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a b s t r a c t 

As one of the most important issues in the field of mobile robotics, self-localization allows a mobile 

robot to identify and keep track of its own position and orientation as the robot moves through the 

environment. In this work, a hybrid localization approach based on the particle filter and particle swarm 

optimization algorithm is presented, focusing on the localization tasks when an a priori environment map 

is available. This results an accurate and robust particle filter based localization algorithm that is able 

to work in symmetrical environments. The performance of the proposed approach has been evaluated 

for indoor robot localization and compared with two benchmark algorithms. The experimental results 

show that the proposed method achieves robust and accurate positioning results in indoor environments, 

requiring fewer particles than the benchmark methods. This advance could be integrated in a wide range 

of mobile robot systems, helping to reduce the computational cost and improve the navigation efficiency. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Along with the technological advancements in the field of mo-

ile robotics, research interest in autonomous mobile robots has

een increasing in the past decades. A diverse range of applications

n rescue ( Michael et al., 2014 ), mining ( Ma & Mao, 2018 ), agri-

ulture ( Bengochea-Guevara, Conesa-Muñoz, Andújar, & Ribeiro,

016 ), military ( Miksik, Petyovsky, Zalud, & Jura, 2011 ) and civilian

asks ( Choi, Lee, Viet, & Chung, 2017; Le, Phung, & Bouzerdoum,

014; Song, Gao, Ding, Deng, & Chao, 2017 ) encourage researchers

o carry out research works in mobile robotics. Self-localization is

 prerequisite for successful deployment of an autonomous mobile

obot since it identifies the robot’s pose (position and orientation)

s it moves in the environment. By providing an "absolute" posi-

ion estimate to the map frame, robot localization is one of the

ritical issues for mobile robot systems and it is typically the foun-

ation of a variety of tasks, including map building, autonomous

avigation, mobile manipulation, target tracking, etc. 

The mobile robot localization problem falls into two main

ategories: global localization (GL) and local pose tracking (re-

ocalization) ( Thrun, Burgard, & Fox, 2005 ). The local pose track-

ng problem assumes that the initial pose of the robot is already

nown, and it tries to keep track of the robot state over time. The
∗ Corresponding author. 

E-mail addresses: zqb101@mail.ustc.edu.cn (Q.-b. Zhang), pwang@ustc.edu.cn (P. 

ang), chenzh@ustc.edu.cn (Z.-h. Chen). 

m  

i  

(  

t  

ttps://doi.org/10.1016/j.eswa.2019.06.006 

957-4174/© 2019 Elsevier Ltd. All rights reserved. 
L problem is fundamentally different because no prior knowledge

bout the robot’s position is available, hence the robot has to lo-

ate itself from scratch and reduce the ambiguities of pose esti-

ates. Global positioning is crucial to provide an initial pose es-

imate of the mobile robot at startup for autonomous navigation,

eal with the kidnapped robot problem ( Thrun et al., 2005 ), relo-

ate the robot in case of pose tracking failure, etc. However, since

he initial robot pose estimates in many robot systems are speci-

ed by the users, the GL problem has received less attention and

ost studies have been focusing on the re-localization problem. 

A number of localization techniques have been studied in the

ast decades, among which probabilistic methods based on Bayes

ilters are the most common and well-proven approaches. The

ayes Filter recursively updates the conditional probability distri-

ution over the state space of the robot to estimate its pose, such

s the popular Extended Kalman Filter (EKF) ( Jensfelt & Kristensen,

001; Tesli ́c, Škrjanc, & Klan ̌car, 2011 ), Markov ( Fox, Burgard, &

hrun, 1999 ), and Monte Carlo particle filter ( Blanco, González, &

ernández-Madrigal, 2010; Thrun, Fox, Burgard, & Dellaert, 2001;

oo, Kim, Lee, & Lim, 2006 ). EKF based methods ( Jensfelt &

ristensen, 2001; Tesli ́c et al., 2011 ) are generally computationally

fficient but the intrinsic property of EKF makes them inapplicable

o the global localization problem since the position of the robot

ust be modeled by a unimodal Gaussian distribution. This lim-

tation can be overcome by the multi-hypothesis Kalman Filters

 Jensfelt & Kristensen, 2001 ) which represent the posterior dis-

ributions with mixtures of Gaussians, enabling them to describe

https://doi.org/10.1016/j.eswa.2019.06.006
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multi-modal probability distributions. But low-dimensional fea-

tures have to be extracted from the raw sensor data to meet

the Gaussian noise assumption. Grid-based Markov localization

( Fox et al., 1999 ), in contrast, discretizes the whole state space

into regularly spaced grids, each of which corresponds to a pose

hypothesis. It can provide accurate global pose estimates with high

robustness by maintaining an accurate probability density function

over the whole state space with fine-grained grids, which may

impose significant computational costs. Representing the posterior

distribution by a set of samples or particles, the particle filter (PF)

based approaches ( Blanco et al., 2010 ; Wang, Wang, & Chen, 2018;

Woo et al., 2006 ), also known as Monte Carlo localization (MCL)

methods, are most widely used for robot localization since they

could deal with nonlinear and non-Gaussian problems, and almost

arbitrary distributions can be represented. Particle filter implemen-

tations do not rely on explicit feature extraction or data association

as only a likelihood measure between the captured sensor data

and the prior map for a given pose hypothesis is required. In order

to generate pose estimates with acceptable accuracy and success

rate, however, the GL problem requires a sufficiently large number

of particles to cover the state space. In addition, the symmetry

in the environment can prevent or delay convergence to the real

robot pose of the particle set. Hence, MCL methods may perform

poorly if the size of the sample set is small in a large environment

and the complexity and memory cost of this kind of methods will

grow significantly as the state space expands. 

Due to the computational burden of the particles, maintain-

ing a diverse sample set with fewer particles to represent the

multi-modal posterior has become a hot topic in the study of

MCL ( Chien, Wang, & Hsu, 2017; Fox, 2003; Guan, Ristic, Wang,

& Palmer, 2019; Liu, Shi, Zhao, & Xu, 2008 ). The KLD-sampling

( Fox, 2003 ) is an elegant technique that allows adaptive sample

set size, where the number of samples is adjusted dynamically

based on the statistical bounds of the sample-based approxima-

tion quality at each step. But the derivation of the bounds of the

sample size is unreasonable since the particles are sampled from

an importance function rather than the true posterior distribution

( Blanco, González, & Fernández-Madrigal, 2008 ). And it fails to re-

duce the cycle time during the global localization because the ini-

tial sample size is not reduced. Self-adaptive Monte Carlo Local-

ization (SAMCL) incorporates off-line pre-caching and similar en-

ergy region (SER) technique with the conventional MCL algorithm,

where a smaller number of samples is required since particles are

distributed in SER instead of the whole environment ( Zhang, Zap-

ata, & Lépinay, 2012 ). 

