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a b s t r a c t 

The set-union knapsack problem (SUKP) is a generalization of the standard 0–1 knapsack problem. It is 

NP-hard, and has several industrial applications. Several approximation and heuristic approaches have 

been previously presented for solving the SUKP. However, the solution quality still needs to be enhanced. 

This work develops a hybrid binary particle swarm optimization with tabu search (HBPSO/TS) to solve 

the SUKP. First, an adaptive penalty function is utilized to evaluate the quality of solutions during the 

search. This method endeavours to explore the boundary of the feasible solution space. Next, based on 

the characteristics of the SUKP, a novel position updating procedure is designed. The newly generated so- 

lutions obtain the good structures of previously found solutions. Then, a tabu based mutation procedure 

is introduced to lead the search to enter into new hopeful regions. Finally, we design a tabu search pro- 

cedure to improve the exploitation ability. Furthermore, a gain updating strategy is employed to reduce 

the solution time. The HBPSO/TS is tested on three sets of 30 benchmark instances, and comparisons 

with current state-of-the-art algorithms are performed. Experimental results show that HBPSO/TS per- 

forms much better than the other algorithms in terms of solution quality. Moreover, HBPSO/TS improves 

new best results at 28 out of the 30 instances. The impact of the main parts of the HBPSO/TS is also 

experimentally investigated. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The set-union knapsack problem (SUKP) ( Arulselvan, 2014;

oldschmidt, Nehme, & Yu, 1994 ) is a generalization of the well-

nown 0–1 knapsack problem ( Pisinger, 1995 ), in which the total

eight of the item set is defined by the sum of the weight of ele-

ents in the item set. We define a set U = { 1 , 2 , . . . , n } of elements

ith weight w j for each element j ∈ U , and a set S = { 1 , 2 , . . . , m } of

tems with profit p i for each item i ∈ S . Each item i ∈ S corresponds

o a subset U i ⊆U . Given a set A ⊆S , the profit sum and the weight

um of A can be calculated by: 

 (A ) = 

∑ 

i ∈ A 
p i , (1)

nd 

 (A ) = 

∑ 

j∈ ⋃ 

i ∈ A U i 

w j , (2)
∗ Corresponding author. 
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espectively. The SUKP is to find a subset of S that maximizes the

rofit sum where the weight sum cannot be exceed a given capac-

ty C . If U i 

⋂ 

U i ′ = ∅ for i, i ′ = 1 , . . . , m, i � = i ′ , the SUKP becomes the

tandard 0–1 knapsack problem. 

Let x = (x 1 , . . . , x m 

) T ∈ { 0 , 1 } m be a solution of the SUKP. x i = 1

ndicates that item i is selected, and x i = 0 otherwise. Let A x = { i ∈
 : x i = 1 } . It is obvious that the 0–1 vector x maps to the subset

 x ∈ S one to one. Let �( x ) be the set of selected elements by A x 

or solution x ): 

(x ) = 

⋃ 

i ∈ A x 
U i . (3) 

he weight sum of A x can be calculated by W (A x ) = 

∑ 

j∈ �(x ) w j .

ubsequently, SUKP can be formulated as follows by constrained

–1 programming ( He, Xie, Wong, & Wang, 2018 ): 
 

max f (x ) = 

∑ m 

i =1 p i x i , 
s.t. 

∑ 

j∈ �(x ) w j ≤ C, 

x ∈ { 0 , 1 } m . 

The SUKP has been shown to be NP-hard ( Goldschmidt et al.,

994 ), and has been used in various domains including database

https://doi.org/10.1016/j.eswa.2019.06.007
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partitioning ( Navathe, Ceri, Wiederhold, & Dou, 1984 ), financial

decision making ( Kellerer, Pferschy, & Pisinger, 2004 ), flexible

manufacturing ( Tang & Denardo, 1988 ), and smart cities ( Tu &

Xiao, 2016 ), etc. It has been also used in practical applications such

as the key-pose caching problem ( Lister, Laycock, & Day, 2010 ). In

the key-pose caching problem, for each frame, there are n charac-

ters which will be rendered whereby each character interpolates a

set of m key poses. For a character, its key-poses remain valid for a

period of time, and can be shared with other characters. The key-

pose caching problem maximizes the number of rendered charac-

ters by populating a cache of locations with skinned key-poses. Let

the set of elements U be equal to the set of all key-poses needed

by the crowd in a given frame, and the weight of each key-pose

is set as 1. Each item refers to a crowd member, and its profit is

equal to the number of occurrences of the key-pose pair. Then, the

key-pose caching problem can be formulated as the SUKP. 

Let I j be the set of items that contain element j . More formally,

I j = { i ∈ S : j ∈ U i } . The frequency of an element j is defined as d j =
| I j | . Let d = max { d j , j = 1 , . . . , n } . 

Due to its wide applications, the SUKP has recently received in-

creased attention. An exact algorithm based on dynamic program-

ming ( Goldschmidt et al., 1994 ) has been presented to solve the

SUKP. Because of the NP-hard performance of SUKP, this method is

limited in application to very small problem instances. 

In 2014, Arulselvan (2014) presented a greedy strategy based

approximation algorithm (A-SUKP) for solving the SUKP. This

greedy approach took into account all probable subsets with car-

dinality equal to 2 or lower, whose weight sum is within the ca-

pacity C . A-SUKP caused a gradual increase in every subitem in the

subsets as the ratio 
p i 

W 

′ 
i 

(where W 

′ 
i 

= 

∑ 

j∈ U i 
w j 

d j 
) decreased, if its in-

clusion did not violate the capacity C . The best of these augmented

sets was returned as the approximation solution of the SUKP. The

A-SUKP has approximation ratio 1 

1 −e 
− 1 

d 

. The approximation ratio

reduces with increasing d . When d becomes large, A-SUKP has an

undesirable approximation solution with low efficiency ( He et al.,

2018 ). 

In 2018, He et al. developed a new BABC ( He et al., 2018 ) to

solve the SUKP. The BABC developed a novel food source updating

strategy to generate new solutions. The food source updating strat-

egy used a real vector to represent a solution, and defined surjec-

tion mapping to transform a continuous vector into a binary vec-

tor. In addition, BABC used a greedy repairing method to deal with

infeasible solutions. The time complexity of the BABC is O ( M 

4 ),

where M = max { m, n } . The BABC was tested on 30 instances. Ex-

perimental results showed that BABC performs better than GA,

ABC bin , and binDE. However, from their experimental results, one

can observe the averaged standard deviation (about 166.98) was

relatively large, which implies that there is still scope for great im-

provement in the quality of the solutions BABC produces. 

Due to their robustness and parallelism, population-based evo-

lutionary algorithms have become powerful tools for solving var-

ious optimization problems. The SUKP is a generalization of the

standard 0–1 knapsack problem. Many population-based evolu-

tionary algorithms can be found for solving variants of knapsack

problems ( Changdar, Mahapatra, & Pal, 2015; Chen & Hao, 2016;

Chen, Hao, & Glover, 2016; Haddar, Khemakhem, Hanafi, & Wilbaut,

2015; 2016; He, Wang, He, Zhao, & Li, 2016a; He, Zhang, Li, Wu, &

Gao, 2016b; Meng & Pan, 2017 ). In contrast, the literature based

on population-based evolutionary algorithms to the SUKP is quite

poor. 

