) , N ∈ { 1 ,

min (| u i .SN| , | u j .SN| ) 
where | •| is the cardinality of the considered set, N − gram (•)
is a function that returns a set of contiguous sequence of char-

acters for a given name (set of ordered characters) based on

the value of N . For better understanding, the 3-gram (or tri-

gram ( Cavnar & Trenkle, 1994 )) of the screen name “vote” is

{“vot ”, “ote ”}. The above definition can detect the matched pat-

tern wherever it appears in the screen name attribute. For in-

stance, let “vote12” and “tovote” be screen names for two dif-

ferent spam users, the degree of matching according to Eq.

(2) is around ( 4 6 )66 . 6% , which resulted from the use of pattern

“vote”, regardless the position of the pattern. 
• User Name Similarity ( X 

UN ): Conversely the screen name at-

tribute, spammers may duplicate username attribute as many

as they wish. In fact, they aim to use a structured and represen-

tative (not random) names to attract legitimate users ( Washha,

Qaroush, Mezghani, & Sèdes, 2017b ). Therefore, fully or partially

matching among users based on such an attribute increases the

probability of being in the same community. Thus, we define

the information matrix X 

UN to measure the degree of similarity

among users based on the user name attribute. Formally, given

two users u i , u j ∈ C 
Age 
age , the degree of similarity is defined as: 

x UN 
i j = 

max {| m | : m ∈ N − gram (u i .UN) ∩ N − gram (u j .UN) , N ∈ { 1
min (| u i .U N| , | u j .U N| ) 

• Names Writing Style Similarity ( X 

WS ): Based on our observa-

tions, social spammers may follow a particular style in writ-

ing the username and screen name attributes. For instance, in

these two real spam accounts ( u 1 = { SN = “ v ote 5 soss 33 ′′ , US =
“ v ote 5 sos ′′ } , and u 2 = { SN = “ sa v ed028 ′′ , US = “ sa v ed ′′ } ), the so-

cial spammer has used the username attribute in filling the

screen-name attribute with putting the username value in the

beginning. Hence, as these two accounts belong to the same

spam campaign, modeling such behavior can efficiently con-

tribute to identifying spam communities. In order to model this

P os (Str 1 , Str 2 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

SE 
S 
E 
I 
min (| u i .SN| , | u j .SN| ) }} 
(2)

, min (| u i .UN| , | u j .UN| ) }} 
(3)

similarity between a pair of users, we firstly define a function,

Pos ( Str 1 , Str 2 ), that takes two strings as an input and then it

finds the location ( S tart, I nside, E nd) of the string Str 2 in the

string Str 1 , written as: 

r 1 ∩ Str 2 | = | Str 2 | = | Str 1 | 
r 1 ∩ Str 2 | = | Str 2 | and•1 ∈ Str 1 ∩ Str 2 
r 1 ∩ Str 2 | = | Str 2 | and•| Str 1 | ∈ Str 1 ∩ Str 2 
r 1 ∩ Str 2 | = | Str 2 | and•1 / ∈ Str 1 ∩ Str 2 and•| Str 1 | / ∈ Str 1 ∩ Str 2 

(4)

where the two strings are represented as a finite set of or-

dered characters Str • = { d 1 , d 2 , . . . } , d • ∈ { Printable Characters },

the symbol •1 represents any character written at the begin-

ning of a given string, while •| Str 1 | corresponds to the character

written at the end of the string Str 1 . 

Therefore, for a pair of users u i , u j ∈ C 
Age 
a , a ∈ Ages, belonging to

an age cluster, we define a writing style similarity matrix X 

W S 

based on the equality of the pair in the Pos function value. For

a particular entry in the matrix X 

W S 
, the similarity is defined

as: 

x W S 
i j = 

{
1 P os (u i .SN, u i .UN) = P os (u j .SN, u j .UN) 
0 otherwise 

(5)

where here 1 means that the pair of users has same

writing style, while 0 represents dissimilar writing style.

For better understanding, when applying the Pos func-

tion on the given example of a pair of spam accounts

(users), ( u 1 = { SN = “ v ote 5 soss 33 ′′ , US = “ v ote 5 sos ′′ } , and

u 2 = { SN = “ sa v ed 028 ′′ , US = 

′′ sa v ed ′′ } ), the “S” location is re-

turned for the both users (i.e., Pos (“ v ote 5 soss 33 ′′ , “ v ote 5 sos ′′ ) =
S, Pos (“ sa v ed028 ′′ , “ sa v ed ′′ ) = S) since the username “vote5sos”

appears in the beginning of screen name “vote5soss33” of the

user u 1 , and similar for the “saved” username of the user u 2 .

Thus, the writing style similarity equals to 1. 

Non-negative matrix factorization method allows to integrate

hese three information matrices together in the same objective

unction. According to this, the objective function is defined as: 

in 

H≥0 
|| X 

SN − HH 

T || 2 F + || X 

UN − HH 

T || 2 F + || X 

W S − HH 

T || 2 F (6)

Obviously, the objective function in Eq. (6) infers the hidden

actor matrix H to represent consistent community structure of re-

ated users. Indeed, this objective function is not jointly convex and

as no closed form solution exists. Hence, we propose the use of

 gradient descent approximation method as an alternative opti-

ization approach. Since we have one matrix free variable ( H ), the

radient descent method updates it iteratively until the variable

onverge. Formally, let L ( H ) denotes the objective function given

n Eq. (6) . So, at iteration τ , updating Eq. (6) is given by: 

 

τ = H 

τ−1 − η. 
∂L ( H 

τ−1 ) 

∂( H ) 
= H 

τ−1 − 2 η
(
6 H 

τ−1 ( H 

τ−1 ) T H 

τ−1 

− ( X 

SN + X 

UN + X 

W S ) H 

τ−1 − (( X 

SN ) T + ( X 

UN ) T + ( X 

W S ) T ) H 

τ−1 
)

(7)

here the parameter η denotes the gradient descent step in up-

ating the matrix H . We assign the value of η to a small con-
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tant value (i.e. 0.05). Also, since the gradient descent method is

n iterative process, a stop condition is required in such a case.

or this, we used two stop conditions: (i) the number of itera-

ions, denoted as M ; and (ii) the absolute change in the H ma-

rix for two consecutive iterations to be less than a threshold, i.e.,

 (|| H 

τ || F − || H 

τ−1 || F ) | ≤ ε. 

