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Dynamic texture analysis has been the focus of intensive research in recent years. Thus, this paper
presents an innovative and highly discriminative dynamic texture analysis method, whose signature is
composed of the weights of the output layer of a randomized neural network after a training procedure.
This training is performed by using the pixels of slices of each orthogonal plane of the video (XY, YT, and
XT) as input feature vectors and corresponding output labels. The obtained video signature provided an
accuracy of 97.05%, 98.54%, 97.74% and 96.51% on the UCLA-50 classes, UCLA-9 classes, UCLA-8 classes
and Dyntex++, respectively. These results, when compared to other dynamic texture analysis methods,
demonstrate that our descriptors are very effective and that our proposed approach can contribute sig-
nificantly to the field of dynamic texture analysis.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic texture analysis is an important research area of com-
puter vision responsible for extracting meaningful characteristics
from dynamic texture videos. This field has gained much attention
due to the range of applications, such as monitoring of traffic in
highway (Chan & Vasconcelos, 2005; Derpanis & Wildes, 2011),
human activity recognition (Kellokumpu, Zhao, & Pietikdinen,
2008), facial expression recognition (Zhao & Pietikainen, 2007),
medical videos analysis (Brieu et al., 2010), crowd analysis and
management (Chan, Morrow, & Vasconcelos, 2009), among others.

Although the understanding and perception of dynamic tex-
tures are easy to humans, their formal definition and description
using computational methods are a hard task (Gongalves &
Bruno, 2013a). Unlike traditional texture images, dynamic textures
are sequences of images with texture patterns that represent a dy-
namic object or process and present certain stationary properties
in space and time (Doretto, Chiuso, Wu, & Soatto, 2003). Therefore,
dynamic textures can be defined as an extension of traditional
texture images to the spatial and temporal domain, which corre-
spond to the appearance and motion characteristics, respectively
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(Gongalves & Bruno, 2013b). Examples of dynamic textures are sea
waves, boiling water, waterfall, metal corrosion process and fire.

The addition of the time domain causes new challenges in the
characterization task, since it is necessary to combine appearance
and motion information (e.g. some methods analyze textures based
on motion only), and to process it with low computational com-
plexity. To overcome this, many approaches have been proposed,
each one investigating characteristics of the dynamic texture
video in a different way. Most of the existing dynamic texture
methods can be divided into six categories: based on motion (e.g.
optical flow (Fazekas & Chetverikov, 2007; Péteri & Chetverikov,
2005; Polana & Nelson, 1997; Soygaonkar, Paygude, & Vyas,
2015)); based on models (e.g. linear dynamical systems (Chan &
Vasconcelos, 2008), hidden Markov model (Qiao & Weng, 2015)
and ensemble support vector machines (Yang, Xia, Liu, Zhang, &
Huang, 2016)); based on filters (e.g. wavelet filters (Dubois, Péteri,
& Ménard, 2009) and Gabor filter (Gongalves, Machado, & Bruno,
2011)); based on geometric properties (e.g. spatiotemporal motion
trajectory (Otsuka, Horikoshi, Suzuki, & Fujii, 1998)); based on
discrimination (e.g. local binary patterns (Tiwari & Tyagi, 2016a;
2016b; 2017; Zhao & Pietikainen, 2007)); and based on agents (e.g.
deterministic partially self-avoiding walks (Gongalves & Bruno,
2013b; 2013c)).

In this paper, we propose a method based on randomized neu-
ral network to extract signatures from dynamic textures, aiming to
provide a novel tool to, but not limited to, the range of applications
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aforementioned. Our contributions are: (i) demonstrating that a
powerful method for texture analysis can be adapted success-
fully for dynamic texture analysis, obtaining accuracies higher than
many literature methods with competitive processing time, and (ii)
opening a promising research field for dynamic texture analysis
and recognition. To explain the method, the remainder of the pa-
per is organized as follows. Randomized neural network algorithm
is described in Section 2. Section 3 describes the proposed method
for dynamic texture analysis. In Section 4, we describe the experi-
mental setup and datasets. Results and discussion are presented in
Section 5, which is followed by the conclusion in Section 6.