Particle swarm optimization (PSO) is one of the most popular

stochastic algorithms ( Wang, Sun, Li, Rahnamayan, & Pan, 2013 ).

It was first proposed by Eberhart and Kennedy ( Kennedy & Eber-

hart, 1995 ), with an expectation that it would solve continuous

problems. In order to solve discrete problems, Kennedy and Eber-
art (1997) developed a discrete version of the PSO. Subsequently,

ifferent variants of discrete PSO have been successfully applied in

arious domains of combinatorial optimization ( Jiang et al., 2017 ),

uch as feature selection ( Chuang, Yang, & Li, 2011 ), the obnox-

ous p-median problem ( Lin & Guan, 2018a ), influence maximiza-

ion ( Gong, Yan, Shen, Ma, & Cai, 2016 ), the constrained shortest

ath problem ( Marinakis, Migdalas, & Sifaleras, 2017 ), gene selec-

ion and cancer classification ( Jain, Jain, & Jain, 2018 ), data allo-

ation problem ( Mahi, Baykan, & Kodaz, 2018 ), and cost sensitive

ttribute reduction ( Dai, Han, Hu, & Liu, 2016 ). We have been moti-

ated to devise a BPSO to solve the SUKP because discrete PSO has

een used successfully in solving the difficult optimization prob-

ems. 

This paper proposes a hybrid BPSO with tabu search (HBPSO/TS)

o solve the SUKP and to obtain good quality solutions. The main

ontributions of this work are presented as follows: 

1. The SUKP is a constrained binary programming problem.

When applying the BPSOs to the SUKP, the fist issue to ad-

dress is how to maintain the feasibility of candidate solu-

tions during the search, i.e.,how to handle the constraints.

The penalty function technique is the most simple and pop-

ular method to avoid the violation of the problem con-

straints. Because the value of penalty parameter is problem-

dependent, it is hard to select a suitable value. To address

this issue, we employ an adaptive penalty function to deal

with the constraints. It is relatively easy to find a proper

value of the penalty parameter in our proposed adaptive

penalty function. In addition, this method makes the search

focus on the boundary of the feasible solution space, and

improves the efficiency. 

2. Traditional discrete PSOs use different sigmoid functions

( Kennedy & Eberhart, 1997 ) to generate new positions. These

new positions produced by these position updating meth-

ods have good diversity. However, these position updating

methods can not use the previously found solutions to guide

the search. We redefine the method of updating positions

based on the SUKP characteristics. With regard to combina-

torial optimization problems, it is generally considered that

high-quality solutions usually have a high degree of sim-

ilarity. The new position updating method uses previously

found results to generate new positions. In addition, we use

a tabu based mutation procedure to diversify the search. 

3. It is commonly acknowledged that local search significantly

improves the performance of population-based evolutionary

algorithms. The HBPSO/TS employs a tabu search procedure

to improve the solution quality. In the tabu search that has

been put forward, our self-adaption penalty function is used

as the fitness function, so as to focus the search on the bor-

der between the feasible area and infeasible area. From the

perspective of the quality of the solutions, the tabu search

improves the algorithm performance markedly. Furthermore,

a technology for updating gains has been put forward to

lower the calculation expense. 

4. From a computational perspective, our proposed algorithm

outperforms existing approaches for solving the SUKP in

terms of solution quality. Moreover, the suggested algorithm

finds the new best solutions for 28 out of 30 instances.

The average standard deviation of the proposed algorithm is

71.44, which is much smaller than that of the BABC (about

166.98). The results show that the HBPSO/TS is robust. 

The rest of this article is structured as follows. Section 2 intro-

uces an adaptive penalty function to deal with constraints. Sec-

ion 3 describes the HBPSO/TS to solve the SUKP. Section 4 reports

he computational results, and presents comparisons between

BPSO/TS and existing algorithms. Finally, Section 5 concludes
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Algorithm 1 General structure of HBPSO/TS. 

Input: An instance of SUKP. 

Output: The best solution g _ best found. 

1: for t from 1 to p do 

2: Randomly generate an initial solution x t ∈ { 0 , 1 } m . 

3: x t ← tabu search procedure (x t ) . 

4: Initialize p _ best t = x t . 

5: end for 

6: Let P = { x 1 , · · · , x p } , and g _ best = argmax { g(x t , R ) , t = 1 , · · · , p} . 
7: while (the maximum number of generations G max has not be 

reached) do 

8: Randomly select a particle x t from P . 

9: Generate a random number δ ∈ [0 , 1) . 

10: if 0 ≤ δ < 

1 
3 then 

11: y ← p _ best t . 

12: end if 

13: if 1 
3 ≤ δ < 

2 
3 then 

14: y ← p _ best l , where l is randomly selected from { 1 , · · · , p} , 
and l � = t . 

15: end if 

16: if 2 
3 ≤ δ < 1 then 

17: y ← g _ best 

18: end if 

19: x t ← position updating procedure (x t , y ) . 

20: x t ← tabu based mutation procedure (x t ) . 

21: x t ← tabu search procedure (x t ) . 

22: if g(x t , R ) > g(p _ best t , R ) and x t � = p _ best b , b = 1 , · · · , p then 

23: Let p _ best t = x t . 

24: end if 

25: if f (x t ) > f (g _ best) and x t ∈ � then 

26: Let g _ best = x t , L = f (x t ) . 

27: end if 

28: end while 

29: return g _ best and f (g _ best) . 
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ith a summary of major results and suggestions for future

esearches. 

. The adaptive penalty function 

The SUKP is a constrained binary programming problem. Our

BPSO/TS employs a tabu search to intensify the search. During the

abu search, it is important to maintain the feasibility of candidate

olutions. The exact penalty function is one of the most popular

enalty functions used to maintain feasibility during a search. Let

( x ) be the sum of constraints violation: 

(x ) = max 

{ ∑ 

j∈ �(x ) 

w j − C, 0 

} 

. (4)

hen, the exact penalty function can be defined as follows: 

(x, θ ) = f (x ) − θ × η(x ) , (5)

here θ > 0 is a penalty parameter. It is commonly acknowledged

hat the parameter θ is problem-dependent ( Ali & Zhu, 2013; Lin,

hu, & Ali, 2016 ), and the value of θ is hard to determine. 

In 2013, Ali and Zhu (2013) proposed an adaptive penalty func-

ion to deal with constraints for continuous optimization prob-

ems and showed that the value of the parameter in the adaptive

enalty function is relatively easy to select. In this work, we em-

loy the adaptive penalty function to deal with the constraints: 

(x, R ) = 

{ 

f (x ) i f η(x ) = 0 ;
L − R × η(x ) i f η(x ) > 0 and f (x ) ≥ L ;
f (x ) − R × η(x ) i f η(x ) > 0 and f (x ) < L, 

(6) 

n which, R > 0 is a penalty parameter, and L is inferior limit of the

KUP overall highest value. It is necessary to use the present best

unction value among the feasible solutions to update the L value. 