Scan matching technique ( Bengtsson & Baerveldt, 2003; Segal,

Haehnel, & Thrun, 2009 ; Wang, Zhang, & Chen, 2015 ) is another

alternative for efficient robot localization since it provides fast, reli-

able and accurate pose estimation without taking care of the robot

dynamics and can be used to improve the precision of probabilistic

methods ( Röwekämper et al., 2012 ). Although most scan matching

approaches cannot be used to globally locate a mobile robot di-

rectly since they require an initial guess of the robot pose, they

have been incorporated with particle filters to speed up global lo-

calization ( Li, Yang, Guo, Wang, & Wang, 2016; Park & Roh, 2016;

Zhu, Zheng, & Yuan, 2011 ). In the Coarse-to-Fine approach ( Park &

Roh, 2016 ), a set of SVM classifiers for different local places are

trained offline to find candidate places where the robot may be lo-

cated in the coarse localization stage, after which the relative robot

pose for each candidate place is estimated with the fast spectral

scan matching algorithm and then a number of particle filters in

the potential regions are exploited to estimate the correct robot

pose in the fine localization stage. 

The particle swarm optimization (PSO), a population based

stochastic optimization technique, has attracted wide attention to
esearchers because of its considerable success in solving non-

ifferentiable, nonlinear and multi-modal problems. The PSO al-

orithm has been adopted for node positioning problem in wire-

ess sensor networks ( Kulkarni & Venayagamoorthy, 2010; Lavanya

 Udgata, 2011; Manjarres et al., 2013; Nguyen, Guo, & Low, 2011 )

nd the visual tracking problem ( Walia & Kapoor, 2014 ; Zhang, Hu,

aybank, Li, & Zhu, 2008 ; Zhao & Li, 2010 ). A few studies have

oncentrated on the robot localization problem with PSO. The

anonical PSO has been applied with global searching in the state

pace for the GL problem in Vahdat, NourAshrafoddin, and Ghidary

2007) and with local searching in a local area around the last

ell-known pose estimate to relocate the robot in case of it get-

ing lost ( Pinto, Moreira, & Costa, 2015 ; Pinto, Moreira, & Costa,

013 ). The PSO algorithm can be combined with other localization

echniques for better GL performance ( Zhang, Wang, Bao, & Chen,

017 ), e.g. the scan matching technique is performed to get accu-

ate pose estimate when a sample gets near to the true robot pose

n our previous work ( Zhang et al., 2017 ). In addition, researchers

ave applied PSO to robot localization ( Chien et al., 2017; Havangi,

ekoui, & Teshnehlab, 2010 ) and SLAM ( Chen, Cai, & Yuan, 2009;

ee & Lee, 2009 ; Zhao, Wang, Qin, & Zhang, 2018; Zuo, Min, Tang,

 Tao, 2018 ) with particle filters. After samples are propagated by

otion prior, multi objective fitness functions ( Chien et al., 2017;

avangi et al., 2010 ) and disturbances like quantum behaviors ( Lee

 Lee, 2009; Zuo et al., 2018 ) or random weights ( Zhao et al., 2018 )

re introduced to maintain the diversity of the population and pre-

ent a pre-mature convergence. However, the robot state may be

mbiguous in some situations. In order to track multiple modes of

he likelihood distribution, multiple swarms are introduced in ( Lee

 Lee, 2009 ) to address this problem. Close swarms are separated

f the distance between them is greater than the threshold, other-

ise they will complete with each other according to the birth and

eath strategy. 

Motivated by the similarities of the particles in PSO and par-

icle filters, this paper proposes a novel global localization ap-

roach, named Particle swarm Optimization Filter (POF), where

ub-swarms corresponding to potential pose hypotheses are iden-

ified and maintained for accurate and robust global localization

ased on the distribution of the particles. As in most works, the

roposed global localization approach consists of two separate

tages: determining the initial robot pose and tracking the robot

ose over time. In the first stage, a revised PSO approach with lo-

al search is adapted to optimize the uniformly distributed par-

icles in the map and the DBSCAN algorithm is used to identify

ll the potential pose estimates with clustered particles. In the

econd stage, multiple pose hypotheses with corresponding sub-

warms are maintained to keep track of the robot trajectory, where

he samples in each sub-swarm are propagated and optimized to

ove to high likelihood region in the posterior density function at

ach step. The main contributions of this work are the introduc-

ion of local search in a geometric neighborhood to the PSO algo-

ithm to balance exploration and exploitation of the samples when

etermining the initial robot pose, and the integration of PF with

he revised PSO algorithm for robust robot pose tracking during

lobal localization. The POF algorithm inherits the advantages of

oth MCL and PSO algorithm, hence it is able to provide accurate

nitial pose estimates of the robot with multiple pose hypotheses,

nd perform precise and robust pose tracking even with great mo-

ion uncertainty. 

The rest of the paper is organized as follows. In Section 2 , the

article filter and PSO algorithm are briefly presented. In Section 3 ,

he proposed POF algorithm for global localization of the robot is

ntroduced. Experimental results carried on real robot data set are

resented in Section 4 . The last section concludes with some dis-

ussions. 



Q.-b. Zhang, P. Wang and Z.-h. Chen / Expert Systems With Applications 135 (2019) 181–193 183 

2

2

 

m  

t  

r  

f

a  

s

x  

z  

w  

s  

t  

i  

r

 

s  

p  

p

 

 

 

 

 

 

 

 

 

 

w

 

a  

l  

d  

s  

{

w  

T  

t  

i

 

s  

b

 

f  

w  

o  

2  

a

w

 

d

w  

 

d  

t  

p  

m  

i

 

w  

t  

p  

(  

t  

p

2

 

o  

o  

t  

a  

i

 

i  

e  

o  

t  

f  

g  

v

v

w  

s  

a  

c

 

w  

B  

t  

n  

s  

a  

m  

w

|
w  

s

x  
. Preliminaries 

.1. Particle filter 

In Bayesian context, robot localization is the problem of esti-

ating the state of a nonlinear dynamic system sequentially in

ime. The robot seeks to estimate a posterior distribution over the

obot’s state space conditioned on the available sensor data. More

ormally, the robot state at time t is denoted as x t , the control is u t 
nd the observation is z t . Then the dynamic system can be repre-

ented with a state transition model 

 t = f ( x t−1 , u t−1 ) + v t ↔ p( x t | x t−1 , u t−1 ) (1)

And an observation model 

 t = h ( x t ) + ω t ↔ p( z t | x t ) . (2)

here v k and w k are independent white noises, f and h are as-

umed to be known functions. In a probabilistic system model,

he transition equation can be formed as the transition probabil-

ty p ( x t | x t − 1 , u t − 1 ) and observation likelihood probability p ( z t | x t ),

espectively. 