One might view that the proposed information matrices and

he age-clustering stage can be easily manipulated by social spam-

ers to evade the detection. Indeed, this view could be correct

hen a social spammer creates very small spam bot consisting of

o more than 5 spam accounts. Also, social spammers did not pre-

er to use a random function to generate screen names and user-

ames since the main objective of the social spammers is to lure

egitimate users. Thus, social spammers have to use names suit-

ble for the target that they want to achieve. For instance, if a

ocial spammer wants to promote for a product ”X” through de-

oting large spam bots, he must name the spam accounts using

eywords related to the intended product. Social spammers have

he option to create the accounts before the attack; however, they

ouldn’t change the creation date attribute. Moreover, the purpose

f using the age feature is to increase the difficulty in front of the

ocial spammers to create thousands of accounts in short a period

o that social spammers need to spend months to create a thou-

and of spam accounts. As the purpose of launching spambots is

 monetary benefit, social spammers could not wait for this long

ime in creating their accounts as well as leaving them inactive

ay subject them for suspension from Twitter itself. 

Stage 4: Community-Based Feature Extraction. In order to

redict the class (spam or non-Spam) of each community, one

r more features must be extracted from each community such

hat these features can effectively discriminate between spam and

on-spam communities. Since social spammers may follow com-

lex and different spamming strategies, no single feature can ef-

ectively discriminate between spam and non-spam communities.

n addition, the design of such features must rely only on the

vailable information in each community to avoid using REST APIs.

hus, we introduce a design of four community-based features that

ake into account the community’s users along with their tweets.

he four introduced features are distributed between account-

ased and tweet-based features. The username patterns similar-

ty ( UNPS ), and the screen name patterns similarity ( SNPS ) are

wo features extracted using the username and screen name of the

ser attributes. On the other hand, Tweets writing style similar-

ty ( TsWSS ), and Tweets posting behavior correlation ( TsPBC ), are

weet-based features which only leverage the available content in

he tweets of a community. It is important to mention that there

s a strong intuition behind the design of each feature, which will

e illustrated statistically through different graphs of cumulative

ensity function (CDF). 

The total number of formed communities is dependent on the

umber of age clusters (| Ages |) beside the number of predefined

ommunities K . Therefore, the ultimate number of communities is

 Ages | × K , where the community detection stage is applied to each

ge cluster. We represent the j th inferred community in the hidden

atrix, H , by 7-tuple of attributes C j = (Users, T weets, UNP S, SNP S,

sWSS, TsPBC, Label ) where Users is a finite set of the users be-

onging to the inferred community, Tweets ⊆S t is all tweets that are

osted by the users of the community, and Lable ∈ { spam, non −
pam } is the class label of the community. The remaining attributes

re defined and formulated as follows: 

• Username Patterns Similarity (UNPS) and Screen Name Pat-

terns Similarity (SNPS) : Social spammers may adopt a partic-

ular pattern (e.g., “voteddlovatu”) in creating their spam cam-

paigns and therefore the probability of having spam commu-

nities biased toward a particular pattern used in creating ac-
counts is relatively high. Since there is no obvious correlation

among communities at the pattern level, nor a prior knowledge

about the length and the name of the patterns, we must have a

generic and independent way to determine whether the com-

munity has a spammy pattern. Thus, we rely on an intuitive

and generalized fact which states that the probability distribu-

tion of the patterns in non-spam communities is close to the

uniform distribution, while the spam communities have the op-

posite behavior. More precisely, we measure the degree of simi-

larity between string patterns probability distribution extracted

from users of a particular community with the uniform proba-

bility distribution of the patterns. 

Formally, let PT UN and PT SN be two finite sets of string pat-

terns extracted from the username and the screen name

attributes for users of the j th community, C j . Also, let P UN 
D 

and P SN 
D 

be the corresponding probability distributions of

the username and the screen name patterns, respectively.

For the uniform distribution, let P UN 
uni 

, P SN 
uni 

be the corre-

sponding uniform distributions of username and screen

name patterns, respectively. For instance, for a particu-

lar community, let P T SN = { “ mischie f ′′ , “ isch ′′ , “ _ 12” , “ _ 14” }
and P SN 

D 
= { (“ mischie f ′′ , 0 . 7) , (“ _ 15” , 0 . 1) , (“ _ 14” , 0 . 1) , (“ _ 12”

, 0.1)} be a set of screen name patterns along

with its probability distribution, and {(“mischief ′′ ,
0 . 25) , (“ _ 15” , 0 . 25) , (“ _ 14” , 0 . 25) , (“ _ 12” , 0 . 25) } be the uni-

form probability distribution of these patterns. To extract

and catch all string patterns, the N-gram method is applied

since social spammers may define patterns varying in their

length and position. To perform the N-gram method, different

values of N ranging from three to the length of the string are

used, with ignoring low N values (one and two) because they

provide meaningless patterns. For the j th community’s users,

represented as C j , we extract the string patterns used in the

username and screen attributes as follows: 

P T UN = 

⋃ 

u ∈ C j ·Users 

⋃ 

N ∈{ 3 , ... , | u.UN |} 
N − gram (u.UN) 

P T SN = 

⋃ 

u ∈ C j ·Users 

⋃ 

N ∈{ 3 , ... , | u.SN |} 
N − gram (u.SN) (8) 

The double unification ( 
⋃ ⋃ 

) can be viewed as a double “for”

loops where the inner unification is responsible about return-

ing all patterns, as a finite set of strings, that a single user has,

while the outer unification unifies all sets of users’ string pat-

terns to have only one single set of the string patterns repre-

senting the community itself. 
Since the pattern is a categorical random variable in which the
string has not a meaningful order of magnitudes, we adopt
the Kullback–Leibler divergence ( Kullback & Leibler, 1951 ) ( KL )
method as a suitable and a fast way to measure the similar-
ity between any two probability distributions of categorical ran-
dom variables. However, the classical version of KL method can-
not be directly exploited in computing similarity among ( P T UN 