2. Randomized neural network

A randomized neural network has a unique hidden layer feed-
forward with a very fast learning algorithm (Huang, Zhu, & Siew,
2006; Pao, Park, & Sobajic, 1994; Pao & Takefuji, 1992; Schmidt,
Kraaijveld, & Duin, 1992). In this neural network, the weights of
the hidden neurons are randomly generated and the weights of
the output neurons can be determined according to the least-
squares method. This solution makes the learning process faster
and, therefore, allows the neural networks to deal with problems
that require more processing speed. Thus, due to its simplicity,
easy implementation, high predictive performance, among other
characteristics, this type of neural network has attracted the
interest of researchers in recent years (Bacciu, Colombo, Morelli, &
Plans, 2018; Dudek, 2019; Pratama et al., 2017; Pratama, Angelov,
Lughofer, & Er, 2018; Zhang & Suganthan, 2016; Zhang, Wu, Cai,
Du, & Yu, 2019).

To describe the learning algorithm used in this work, let X =
[%71,%3,...,Xy] be a matrix of N input feature vectors with p at-
tributes, and D = [d}, d3, . .., dy] be a matrix with the correspond-
ing label vectors. Initially, the weights of the hidden neurons,
which can be generated using a uniform or Gaussian distribution,
are arranged as a matrix W. In this matrix, each line represents
the weights of a determined hidden neuron ¢ and the first column
represents the bias weights.

A constant —1 is added to each feature vector X; as first
attribute in order to connect to the bias weights of the hidden
neurons. Next, the output of each hidden neuron is computed
using the activation function ¢(WX), which may be, for instance, a
sigmoid or hyperbolic tangent function. The output of ¢(.) is used
to compose a matrix Z = [Z1,23, ..., Zy] of feature vectors, which
are used as input in the output layer. Again, —1 is added as first
attribute to each vector Z; in order to connect to the bias weights
of the output neurons.

Finally, the weights of the hidden neurons are organized as a
matrix M, in which each line represents the output of an output
neuron. These weights aim to satisfy the equation D = MZ. For this
purpose, we can use the Moore-Penrose pseudo-inverse (Moore,
1920; Penrose, 1955), thus resulting in the following equation

M = DZ" (zZ"). (1)

Moreover, it is common in many problems that the matrix
ZZ' becomes near singular, resulting in an inaccurate inverse. To
solve this problem, it is possible to use the Tikhonov regularization
(Calvetti, Morigi, Reichel, & Sgallari, 2000; Tikhonov, 1963), accord-
ing to the following equation

M =DZ" (zZ" + A, (2)

where 0 <A <1 and [ is an identity matrix.
3. Proposed method

In this section, we describe the proposed method for dynamic
texture analysis, which is based on the static texture signature

presented in Sa Junior and Backes (2016). Fig. 1 illustrates the
main steps of the proposed method. This method first divides the
dynamic texture video into three orthogonal planes, as can be seen
in Fig. 1(a). For each orthogonal plane, matrices of input feature
vectors X and its respective labels D are built from each slice.
These input and output matrices are submitted to randomized
neural network, and the weights of the output layer are used
as signature of the slice (Fig. 1(b)). Next, the average of these
signatures is the signature of the orthogonal plane. Lastly, the
final signature is the concatenation of the three orthogonal plane
signatures, as shown in Fig. 1(c). Additionally, Fig. 2 shows a
flowchart of our proposed method.

It is important to mention that we chose scalar values as labels
in order to simplify our method, since this procedure implies
a neural network with only one output neuron, whose weights
can be directly used as image descriptors. However, there is no
technical reason that prevents using more neurons in the output
layer. In this case, it is necessary to deal with the problem of how
to combine weights from multiple output neurons in order to
build a concise and discriminative signature.

3.1. Orthogonal planes

The three orthogonal planes strategy is a well-established and
efficient way to analyze appearance and motion characteristics of
dynamic texture videos (Gongalves & Bruno, 2013b; Tiwari & Tyagi,
2016b; Zhao & Pietikainen, 2007). Basically, the video is divided
into three orthogonal planes, denominated XY, XT and YT. Consider-
ing the video as a cube, the orthogonal planes are slices in vertical
(YT), horizontal (XT) and time (XY) axes. In other words, in the case
of the XY plane, the slices are the frames of the video. The idea is
that each plane highlights different characteristics of the dynamic
texture: the XY plane is responsible for the appearance characteris-
tics, and the XT and YT planes describe the motion characteristics.