As the environment map M is already known, M is omitted for

implicity in the following formulas. Based on the Bayes rules, the

osterior probability density bel ( x t ) = p ( x t | u 0: t − 1 , z 1: t ) of the robot

ose x t is estimated in two consecutive steps: 

(1) Prediction. The motion model p ( x t | x t − 1 , u t − 1 ) is exploited

to predict the current pose x t of the robot in current step,

given control input u t − 1 and previous posterior probability

bel ( x t − 1 ). Under Markov assumption, the predictive density

probability distribution (PDF) of the current robot state is

obtained by following formulation: 

bel ( x t ) = 

∫ 
p( x t | x t−1 , u t−1 ) bel( x t−1 ) d x t−1 (3) 

(2) Update. Incorporating sensor measurement into the pre-

dicted density bel ( x t ) leads to the posterior PDF bel ( x t ) of x t .

Observation z t is assumed to be conditionally independent

of earlier measurements z t − 1 given x t . The posterior density

over x t is obtained using Bayes theorem: 

bel( x t ) = ηp( z t | x t ) bel ( x t ) (4)

here η = p ( z t | z 0: t − 1 ) is the normalizing factor. 

The posterior PDF is rather difficult to obtain and manage for

 general mobile robot system. In particle filter implementations

ike MCL, the probability distribution is approximated by samples

rawn from a target density function defined on the robot state

pace. The robot state x t is represented by N i.i.d. particles: S t =
 x i t } N i =1 

, and the posterior density function is approximated by: 

p( x t | u 0: t−1 , z 1: t ) ≈ 1 

N 

N ∑ 

i =1 

δx i t 
( x t ) (5) 

here δ
x i t 

( x t ) stands for the Dirac delta function centered in x i t .

he denser are the samples in a particular area, the higher is

he probability that the robot is located in that region. In the

deal case, samples are drawn from the posterior distribution x i t ∼
p( x t | z 0: t , u 0: t−1 ) and all individuals of the population have the

ame probability mass. This is unreasonable in general, however,

ecause such a distribution cannot be calculated in a closed form. 

In the Importance Sampling (IS) strategy, samples are drawn

rom a so called importance proposal distribution q ( x t | z 0: t , u 0: t − 1 ),

hich is defined such that its support set includes the support set

f the posterior distribution ( Andrieu, De Freitas, Doucet, & Jordan,

003 ). Therefore, the target distribution can be represented using
 set of weighted samples 〈 x i t , w 

i 
t 〉 , where the importance w 

i 
t is: 

 

i 
t = 

p(x i t | z 0: t , u 0: t−1 ) 

q (x i t | z 0: t , u 0: t−1 ) 
. (6) 

By choosing the transition distribution p ( x t | x t − 1 , u t ) as proposal

istribution, the weights can be calculated iteratively: 

 

i 
t = η

p( z t | x i t ) p(x i t | x i t−1 , u t−1 ) 

p(x i t | x i t−1 
, u t−1 ) 

∝ p( z t | x i t ) (7)

Although the transition model is usually used as the proposal

istribution, it is unreasonable when p( x t | x i t−1 
, u t ) lies in the tail of

he likelihood p( z t | x i t ) . In fact, it has been shown that the optimal

roposal distribution is p ( x t | x t − 1 , u t − 1 , z t ). The weights are nor-

alized such that w 

i 
t = w 

i 
t / 

∑ 

i w 

i 
t . The posterior probability density

s now approximated by: 

p( x t | u 0: t−1 , z 1: t ) ≈
N ∑ 

i =1 

w 

i 
t δx i t 

( x t ) (8) 

If the samples are generated from a sub-optimal proposal, the

eights of most samples will approach zeros after a few itera-

ions. The most classical way of dealing with the impoverishment

roblem is the Sequential Importance Resampling (SIR) strategy

 Rubin, 1988 ). Particles with negligible weights are removed from

he particle set and replaced with more likely ones. After resam-

ling, all particles in the population have the same weights. 

.2. Canonical particle swarm optimization 

A canonical PSO ( Kenndy & Eberhart, 1995 ) algorithm is a global

ptimization meta-heuristics inspired by the collective movement

f birds flocks and has been successfully applied to many applica-

ions. In PSO, a set of N particles (potential solutions) moves inside

 bounded D -dimensional search space, realizing a joint effort to

dentify the optimal solution for a given problem. 

The i th particle is characterized by two vectors: the position x

n the search space and its velocity v . The speed of particle i at it-

ration k is adjusted as a result of three components: the inertia

f the particle at last iteration k −1; the cognition term of the par-

icle, which is based on the personal best solution pbest i found so

ar by the particle itself; and the social term which is based on the

lobal best solution gbest identified by the whole swarm. The new

elocity of this particle at iteration k is: 

 

i,k = w v i,k −1 + c 1 R 1 � (gbes t k −1 − x i,k −1 ) 

+ c 2 R 2 � (pbes t i,k −1 − x i,k −1 ) (9) 

here w is inertial weight, c 1 and c 2 are positive acceleration con-

tants, R 1 , R 2 are random sequences sampled from a uniform prob-

bility distribution U(0,1) and � denotes component-wise multipli-

ation operator. 

The inertia weight w affects whether the particle trends to-

ard exploration in the search space or convergence ( Peer, van den

ergh, & Engelbrecht, 2003 ). The social component drives the par-

icle towards the global best position of the swarm while the cog-

itive attractor drives the particle towards the personal best po-

ition. In order to better explore the multi-dimensional space and

void velocity diverging, the velocity of particles is clamped to a

aximum value v max for each dimension ( Poli, Kennedy, & Black-

ell, 2007 ): 

 v i j | ≤ ε( x UB − x LB ) (10) 

here X LB and X UB are the lower and upper bounds of the solution

pace with respect to dimension j and ε ∈ [0, 1]. 

