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a b s t r a c t 

The reinforcement learning paradigm has been shown to be an effective approach in solving the k -server 

problem. However, this approach is based on the Q-learning algorithm, being subjected to the curse of 

dimensionality problem, since the action-value function (Q-function) grows exponentially with the in- 

crease in the number of states and actions. In this work, a new algorithm based on the deep reinforce- 

ment learning paradigm is proposed. For this, the Q-function is defined by a multilayer perceptron neural 

network that extracts the information of the environment from images that encode the dynamics of the 

problem. The applicability of the proposed algorithm is illustrated in a case study in which different 

nodes and servers problem configurations are considered. The agents behavior is analyzed during the 

training phase and its efficiency is evaluated from performance tests that quantify the quality of the gen- 

erated server displacement policies. The results obtained provide a new algorithm promising view as an 

alternative solution to the k -server problem. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In online computation a computer algorithm must decide how

to act from the currently available input, without being aware of

the entire set of inputs ( Allan & El-Yaniv, 1998 ). Several current is-

sues can be inserted in this type of problem, for example, given the

price of Bitcoin, must the crypto currency be sold or bought? How

to assign and reassign processes in a parallel processing so that

there is load balancing on all processors? How to move a facility

into an online transportation service minimizing the total cost in-

volved in the process? Problems like these are complex since after

a decision is made, it cannot be revoked, influencing the solution

as a whole. 

Proposed by Manasse, McGeoch, and Sleator (1988) the k -server

problem (KSP) is the problem of moving k servers over n nodes

on a graph (or metric space) in order to satisfy the requests that

appear online (sequentially) minimizing some cost function deter-

mined by the problem. Its conceptual simplicity contrasts with its

complexity that grows exponentially with the increase in number

of nodes and servers, being perhaps the most influential online

problem, serving as a propeller for the development of new algo-

rithms ( Bansal, Buchbinder, Madry, & Naor, 2015; Gupta, Kamali, &

López-Ortiz, 2016 ). 
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Initially, the works related to the k -server problem focused on

pecial metric spaces such as the uniform metric space, which cor-

esponds to the paging problem in which high-performance algo-

ithms are known ( Sleator & Tarjan, 1985 ). For general metrics,

outsoupias (2009) proposed the work function algorithm which

s suitable for any metric space, obtaining results close to optimal

olutions. Despite this, the results obtained by these algorithms

re deterministic, and there is a great interest in using random-

zed algorithms for the k -server problem, since these algorithms

end to have a better performance than the deterministic ones

 Bansal et al., 2015 ). 

Placed in a context of competitive facility location problem,

onsidering that it serves more than one point (dynamically), in

eneral, the decisions on the location of facilities (servers), include

igh fixed costs and a long-term return analysis, having a great

conomic impact due to optimization techniques used, an attrac-

ive for its solution. Since the decision depends only on the infor-

ation available at the time, this problem can be modeled as a

arkov decision process and consequently defined as a Reinforce-

ent Learning (RL) problem. 

In an RL paradigm an agent observes the state s t ∈ S (set of

tates) of an environment and takes an action a t ∈ A (set of ac-

ions) based on new choices (exploration) or experiences already

cquired (intensification) and receives a reward r t+1 at each dis-

rete time step t subject to t ≤ T , where T is the final time step.

he aim is to find a policy π = P (s t | a t ) that maximizes (or mini-

izes) the expected return signal denoted as R t = 

∑ ∞ 

k =0 γ
k r k + t+1 ,

here γ ∈ [0, 1] is the discount factor, a parameter that defines the

https://doi.org/10.1016/j.eswa.2019.06.015
http://www.ScienceDirect.com
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mportance that the reward has in long term calculating the ex-

ected total return. In simple terms, solving reinforcement learning

roblems consists of finding good policies that provide the highest

or lowest) expected future reward. 