D 

and P T UN 
uni 

) or ( P T SN 
D 

and P T SN 
uni 

) since the ∞ and 0 values cor-

respond to dissimilar, and similar distributions, respectively.
Hence, we perform a few modifications on the current version
of KL method to inverse the semantic meaning of KL values (i.e.,
0 ⇒ dissimilar and 1 ⇒ similar) and taking into account bound-
ing its values. Thus, for the j th community, the value of the
UNPS and SNPS features are computed using the customized KL
equation as follows: 

C j .UNP S = 

log | P T UN | − ∑ 

w ∈ PT UN P UN 
D (w ) ∗ min (| log 

P UN 
D (w ) 

P UN 
uni 

(w ) 
| , log | PT UN | )

log | P T UN | 
(9) 
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C j .SNP S = 

log | P T SN | − ∑ 

w ∈ PT SN P SN 
D (w ) ∗ min (| log 

P SN 
D (w ) 

P SN 
uni 

(w ) 
| , log | PT SN | ) 

log | P T SN | 
(10)

where | •| is the cardinality (length) of the string patterns set,

P •D (w ) is the probability of occurring the pattern w based on the

distribution of the considered patterns set, and P •
uni 

(w ) is the

probability of occurring the pattern w according to the uniform

distribution of the considered patterns set. 
• Tweets Writing Style Similarity (TsWSS) : Single social spam-

mer may create thousands of spam accounts for involving them

in a spam campaign. Thus, the probability to have a correla-

tion between the tweets of these accounts is quite high. Ac-

cording to our observations, the way or the style followed in

writing tweets is mainly similar (e.g., one form) with possible

correlations among them. For instance, the spam tweets of a

campaign shown in Fig. 1 have a common style structure in

writing tweets (word, word, hashtag, word, word, word, word,

word, and the URL). It is obvious that the three tweets are

too correlated, though their social spammer has been tricky

in writing tweets through avoiding duplication in the con-

tent of the tweets. Computing the writing style similarity be-

tween tweets requires: (i) a new representation of each tweet

through identifying the type ( W ord, H ashtag, U rl, and M ention)

of each whitespace separated string; (ii) and a metric that com-

putes the degree of similarity among the new representation

of the community’s tweets. Therefore, we define a transforma-

tion function, Type ( ST ) ∈ { W, H, U, M } that takes ST string as

a parameter and returns the type of the input string ( W ord,

H ashtag, U rl, and M ention). Consequently, the new represen-

tation of a tweet T • belonging to the j th community, C j , is

T rans (T •) = { (i, T ype (w i )) | w i ∈ T •.T ext} where i ∈ Z 

+ is the po-

sition of the string in the tweet text and w i is the string that

requires a transformation. Unifying the new representation of

all tweets provides a single unique set representing the writing

style of the community’s users. The cardinality of the unique

set provides a meaningful indication about the writing style

variation where the small cardinality means that the users have

followed almost the same writing style. However, to precisely

quantify how much the writing style is close among tweets, a

reference value is required to compare the cardinality of the

new set with it. The maximum value of the cardinality of the

new set occurs when there is no intersection among the new

representation of all tweets. Therefore, the cardinality of the

new set will equal to the sum of | Trans ( T )| overall community’s

tweets. Formally, by the following equation, we measure the

writing style similarity: 

C j .T sW SS = 1 −
| ⋃ 

T ∈ C j .T weets T rans (T ) | ∑ 

T ∈ C j .T weets | T rans (T ) | (11)

• Tweets Posting Behavior Similarity (TPBS) : Another possible
form of correlation among spam accounts is the rate (e.g., every
5 min) of posting tweets. Intuitively, when the users (accounts)
of a community have the same posting behavior, regardless
of the posting period, the probability of the community being
spam is high. The simplest way to compute the posting rate
of a user is by examining the mean and the variance of the
Time difference between every two consecutive tweets. How-
ever, social spammers can manipulate in these two statistics
features through leaving a big gap between every two consecu-
tive sets of tweets, leading to have a large variance and mean.
We overcome this non-ignorable shortcoming through perform-
ing a quantitative user pairwise comparison at the posting time
distribution of the user’s tweets level. Then, a conclusion is
drawn about the class label of the community based on the
result of each pairwise comparison. Formally, for the j th com-
munity, represented as C j , let P u 
T S 

[ n ] be the probability distri-

bution of the tweet posting time of the user u, u ∈ C j .Users

where n ∈ Z 

+ is a random variable representing the time in
seconds. Since P u 

T S 
[ n ] is a function of time and its random vari-

able is quantitative in which its values with magnitudes have a
meaningful order, we adopt the cross-correlation method which
widely used in signal processing field for comparing two signals
( Oppenheim, 1999 ), defined as follows: 

PostSim (u 1 , u 2 ) = 

∑ ∞ 

n =0 (P u 1 
T S 

� P u 2 
T S 

)[ n ] 

Min ( 
∑ ∞ 

n =0 (P u 1 
T S 

� P u 1 
T S 

)[ n ] , 
∑ ∞ 

n =0 (P u 2 
T S 

� P u 2 
T S 

)[ n ]) 

= 

∑ ∞ 

n =0 

∑ ∞ 

m =0 P 
u 1 
T S 

[ m ] P u 2 
T S 

[ m + n ] 

Min ( 
∑ ∞ 

n =0 

∑ ∞ 

m =0 P 
u 1 
T S 

[ m ] P u 1 
T S 

[ m + n ] , 
∑ ∞ 

n =0 

∑ ∞ 

m =0 P 
u 2 
T S 

[ m ] P u 2 
T S 

[ m + n ]) 

(12)

where u 1 , u 2 are two different users belonging to the C j com-

munity, “� ” is a symbol denoted to the correlation operation,

and Min is a function that takes the minimum among two real

number values. The correlation between two signals produces a

new signal having different magnitudes where two highly cor-

related signals shall have large magnitudes. However, in order

to quantify this correlation in a single real value, we compute

the area under the new signal by adding the outer summation

( 
∑ ∞ 

n =0 ). As the area under the new signal (output signal) might

be more than 1 and intuitively the maximum area is obtained

when the two users’ distributions are identical, we normalize

it through computing the correlation between each user’s dis-

tribution with itself, so-called auto-correlation, with taking into

account the minimum among them as a normalization factor.