Then the position of each particle is updated: 

 

i,k = x i,k −1 + v i,k , i = 1 , . . . , N (11)
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Fig. 1. The framework of POF localization. 
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The effectiveness of each candidate solution to the optimization

problem is evaluated by a so-called fitness function ζ ( •). The indi-

vidual best solution of particle x i at iteration k is determined as

follows: 

pbes t i,k = 

{
x i,k if ζ ( x i,k ) > ζ (pbes t i,k −1 ) 

pbes t i,k −1 else 
(12)

In the canonical PSO, the global topology allows particles to ex-

change information of the best solution with all the other parti-

cles, thus the whole population shares the same global best solu-

tion gbest , which can be found by: 

gbest = arg max 
pbes t i 

ζ (pbes t i ) (13)

Relying on its learning strategy to adjust the search direction,

the whole population in the PSO evolves from iteration to itera-

tion until the convergence criterions are met. In general, the con-

vergence criterions can be a maximum number of iterations or a

minimum error. 

3. Proposed algorithm 

MCL methods are effective for re-localization problem where

the area to be sampled is small, but they may perform poorly for

global localization where a great number of particles are required

to represent the evolved multi-modal distribution. In this section,

a novel Particle swarm Optimization enhanced particle Filter (POF)

for robot localization is proposed. The flowchart of the POF frame-

work for robot localization is schematically shown in Fig. 1 to give

a clear view of the proposed approach. We first analyze the occu-

pancy grid map representation of the environment and present an

efficient fitness value computing method that measures the sim-

ilarity between mapped range scan with the environment model.

Then the POF based localization approach is introduced. Different

from MCL, the proposed global approach consists of two separate

stages: finding the initial robot pose estimates and tracking the

robot poses over time until convergence. 

3.1. Fitness function 

In this paper, the working environment is represented by an oc-

cupancy grid map, which is the most typical type for environment

modeling. The full environment map can be defined by the follow-

ing set: 

M = { m i, j | p( m i, j ) ∈ [ 0 , 1 ] , 1 ≤ i ≤ n c , 1 ≤ j ≤ n r } (14)
here n c and n r are the map dimensions that describe the envi-

onment size with the map resolution �m , and i and j are the

ndices of grid cell m i,j . The probability of grid cell m i,j being oc-

upied by obstacles is given by the probability p ( m i,j ), and thus

ells in a grid map can be classified into three states: occupied

pace ( M o ), free space ( M f ) and unknown space ( M u ), as shown in

ig. 2 (a). 

In order to locate itself, the mobile robot is equipped with a 2D

aser range finder. The laser scans the environment, and captures a

aser scan z = { r i , φi } N s i =1 
in the local coordinate, where the i th read-

ng { r i , φi } denotes a measured distance r i to the nearest obstacle

t the given bearing φi . One of the laser beams from the robot to

he nearest obstacle projected on the grid map is shown in Fig. 3 . 

Many algorithms compare laser scan captured from the robot

ose to laser data generated with the ray casting operation from

he candidate solution, which is very time-consuming when the

ample set size is huge. In order to reduce the online computa-

ional burden of ray casting, we only consider the local uncer-

ainty of a laser measurement. The Euclidean distance of a mea-

ured point o to the nearest obstacle in the working space is: 

(o, M) = min 

m i, j ∈ M o 

∥∥o − m i, j 

∥∥, o ∈ M (15)

According to the Euclidean distance, the corresponding fitness

alue of point o can be defined by a signed function shown in

ig. 4 , where σ d is used for error limitation. The nearer the point

s to the closest obstacle or wall, the higher the fitness value is.

nd if the measured point is too far away from the nearest obsta-

le, the fitness value is negative, which implies that the laser point

s unexpected to be located at that position. Considering all the

rid cells in the environment map, a fitness map can be defined

s shown in Fig. 2 (b), where gray level of the image represents the

tness value. With the fitness map, the fitness value of a sample

an be calculated effectively. 

Ideally, the fitness value of a laser point collected by the robot

t the true location is expected to be 1, and the vector of the ex-

ected fitness values of the corresponding laser scan is denoted

y E . On the other hand, the fitness of the i th mapped laser point

.r.t. particle x in the map frame is F i and the corresponding fitness

ector with the laser scan z is denoted by F . The similarity function

im( E,F ), also defined as the fitness ζ ( x, z ) of this particle, returns a

calar value that represents the similarity between vectors E and F .

aximizing the fitness function gives the robot pose that best fits

he current sensor data with the environment. In our experiments,

e use the cosine similarity which is robust to outliers and noises:

im (E , F ) = 

∑ N 
i =1 E i F i √ ∑ N 

i =1 E 
2 
i 

√ ∑ N 
i =1 F 

2 
i 

(16)

The fitness function evaluates the similarity between captured

aser data from the true robot pose and the environment model

round the pose estimates. An illustration of the fitness value with

espect to the true robot pose in Fig. 13 (a) is shown in Fig. 5 . 

.2. POF based initial pose estimation 

.2.1. Problem formulation 

For a real robot system, we usually need to find the initial robot

ose x t at time t = 0 from scratch, based on the initial observation

 0 . The GL problem can be formulated as a minimization prob-

em: 

in − ζ ( x 0 , z 0 ) , 

s.t. x 0 ∈ M f × [ −π, π) ⊆ R 

3 (17)

In order to cover the whole state space, the only way for a

eneric particle filter is increasing the sample set size which intro-

uces high computational cost. On the contrary, POF uses a set of
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Fig. 2. (a) Occupancy grid map of the Intel Research Lab, where white, gray and black pixels represent free space, unknown space and occupied space, respectively. (b) 

Fitness map of the Intel Research Lab. White pixels represent obstacles and the darker pixels mean higher distance. 

Fig. 3. Illustration of a range reading. The red dot denotes the end of the laser 

beam, and corresponding grid cell is marked yellow. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4. Truncated fitness function. 
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Fig. 5. Fitness values of potential poses. (a) The fitness value around the true robot pos

fitness value changes as the relative orientation varies when the robot position is fixed

referred to the web version of this article.) 
amples to search for the global optimum in the free space of the

nvironment, thus the number of particles can be reduced. How-

ver, global localization is a typical multimodal problem since the

obot pose is usually ambiguous in a symmetrical environment and

ultiple optimal solutions may exist at the same time. Hence the

lobal topology of conventional PSO is not appropriate for this kind

f problem. A local topology allows a particle to exchange infor-

ation with a subset of the particles and guides particles to the

otential search region. Several local topologies ( Janson & Midden-

orf, 2003; Kennedy, 1999 ) based on logical neighborhood struc-

ure have been proposed to gain beneficial experience from their

eighbors. Nevertheless, neighbors based on logical topology are

nly the social neighbors rather than the true neighbors in the

olution space. Neighborhood structure based on Euclidean spatial

opology is less studied, maybe due to that it will introduce more

omputational cost for each particle to find its geometric neigh-

ors. But it is possible that each particle might attain more benefi-

ial and effective information from its Euclidean spatial neighbors

or the localization problem. 