The planes can be formally described by means of the defini-
tion of neighboring pixels for XY, XT and YT. In the XY plane, the
neighboring pixels of a pixel i are defined by the neighborhood
function vX¥(i). This one defines a pixel j as neighbor of i if the
Euclidean distance between them is lower than or equal to R, and
the temporal coordinates t; and t; are equal, according to

vy = {j | /& —%)2 + i —y;)? <R and r,-=t,-}, (3)

where x, y and t are the Cartesian coordinates of the pixel.
Similarly, the neighborhood function for the XT and YT planes
are defined as:

V()T = {j | V& —%)7+ (G —t)2 <R and y; :y,-}, (4)

V@ =i VE- P+ -y sRandx =x ). ()

3.2. Randomized neural network based signature

In this paper, we propose to use the average of the randomized
neural network output weights M of the slices of each orthogonal
plane to characterize a dynamic texture. For this, we first propose
to divide each slice of a given orthogonal plane €2 into L x L (L is
odd) joint windows. From these windows, we construct the input
and output vectors: the gray level value of the central pixel i is
considered a desirable label d; and the neighboring border pixel
values are the output feature vector X;. Fig. 3 illustrates this step
for a window 5 x 5 from a slice of the XY plane. For each slice of
an orthogonal plane, we construct a matrix of feature vector Xq)
concatenating the feature vectors x; obtained from windows lo-
cated on every possible slice pixel position, that is, position where
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Fig. 1. Main steps of the proposed method: (a) set of matrices of input and output vectors for each orthogonal plane; (b) the randomized neural network training; (c) the

average weights of the output layer for each orthogonal plane are concatenated.

Fig. 2. Flowchart of the proposed method.
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the window is completely within the slice (for instance, a slice
5 x5 allows 9 different positions for a window 3 x 3). The matrix
of labels D) is composed of the labels d; associated to the pixels.

To try to analyze micro and macro textures, we propose win-
dows of three different sizes 3 x3, 5 x5 and 7 x 7 with neighbor-
ing border pixels determined by a circle with radius less than /2,
/8 and /13, respectively (same windows and radii proposed in
Sa Junior & Backes, 2016). However, it is important to stress that
the efficiency of this strategy depends on the resolution of the
video. The order criterion for the elements {x;,x;,...,x,} is estab-
lished according to Fig. 3.

After that, we define ¢(-) (sigmoid function) and the values of
the weight matrix W. Generally, these weights are generated in a
random way and can be different in each new training step. How-
ever, in feature extraction methods, it is important that feature
vector values be always the same for the same image. Therefore, it

is necessary to use always the same weights values for an image.
In this way, we use the classical linear congruent generator (LCG)
(Lehmer, 1951; Park & Miller, 1988) to obtain the pseudorandom
uniform numbers for the matrix W, according to
V(in+1)=(axV(n)+b) mod c, (6)
where V is the random number sequence and the values of a, b and
c are parameters. The sequence V has length E = Q(p + 1), where
p and Q are the number of attributes of the input vector X; and the
number of neurons of the hidden layer, respectively. It is started by
V(1) =E + 1, and the values of the parameters are a=E +2, b=
E+3 and c = E2 (values used in Si Junior & Backes, 2016). Then,
the matrix W is composed of the vector V divided into Q segments
of p+ 1 values. Finally, the values of the matrices W and X (each
line) are normalized to zero mean and unit variance.
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Fig. 3. Example of extraction of an input feature vector and its respective label
from a window of a slice of the orthogonal plane XY.

The feature vector is constructed based on the matrix M, which
becomes a vector f = DZT (ZZ" + AI)~!, where A = 10-3. Note that
f has length Q +1 due to the bias value. Thus, we propose the
feature vector of an orthogonal plane €2 as the average u of the
vectors f obtained from its slices. In this way, for the XY plane,
the feature vector is given by

fi
B f
Fxyy=1 . ; (7)

fr

where T is the number of slices of the XY plane (i.e. the number
of frames of the video). At this point, it is important to stress that
we averaged the vectors f in order to speed up our method, once
learning the regression weights over all frames simultaneously
would make matrices X and D extremely large and, therefore,
computing the descriptors would be a very slow task.