For better understanding, Fig. 6 shows the posting time dis-

tribution (timely shifted and not normalized) of two different

users having an obvious correlation in posting behavior. The

cross-correlation between the two distributions has resulted in

a new signal with an area of 18 (1+2+3+4+3+2+1). When apply-

ing the Eq. (12) on the given example, the value of the feature

will be “1” since the area of the auto-correlation of each user’s

distribution equals to 18, meaning that the two users are com-

pletely correlated. 

In computing the ultimate value of the TPBS feature, we com-

pute first the probability distribution of PostSim over all pos-

sible user pairs existing in the C j 
th 

community. Formally, let

P PostSim 

(e.g., {(0.25, 0.4), (0.1, 0.6)}) be the probability distribu-

tion of the posting similarity and P 
Uni f orm 

PostSim 

(e.g., {(0.25, 0.5), (0.1,

0.5)}) be the corresponding uniform distribution of PostSim . We

quantify the difference between the distributions through per-

forming cross-correlation between them, defined as: 

C j .T P BS = 1 −
∑ ∞ 

n =0 (P PostSim 

� P Uni f orm 

PostSim 

)[ n ] ∑ ∞ 

n =0 (P Uni f orm 

PostSim 

� P Uni f orm 

PostSim 

)[ n ] 

= 1 −
∑ ∞ 

n =0 

∑ ∞ 

m =0 P PostSim 

[ m ] P Uni f orm 

PostSim 

[ m + n ] ∑ ∞ 

n =0 

∑ ∞ 

m =0 P 
Uni f orm 

PostSim 

[ m ] P Uni f orm 

PostSim 

[ m + n ] 
(13)

where the high value (close to 1) of TPBS means that all users

of the j th community have almost same posting behavior (i.e.,

almost same posting frequency) and thus that community has a

high probability for being a spam campaign. On the other side,

when the P PostSim 

be close to the uniform distribution, it means

that almost no users have same posting behavior and thus that

community has a low probability for being a spam campaign. 

Stage 5: Community Classification Function. After computing

he four community-based features for a community, the next step

s determining whether that community is a spam or non-spam

ne. The main issue is what the best way to combine or weight

he four features to form a community classification function. Han-

ling robustly this issue requires to recall two key points: (i) the



M. Washha, A. Qaroush and M. Mezghani et al. / Expert Systems With Applications 135 (2019) 129–152 141 

Fig. 6. An example describing the cross-correlation between posting time distribution of two different spam accounts (users). 

h  

w  

(  

t  

f  

i  

s  

1  

t  

b  

i  

t  

t  

t  

s  

k  

s  

m  

c  

f

C
 S ≥

P S <

w  

T  

d  

v  

t  

c  

t  

f  

a  

a  

l

N

igh values of the four features have a high degree of correlation

ith the probability of the considered community being a spam;

ii) and judging on a community as a spam needs at least one fea-

ure having a high value. The robustness and the strength of the

our community-based features are easily captured through exam-

ning their CDF at different streaming periods. Thus, in Fig. 7 , we

how the CDF statistic of the four features drawn at three different

0-day streaming periods using the annotated dataset exploited in

his paper. For each community feature, it is obvious that the area

etween the spam CDF and non-spam CDF is quite large, mean-

ng that there is no too much overlapping between the value of

he feature of the spam and non-spam communities. Also, the fea-

ures of the non-spam communities have low values because of

he early increasing in their CDF curves, while the features of the

pam communities have the opposite behavior. Based on the two

ey points mentioned and the provided CDF statistics, we design a

imple community classification through classifying the input com-

unity as a spam if one of the features has value more than a

ertain threshold �, formally defined for the j th community C j as

ollows: 

 j .Label = 

{
spam C j .T sW SS ≥ � || C j .T P BS ≥ � || C j .SNP

non − spam C j .T sW SS < � & C j .T P BS < � & C j .SN
� || C j .UNP S ≥ �

 � & C j .UNP S < �
(14) 

here “||” and 

′′ & 

′′ are ”OR” and “AND” operations, respectively.

he high value of �∈ [0, 1] increases the difficulty of the con-

itions to be satisfied for labeling communities as a spam. Con-

ersely, the low value of � leads to label too many communi-

ies as a spam. As the main purpose of the unsupervised classifi-

ation is to provide an annotated dataset of spam and non-spam

weets, we leverage the label assigned for each community in-

erred through inheriting the label of each community to its users

nd their tweets available in the storage component. Formally, the

nnotated version of all tweets streamed, S t , is extracted as fol-

ows: 

Spam _ T weets = 

⋃ 

j∈{ 1 , ... , | Ages |×K} 
C j .Label= spam 

C j .T weets 

on − Spam _ T weets = 

⋃ 

j∈{ 1 , ... , | Ages |×K} 
j.Label= non −spam 

C j .T weets (15) 
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Fig. 7. Cumulative distribution function (CDF) of non-spam and spam communities drawn for our four collective-based features at three streaming periods where each 

period is 10 days, showing the effectiveness of these features in discriminating among spam and non-spam communities. 
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where Spam _ T weets ∪ Non − Spam _ T weets = S t . As these two anno-

tated sets of tweets will be exploited in learning a binary classi-

fication function, the value of � also plays an important role in

the size of these sets. For instance, setting � to 0.9 will likely pro-

duce a small size of spam tweets set since this condition might be

satisfied on few communities. 

5.3. Tweet classification model and real-time detection 

We follow the classical approach for producing a binary classifi-

cation model, F ( x ) , and that through applying the classical widely

used machine learning algorithms trained on the annotated set of

tweets. As a prerequisite for performing the training phase is defin-

ing the feature vector that will represent the tweet entity. Thus, we

adopt 17 lightweight features described in Table 1 for building the

feature vector. The steps for learning the classification model start

by preparing the feature space consisting of the feature vector of

the training tweets. Then, the feature space is labeled using the

output of the unsupervised classification stage performed on the

training tweets. The feature space can be easily viewed as a two-

dimensional matrix with a size of | S t | × 18, where 18 is the sum

of the size of the feature vector (17) and the class label (1). At

last, classical supervised learning methods such as Random Forest,

K-NN, and J48 could be applied on the labeled feature space to ob-

tain a binary classification model, F S t ( x ) . Once the learning phase

gets finished, the old classification function is replaced by the new

one. It is important to mention that the training or learning phase

is taken place in a background process whenever a new number

of tweets (e.g., 500 tweets) is streamed, so-called “Updating Model

Frequency”. As an initial classification model, we classify incoming

tweets as non-spam, F Initial ( x ) = “ non − spam 

′′ , until the updating

model frequency condition is satisfied to have a binary classifica-

tion model. 