Consider the following unconstrained binary optimization prob-

em: 

(UP ) 

{
max g(x, R ) 
s.t. x ∈ { 0 , 1 } m . 

e make the following observation. 

bservation 1. Suppose that L is a lower bound on the global

aximum value of SUKP, if R is large enough, then SUKP and prob-

em ( UP ) have the same global maximizers and global maximal val-

es. 

The HBPSO/TS uses g ( x, R ) as a fitness function during the tabu

earch. Benefiting from the application of the adaptive penalty

unction g ( x, R ), HBPSO/TS can maintain the feasibility of candidate

olutions. Moreover, because of this, the particles will be encour-

ged to develop diversified feasible areas close to the boundary of

he feasible zone, and to look for new and better solutions. 

. The proposed HBPSO/TS algorithm 

This section describes the HBPSO/TS algorithm for the SUKP.

irst of all, the overall framework of HBPSO/TS is described. We

hen illustrate the main parts of HBPSO/TS. 

.1. General framework of the proposed HBPSO/TS 

Kennedy and Eberhart (1995) first proposed PSO to solve

ontinuous optimization problems. To solve discrete problems,

ennedy and Eberhart (1997) used a sigmoid function for the

ransformation of solutions into discrete space, and this gave rise

o a discrete PSO. Subsequently, many variants of BPSOs have been

eveloped for solving different discrete optimization problems. Re-

ently, García and Pérez (2008) designed a novel discrete PSO
ethod, the jumping PSO (JPSO), for solving combinatorial opti-

ization problems. Because movement in the scattered space is

ot continuous, the concept of speed is meaningless; therefore,

PSO operates and maintains the appeals of the best locations free

f the velocity component. Each particle has three attractors: its

ersonal best position, the best position of its social neighbor-

ood, and the global best position. During the search, each particle

oves close to one of the attractors. Because of the high simplicity

nd great convenience in its operation, JPSO has been successfully

sed to set covering problem ( Balaji & Revathi, 2016 ), and to set

over problem ( Lin & Guan, 2018b ). 

On the basis of a JPSO framework, we employ the detailed ma-

erials of the SUKP, redefine the position updating rule, and pro-

ose a hybrid BPSO with tabu search (HBPSO/TS) to solve SUKP. 

As a natural evolution algorithm, HBPSO/TS is established on

he basis of the population. Algorithm 1 provides the overall

ramework of HBPSO/TS to SUKP. HBPSO/TS is started from a pre-

iminary swarm P = { x 1 , . . . , x p } . Each preliminary solution x t in the

et P is produced in a random manner (line 2), and is then im-

roved through a process of tabu search (line 3). Let p _ best t and

 _ best be the personal best position of particle t and the global

est position of the swarm, respectively. p _ best t is initialized as

p _ best t = x t (line 4), and g _ best = argmax { g(x t , R ) , x t ∈ P } (line 6).

ubsequently, an iteration process is repeated until a fixed gen-

rations G max is reached. At each generation, our HBPSO/TS first

hooses a particle t at random (line 8). Next, x t randomly se-

ects one of the following attractors: the personal best position,

ther best positions, and the global best position. Specifically, we

hoose an attractor that is denoted by y in a random manner from
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{ p _ best t , p _ best l , g _ best} , where p _ best t , and p _ best l are the per-

sonal best positions of the t th and l th ( t � = l ) particles, respectively;

and g _ best is the global best position. Then, x t moves towards the

chosen attractor y by the position updating procedure in line 19.

To generate diversified solutions, a tabu based mutation procedure

is employed (line 20). Finally, the newly generated solution x t is

optimized by the tabu search procedure in line 21. In order to

maintain the difference, x t is used to update p _ best t if g(x t , R ) >

g(p _ best t , R ) , and x t is not identical to p _ best j , j ∈ { 1 , . . . , p} (lines

22–24). If x t is feasible and better than g _ best, we let g _ best = x t 

(lines 25–27). 

Below, we describe the methods of using tabu search to

strengthen the search, the working principles of the mutation pro-

gram based on tabu, and the approach to update particle positions

more clearly. 

3.2. Tabu search procedure 

Because local search can significantly improve the performance

of a BPSO, we employ a tabu search procedure to refine the so-

lutions obtained by the tabu based mutation procedure. The pro-

posed tabu search procedure uses the traditional one-flip neighbor-

hood N ( x ). More formally, N(x ) = { y ∈ { 0 , 1 } m : 
∑ m 

i =1 | x i − y i | ≤ 1 } . 
Let y be the best solution found so far. Algorithm 2 presents the

tabu search procedure. It begins with an initial solution x . Some

passes are included in the tabu search process, with every pass

containing I max iterations. At the beginning of a pass, all variables

can be flipped freely (line 4). In each iteration, we flip a variable

according to the definition of flip gain. The gain ( i, x ) of a variable

flip gain refers to the augmentation of the fitness function brought

by the variable x i flipping. In paticular, we make the following def-

inition: 

gain (i, x ) = g(x ′ , R ) − g(x, R ) , (7)

where x ′ = (x 1 , . . . , x i −1 , 1 − x i , x i +1 , . . . , x m 

) . Line 2 calculates the

flip gains using (7) . The tabu search procedure then iteratively
Algorithm 2 Tabu search procedure. 

Input: An initial solution x . 

Output: The optimized solution y . 

1: Initialize y = x . 

2: Calculate the flip gains gain (i, x ) , i = 1 , · · · , m , according to (7). 

Let f lag = 1 . 

3: while f lag = 1 do 

4: Initialize κ(i ) = 0 , i = 1 , · · · , m , and let f lag = 0 . 

5: while (the maximum number of iterations I max has not be 

reached) do 

6: Let t = argmax { gain (i, x ) , κ(i ) = 0 } . 
7: Let x t = 1 − x t . 

8: Use the gain update technique to update the flip gains. 

9: for i from 1 to p do 

10: if κ(i ) > 0 then 

11: κ(i ) = κ(i ) − 1 . 

12: end if 

13: Let κ(t) = μ + rand(10) . 

14: if g(x, R ) > g(y, R ) then 

15: Let y = x , and f lag = 1 . 

16: end if 

17: end for 

18: end while 

19: end while 

20: if g(y, R ) > g(g _ best , R ) and x ∈ � then 

21: g _ best = y, L = f (y ) . 

22: end if 

23: return y . 
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hooses a free x i that has the maximum flip gain in the N ( x ) for

eing flipped (lines 6–7). Once a flip is performed, we update the

ip gains of unlocked variables. We need O ( mn ) to calculate g ( x,

 ). Hence, it takes O ( mn × m ) to update all unlock flip gains by (7) .

his process is time-consuming. Therefore, a gain updating tech-

ology is used to update flip gains more quickly (line 8). This is

llustrated in the following paragraphs. 

After a variable x i is flipped, it is not allowed to flip the variable

 i in the following κ( i ) iterations (line 13). For this study, we set: 

(i ) = μ + rand(10) , 

here μ is a given constant and rand(10) takes a random value

rom 1 to 10. In case the newly obtained solution is more opti-

ized than y , we replace y by x (lines 14–16). The above process

s repeated with each pass of the tabu search program until the

umber of iterations I max , which is defined in advance, is reached.

n addition, the best solution in a pass is used as the beginning

olution in the following pass. When a pass can not find a more

ptimized solution, the tabu search process comes to an end. Fi-

ally, if g(y, R ) > g(g _ best , R ) , and y is a feasible solution of SUKP,

e update the global best position g _ best and the lower bound L

lines 19–22). 