Thus, to describe appearance and motion characteristics of the
dynamic texture, a combined feature vector F(Q) considering the
three orthogonal planes is given by the concatenation

@(Q)1 = [Fixy). Fixry Frn)l- (8)

The second feature vector can be obtained by concatenating the
previous features vectors using different values of window size L,
according to

o =[0Q)r,. #(Q)s,. ... F(Qn)y, |- (9)

The feature vector Ao depends on the value of Q, which can
provide different characteristics for each value. Thus, we can create
a final feature vector Yq, q,....q, by concatenating the vectors Aq
for different values of Q, according to

Y0,.0...00 = [Aqys Agys - -5 Ag, |- (10)

3.3. Computational complexity

Taking into account a dynamic texture N x N x N, let I be one of
its slices N x N and W; be a window L x L. Considering that the core
of our method is to solve the equation f= DZT(ZZ")~!, we can
divide its analysis into some fundamental steps. First, the method

sweeps T; = (N — L+ 1)2 pixel positions to construct the matrices
X and D from a slice I using W;. Next, computing Z = ¢ (WX) and
transposing Z require approximately T, =Q(p+1)(N—-L+1)2 +
QIN-L+1)2 and T3=(Q+1)(N—L+1)2 operations, respec-
tively. Multiplying DZT, computing ZZ" and obtaining its inverse re-
quire roughly T, = (N—L+1)2(Q+1), Ts = (Q+1)2(N-L+1)2
and Tg = (Q +1)3 operations, respectively (there are methods
more efficient to compute Tg). Finally, multiplying DZT by (ZZT)~!
requires approximately T; = (Q + 1)2 operations. Thus, we can
consider the total time to compute f as T = ZL] T; = O(N?), once
Q L and p are usually smaller than N and do not depend on the
number of pixels in a slice. Also, considering that f is computed
for three window sizes in our method and that each dimension of
the dynamic texture has N slices, we can establish that our pro-
posed signature has time complexity 3NO(N?), that is, it is O(N3).
It is worthwhile to mention that we suppressed some operations
(Tikhonov regularization, computation of the randomized weights
W and of the average of the feature vectors in each orthogonal
plane etc.) in order to simplify our demonstration, once they do
not change our method’s time complexity.

4. Experiment

In order to validate the proposed method and compare its
efficiency to other ones in recognition tasks, the signatures were
classified using 1-nearest neighbor (1-NN) with Euclidean dis-
tance. We have adopted this classifier due to its simplicity, thereby
emphasizing the features obtained by the methods. An experi-
mental setup similar to Ravichandran, Chaudhry, and Vidal (2009),
Ghanem and Ahuja (2010), Tiwari and Tyagi (2016a) (for the
UCLA-50, UCLA-9 and UCLA-8 databases) and Gongalves, Machado,
and Bruno (2015) (for the Dyntex++ database) was adopted for
the evaluation of the proposed method. For the Dyntex++ and
UCLA-50 databases, we divided them into test and training sets
using the k—fold cross-validation scheme with 10—fold and 4—fold,
respectively. For the UCLA-8 and UCLA-9 databases, we used half
of them as the training set and the remainder for testing. This
experiment was repeated 20 times and the average accuracy (ACC)
and standard deviation of all trials were reported.

The dynamic textures databases used as benchmark to evaluate
the proposed method were:

e Dyntex++ (Ghanem & Ahuja, 2010): This database is a
compiled version of the Dyntex database (Péteri, Fazekas,
& Huiskes, 2010). The videos of this database were pre-
processed from their original form to evidence their
representative dynamics. Thus, a single dynamic texture is
shown in each video. This database consists of 3600 videos
divided into 36 classes.