At the operational real-time filtering phase, the current adopted

classification model is used to predict the class label of every in-

coming tweet. Predicting the incoming tweet type requires first to

extract the feature vector of the tweet, using the same 17 features

leveraged in the training phase. Then, the class label of the con-
idered tweet is predicted using the current classification model

 F Initial ( x ) or F S t ( x ) ). 

. Experimental setup and results 

.1. Experimental setup 

Performance Metrics. Since the ground-truth of 2.1 million

weets which belonging to 50 different hashtags is available, we

dopt three commonly used measures in classification problems

o evaluate our proposed framework besides two states of the art

ethods. These measures include precision, recall, and f-measure,

omputed according to the confusion matrix of the Weka tool ( Hall

t al., 2009 ). These measures computed based on True Positive,

alse Positive, True Negative and False Negative parameters, where

rue Positive refers to detecting a spam tweet which is actually

 spam tweet. We didn’t report accuracy because our model is a

inary classifier and our main task is to detect spam tweets, not

on-spam tweets. In addition, the collected dataset is not balanced

nd thus the accuracy measure will not be informative. 

Methods and Parameters. We compared our framework with

wo real-time spam detection methods presented in the litera-

ure, denoted as ”Classical (traditional ML)” and ”Asymmetric Self-

earning ( Chen, Zhang, Xiang et al., 2015 )” methods. The classical

ne works through performing training on an annotated dataset

f tweets for a once to build a classification model. After that,

he trained model will be used at the operational detection phase

ll the time without retraining the model again. The Asymmetric

elf-learning ( Chen, Zhang, Xiang et al., 2015 ) method also uses a

rained classifier model to detect spam tweet. However, the initial

ataset was updated by adding each new streamed tweet and us-

ng the output of the classifier as the ground-truth label for that

weet. After streaming a certain number of tweets, the classifica-

ion model is updated using the updated dataset. To evaluate these

ethods, a set of experiments were conducted on (i) various ma-

hine learning methods, including Random Forest, Decision Tree

J48), and K-Nearest Neighbor (K-NN) where WEKA tool is used

s an implementation for these algorithms, (ii) various number of

he training tweets (e.g. 50 0, 10 0 0, and 50 0 0), and (iii) various up-
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Table 4 

Parameters and learning algorithms setting for the classical, asymmetric self-learning ( Chen, Zhang, Xiang et al., 2015 ), and our collective-based methods. 

Approach Learning Algorithms 

Updating Model 

Frequency (Tweets) Training Tweets Unsupervised Classification Parameters 

Classical (Traditional 

ML) Method 

Random Forest (RF) 

− Number of Trees:10, 100, 500 

Decision Tree (J48) 

− Confidence Factor (CF):0.5, 1.0, 

3.0 

K-nearest neighbour (K-NN) 

−K:2, 5, 10 

– 50,010,0 05,0 0 0 −

Asymmetric Method 5,0 01,0 0 0 50,010,0 05,0 0 0 −
Collective-based 

Method 

5,0 01,0 0 0 − − Number of Communities (K): 5,10 

− Classification Threshold( �): 0.2,0.5,0.8 

− Number of Iterations (M): 5,0 0 0 

− Stop Condition ( ε): 0.0 0 0 01 

− Learning Rate ( η): 0.001 
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ating frequency (e.g., 500 and 1000 tweets). For our method, we

xperimented the unsupervised classification module under vari-

us parameters including the number of communities ( K ), classifi-

ation threshold ( �), number of iterations ( M ), stop condition ( ε),

nd learning rate ( η). In fact, the number of communities and the

lassification threshold are the most important parameters in this

tage. Therefore, we studied their impact through setting K ∈ {5,

0}, and �∈ {0.2, 0.5, 0.8}, while the number of iterations, stop

ondition, and learning rate are fixed to 5,0 0 0, 0.0 0 0 01, and 0.0 01,

espectively. Table 4 summarizes the setup parameters of the three

ethods. 

Training and Testing Tweets. The classical and the Asymmetric

elf-learning ( Chen, Zhang, Xiang et al., 2015 ) spam tweet detec-

ion methods require a pre-training before putting them in the op-

ration mode. We have performed our experiments using 50 dif-

erent hashtags tweets and for each hashtag, we devote an inde-

endent classification model, resulting in 50 classification models.

hen using the classical method, each classifier is trained for the

rst streamed tweets (e.g., 500, 1000, or 5000) into the intended

ashtag, while the rest streamed tweets are used for the testing.

he Asymmetric Self-learning method is pre-trained as in classical

ethod, but periodic retraining is performed when a defined num-

er of new streamed tweets (e.g., 500, or 1000) is satisfied. Thus,

n some points, the testing tweets are leveraged later as train-

ng tweets when the periodic retraining condition is satisfied. Our

ethod differs from classical and Asymmetric Self-learning meth-

ds where there is no need for a pre-training since we assume

hat the user of the system doesn’t have time to build an anno-

ated dataset. Hence, with excluding the initial training phase, our

ethod has been experimented using the same circumstances of

he Asymmetric Self-learning method. 

.2. Experimental results 

The main purposes of our set of experiments are to study three

ain aspects, summarized in: (i) getting insight into the perfor-

ance of our unsupervised collective-based method in automati-

ally providing labeled datasets for the purpose of updating classi-

cation models, (ii) study the effect of changing number of train-

ng tweets, updating frequency, number of communities, and the

lassification threshold on having a generalized model with high

etection rate, and (iii) examining how much the use of different

earning algorithms with manipulating their main parameters in

mproving the performance. The experiments have been conducted

n 50 different hashtags illustrated in Section 4 . Since each hash-

ag represents a stream of tweets, we reported the performance re-

ults at different values of streamed tweets (e.g., every 500 tweets)

here the ultimate value of the performance metrics is computed

sing the results of 50 hashtags. More precisely, the confusion ma-
rix after a particular number of streamed tweets is summed over

0 hashtags, leading to having a single confusion matrix by which

he metrics are computed. 