.3. Gain updating method 

When the tabu search flips a variable, the flip gains of other

ariables may be changed. To reduce computational cost, the flip

ains are updated by the gain updating technology rather than by

efinition of the flip gain. In tabu search process, we keep a vector

 s 1 , ���, s n ), where s j reserves the time of j that is chosen by x , so

s to rapidly update the influenced flip gains. More formally, we

efine: 

 j = | T j | , (8)

here T j = { i ∈ S : j ∈ U i , x i = 1 } is the set of selected items which

ontain element j . 

Suppose that the current candidate solution is x . Let current _ W 

nd current _ P be the current weight sum and the profit sum of x ,

espectively. Specifically, current _ W = 

∑ 

j∈ �(x ) w j , and current _ P =
f (x ) . The basic idea of the gain updating technique is to com-

ute the fitness function value g ( x, R ) by current _ W and current _ P 

uickly, and then the affected flip gains are updated by (7) . 

When the tabu search has just starts, every s j , which is the time

f element j chosen by x , is calculated by (8) . In addition, (7) is

sed to calculate the flip gains. Suppose that the variable x t is se-

ected to flip. Once variable x t has been flipped, we need to update

he flip gains. 

Algorithm 3 provides an illustration of the gain updating tech-

ology. We first analyze the updating of the current weight sum

nd the current profit sum after x t is flipped. Two cases are con-

idered: 

Case 1: If x t = 1 (line 1), item t is added into the knapsack, and

then the current profit sum increases by p t (line 2); Because

all elements in U t are added into the knapsack, for any ele-

ment j ∈ U t , the time of element j selected by x increases by

one, i.e., s j = s j + 1 (lines 3–4). s j = 1 indicates that the el-

ement j is newly added into the knapsack. So, if s j = 1 , we

increase the current weight sum by w j (line 6). 

Case 2: If x t = 0 (line 9), item t is removed from the knapsack,

and then the current profit sum decreases by p t (line 10).

Because all elements in U t are removed from the knapsack,

for any element j ∈ U t , the time of element j selected by x

decreases by one, i.e., s j = s j − 1 (lines 11–12). For each ele-

ment j ∈ U t , s j = 0 indicates that element j is removed form

the knapsack after this flipping. So, if s j = 0 , the current

weight sum decreases by w j (line 14). 
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Algorithm 3 Gain updating technique. 

Input: An initial solution x , g(x, R ) , the last flipped variable 

x t , current _ P , current _ W , gain (i, x ) , i = 1 , · · · , m and s j , j = 

1 , · · · , m . 

Output: The updated flip gains. 

1: if x t = 1 then 

2: current _ P = current _ P + p t . 

3: for each element j ∈ U t do 

4: s j = s j + 1 . 

5: if s j = 1 then 

6: current _ W = current _ W + w j . 

7: end if 

8: end for 

9: else 

10: current _ P = current _ P − p t . 

11: for each element j ∈ U t do 

12: s j = s j − 1 . 

13: if s j = 0 then 

14: current _ W = current _ W − w j . 

15: end if 

16: end for 

17: end if 

18: for each free item k do 

19: Let temporary _ P (x ) = current _ P , and temporary _ W (x ) = 

current _ W . 

20: if x k = 1 then 

21: temporary _ P (x ) = temporary _ P (x ) − p k . 

22: for each element j ∈ U k do 

23: if s j = 1 then 

24: temporary _ W (x ) = temporary _ W (x ) − w j . 

25: end if 

26: end for 

27: else 

28: temporary _ P (x ) = temporary _ P (x ) + p k . 

29: for each element j ∈ U k do 

30: if s j = 0 then 

31: temporary _ W (x ) = temporary _ W (x ) + w j . 

32: end if 

33: end for 

34: end if 

35: Let f (x ) = temporary _ P (x ) , η(x ) = max { temporary _ W (x ) −
C, 0 } , then g(x ′ , R ) can be computed by (6) directly, where 

x ′ = (x 1 , · · · , 1 − x k , · · · , x n ) . 

36: Let gain (k, x ) = g(x ′ , R ) − g(x, R ) . 

37: end for 

38: return The updated flip gains. 
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Algorithm 4 Position updating procedure. 

Input: A selected solution x , and a selected attractor y . 

Output: A newly generated solution z. 

1: for i from 1 to m do 

2: if x t 
i 
= y i then 

3: z i = y i 
4: else 

5: Randomly generate a δ ∈ (0 , 1) . 

6: if δ < 0 . 5 then 

7: z i = y i 
8: else 

9: z i = x t 
i 

10: end if 

11: end if 

12: end for 

13: return The new solution z. 
Let temporary _ P (x ) , and temporary _ W (x ) be the profit sum, and

he weight sum, respectively, after we flip x k . To compute the

ip gain of each free item, we need to calculate temporary _ P (x ) ,

nd temporary _ W (x ) . For each free item k , temporary _ P (x ) , and

emporary _ W (x ) are initialized as the current profit sum and the

urrent weight sum (line 19), respectively. Similar to the above up-

ating process, two cases are considered. 

Case 1: If x k = 1 (line 20), flipping x k means that item k will be

removed from the knapsack, then, flipping x k will decrease

the profit sum (line 21). Because all elements in U k will

be removed from the knapsack, for any element j ∈ U k , the

time of element j selected by x decreases by one. If s j = 1

(line 23), the weight sum is updated by temporary _ W (x ) =
temporary _ W (x ) − w j (line 24). 

Case 2: If x k = 0 (line 27), flipping x k means that item k will

be added into the knapsack, then, flipping x k will increase

the profit sum (line 28). Because all elements in U will be
k 
added into the knapsack, for any element j ∈ U k , the time

of element j selected by x increases by one. If s j = 0 (line

30), the current weight sum is update by temporary _ W (x ) =
temporary _ W (x ) + w j (line 31). 

In lines 35–36, the gain updating technique uses temporary _

 (x ) , and temporary _ W (x ) to calculate gain ( k, x ) according to (6) ,

nd (7) . 

We need O ( d ) to update current _ P and current _ W from line 1 to

7. For each unlock variable, it takes O ( d ) to calculate the new flip

ain from line 19 to 34. Hence, the total time complexity of using

he gain updating technique is bound by O ( md ), which is substan-

ially lower than the time complexity of using the definition of the

ip gain. 

.4. Position updating procedure and tabu based mutation procedure 

Many studies ( Lin et al., 2016; Lin & Zhu, 2014; Wu & Hao,

013 ) have concluded that the high-quality solutions for problems

elated to combination optimization have very small distances. In

rder to guide the search to focus on a region near high quality so-

utions, the position updating procedure tries to move the selected

article close to one of the high quality solutions. 