In the proposed global localization approach, a modified PSO al-

orithm with Euclidean spatial neighborhood is introduced to find

he global pose estimates of the robot at startup. Particles in the

warm are responsible for exploration of the free space of the en-

ironment, and the detection of the potential regions with opti-

al solutions. A particle with its geometric neighbors searches for

he best solution in its neighborhood. After reaching the maxi-

um of iterations, each particle has its own best knowledge about

he best solution in a local region. With resampling, samples in
e when the orientation is fixed, where the red dot is the true robot pose. (b) The 

. (For interpretation of the references to color in this figure legend, the reader is 
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Table 1 

POF based initial pose estimation. 

Algorithm 1. POF based initial pose estimation 

Input: Environment Map M , observation z 0 
Step 1. Initialization 

Generate uniformly distributed particles S 0 = { x i 0 } N i =1 
in the free space 

Step 2. Evolutionary search 

(a) Evaluate each particle’s fitness 

(b) Update each particle’s personal best solution pbest and local best 

solution lbest 

(c) Update particle’s velocity using Eq. (20) and position using Eq. (11) 

(d) If x i �∈ M f 

Draw x i with the uniform distribution in M f 

Step 3. Normalization and Resampling 

(a) Calculate importance factor ˜ w 

i for the particle set 

(b) Normalize weights and resampling 

Step 4. Clustering 

Grouping the particles into clusters with DBSCAN, generating multiple 

pose hypotheses S 0 = { S h 0 } H h =1 

Output: Best estimate of the robot pose ˆ x 0 with highest weight at t = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustration of the spatial neighborhood of a particle. 
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wrong places are eliminated from the swarm and samples with

high probabilities are replicated. The DBSCAN algorithm is then

employed to identify all the potential pose hypotheses: the whole

swarm is clustered into sub-swarms, each of which corresponds to

a candidate pose estimate at that place. The proposed GL algorithm

is presented in Table 1 . 

3.2.2. Initial pose estimation 

In order to find the initial robot pose hypotheses, the follow-

ing steps are performed. The computational time to obtain an op-

timized particle set is higher than that of the generic particle filter

because we have to calculate the fitness values of particles itera-

tively. However, since it is possible to find an accurate estimate of

the global robot pose with a smaller number of particles than the

generic PF, the overall performance has been improved. 

Step 1: Initialization 

Samples in the proposed approach are uniformly distributed on

the 2D plane with fixed distance interval instead of sampling from

a uniform distribution over the state space, which is adopted by

most MCL methods. The regular distance �D between adjacent

particles decides the density of the sample set, i.e. 1/ �D 

2 parti-

cles are expected per square meters in the free space. The initial

particle set at t = 0 is supposed to be S t = { x i,k t } N 
i =1 

for iteration k

with N samples in total. Each sample in the swarm is described by

a 3-tuple 〈 x, v , π〉 , where x is the potential robot pose, v is the

particle velocity and π = ζ ( x, z ) is the fitness value of the parti-

cle with mapped observation z . Note that explicit reference to the

time step t will be omitted during PSO process from now on for

notational convenience. 

Step 2: Evolutionary search 

The nearest neighbor rule based on the Euclidean distance be-

tween particles is used to determine a particle’s neighborhood. In

the proposed GL approach, the subset is defined as the m near-

est particles within a perception area whose radius is given by δ
(shown in Fig. 6 ). A mathematical expression is given by: 

N i (k ) = { j, j = 1 , ..., m ||| x i,k − x j,k || ≤ δi } (18)

where N i ( k ) denotes the set of neighbors of particle i at iteration k .

The perception radius can be the same or different for all the par-

ticles. Then the local best solution for particle i to follow is defined

by: 

lbes t i,k = arg max 
x j ∈ N i (k ) 

ζ ( x j , z) (19)
In addition, work in Clerc and Kennedy (2002) indicated that a

onstriction factor helps to ensure convergence, which leads to a

odified velocity update equation: 

 

i,k = χ
[
v i,k −1 + c 1 R 1 � (pbes t i,k −1 − x i,k −1 ) 

+ c 2 R 2 � (lbes t i,k −1 − x i,k −1 ) 
]

(20)

here the constriction factor 

= 

2 

| 2 − ϕ −
√ 

ϕ 

2 − 4 ϕ | (21)

nd ϕ = c 1 + c 2 , ϕ > 4. Usually c 1 and c 2 are both set to 2.05, which

ields ϕ = c 1 + c 2 = 4.1 and χ = 0.7298. Although it was originally

uggested that the velocity clamping is unnecessary due to the

resence of the constriction factor, it has been illustrated that the

onstriction factor alone does not necessarily result in the best per-

ormance and these two approaches should be combined ( Eberhart

 Shi, 20 0 0 ). 

For each individual of the swarm, the velocity-position update

rocess is repeated until a new population { x i,k +1 
t } N 

i =1 
of the swarm

s generated. Furthermore, the particles should not get outside of

he map boundary under any circumstances, and a randomly posi-

ioning process is called to reset particle’s pose. Therefore, if a par-

icle moves to invalid regions, the particle’s pose is reset which in-

roduces more randomness to the search procedure. The optimiza-

ion process is repeated until the iteration has reached its maxima

r the best solution has been stuck for several iterations. 

Step 3: Normalization and resampling 

The likelihood of observation for i th particle is defined as: 

p 
(
z| x i ) = 

1 √ 

2 πσπ

exp 

{ 

− ( π i − 1) 
2 

σ 2 
π

} 

(22)

The weights of the particles are normalized: 

˜ 
 

i = 

1 

N 

p 
(
z| x i ), w 

i = 

˜ w 

i / 

N ∑ 

i =1 

˜ w 

i (23)

The number of effective particles is ( Doucet, Freitas, & Gordon,

001 ): 

eff  

1 ∑ 

(
w 

i 
)2 

(24)

If Neff is less than the threshold, the weights of some particles

an be neglected and these particles are discarded through resam-

ling. 

During the PSO iteration, particles near to the local optima are

ttracted to the high likelihood area while particles in other re-

ions are dispersed in the free space of the environment. After re-

ampling, particles that are unlikely to be the correct robot pose

re eliminated, and particles whose surrounding is similar to the
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Fig. 7. Samples before (upper) and after (lower) optimization. 

t  

t  

t

 

m  

b  

t

 

d

d

w  

s  

t  

n  

A  

t

3

 

w  

s  

w  

p  

e  

o  

q  

t  

c  

i  

h

 

i  

s  

a  

m  

m  

w  

p  

d  

M

 

t  

i  

Table 2 

POF based multiple pose tracking. 