At the evaluation level, we reported the experimental results

f the classical (traditional ML which based on training the classi-

er on static dataset without retraining it later), asymmetric self-

earning ( Chen, Zhang, Xiang et al., 2015 ), and our collective-based

ethod in three main figures ( Figs. 8–10 ), which form a summary

esulted from a set of experiments reported in Appendix A. Each

gure aims at: (i) showing the effect of increasing dataset size

n the performance of the three approaches in terms of recall,

recision and F-measure, (ii) highlighting the effect of spam drift

n the performance of tweet spam detectors, and (ii) comparing

he performance of different ML methods. In addition, Each sum-

arized figure shows the empirical results for the best machine

earning algorithm drawn from all possible spam detection config-

rations. For illustrate, the asymmetric self-learning method has

 possible configurations (3 updating frequency configurations ×
 different training tweet size configurations) where we reported

he performance result of the best learning method tested under

hese configurations. For example, the curve labeled ”asymmetric

elf-learning_J48(CF = 5)_Freq = 300_Training = 500” (solid blue line)

hown in Fig. 8 reports the performance in terms of recall for

he asymmetric self-learning method when using the J48 learning

ethod, 300 updating tweets frequency, and 500 tweets for train-

ng an initial version of the classification model. Through deeply

nalyzing the four main figures, some interesting thoughts and re-

arks can be inferred. 

Classical (Traditional ML) method results. The accuracy re-

ults, which is not reported in this paper, have almost a stable per-

ormance with more than 90% when running the classical method

t different learning algorithms and parameters. The three learn-

ng algorithms (Random Forest, J48, K-NN) have almost the same

ccuracy, without noticing any important effects when changing

heir parameters (#Trees, CF, and K) on improving the results. Ac-

ording to the distribution of the class labels in our dataset, it is

mportant to mention that the accuracy metric is not too indicative

ne since the class label distribution is imbalanced. In other words,

aving a high accuracy near 90% doesn’t mean that all spam tweets

ave been detected because in our dataset the distribution of spam

lass is about 11% compared to 89% for non-spam class. At the first

lance, we can conclude that the classical method is effective for

etecting spam tweets in real-time; however, the spam recall val-

es which reported in Fig. 8 are too low with an average value of

5%. This means that classical-based classification models almost

redict incoming tweets as a non-spam. Fig. 8 also shows the im-

act of increasing training size on improving spam recall. This be-

avior is expected since large enough training tweets may contain

 diversity of social spammers’ patterns, which help classification
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Fig. 8. Spam recall performance results of two baseline spam detection methods (Classical and asymmetric self-learning ( Chen, Zhang, Xiang et al., 2015 )), and our collective- 

based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations. 
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models to detect them. Regarding learning algorithms, there is a

clear diverse among them in which the decision tree (J48) learning

method has a dominant performance, compared to K-NN and Ran-

dom Forest learning methods. On the other side, Fig. 9 , shows that

the spam precision results of the classical method are better than

spam recall ones, and showing also the direct correlation between

the size of the training set and the spam precision performance

metric. The high spam precision values ensure that the classical

classification models classify the incoming tweets as spam when

they have high confidence in that tweet being true spam. The de-

cision tree (J48) has the lowest spam precision values, compared

to the other learning algorithms. On the other hand, Random For-

est has the best performance in terms of spam precision. The low

spam precisions and high recall values obtained by J48 mean that

the classification model (a sequence of if-else conditions) resulted

by J48 have been designed through setting up the conditions that

require any small clue to classify incoming tweet as a spam, while

the Random Forest has established a group of decision trees made

the conditions for classifying tweet as a spam too difficult. As the

spam class F-measure metric is a combination of spam class preci-

sion and spam class recall metrics, as reported in Fig. 10 , the value

of the F-measure metric gets increased when increasing the num-

ber of the training tweets since the size of the training has a direct

correlation with both the spam class recall and precision metrics. 

Asymmetric self-learning ( Chen, Zhang, Xiang et al., 2015 ). The

impact of model update frequency and the training size parameters

are obvious on increasing the spam recall values. Therefore, updat-

ing every streaming of 300 tweets achieves better spam recall val-

ues than doing that every 500 and 1,000. This behavior is reason-
ble and consistent because updating classification models as soon

s possible makes them up-to-date to recent social spammers’ pat-

erns. Interestingly, although 300 tweets frequency is small enough

o have an effective model, the increasing rate of spam class re-

all values is too small and near to zero. More precisely, the best

nd maximum spam class recall value has not exceeded 40%. This

ehavior can be explained by recalling the design of the method.

he asymmetric self-learning method enriches the initial training

et by adding incrementally every incoming tweet with labeling

t based on the output of the current classification model. There-

ore, the newly added tweets don’t provide too much information

bout the patterns or behaviors related to social spammers since

he built classification model predicts it as a spam tweet when

he model has already learned over similar patterns or feature val-

es. Consequently, with small improvement rates, the asymmetric

elf-learning method may need millions of tweets to obtain high

pam recall values. On the other hand, the spam class precision

esults which presented in Fig. 9 have completely opposite behav-

or compared to the spam class recall values, through maintaining

table performance along the number of streamed tweets. Com-

ared to the classical method, there are significant improvements

n terms of precision occurred when retraining is carried out ev-

ry either 500 or 1000 tweets. Thus, this proves the necessity of

pdating classification models to adopt social spammers’ patterns

nd tricks. Consistently with the results of the asymmetric self-

earning method, the Random Forest learning algorithm is domi-

ant in the spam class precision, while the decision tree (J48) is

he best in producing spam class recall values. For the spam class

-measure results reported in Fig. 10 , they reflect the ineffective
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Fig. 9. Spam precision performance results of two baseline spam detection methods (Classical and asymmetric self-learning ( Chen, Zhang, Xiang et al., 2015 )), and our 

collective-based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations. 
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3 
f such a method for detecting tweets since the best maximum

alue that can be obtained is not exceeding 40%, while the classi-

al method reaches around 50% at some configurations. 