Let x t = (x t 
1 
, . . . , x t m 

) and y = (y 1 , . . . , y m 

) be the selected parti-

le and the selected attractor, respectively. Let z be the newly gen-

rated solution. Algorithm 4 shows the pseudo-code of the position

pdating procedure. If item i is selected by both x t and y , or item

 is not selected by both x t and y , i.e., x t 
i 
= y i , then we let z i = y i .

therwise, a number δ ∈ (0, 1) is randomly generated, if δ < 0.5,

nd we let z i = y i ; otherwise, we let z i = x t 
i 
. 

At the beginning of the search, the particles have relatively

arge distances with the personal best positions, and the position

pdating procedure can lead the search to enter into new hopeful

egions. As the search progress, the degrees of similarity of parti-

les and the personal best positions are large, and new solutions

enerated by the position updating procedure may be very similar

o the personal best positions. As a result, the raised HBPSO/TS will

onverge prematurely. With the aim of eliminating this disadvan-

age, we design a mutation procedure based on tabu that generates

iverse solutions by flipping several variables. 

HBPSO/TS keeps a short-run memory to avoid recently flipped

ariables being flipped again in the following generations. More

ormally, we maintain a vector d = (d 1 , . . . , d m 

) . At the beginning

f HBPSO/TS, all variables are free to flip, i.e., we initialize d i =
 , i = 1 , . . . , m . z is supposed to be a new solution produced in the

osition updating process when the HBPSO/TS is at the k th gener-

tion. d i ≤ k indicates that the variable x i can be flipped; otherwise,

he variable x is forbidden to be flipped. 
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Table 1 

The numbering of all SUKP instances. 

ID The first set ( m > n ) ID The second set ( m = n ) ID The third set ( m < n ) 

Fi1 sukp 100_85_0.1_0.75 Si1 sukp 100_100_0.1_0.75 Ti1 sukp 85_100_0.1_0.75 

Fi2 sukp 100_85_0.15_0.85 Si2 sukp 100_100_0.15_0.85 Ti2 sukp 85_100_0.15_0.85 

Fi3 sukp 200_185_0.1_0.75 Si3 sukp 20 0_20 0_0.1_0.75 Ti3 sukp 185_200_0.1_0.75 

Fi4 sukp 200_185_0.15_0.85 Si4 sukp 20 0_20 0_0.15_0.85 Ti4 sukp 185_200_0.15_0.85 

Fi5 sukp 300_285_0.1_0.75 Si5 sukp 30 0_30 0_0.1_0.75 Ti5 sukp 285_300_0.1_0.75 

Fi6 sukp 300_285_0.15_0.85 Si6 sukp 30 0_30 0_0.15_0.85 Ti6 sukp 285_300_0.15_0.85 

Fi7 sukp 400_385_0.1_0.75 Si7 sukp 40 0_40 0_0.1_0.75 Ti7 sukp 385_400_0.1_0.75 

Fi8 sukp 400_385_0.15_0.85 Si8 sukp 40 0_40 0_0.15_0.85 Ti8 sukp 385_400_0.15_0.85 

Fi9 sukp 500_485_0.1_0.75 Si9 sukp 50 0_50 0_0.1_0.75 Ti9 sukp 485_500_0.1_0.75 

Fi10 sukp 500_485_0.15_0.85 Si10 sukp 50 0_50 0_0.15_0.85 Ti10 sukp 485_500_0.15_0.85 

Algorithm 5 Tabu based mutation procedure. 

Input: A solution z, the k th generation. 

Output: The newlygenerated solution z. 

1: for i from 1 to m do 

2: if d i ≤ k then 

3: Randomly generate a number δ ∈ (0 , 1) . 

4: if δ ≤ p mu then 

5: z i = 1 − z i , d i = k + λ. 

6: end if 

7: end if 

8: end for 

9: return The new solution z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Results on the Friedman test ( α = 0 . 05 ). 

R p G max μ I max p mu λ

p -value 0.129 0.129 0.080 0.354 0.760 0.171 0.125 

Table 3 

Settings of important parameters of 

HBPSO/TS. 

Parameters Section Value 

R 3 2 

p 4.1 20 

G max 4.1 0.6 m 

μ 4.2 8 

I max 4.2 0.6 m 

p mu 4.4 0.2 

λ 4.4 15 
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Algorithm 5 describes the tabu based mutation procedure. At

the k th generation of HBPSO/TS, the tabu based mutation proce-

dure starts with z , and each free variable x i (i.e., d i ≤ k ) is flipped

with a probability p mu . If a free variable is flipped, it is forbidden

to flip again in the next λ generations. Specially, we let d i = k + λ. 

The mutation procedure established on the basis of tabu suc-

ceeds in leading to enter a new hopeful area. 

3.5. Time complexity of HBPSO/TS 

The HBPSO/TS has three main procedures: the tabu search pro-

cedure, the position updating procedure, and the tabu based mu-

tation procedure. 

The tabu search procedure uses O ( m 

2 n ) to calculate the initial

flip gains. The tabu search procedure then iteratively flips a vari-

able. In each pass, O ( m ) is used by the tabu search process to dis-

cern the variable that has the highest flip gain, and O ( md ) is used

to update the flip gains. The tabu search process includes I max iter-

ations in one pass. Hence, the overall time complexity of the tabu

search process in one pass is limited by O (I max mn + m 

2 n ) . The po-

sition updating procedure takes O ( m ) to produce a new position,

and the time complexity of the tabu based mutation procedure is

O ( m ). 

Therefore, the time complexity of one generation of HBPSO/TS

is O (I max mn + m 

2 n + 2 m ) , and the total time complexity of

HBPSO/TS is O ((I max mn + m 

2 n + 2 m ) × G max ) . 

4. Results 1 

He et al. (2018) proposed three sets of 30 instances to test their

proposed BABC. We also use these instances to test our HBPSO/TS. 

Each instance is associated with a binary matrix

M = (r i j ) , which defines subset family { U 1 , ���, U m 

}. For
1 This section contains an experimental assessment of the suggested HBPSO/TS. 

The implementation of our HBPSO/TS was performed in C and operated on a com- 

puter with 3.4GHz processor (i7 6700) and 8GB of RAM. 

s  

t  

l  

t  

p

ach r i j (i = 1 , . . . , m ; j = 1 , . . . , n ) in M , r i j = 1 if and only

f j ∈ U i . Each instance is named as sukp m _ n _ α_ β, where

α = ( 
∑ m 

i =1 

∑ n 
j=1 r i j ) / (mn ) , and β = C/ 

∑ n 
j=1 w j are the den-

ity of the matrix M , and the ratio of C to the sum of all elements,

espectively. The tested instances can be classed as three sets.

ased on the above naming rules, all the tested instances are

ndexed and reported in Table 1 . All these instances can be found

n http://sncet.com/ThreekindsofSUKPinstances(EAs).rar . 

.1. Preliminary experiments for parameters 

We conducted some preliminary experiments to obtain sugges-

ions for selecting the parameters. A representative subset with

hree instances was used for determining our parameter values:

ukp 500_485_0.15_0.85 (Fi10), sukp 50 0_50 0_0.15_0.85 (Si10), and

ukp 485_500_0.15_0.85 (Ti10). 

Firstly, a large range of values for each parameter was tested

o find an interval of reasonable size. Then, we focused on these

elatively suitable values. More formally, we tested R in the scope

2,10], p in the scope [5,30], G max in the scope [0.1 n , 2 n ], μ in

he range [3,15], I max in the scope [0.4 n , 2 n ], p mu in the range

0.08,0.3], and λ in the range [8,30]. 