There are different methods to solving RL problems such as

ynamic programming, Monte Carlo, temporal-difference, semi-

radient, policy gradients, actor-critic, etc. The majority of these

lgorithms involve calculating an action-value function (or a value

unction). Solving them consists of defining an optimal policy
∗ from Q 

∗(s, a ) = E [ r t+1 + γ max a ′ Q 

∗(s ′ , a ′ ) | s t = s, a t = a ] (Bell-

an optimality equation), where a ′ represents the possible actions

hat can be taken from a new state s t+1 denoted as s ′ ( Sutton &

arto, 2018 ). From the calculated Q 

∗, the optimal policy is given by
∗(s ) = argmax a Q 

∗(s, a ) . 

From the authors knowledge, the first time an algorithm based

n intelligent optimization techniques was used as a solution to

he k -server problem was in the work proposed by Junior, Neto,

nd Melo (2005) , who used the reinforcement learning paradigm

hrough the Q-learning algorithm, a temporal-difference method

hat calculates the Q-function directly from the data (model-free)

nd independently of the policy (off-policy) used. The algorithm

as used in the solution of small instances and compared to in-

uential algorithms of the literature, Harmonic and Work Function

 Koutsoupias, 2009 ). To adapt the algorithm for large instances a

ierarchical approach was used in which nodes and servers were

eparated into clusters. The local policy obtained in each grouping

as combined and used in the formation of a global policy. Con-

inuing this approach, Costa, Padilha, Melo, and Neto (2016) par-

lleled the algorithm and defined a load-balancing parameter to

mprove clustering. The results obtained showed their feasibility

n practical dimensions applications such as some approached by

udec, Baumgartner, and Manger (2013) and Bertsimas, Jaillet, and

orolko (2019) . 

Despite this, the hierarchical approach still fall into the curse

f dimensionality problem since its storage structure ( Q table), al-

orithm basis, grows exponentially as the number of states and

ctions increases. From the tabular approach point of view the

 -server problem presents a storage structure defined as C n,k . n.k ,

here the first term represents the combination of n terms taken k

y k from valid states and n.k the total number of possible actions

er state. Thus, computing the action-value function for larger in-

tances becomes an extremely costly computational process even

n a hierarchical approach, perhaps having as the main limiting fac-

or the quantity of servers, given that the space complexity of the

lgorithm is O(n k ) ( Costa et al., 2016 ), which can quickly take the

roblem to an explosion of dimensionality. 

To deal with this type of problem, learning methods based on

unction approximation can be used as an alternative to the tra-

itional approach. In this work, the k -server problem is defined

s deep reinforcement learning ( Mnih et al., 2015 ) task through

he use of the Q-learning algorithm in conjunction with a Multi-

ayer Perceptron (MLP) neural network. A simple way to integrate

 neural network into Q-learning is to use the gradient descent al-

orithm ( Lin, 1993; Riedmiller, 2005; Tesauro, 1995 ). Currently, the

se of deep learning techniques in conjunction with the reinforce-

ent learning paradigm is driven by recent advances ( Mnih et al.,

015; Silver et al., 2017 ), as well as its applicability in several prac-

ice areas ( Afify et al., 2019; Araque, Corcuera-Platas, Sanchez-Rada,

 Iglesias, 2017; Bello, Pham, Le, Norouzi, & Bengio, 2016; Mao,

lizadeh, Menache, & Kandula, 2016 ). 

To convert the Q-learning into a gradient-based method, Q-

unction updating is replaced by updating the synaptic weights

ector w using the approximated action-value function, denoted as

 ( s, a ; w ) or ˜ Q (s, a ) (implicit parameter) and its gradient calculus.

n order to adapt the k -server problem to the new proposed algo-

ithm, the dynamics of the problem is represented by images, that
ncode the states of environment, and rewards that express the

inimum cost paths related with actions taken, providing together

nough information for the neural network to define a satisfactory

isplacement policy. With the problem modeled as a visual task,

he Q-function, which refers to all possibilities, is replaced by the

eight matrix whose solution is generalized and depends on the

umber of neural network parameters. 