Collective-based Method Results. As reported in Fig. 8 , our

roposed method has high and superior spam class recall val-

es with an average exceeding 80%, compared to the classical and

symmetric self-learning methods. This proves the effectiveness of

he online unsupervised labeling method in producing automati-

ally updated training datasets which can handle the dynamicity

f social spammers on Twitter. With doing a pair-wise comparison

long possible values of �, we find that the classification thresh-

ld � has a high direct correlation with the spam recall perfor-

ance metrics. In other words, using small � values lead to having

any spam tweets in the new training sets and thus learning over

 diverse of social spammers’ patterns. A large number of com-

unities such as (K = 10) does not provide too much contribution

n detecting spam tweets. This behavior is because the number

f uncorrelated spam campaigns that have attacked every hash-

ag is not more than 5. However, it is recommended to use a large

umber because the uncorrelated spam campaigns in the streamed

weets might increase with time. The tweets frequency has no sig-

ificant impact on improving the spam recall values because, at

ach retraining phase, the training tweets have enough spam ex-

mples that make the classification models robust until the next

etraining phase. It is important to mention that our collective-

ased method is not pre-trained such that before the first train-

ng phase, all streamed tweets are classified as non-spam ones. In-

eed, this explains the behavior of having zero spam recall val-

es at the beginning. The spam class precision values are quite
ow with an average performance of 55%. The main reason for hav-

ng such spam class precision values is because of classifying non-

pam communities as spam ones and thus the training sets will

ontain spam tweets which are truly non-spam ones. The results

f the F-measure metric reported in Fig. 10 are quite stable along

he number of streamed tweets and have almost similar behavior

o the spam recall values. Furthermore, the impact of the number

f communities and the number of tweets frequency is not clear

n both the spam class precision and F-measure, leaving the full

ontrol to the classification threshold ( �). Table 5 summaries the

btained results (average, max and the best achieved classifier) of

he three approaches in terms of recall, precision and F-measure. 

Time Performance Analysis. As the main purpose of our pro-

osed system is to detect spam tweets in real-time, it is impor-

ant to discuss in-depth the system performance in the detection

ime required, the CPU cost, and the needed resources. The recent

tatistics about the number of tweets show that every second, on

verage, around 60 0 0 tweets are tweeted on Twitter, which corre-

ponds to over 350,0 0 0 tweets sent per minute, 500 million tweets

er day and around 200 billion tweets per year. 3 In the streaming

weet mode, Twitter performs sampling and then pushes to the

ndpoint users only 1% of the instant tweets, having a maximum

requency of 60 tweets per second. This frequency imposes a con-

traint on our system to make a decision about every streamed

weet in margin no more than ( 1 
60 ≈ 16 . 7 ms). Recalling that the

omponent responsible about learning and updating new classifi-
http://www.internetlivestats.com/twitter-statistics/ . 

http://www.internetlivestats.com/twitter-statistics/
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Fig. 10. Spam f-measure performance results of two baseline spam detection methods (Classical and asymmetric self-learning ( Chen, Zhang, Xiang et al., 2015 )), and our 

collective-based method, drawn for different method configuration parameter values and the best learning algorithm that performs well at those configurations. 

Table 5 

Summary of the obtained results in terms of recall, precision and F -measure. 

Recall Precision F-Measure 

Approach Average Max ML Average Max ML Average Max ML 

Classical (Traditional ML) 33% 41% J48 71% 77% RF 44% 52% RF 

Asymmetric Self-learning ( Chen, Zhang, Xiang et al., 2015 ) 18% 38% J48 78% 90% RF 28% 47% J48 

Our Framework 91% 98% RF 60% 63% RF 70% 73% RF 
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cation function is not required to work in real-time mode at all. In

other words, that competent can be run in a background process

which trains new classification model when the number of new

streamed threshold condition is satisfied. The component of real-

time spam tweet detection must treat every incoming tweet within

a time less than 16.7 ms in order to prevent an overflow problem

in buffering tweets and the synchronization problem. Hence, in our

system, the adopted real-time tweet features, which are described

in Table 1 , require 3 ms for extraction and 2 ms in the prediction

operation using the learned classification model, requiring 5 ms to

process an incoming tweet. These values have been computed us-

ing a computer with i5 processor, a memory of 4GB, and storage

of 1TB. 

Discussion, implications and future work. The reported re-

sults in Figs. 8–10 , shows that our proposed method has supe-

rior improvement specially in the recall measure with an aver-

age of 80% compared to 35% and 40% for classical and asymmet-

ric self-learning method respectively. The low precision values ob-

tained by our proposed system are not significant compared to the

importance of obtaining high recall values. In fact, spam filtering
n online social networks is conceptually different from the email

pam filtering field. Therefore, classifying a truly non-spam email

s spam one is a serious problem in email spam filtering, known

s a false positive problem, since that email might be too impor-

ant for the receiver. This situation is quite different in online so-

ial networks since in such a context the information circulated

nside the networks are accessible by all registered users. In addi-

ion, due to a large number of tweets especially for trending topics,

he users or applications (e.g. sentiment analysis and tweet sum-

arization) are obviously interested in high quality and relevant

nformation (non-spam tweets) more than low-quality ones (spam

weets). Moreover, classifying mistakenly a tweet as spam while

t is truly non-spam is not a serious problem since another tweet

an compensate the information within misclassified ones. Hence,

aintaining high spam class recall values during the streaming

s more important than having high precision values with low

ecalls. 

Results (especially recall measure) corresponding to the classi-

al method confirmed that increasing size of the training data only

annot bring more improvements to the detection model. In ad-
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ition, updating dataset based on the output of a trained model

annot bring more improvements to the asymmetric self-learning

ethod. We explain this in general by the fact that due to the

ew spamming activities and strategies the distribution of the ex-

racted features changes during the time, while the distribution of

raining dataset features stays the same. In more details, with the

ntroduced experimental results, comparisons and discussions, sev-

ral implications and conclusions can be inferred: (i) the closeness

erformance of different learning algorithms proves that the ma-

or issue in spam detection is directly related to the selected fea-

ures, (ii) due to the spam drift, the distribution of the features

dopted in the literature for real-time spam tweet detection can-

ot be robust and hold for long time; (iii) the low spam recall val-

es obtained by the classical and asymmetric self-learning classifi-

ation models ensure the dynamicity of spam contents in Twitter

nd thus adopting these models are not an efficient solution at all,

iv) relying on increasing the size of the training dataset only can-

ot bring more improvements to the detection model, (v) the ur-

ent need for an automatic online method to label new streamed

weets for the purpose of providing updated dataset, and (vi) re-

raining classification models periodically in batch mode using up-

ated training dataset reduces the problem of features distribution

aking the framework capable of capturing new spamming behav-

ors and thus can reduce the spam drift problems. 