The Friedman test was used to check whether the HBPSO/TS

erformance changes significantly with regards to the mean ob-

ective function values when we changed the value of one param-

ter as stated. The p -values obtained from the Friedman test are

hown in Table 2 , from which, we conclude that these parame-

ers have little influence on the HBPSO/TS performance. We se-

ected the values of these parameters using their rankings from

he Friedman’s test. Table 3 summarizes the selected values of the

arameters. 

http://sncet.com/ThreekindsofSUKPinstances(EAs).rar
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Table 4 

The computing results of the first set of SUKP instances. 

Instance Results A-SUKP GA BABC ABC bin binDE HBPSO/TS improve 

sukp 100_85_0.1_0.75 Best 12459 13044 13251 13044 13044 13283 0.24% 

Mean 12459 12956.4 13028.5 12818.5 12991 13277.03 1.90% 

sukp 100_85_0.15_0.85 Best 11119 12066 12238 12238 12274 12348 0.60% 

Mean 11119 11546 12155 12049.3 12123.9 12262.25 0.88% 

sukp 200_185_0.10_0.75 Best 11292 13064 13241 12946 13241 13521 2.11% 

Mean 11292 12492.5 13064.4 11861.5 12940.7 13521.0 3.49% 

sukp 200_185_0.15_0.85 Best 12262 13671 13829 13671 13671 14215 2.79% 

Mean 12262 12802.9 13359.2 12537 13110 13952.8 4.44% 

sukp 300_285_0.10_0.75 Best 8941 10553 10428 9751 10420 11563 9.57% 

Mean 8941 9980.87 9994.76 9339.3 9899.24 11401.93 14.23% 

sukp 300_285_0.15_0.85 Best 9432 11016 12012 10913 11661 12607 4.95% 

Mean 9432 10349.8 10902.9 9957.85 10499.4 12457.73 14.26% 

sukp 400_385_0.10_0.75 Best 9076 10083 10766 9674 10576 11484 6.66% 

Mean 9076 9641.85 10065.2 9187.76 9681.46 11439.75 13.65% 

sukp 400_385_0.15_0.85 Best 8514 9831 9649 8978 9649 11209 14.01% 

Mean 8514 9326.77 9135.98 8539.95 9020.87 11031.7 18.27% 

sukp 500_485_0.10_0.75 Best 9864 11031 10784 10340 10586 11716 6.20% 

Mean 9864 10567.9 10452.2 9910.32 10363.8 11484.65 8.67% 

sukp 500_485_0.15_0.85 Best 8299 9472 9090 8759 9191 10194 7.62% 

Mean 8299 8692.67 8857.89 8365.04 8783.99 9896.875 11.72% 

Table 5 

The computing results of the second set of SUKP instances. 

Instance Results A-SUKP GA BABC ABC bin binDE HBPSO/TS improve 

sukp 100_100_0.10_0.75 Best 13634 14044 13860 13860 13814 13990 -0.38% 

Mean 13634 13806 13734.9 13547.2 13675.9 13952.8 1.06% 

ukp 100_100_0.15_0.85 Best 11325 13145 13508 13498 13407 13498 -0.07% 

Mean 11325 12234.8 13352.4 13103.1 13212.8 13293.45 -0.44% 

sukp 20 0_20 0_0.10_0.75 Best 10328 11656 11846 11191 11535 12522 5.70% 

Mean 10328 10888.7 11194.3 10424.1 10969.4 12498.98 11.65% 

sukp 20 0_20 0_0.15_0.85 Best 9784 11792 11521 11287 11469 12317 4.45% 

Mean 9784 10827.5 10945 10345.9 10717.1 12299.6 13.59% 

sukp 30 0_30 0_0.10_0.75 Best 10208 12055 12186 11494 12304 12736 4.51% 

Mean 10208 11755.1 11945.8 10922.3 11864.4 12715.58 6.44% 

sukp 30 0_30 0_0.15_0.85 Best 9183 10666 10382 9633 10382 11585 8.61% 

Mean 9183 10099.2 9859.69 9186.87 9710.37 11532.08 14.18 

sukp 40 0_40 0_0.10_0.75 Best 9751 10570 10626 10160 10462 11433 7.59% 

Mean 9751 10112.4 10101.1 9549.04 9975.8 11399.65 12.72% 

sukp 40 0_40 0_0.15_0.85 Best 8497 9235 9541 9033 9388 11325 20.63% 

Mean 8497 8793.76 9032.95 8365.62 8768.42 11321.0 25.33% 

sukp 50 0_50 0_0.10_0.75 Best 9615 10460 10755 10071 10546 10973 2.02% 

Mean 9615 10185.4 10328.5 9738.17 10227.7 10832.53 4.87% 

sukp 50 0_50 0_0.15_0.85 Best 7883 9496 9318 9262 9312 10086 6.21% 

Mean 7883 8882.88 9180.74 8617.91 9096.13 9797.25 6.71% 
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.2. Computational results and contrast to other algorithms 

In this subsection, we report on the experiments on the three

ets of 30 instances. The settings of the parameters in Table 3 are

sed in the HBPSO/TS. It is important to note that the computa-

ional results can be improved by special adjustments. 

With an expectation to display the HBPSO/TS effectiveness,

BPSO/TS is compared with BABC ( He et al., 2018 ), genetic algo-

ithm (GA) ( Schmitt, 2001 ), binary differential evolution (binDE)

 Engelbrecht & Pampara, 2007 ), and continuous artificial bee

olony algorithm (ABC bin ) ( Kiran, 2015 ). All above algorithms were

mplemented in C++ on a computer with an (i5-3337u) 1.8GHz pro-

essor and 4GB of RAM. 

We ran the HBPSO/TS with the parameter values in Table 3 . The

BPSO/TS was operated 40 times for all 30 instances. Tables 4 , 5 ,

nd 6 show the best result ( Best ), the average result ( Mean ), the

tandard deviation ( StD ) over the 40 repetitions, and the mean so-

ution time ( Time ) in seconds. The data for BABC, GA, binDE, and

BC bin are taken directly from ( He et al., 2018 ). The column ‘im-

rove’ lists the percentage deviations between the results obtained

rom HBPSO/TS and the previous best values accordingly. The best

bjective function values of the instances obtained from the algo-

ithms are shown in bold in Tables 4, 5 , and 6 . 
According to Tables 4, 5 , and 6 , we make the following obser-

ations. 

(1) Our HBPSO/TS improved the previous best known results

for 27 of the 30 instances, and matched the previous best

known results for one instance. Moreover, the improvements

with regards to objective function value raged from 0.24% to

20.63%. 

(2) HBPSO/TS produced better mean objective function values in

29 of the 30 instances. The improvements in terms of objec-

tive function value ranged from 0.88% to 25.33%. 

(3) HBPSO/TS performed better than A-SUKP, ABC bin , and binDE

for all tested instances with regards to the best objec-

tive function value and the mean objective function value.

HBPSO/TS found better solutions for all instances, except for

sukp 100_100_0.10_0.75. 