e UCLA (Saisan, Doretto, Wu, & Soatto, 2001): this database
is a benchmark in the area of dynamic texture classifi-
cation. It contains 200 videos separated into 50 different
dynamic texture classes. Each video has 75 frames of 48
x 48 pixels. In addition to the original database with 50
classes (UCLA-50), we have used two different variations
proposed in Ravichandran et al. (2009) for comparison with
other methods. The first reorganizes the UCLA database to
combine the videos taken from different viewpoints. Thus,
the database is reduced to 9 classes (UCLA-9): smoke (4),
boiling water (8), fire (8), sea (12), water (12), flower (12),
waterfall (16), fountains (20), and plants (108). The value
in parentheses is the number of samples per class. The
second variation discards the videos of plant class, because
this class far outnumbered the other classes. Therefore, this
variation contains 8 classes (UCLA-8).
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Table 1

Classification results for the feature vector Ao with different val-

ues of Q.
Q No of descriptors ~ ACC (%)

UCLA Dyntex-++
{09} 90 96.50 (£1.80)  96.71 (£0.84)
{19} 180 96.70 (£2.00)  96.84 (+0.87)
{29} 270 97.55 (£1.60)  96.64 (+0.96)
{39} 360 97.35 (+£189)  96.67 (+0.85)
{49} 450 97.85 (£159)  96.49 (+0.97)
{59} 540 97.50 (£1.96)  96.38 (+0.97)
Table 2

Comparison of the proposed method with feature vector Y combin-
ing different values of Q.

{Q1, @2}  No of descriptors  ACC (%)
UCLA Dyntex-++
{09,19} 270 97.05 (+1.87) 97.22 (+0.84)
{09,29} 360 97.25 (+1.85) 96.96 (+0.88)
{09,39} 450 97.10 (£ 1.81) 96.81 (+0.85)
{09,49} 540 97.70 (+1.54) 96.74 (+0.87)
{09,59} 630 97.60 (+1.65) 96.80 (+0.86)
{19,29} 450 97.55 (+1.66) 96.98 (+0.87)
{19,39} 540 97.35 (+1.89) 96.75 (+0.88)
{19,49} 630 97.90 (+1.63) 96.58 (+0.89)
{19,59} 720 97.80 (+1.74) 96.73 (£0.92)
{29,39} 630 97.50 (+1.85) 96.96 (+0.86)
{29,49} 720 97.95 (+1.60) 96.70 (+0.92)
{29,59} 810 97.40 (+1.93) 96.69 (+0.90)
{39,49} 810 97.80 (+1.56) 96.69 (+0.86)
{39,59} 900 97.75 (£ 1.71) 96.67 (+0.88)
{49,59} 990 98.00 (£1.63) 96.51 (+0.94)
Table 3

Comparison on the UCLA-50 database (4-fold cross valida-
tion). The compared results were obtained from Tiwari and
Tyagi (2016a) and Tiwari and Tyagi (2017).

Method ACC (%)
KDT-MD (Chan & Vasconcelos, 2007) 89.50
DFS (Xu, Quan, Ling, & Ji, 2011) 89.50
3D-OTF (Xu, Huang, Ji, & Fermiiller, 2012)  87.10
CVLBP (Tiwari & Tyagi, 2016b) 93.00
HLBP (Tiwari & Tyagi, 2016a) 95.00
MEWLSP (Tiwari & Tyagi, 2017) 96.50
LBP-TOP (Zhao & Pietikainen, 2007) 94.50

Proposed method (Yg19) 97.05 (+1.87)

5. Results and discussion

To choose an image signature, we performed several experi-
ments with different values of Q and 1-NN classifier (Euclidean
distance) on the UCLA-50 and Dyntex++ datasets using 4-fold and
10-fold cross-validation schemes, respectively. For this, we used
a sparse interval of Q €{9,19,...,59} in order to increase the
chance of finding a suitable number of hidden neurons. Thus, in
order to perform a fair comparison with other dynamic texture
analysis methods, we considered the results shown in Tables 1
and 2 and adopted the best set of values Q of one database to
classify another database. In this way, for the UCLA-8, UCLA-9
and UCLA-50 databases, we used the best parameter values of the
Dyntex++ database ({09, 19}); and for the Dyntex++ database, we
used the best parameter values of the UCLA-50 database ({49, 59}).