Due to lack of time, many different improvements, adaptations,

tudies, and experiments have been left as future work which

ould be summarized in five dimensions: (i) introducing other

weet content features, (ii) study the effect of feature engineering

ethods, (iii) testing other clustering methods, (iv) reducing the

ffect of class imbalance dataset, and (v) handling the growth of

he collected training dataset. For the first dimension, since spam-

ing contents are usually similar with malicious topics or words,

e intended to employ dynamic feature representations of the tex-

ual content of tweets such as Term Frequency-Inverse Document

requency TF-IDF, bag-of-words, and sparse learning. In the sec-

nd dimension, we will study the effect of using feature discretiza-

ion and feature selection in terms of detection performance and

ime. In fact, discretization can be useful when creating probabil-

ty mass/density functions and also many machine learning meth-

ds produce better results when discretizing continuous attributes

 Kotsiantis & Kanellopoulos, 2005 ). On the other hand, features se-

ection methods produce simplified models that have shorter train-

ng and operational time and also more general in order to reduce

he problem of overfitting ( Miao & Niu, 2016 ). For the third dimen-

ion, we can experiment other clustering algorithms like agglom-

rative clustering which is widely used in information retrieval. In

ddition, the community classification function (stage five in our

ramework) can be improved by making the annotation based on

wo stages. The first stage uses blacklisting method, and the second

tage uses the community function defined in Eq. 14 . The blacklist

tage tests the URLs embedded in the message and the tweet will

e predicted as spam if at least one of the embedded URLs are

lacklisted, otherwise (e.g. tweets didn’t contain URLs or all URLs

re not blacklisted) the prediction will be based on the proposed

ommunity function. In the fourth dimension, since 11% of the

ollected tweets are spam and machine learning algorithms usu-

lly have better performance when classifying the majority class

han the minority class, there is a need to handle the class im-

alance dataset ( Wu, Wen et al., 2017 ). Therefore, several tech-

iques can be tested to reduce the effect of this problem includ-

ng random sampling without replacement, random sampling with

eplacement, cluster sample, and stratified sample ( Rout, Mishra,

 Mallick, 2018 ). Finally, we will address an important design is-

ue regarding the growth of the collected training dataset. As the

ffectiveness of very old spam contents will decrease in the long-

erm run, we will work on reducing the size of the collected data
y dropping the very old tweets in order to quickly adapts clas-

ifiers to capture new spamming behaviors and to reduce training

ime. 

. Conclusion 

As spammers becoming more smarter and crafty through us-

ng complex spamming strategies, characteristics of the statistical

roperties of spam tweets keeps changing over time making the

xisting machine learning based detection method not an efficient

olution. In this work, we have introduced a framework for dy-

amic retraining of supervised real-time tweet-level spam detec-

ion model to reduce the effect of the spam drift problem. The

roposed framework composed of two main modules where the

rst one works in a batch mode and exploits the strength of the

nsupervised learning method to periodically provide an up-to-

ate annotated datasets. The first module learned from unlabeled

weets through studying and analyzing the collective prescriptive

f streamed tweets and their user’s behavior. The second module

as a real-time tweet-level classification model trained based on

7 lightweight features and retrained periodically using the up-

o-date annotated dataset prepared by the first module. We have

xperimented our framework and other two related methods on

ur collected dataset which consists of more 2 million tweets an-

otated by the suspended account-based method. Results show

hat increasing only the size of the training data cannot bring

ore improvements to the spam classification model. In addition,

ur approach has a superior and a controllable spam recall per-

ormance, compared to the classical and asymmetric classification

ethods which in turn has a significant effect in reducing spam

rift. 

As a main strength point or contribution existing in our

ethod, the proposed framework provides an online unsupervised

earning method that does not require a human intervention in the

ay of periodically preparing annotated training datasets, which

howing a significant difference from other real-time spam detec-

ion methods proposed in the literature for handling spam drift

roblem. In addition, our method provides a lightweight tweet-

evel spam detector that works on a real-time basis and up-

ated itself periodically in batch mode where the proposed de-

ector did not require a pre-information like a blacklist of spam-

ing domains, initial annotated dataset, or pre-trained classifier.

oreover, the high recall values make our approach adoptable

or Twitter-based researchers and industries to stream only high-

uality tweets which required by a set of intelligent tweet-based

pplication such as tweet sentiment analysis. 

There is also a limitation in our proposed framework. The

ramework did not address the growth of the collected training

ataset. In fact, the purpose of increasing the size of the training

ata is to eliminate the effect of spam drift problem by incorpo-

ating new spamming activities. However, the contribution of very

ld spam contents will decrease as the correlation of these con-

ents becomes less with the new spam contents in the long-term

un. Therefore, without efficient control to the growth, the classi-

er will not be adapted quickly to capture new spamming behav-

ors. In addition, classifiers will require more training time. More-

ver, it may increase the side effect of class imbalance dataset. As

uture work, we will work on reducing the size of the collected

ata by dropping the very old tweets especially non-spam tweets

fter a certain time. Another limitation is regarding the annotation

ethod used in our collected dataset in which suspended accounts

ay have non-spam tweets. However, there is no public dataset or

ommon evaluation framework suitable to evaluate our framework

nd manually labeling large collection of tweets require a great ef-

ort and resources. 
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Appendix A. Advanced performance results 

Fig. A1. Spam class recall performance results of the three real-time spam detectio

different configurations for each method. 
thods, including classical, asymmetric, and our collective-based methods, drawn at
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Fig. A2. Spam class precision performance results of the three real-time spam detection methods, including classical, asymmetric, and our collective-based methods, drawn 

at different configurations for each method. 
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Fig. A3. Spam class F-measure performance results of the three real-time spam detection methods, including classical, asymmetric, and our collective-based methods, drawn 

at different configurations for each method. 
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