Algorithm 2. POF based multiple pose tracking 

Input: Particle set at last step S t = { S h t } H h =1 
, control u t , observation 

z t + 1 , and environment map M 

Step 1. Updating the particle set 

For i = 1 to N do 

(a) Draw x i t+1 ∼ p(x i t+1 | x i t , u t ) 
(b) Compute fitness values π i 

t+1 = ζ (x i t+1 , z t+1 ) 

Step 2. Evolutionary search 

For each sub-swarm S h t+1 

(a) Determine the maximum velocity V max of the particles 

(b) While stopping criterion is not met 

Update the personal best pbest and global best gbest 

Update particle’s velocity using Eq. (26) and pose using Eq. (11) 

Step 3. Normalization and resampling 

(a) Compute importance weights: ˜ w 

i 
t+1 = w 

i 
t p( z t | x i t+1 ) 

(b) Normalize importance weights: w 

i 
t+1 = ˜ w 

i 
t+1 / 

∑ N 
i =1 ˜ w 

i 
t+1 

(c) If Neff is less than threshold T , do 

Draw x i t+1 with distribution w 

i 
t+1 

Add x i t+1 to S t + 1 
Output: State estimate ˆ x t+1 with the highest weight 
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rue laser scan are replicated. Finally, all the samples are relocated

o the dominant modes of the likelihood, which leads to high par-

icle density around local extrema (shown in Fig. 7 ). 

Step 4: Clustering 

Multiple potential solutions for the GL problem may exist si-

ultaneously due to the symmetry of the environment, which can

e distinguished from each other by the density based spatial clus-

ering technique DBSCAN ( Ester, Kriegel, Sander, & Xu, 1996 ). 

The distance between sample x i and x j in the solution space is

efined as: 

 i j = 

√ 

( x i − x j ) W ( x i − x j ) 
T 

(25) 

here W = diag (1, 1, λ) is used to weight each dimension of the

amples. In our experiment, λ is set as 1. The maximum radius of

he neighborhood for clustering is set as Eps = 1 and the minimum

umber of samples to form a dense region is set as MinPts = 5.

fter clustering, we get several sub-swarms (pose hypotheses) dis-

ributed in the 2D planar S 0 = { S h 
0 
} H 

h =1 
. 

.3. POF based multiple pose tracking 

After initialization of the robot pose at startup, a sample set

ith H subsets (sub-swarms) is obtained, each of which corre-

ponds to a potential robot pose. Some of them can be eliminated

ith more accurate measure of the similarity. However, due to the

resence of repeated structures with similar appearances in the

nvironment, the state of the robot can be still ambiguous. On the

ther hand, the diversity of the particle population may disappear

uickly due to random drift in sampling for a generic particle fil-

er, which results a failure of global localization. In order to over-

ome these limitations of particle filters, PSO is integrated with PF

n the proposed approach to optimize the sample set since they

ave similar characteristics. 

In order to overcome the limitations of particle filter, PSO

s integrated with PF in the proposed approach to optimize the

ample set since they have similar characteristics. In the proposed

pproach, particles in a subset try to find the local best pose esti-

ate at each step for the associated pose hypothesis as the robot

oves. When more distinguishable measurements are captured,

rong pose estimates are eliminated through resampling until the

article set converges to a local space. Owing to the improved

iversity preserving ability, POF is more robust than the standard

CL approach for global localization in ambiguous environments. 

The proposed multiple pose tracking method for global localiza-

ion is summarized in Table 2 , which consists of three main steps

n each cycle. It can be noted that when the swarm converges to
ne pose hypothesis, the proposed approach turns into a pure pose

racking method. 

Step 1: Particle set update 

Based on the control command u t and particle set S t = { S h t } H h =1 

t last time step, a new sample set S t+1 = { S h 
t+1 

} H 
h =1 

is constructed

t the next time step t + 1 according to the robot’s motion model.

n other words, the positions of particles in different sub-swarms

re updated. 

Step 2: Evolutionary search 

In the conventional MCL methods, each particle tacks its per-

onal pose as the robot progresses. In the proposed approach, how-

ver, particles in each sub-swarm track the robot’s pose in the cor-

esponding hypothesis. When a new observation is obtained, parti-

les in a sub-swarm are optimized to move towards high likelihood

egion. The survivor selection mechanism chooses the best solution

o form the population of the next generation. In each sub-swarm,

he particles are attracted to move to the global best solution with

he highest fitness value of this group. Hence, the velocity update

ormula for i th particle in h th sub-swarm is defined by: 

 

h i ,k +1 = χ
[
v h i ,k + c 1 R 1 � (pbes t h i ,k − x h i ,k ) 

+ c 2 R 2 � (lbes t h,k − x h i ,k ) 
]

(26) 

here lbest h,k stands for the global best solution found in h th sub-

warm at iteration k . As in Eq. (26) , particles in each subset are at-

racted to local regions with high probabilities until the overlap be-

ween observation and the environment is maximized for the best

article, which is the optimal estimate for each pose hypothesis at

urrent time step. 

With the optimization process, most particles in each subset

ather around regions with high likelihood. As a result, the impov-

rishment can be avoided to a great extent. And since the effect

f each particle is enhanced, the number of required samples for

lobal localization is decreased. 

Step 3: Normalization and resampling 

As the robot moves, the weights of particles in incorrect places

educe rapidly and the number of effective particles may be small.

ith resampling, particles with negligible weights are discarded

nd particles with high weights are replicated. Therefore, unlikely

ose hypotheses together with sub-swarms are eliminated gradu-

lly from the global localization results. Meanwhile, the pose hy-

othesis near the true robot pose is maintained and enhanced. This
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Fig. 8. (a) Selected different poses and corresponding laser scans for global localization tests. (b) Generated particle set at startup for global localization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Global localization results at typical locations. 

Robot’s pose e d [cm] e θ [ °] Success (%) 

# 1 3.89 ± 1.09 0.04 ± 0.08 100 

# 2 4.51 ± 0.18 0.01 ± 0.02 100 

# 3 3.49 ± 0.75 −0.03 ± 0.17 100 

# 4 3.94 ± 0.41 0.02 ± 0.05 100 

# 5 3.90 ± 0.54 −0.06 ± 0.06 100 

# 6 3.52 ± 0.45 −0.14 ± 0.16 92 
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process is repeated until the particle swarm converges to the real

robot pose. By maintaining multiple pose hypotheses using sub-

swarms, we can robustly track the robot’s state in the environment

where similar places exist. 