Table 3 shows the comparison of our proposed method on
the UCLA-50 database using 4-fold cross validation. The results
demonstrate that our signature obtains the highest average
accuracy (97.05%). Also, the standard deviation of our success
rate confirms that our method is very discriminative in this
dataset, since the lower bound accuracy (97.05%—1.87% = 95.18%)

Table 4

Comparison of the proposed method with other dynamic texture methods on
the UCLA-9 and UCLA-8 databases (half of the samples for training and the
remainder for testing). The compared results were obtained from Tiwari and
Tyagi (2016a) and Tiwari and Tyagi (2017).

Method ACC (%)
UCLA-9 UCLA-8

3D-OTF (Xu et al., 2012) 96.32 95.80
CVLBP (Tiwari & Tyagi, 2016b) 96.90 95.65
HLBP (Tiwari & Tyagi, 2016a) 98.35 97.50
MEWLSP (Tiwari & Tyagi, 2017) 98.55 98.04
MBSIF (Arashloo & Kittler, 2014) 98.75 97.80
High level feature (Wang & Hu, 2015)  92.67 85.65
DNGP (Rivera & Chae, 2015) 98.10 97.00
WMEFS (Ji, Yang, Ling, & Xu, 2013) 96.95 97.18
Chaotic vector (Wang & Hu, 2016) 85.10 85.00
LBP-TOP (Zhao & Pietikainen, 2007) 96.00 93.67

Proposed method (Yg19) 98.54 (+£1.56)  97.74 (+£2.99)

Table 5
Comparison of the proposed method and others on the
Dyntex++ database (10-fold cross validation).

Method ACC (%)

96.14 (+0.77)
97.72 (+0.43)
91.39 (+1.29)
83.86 (+1.40)
96.51 (+£0.94)

RI-VLBP (Zhao & Pietikdinen, 2007)
LBP-TOP (Zhao & Pietikainen, 2007)
DPSW (Gongalves & Bruno, 2013b)
CNDT (Gongalves et al., 2015)
Proposed method (Y 4959)

is superior to the results of all the compared methods, except
for MEWLSP. Moreover, it is worth stressing the relatively re-
duced number of descriptors of our method (270 features) when
compared to the MEWLSP signature (1536 features).

Tables 4 shows the comparison of our proposed approach with
other dynamic texture analysis methods in the variants of 9 classes
and 8 classes of the UCLA database. The results shown in both the
experiments demonstrate that our signature is among the most
discriminative methods. For instance, on the UCLA-9 experiment,
the highest accuracy is 98.75% (MBSIF method), which is within
the interval of standard deviation of our approach (average accu-
racy of 98.54%, with +1.56% of standard deviation). Similarly, on
the UCLA-8 experiment, the highest accuracy is 98.04% (MEWLSP
method), which is again within the interval of standard deviation
of our approach (average accuracy of 97.74%, with +2.99% of
standard deviation). Moreover, when we consider the number of
descriptors, our signature is very reduced when compared to the
signature lengths of the aforementioned compared methods. For
instance, our method’s signature is 95.61% and 82.42% smaller than
MBSIF (6144 features) and MEWLSP (1536 features) signatures,
respectively.

Table 5 shows the comparison of our proposed signature
against other dynamic texture analysis methods on the Dyntex+-+
database. In this experiment, our signature (Y 4959) reached the
second highest accuracy (96.51%) and has 28.91% more descrip-
tors than the LBP-TOP signature of 768 features adopted for
the Dyntex++. However, it is important to emphasize that all the
other signature configurations for the Dyntex++ in Table 2 present
higher success rates and less descriptors than those of Y 4g59. For
instance, the signature Yg;9 provides 97.22% of accuracy and has
64.84% less descriptors than the LBP-TOP signature.

Also, we performed an additional comparison with the results
presented in the paper Andrearczyk and Whelan (2018), which
presented accuracies of 99.50%, 98.35%, 99.02%, 98.58% on the
UCLA-50, UCLA-9, UCLA-8 and Dyntex++, respectively, using Con-
volutional Neural Networks. For this, we used again the signatures
Y19 for the three UCLA datasets and Y4959 for the Dyntex++.
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Table 6

Comparison of our proposed method using SVM and LDA
classifiers with the CNN based approach proposed by
Andrearczyk and Whelan (2018). (*) - results obtained from
Andrearczyk and Whelan (2018).