(4) HBPSO/TS performed better than BABC for all instances, ex-

cept sukp 100_100_0.15_0.85, in terms of the best objective

function values and the mean objective function values. 

To further test the statistical significance of our results, we

dopted a non-parametric statistical test ( Derrac, García, Molina, &

errera, 2011; García, Molina, Lozano, & Herrera, 2009 ) to compare

he HBPSO/TS with A-SUKP, GA, ABC , and binDE. 
bin 
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Table 6 

The computing results of the third set of SUKP instances. 

Instance Results A-SUKP GA BABC ABC bin binDE HBPSO/TS improve 

sukp 85_100_0.10_0.75 Best 10231 11454 11664 11206 11352 12045 3.26% 

Mean 10231 11092.7 11182.7 10879.5 11075 12045.0 7.71% 

sukp 85_100_0.15_0.85 Best 10483 12124 12369 12006 12369 12369 0.00% 

Mean 10483 11326.3 12081.6 11485.3 11875.9 12335.75 2.10% 

sukp 185_200_0.10_0.75 Best 11508 12841 13047 12308 13024 13696 4.97% 

Mean 11508 12236.6 12522.8 11667.9 12277.5 13690.8 9.32% 

sukp 185_200_0.15_0.85 Best 8621 10920 10602 10376 10547 11298 3.46% 

Mean 8621 10351.5 10150.6 9684.33 10085.4 11298.0 9.14% 

sukp 285_300_0.10_0.75 Best 9961 10994 11158 10269 11152 11802 5.77% 

Mean 9961 10640.1 10775.9 9957.09 10661.3 11787.2 9.38% 

sukp 285_300_0.15_0.85 Best 9618 11093 10528 10051 10528 11538 4.01% 

Mean 9618 10190.3 9897.92 9424.15 9832.32 11536.78 13.21% 

sukp 385_400_0.10_0.75 Best 8672 9799 10085 9235 9883 10465 3.76% 

Mean 8672 9432.82 9537.5 8904.94 9314.57 10340.28 8.41% 

sukp 385_400_0.15_0.85 Best 8064 9173 9456 8932 9352 10506 11.10% 

Mean 8064 8703.66 9090.03 8407.06 8846.99 10339.45 13.74% 

sukp 485_500_0.10_0.75 Best 9559 10311 10823 10357 10728 11115 2.69% 

Mean 9559 9993.16 10483.4 9615.37 10159.4 10872.38 3.71% 

sukp 485_500_0.15_0.85 Best 8157 9329 9333 8799 9218 10104 8.26% 

Mean 8157 8849.46 9085.57 8347.82 8919.64 10 0 08.13 10.15% 

Table 7 

Results of the Friedman and Iman-Davenport tests ( α = 0 . 05 ). 

Friedman value p -value Iman-Davenport Value p -value 

Best 123.357 8.864E-11 134.270 1.381E-52 

Mean 129.919 6.847E-11 187.623 1.110E-16 

Table 8 

The rankings obtained by Fried- 

man’s test. 

Algorithm Best Mean 

A-SUKP 5.966 5.783 

GA 3.266 3.516 

BABC 2.500 2.233 

ABC _ bin 4.750 5.0 0 0 

binDE 3.400 3.433 

HBPSO/TS 1.116 1.033 

Table 9 

p -values with respect to the best objective function value (HBPSO/TS is 

the control algorithm). 

HBPSO/TS vs. z Unadjusted p Holm p Hochberg p 

A-SUKP 10.040 1.012 5.06E-23 5.06E-23 

GA 4.450 8.550 1.71E-5 1.71E-5 

BABC 2.863 0.004 0.004 0.004 

ABC _ bin 7.521 5.406 2.16E-13 2.16E-13 

binDE 4.726 2.279 6.83E-6 6.83E-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

p -values with respect to the average objective function value (HBPSO/TS 

is the control algorithm). 

HBPSO/TS vs. z Unadjusted p Holm p Hochberg p 

A-SUKP 9.833 8.08E-23 4.04E-22 4.04E-22 

GA 5.140 2.73E-7 8.19E-7 8.19E-7 

BABC 2.484 0.012 0.012 0.012 

ABC _ bin 8.211 2.17E-16 8.71E-16 8.17E-16 

binDE 4.968 6.74E-7 1.34E-6 1.34E-6 

Fig. 1. The standard deviation of GA, BABC, ABC bin , binDE, and HBPSO/TS for solving 

the first set of SUKP instances. 
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First, the Iman-Davenport and Friedman tests were used to

analyze the differences between the results from the two algo-

rithms. The results of the Friedman and Iman-Davenport tests on

the best results ( Best ) and the average results ( Mean ) are provided

in Table 7 . There were significant differences ( p < .05) in the results

in terms of best objective function values and mean objective val-

ues. The rankings from Friedman test are displayed in Table 8 , and

show that HBPSO/TS which is ranked the lowest has the highest

effectiveness of the six algorithms. 

Stronger analytical procedures (Holm’s and Hochberg’s proce-

dures ( García et al., 2009 )) were then utilized to compare the

control algorithm HBPSO/TS with A-SUKP, GA, BABC, ABC bin , and

binDE. Holm’s and Hochberg’s procedures were established on the

basis of the calculation of the adjusted p -values. Tables 9 , and 10

summarize the p -values from these procedures for the best objec-
ive function value, and the average objective function value, re-

pectively. 

From Tables 9 and 10 , it is observed that HBPSO/TS significantly

utperforms A-SUKP, GA, BABC, ABC bin , and binDE with regards

o solution quality. However, the solution time of HBPSO/TS was

onger than those of GA, BABC, ABC bin , and binDE. 

Next, we compare the stability of HBPSO/TS with that of other

lgorithms. Figs. 1 , 2 , and 3 show the standard deviation (StD) of

A, BABC, ABC bin , binDE, and HBPSO/TS for solving three sets of

UKP instances, respectively. The standard deviation of HBPSO/TS

as the smallest among these algorithms in 7 of the 10 instances

n the first set, in 7 of the 10 instances in the second set, and in
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Fig. 2. The standard deviation of GA, BABC, ABC bin , binDE, and HBPSO/TS for solving 

the second set of SUKP instances. 

Fig. 3. The standard deviation of GA, BABC, ABC bin , binDE, and HBPSO/TS for solving 

the third set of SUKP instances. 
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Fig. 4. Boxplot of the objective function values obtained by HBPSO/TS and VR- 

SACRO-PSO on Fi10. 

Fig. 5. Boxplot of the objective function values obtained by HBPSO/TS and VR- 

SACRO-PSO on Si10. 

Fig. 6. Boxplot of the objective function values obtained by HBPSO/TS and VR- 

SACRO-PSO on Ti10. 

W  

5  

4

 

t  
 of the 10 instances in the third set ( Figs. 1, 2 , and 3 ). Moveover,

he average standard deviations of GA, BABC, ABC bin , binDE, and

BPSO/TS were 203.86, 166.98, 177.37, 196.54, and 71.44, respec-

ively. The average standard deviation of HBPSO/TS was much

maller than those of the other heuristic algorithms, showing the

igh stability of the HBPSO/TS. 