4. Experimental results 

In order to validate the presented POF based localization algo-

rithm, experiments were conducted on the public data set of In-

tel Research Lab and Fort AP Hill ( Andrew & Nicholas, 2003 ). The

size of the Intel Research Lab is about 30 m × 30 m that includes a

number of noisy offices, some of which have a similar appearance.

The 2D occupancy grid map (with resolution �m = 5 cm) of the

environment is built with the SLAM technique, where an accurate

estimate of the robot’s pose over time is obtained. The whole map

contains 601 × 611 = 367,211 cells and the area of free space is

about 535 m 

2 . Based on the grid map, the robot was carried to

various positions and asked to estimate where it is. The true robot

poses at various test positions were compared with estimated re-

sults for both POF approach, the standard MCL approach and the

SAMCL approach ( Zhang et al., 2012 ) to validate the performance

of the proposed approach. Three experiments were conducted. The

first evaluated the performance of the proposed approach in find-

ing the initial robot pose. The second evaluated the accuracy of

local pose tracking, i.e. tracking a single pose hypothesis. Finally,

the third evaluated the overall performance of global localization

in both Intel Research Lab and Fort AP Hill. 

4.1. Initial pose estimation 

The maximum number of iteration during global localization is

set as 10. As shown in Fig. 8 (a), 6 different positions of the map

with corresponding range scans are selected for global localization

tests. In order to cover the free space of the environment uni-

formly, the distance interval between adjacent samples is set as

�D = 0.5 m and the orientations of the samples are generated uni-

formly in the range [ −π , π ). The generated particle set for global

localization is shown in Fig. 8 (b), where there are 1735 particles in

total. 

Then the particle swarm moves through the free space of the

environment to search for the correct robot pose from iteration to

iteration. The localization results are summarized in Table 3 . The

position error ( e d ) is the distance between the estimated position

and the real position of the robot, and the orientation error ( e θ )

is the difference between the estimated orientation and the true
rientation. A success match is defined if the position error be-

ween the global best estimate and the true robot pose is lower

han 10 cm and orientation error is lower than 2 ° in the experi-

ent. The success rate is equal to the number of successful local-

zation divided by the total number of trials. 

According to Table 3 , the average position error is lower than

he map resolution (5 cm) and the average orientation error is

ower than 0.2 ° for different cases. If the robot pose is unique (pose

1–5), the proposed GL algorithm is able to accurately locate the

obot while the success rate may decrease if the robot pose is am-

iguous (pose #6). There are multiple places with similar appear-

nce for pose #6, i.e. the initial pose is ambiguous in the symmet-

ical environment, and the success rate is 100% if considering all

he founded pose hypotheses. 

The distance �D is an important parameter and the perfor-

ance of the proposed approach against �D is evaluated at pose

1 for simplicity. Fig. 9 (a) illustrates how the localization error

hanges as the iteration number increases when �D = 0.5 m. The

lgorithm behavior as the distance increases can be observed in

ig. 9 (b). When the maximum number of iterations is set to 6, the

ercentage of successful localization against the distance is repre-

ented by the solid line in Fig. 9 (b). On the other hand, the av-

rage number of iterations used for successful localization against

he distance is denoted by the dashed line. As the distance grows,

he percentage of success decreases and the number of mean iter-

tions for successful localization is increased. 

In addition to the case study discussed above, the accuracy of

ose estimation was evaluated as well. The experiments were per-

ormed by simulation, i.e. robot poses were randomly generated on

he grid map and corresponding laser range scans for localization

ests were generated by ray casting algorithm. Thus we can com-

are the localization results with the ground true values. For this

xperiment, a total of 300 different positions (shown in Fig. 10 (a))

ere chosen from the whole environment map. Fig. 10 (b) shows

rror distribution diagrams, where the median and mean errors
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Fig. 9. Global localization results. (a) GL error vs. iteration. (b) Success rate and mean iterations vs. particle distance. 

Fig. 10. (a) Different test locations for global localization in the grid map of Intel Lab. (b) Error distributions for the localization results. 
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Fig. 11. Trajectories used for pose tracking tests. The starting points of the trajecto- 

ries are indicated by red points. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 4 

Pose tracking error comparison. Errors in 

mean ± standard deviation. 

Trajectory e d [cm] e θ [ °] 

#1 MCL 11.38 ± 4.75 1.53 ± 0.99 

POF 3.93 ± 1.72 0.11 ± 0.10 

#2 MCL 19.06 ± 5.50 1.10 ± 0.78 

POF 3.88 ± 1.82 0.07 ± 0.07 

#3 MCL 14.86 ± 6.64 1.67 ± 1.31 

POF 3.99 ± 1.44 0.07 ± 0.06 
ere (2.88 cm, 2.51 cm, 0.05 °) and (3.08 cm, 2.66 cm, 1.40 °), respec-

ively. 

.2. Pose tracking with one hypothesis 

The second experiment evaluated the local pose tracking perfor-

ance of the proposed localization approach. As the initial robot

ose was already known, only one pose hypothesis would be main-

ained. We used 300 particles in MCL and 50 particles with a max-

mum number of 6 iterations in the proposed approach. As shown

n Fig. 11 , the robot kept track of 3 trajectories separately. In tra-

ectory #1, the robot walked out of the room and turned left to

alk along the corridor. In trajectory #2, the robot moved along

he corridor without turning. In trajectory #3, the robot changed

ts heading direction and moved from one corridor to another one.

Comparative results for the proposed POF method and the stan-

ard MCL method are summarized in Table 4 , and the error curves

or trajectory #1 are shown in Fig. 12 . The current version of the

lgorithm is implemented with MATLAB on a computer with a

.5 GHz Intel Core i5 processor. The average computational time

equired for MCL and POF for each step is 65 ms and 96 ms, re-

pectively. According to Table 4 , the mean errors of the proposed

pproach were less than 5 cm (map resolution) in position and 0.2 °
n orientation which demonstrates the satisfactory performance of

he proposed localization algorithm. As shown in Fig. 12 , the ori-

ntation error remains approximately 0 ° and the position error re-

ains approximately equal to the map resolution for POF during

he movement of the robot. As the results suggest, 300 particles
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Fig. 12. Pose tracking error for trajectory #1. (a) Position error curve. (b) Rotation error curve. The solid line and the dashed line indicate the proposed POF method and the 

MCL method, respectively. 