Database SVM LDA CNN

UCLA-50 98.15 ( +1.46) 99.65 (+£0.33)  99.50*
UCLA-9 99.36 (+£0.68)  99.17 (£ 1.55) 98.35*
UCLA-8 98.61 (+146) 98.85(+3.14)  99.02*
Dyntex++  92.82 (+0.69) 84.61 (+0.86) 98.58*

Also, we used the same validation procedure adopted in the
aforementioned paper. Thus, because these results are higher than
the success rates we obtained using 1-NN (except for the UCLA-9),
we decided to classify our signatures using other two classifiers:
Linear Discriminant Analysis - LDA, and Support Vector Machines
- SVM (we used a polynomial SVM from Weka (Holmes, Donkin,
& Witten, 1994) using class SMO, which implements Sequential
Minimal Optimization algorithm (Platt, 1999), with the default
parameter values of this class). Table 6 shows our obtained accura-
cies, which are slightly higher than that of the paper (Andrearczyk
& Whelan, 2018) on the UCLA-9 using SVM, and on the UCLA-50
and UCLA-9 using LDA. Also, it is important to emphasize that our
results on the UCLA-8 using LDA and SVM, even though slightly
smaller than 99.02%, have intervals of standard deviation that
reach this accuracy. This allows us to conclude that our perfor-
mance on UCLA-8 is equivalent to that of the paper (Andrearczyk
& Whelan, 2018). On the Dyntex++ database, however, our results
were inferior, indicating that our proposed approach needs to
be improved to extract more discriminative signatures from this
dataset.

The proposed method took, on average, 0.14 s and 0.19 s to
compute a signature from a single dynamic texture from the
Dyntex++ and UCLA-50 databases, respectively. Also, our ap-
proach took, on average, 0.004 s (UCLA-50) and 0.61 s (Dyntex++)
to classify the feature vectors from the whole databases using
the 1-NN with cross-validation. In these experiments, we used
a 3.60 GHz Intel(R) Core i7, 64GB RAM and 64-bit Operating
System. The results demonstrate that our proposed signature is
built in a reasonable time, considering that dynamic textures
from the UCLA-50 and Dyntex++ databases have 48 x 48 x 75 and
50 x 50 x 50 pixels, respectively. The time for classification is also
efficient in the both datasets.

Finally, we would like to comment some aspects of our pro-
posed method. First, it used a randomized neural network with
offline learning, but we think that it does not limit it since there
are works that extend this kind of neural network to online learn-
ing (for instance, Pratama et al., 2017; Pratama et al., 2018). This
suggests that our proposed method could be applied in real-time
applications. Second, we believe that our proposed approach has
two advantages when compared to CNNs: 1 - CNNs require a
large number of samples to be trained. In our approach, it is not a
drawback, once each “image” is the source of the training set and
even small images provide large training datasets (for instance, an
image 50 x 50 provides a training set of 48 x 48 = 2304 (using
a window 3 x 3) input feature vectors and respective labels); 2 -
Our proposed descriptors can be used in many classifiers, which
can be chosen based on several criteria (speediness, simplicity,
robustness etc.).

Thus, in the light of the high accuracies obtained by our
method, its feature vectors with reduced number of descriptors,
and its relatively low time complexity, we can affirm that our pro-
posed signature has good performance in these three important
aspects and, therefore, is comparable to the most discriminative
state-of-the-art methods present in the literature.

6. Conclusion

This paper presented a highly discriminative dynamic texture
analysis signature based on the weights of the output layer of a
randomized neural network after using the pixels of a video as
input feature vectors and corresponding labels. The obtained re-
sults are very promising, since they are among the highest success
rates obtained in four video benchmarks. Also, some of our results
were obtained with a relatively small number of descriptors
when compared to other methods evaluated in this work. Thus,
based on this performance, we can conclude that our proposed
approach provides a powerful tool to recognize dynamic textures
and, therefore, opens a rich line of research in computer vision. As
future works, we intend to exploit different architectures for the
neural network and new ways of building datasets for training it.
Also, an interesting line of research is to combine our proposed
method with other approaches, such as complex networks, fractal
dimension, local binary patterns and so on.
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