Recently, a check and repair operator-inspired particle swarm

ptimization with the neighborhood local search (3R-SACRO-PSO)

 Chih, 2018 ) was proposed for solving the multidimensional knap-

ack problem. 3R-SACRO-PSO presented three pseudo-utility ratios

o repair infeasible solutions, and used a velocity and position up-

ating rule to generate new positions. In addition, a neighborhood

ocal search was developed to improve the solution quality. Ex-

ensive experiment was done to validate the performance of 3R-

ACRO-PSO. 

Finally, we compare our proposed algorithm with a variant of

R-SACRO-PSO (called VR-SACRO-PSO for short). Different from 3R-

ACRO-PSO, the VR-SACRO-PSO uses only one pseudo-utility ratio.

ccording to the structure of the SUKP, the pseudo-utility ratio δi 

sed in VR-SACRO-PSO is defined as follows: δi = 

p i ∑ 

j∈ U i w j 
. We set

he number of particles as 200, and other values of parameters

f VR-SACRO-PSO are set as the same as those in ( Chih, 2018 ).
e ran the VR-SACRO-PSO 40 times on three instances: sukp

00_485_0.15_0.85 (Fi10), sukp 500_500_0.15_0.85 (Si10), and sukp

85_500_0.15_0.85 (Ti10). 

Figs. 4–6 plot the boxplots of the objective function value ob-

ained through our proposed algorithm and VR-SACRO-PSO for
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Table 11 

Experimental results of HBPSO/TS, and HBPSO/TS1 with differ- 

ent R , and θ . 

Fi10 Si10 Ti10 

HBPSO/TS ( R = 2 ) 9896.875 9797.250 10 0 08.130 

HBPSO/TS ( R = 4 ) 9626.875 9728.775 9685.275 

HBPSO/TS ( R = 10 ) 9577.225 9559.750 9619.825 

HBPSO/TS1 ( θ = 2 ) 9878.500 9619.400 9918.850 

HBPSO/TS1 ( θ = 4 ) 9647.325 9437.293 9647.975 

HBPSO/TS1 ( θ = 10 ) 9302.488 9321.854 9583.125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The average objective function values obtained by HBPSO/TS, HBPSO/TS(UM) 

and HBPSO/TS(UT). 

Fig. 8. The average objective function values obtained by HBPSO/TS, and 

HBPSO/TS(UL). 
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Fi10, Si10, and Ti10, respectively. From Figs. 4–6 , we can see that

HBPSO/TS performs better than VR-SACRO-PSO. 

4.3. Effectiveness of the key components of HBPSO/TS 

In this section, we analyze and discuss the important aspects

of HBPSO/TS, i.e., the adaptive penalty function, the tabu search

procedure, and the tabu based mutation procedure. 

First, we carried out a test to compare HBPSO/TS and one of

its variants to ascertain whether the adaptive penalty function is

effective. HBPSO/TS1 was used to represent the HBPSO/TS with

the specific penalty function defined in (5) . We ran HBPSO/TS,

and HBPSO/TS1 40 times with the parameter values listed in

Table 3 and with different R , and θ on sukp 500_485_0.15_0.85

(Fi10), sukp 50 0_50 0_0.15_0.85 (Si10), and sukp 485_500_0.15_0.85

(Ti10). 

From Table 11 , one can see that HBPSO/TS with R = 2 per-

formed better than all versions of HBPSO/TS1. When the penalty

parameter has its value being increased from 2 to 10, the mean ob-

jective function values obtained by HBPSO/TS and HBPSO/TS1 de-

creased. In addition, with the increase in the value of R , and θ , the

average objective function values obtained by HBPSO/TS changed

more slowly than those of HBPSO/TS1, which indicates that it is

relatively easy to choose a suitable value for R in the adaptive

penalty function. 

The tabu based mutation procedure is the second important

feature of HBPSO/TS, and we used it to generate different solu-

tions, and to lead the search to enter new hopeful areas. To assess

whether the mutation procedure based on tabu is efficient, we car-

ried out an experiment to contrast HBPSO/TS with two of its vari-

ants. We carried out an experiment to contrast HBPSO/TS with two

of its variants in order to assess the validity of the tabu-based mu-

tation procedure. To be exact, HBPSO/TS(UT) and HBPSO/TS(UM)

were used to represent HBPSO/TS free of tabu-based mutation pro-

cedure and HBPSO/TS with λ = 0 (i.e., all variables flip freely at all

generations), respectively. We ran HBPSO/TS, HBPSO/TS(UM), and

HBPSO/TS(UT) on three instances: sukp 500_485_0.15_0.85 (Fi10),

sukp 50 0_50 0_0.15_0.85 (Si10), and sukp 485_500_0.15_0.85 (Ti10).

Each was run 40 times. Fig. 7 plots the average objective function

values obtained by HBPSO/TS, HBPSO/TS(UM) and HBPSO/TS(UT)

on the three instances. From Fig. 7 , one can see that HBPSO/TS out-

performs HBPSO/TS(UM) and HBPSO/TS(UT), and HBPSO/TS(UM)

performs better than HBPSO/TS(UT). This shows that the tabu

based mutation procedure helps the search to explore new promis-

ing regions. 

As described in Section 4.2 , HBPSO/TS used the tabu search

procedure to intensify the search. To assess the impact of the

tabu search procedure on the HBPSO/TS performance, we carried

out an experiment to contrast HBPSO/TS with two of its vari-

ants (HBPSO/TS(UL) and HBPSO/NLS). HBPSO/TS(UL) is HBPSO/TS

without tabu search procedure, and HBPSO/NLS replaces the pro-

posed tabu search with the neighborhood local search, which is

used in ( Chih, 2018 ). HBPSO/TS(UL) and HBPSO/NLS were oper-

ated 40 times on the three instances: Fi10, Si10, and Ti10 (defined
bove). Fig. 8 plots the average objective function values obtained

y HBPSO/TS and HBPSO/TS(UL) on the three instances. As we can

bserve from Fig. 8 , much better mean objective function values

an be found in HBPSO/TS than HBPSO/TS(UL) and HBPSO/NLS,

hich illustrates that the proposed tabu search procedure signif-

cantly improved the performance of the HBPSO/TS. 

. Conclusions 

We have proposed a hybrid BPSO with tabu search for solving

he set-union knapsack problem. The HBPSO/TS used an adaptive

enalty function to evaluate the quality of solutions, and to ensure

he feasibility of the search. According to the specific information

f SUKP, we redefined the position updating rule to procedure new

olutions, and designed a tabu based mutation procedure to diver-

ify the search. In addition, a tabu search procedure was developed

o intensify the search. Experiments were performed on three sets

f benchmark instances. Results show that HBPSO/TS outperformed

-SUKP, GA, BABC, ABC _ bin , and binDE with regards to solution

uality. However, the computational cost of HBPSO/TS was larger

han those of the comparison algorithms. 

The impacts of three essential HBPSO/TS components were

lso investigated. We carried out experiments to demonstrate that
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BPSO/TS performs better than HBPSO/TS with exact penalty func-

ion, and showed that the tabu based mutation procedure and the

abu search procedure are essential to enhance the computational

fficiency of HBPSO/TS. 

Future research will be focused in the application of this

ethodology in related combinatorial optimization problems. 
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