Fig. 13. (a) Input range scan for the global localization test. (b) Top 10 potential pose hypotheses. 
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were not sufficient to cover the uncertainty area for MCL when the

robot pose had a great change, and the pose tracking error of MCL

is greater than that of POF. 

4.3. Global localization 

As discussed above, the robot pose may be ambiguous in sym-

metrical environment that has more than one place with simi-

lar appearance, as the case of pose #6. In order to find the true

robot pose, the robot has to move around to take more informa-

tion of its surrounding to eliminate incorrect estimates until the

swarm converges to the correct position. For a typical pose ( x, y ,

θ ) = (16.4644 m, −13.3241 m, 0.7757 rad) from where we started

the global localization test, the associated range scan is shown in

Fig. 13 (a). 

The identified top ten positions that obtained high fitness val-

ues are shown in Fig. 13 (b). Among all the candidate positions, po-

sition #1 gained the largest fitness value. Furthermore, the distance

between the ground truth and the global estimate of the robot

pose was smallest, which implied that the robot was nearest to po-

sition #1 and the input range scan matched closely with the grid

map at this position. 

Fig. 14 illustrates the evolution of generated sample set over

time for the proposed approach, MCL method and SAMCL method

during global localization. The first row shows the performance

of the proposed method where the identified pose hypotheses
re marked in different colors after initial pose estimation. In the

econd row the performance of the conventional MCL method

s shown, in which 10,0 0 0 samples were uniformly distributed

round the free space of the environment. In the third row, 10,0 0 0

articles were sampled in SER rather than the entire map for

AMCL. The average computational time for POF, MCL and SAMCL

uring pose tracking for each step is 2.41 s, 2.21 s and 2.23 s, re-

pectively. As shown in Fig 14 , all the three approaches identified

he robot’s correct localization in the end. However, MCL failed to

onsistently determine the correction position as the robot moves,

hile POF was able to maintain multiple pose hypotheses that pro-

ided accurate and robust pose estimation results. SAMCL performs

etter than MCL since pose samples were initialized in regions that

ave similar energy to the robot’s surrounding. The average po-

ition errors for three methods at each time step are shown in

ig. 16 (a). 

We then conducted the global localization experiments in the

ort AP Hill and the evolution of the three sample sets over time

s illustrated in Fig. 15 . The area of Fort AP Hill is about 516 m 

2 ,

ence the numbers of used particles for three approaches are the

ame as that in Intel Research Lab. As shown in Fig. 15 , the robot

as placed in the corridor at startup and moved forward until the

ample set converged to the correct location. The average positions

rrors of three methods are depicted in Fig. 16 (b). As these results

uggest, the average position errors at the beginning for both MCL

nd SAMCL in Fort AP Hill are lower than that for both methods
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Fig. 14. Localization results in Intel Research Lab using proposed method (first row) compared with the standard MCL method (second row) and the SAMCL method (third 

row). The images in each row (from left to right) depict the corresponding estimation results at the same ground truth position. The green line indicates the trajectory of the 

robot, and the pink line represents the measured range scan data at each time step. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 15. Localization results in Fort AP Hill using proposed method (first row) compared with the standard MCL method (second row) and the SAMCL method (third row). 

The images in each row (from left to right) depict the corresponding estimation results at the same ground truth position. The green line indicates the trajectory of the 

robot, and the pink line represents the measured range scan data at each time step. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 16. Performance comparison between the proposed localization, the MCL method and the SAMCL algorithm in Intel Research Lab (a) and Fort AP Hill (b). 
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in Intel Research Lab, since there are multiple similar local places

in the Intel Research Lab. In addition, these results show that the

proposed approach is able to provide an accurate initial pose es-

timation and maintain a low position error during the localization

process when compared to the other two methods. 

The experiment results indicate that both MCL and SAMCL per-

form better in Fort AP Hill than in Intel Research Lab since the

former environment is asymmetric. However, in an ambiguous en-

vironment, e.g. the Intel Research Lab, multi-modal distributions

arise for the problem of global localization where multiple solu-

tions have to be maintained during the localization process. Parti-

cle filter implementations usually suffer from the problem of pre-

mature convergence due to the loss of diversity of the particle set,

which may lead to localization failure. In the proposed approach,

the particle set is divided into distinct clusters through optimiza-

tion in local regions instead of independent particles in MCL and

SAMCL during the first stage of GL. In the second stage of the pro-

posed approach, particles in each cluster collectively optimize the

current best solution for the corresponding pose hypothesis from

iteration to iteration until the whole population converges. Hence,

the diversity of particles can be maintained until the entire popu-

lation converges to the correct solution, minimizing the influence

of premature convergence. As the experiment results suggest, the

proposed POF based GL method shows better performance com-

pared with MCL and SAMCL in typical indoor environments. How-

ever, the proposed approach may cause more problems with unde-

sirable clusters in non-ambiguous environments and the number of

particles used for multiple pose tracking can be reduced. 

5. Conclusion 

The main contribution of this work is the development of an in-

tegrated localization approach that combines a local search based

PSO algorithm with the particle filter for robust and accurate

global localization. In order to estimate the initial robot pose, a re-

vised PSO algorithm with local search is presented, where multiple

pose hypotheses are identified using the DBSCAN technique. Multi-

ple solutions are maintained as the robot moves until the particle

set converges to the true robot pose. Experimental results demon-

strate that the POF algorithm outperforms the MCL and SAMCL al-

gorithm both in the accuracy and robustness of the localization

results, with comparable computational cost to that of MCL and

SAMCL. 

Although developed in the particle filter framework as MCL, the

POF approach maintains multiple pose hypotheses with local opti-

mization of clustered particles instead of the individual particles in

MCL and SAMCL throughout the localization process. Hence, POF is

more robust than MCL and SAMCL due to its good diversity pre-

serving performance. In addition, the iterative optimization process

results in more compact sub-swarms, which achieves more accu-

rate position estimates with fewer particles for the mobile robot. 

As a future work, the proposed POF approach can be extended

for more efficient global localization in large-scale environments.

Scalability of the localization approach is another problem that has

to be taken into account in practical applications, since the num-

ber of particles required to represent the probability distribution of

the robot state is proportional to the area of the environment. In

order to perform localization in real time, there are several ways

to be considered. Embedding semantic information of the environ-

ment and segmentation of the environment map are two efficient

ways to identify local places where the robot may be located. In

addition, laser scan matching and self-adaption techniques such

as KLD-sampling can be integrated with POF as well, since scan

matching approaches are capable of providing accurate pose esti-

mates with only a few particles and the KLD-sampling is able to

reduce the sample set size when tracking the robot state. 
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