The main contributions of this paper are: 

• Propose a new algorithm less susceptible to the curse of dimen-

sionality since the decision-making process is done in a gen-

eralized way, thus presenting greater scalability for larger in-

stances problem focusing on the increasing of the number of

servers. 
• Transform the k -server model in a visual task problem suitable

for approximation methods. 
• Validate the proposed algorithm comparing its performance

with Q-learning, an algorithm with strong convergence proof

( Watkins, 1989 ); and greedy algorithm whose solution demon-

strates reasonable performance ( Rudec et al., 2013 ). 
• Provide insight on how the visual task problem can be ad-

dressed in a real-life practice situation. 
• Show the robustness of the algorithm to randomness, an intrin-

sic property to the k -server problem, an attractive to area, since

there is not a good understanding of the problem when ran-

domness is allowed ( Bansal et al., 2015 ). 

This article is structured as follows, Section 2 gives a brief for-

al definition of the k -server problem that will be useful in un-

erstanding the proposed methodology; in Section 3 the proposed

lgorithm is formally presented; then in Section 4 its performance

s compared with other algorithms, and finally in Section 5 the fi-

al considerations are made. 

. The k -server problem 

Formalizing the problem, consider that G = (N, E) represents a

eighted, non-directional and connected graph, where n = | N| is

he number of nodes and E , the set of edges that interconnect the

odes. Each edge ε ∈ E is associated with a non-negative and sym-

etric weight. We use ɛ ( u, v ) to represent the weight of nodes ( u,

 ) ∈ N joined by an edge. Let’s use k ( t ) to represent the distribution

f servers (homogeneous) on the graph and k to define the num-

er of servers that must satisfy a sequence of requests that appear

nline on the nodes along time step t . Assuming that a new re-

uest appears only after the current request has been serviced, the

 -server problem can be defined in the following way: 

• The distribution of k servers on the graph is defined as k (t) =
{ k (t) 

1 ,i 
, k (t) 

2 ,i 
, . . . , k (t) 

l,i 
} where l = { 1 , 2 , . . . , k } specifies the server in

distribution, and i ∈ N determine the node in which the server

is located. The term k (t) 
l,i 

means that in time step t the server l

is located at node i of G . 
• The sequence of requests � = { σ (0) 

1 
, σ (1) 

2 
, . . . , σ (t) 

j 
} represents

the request σ (t) 
j 

that appear at node j ∈ N along time step t =
{ 0 , 1 , . . . , T − 1 } , where T is the total number of requests in a

sequence. 
• The displacement of k (t) 

l,i 
to service σ (t) 

j 
from a distribution

k (t) = { k (t) 
1 ,i 

, k (t) 
2 ,i 

, . . . , k (t) 
l,i 

} leads to a new distribution defined as

k (t+1) = { k (t+1) 
1 ,i 

, k (t+1) 
2 ,i 

, . . . , k (t+1) 
l, j 

} . 
For a better comprehension the k -server problem is demon-

trated in an example with n = 4 and k = 2 (see Fig. 1 ). The initial

onfiguration ( t = 0 ) should be known, for this example the server

 = 1 is located at node i = 2 , the server l = 2 at i = 3 and the re-

uest appears at j = 4 characterizing the distribution of servers as

 

(0) = { k (0) 
1 , 2 

, k (0) 
2 , 3 

} and request as σ (0) 
4 

. 
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Fig. 1. Initial distribution of servers and request in the k -server problem. 

Fig. 2. New distribution after the server is moved and a new request arrives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Observation representation. 
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If k (0) 
2 , 3 

is displaced to service σ (0) 
4 

a new distribution denoted

as k (1) = { k (1) 
1 , 2 

, k (1) 
2 , 4 

} is characterized and a new request appears at

some node, in this case σ (1) 
1 

(see Fig. 2 ). 

The server displacement is subjected to the optimization of a

cost function according to the problem. A common problem is

to minimize the total cost involved in the displacement of the k

servers. For the sake of simplicity, the k -server problem is mod-

ified so that only one server occupies a node and is moved at a

time. Although its formal definition allows multiple servers to be

allocated at the same node, this situation is not necessary, so that

this modification does not change the cost for any computed solu-

tion ( Allan & El-Yaniv, 1998 ). 

3. Proposed approach 

In this section the k -server problem is modeled as a visual com-

puting problem in a reinforcement learning approach with approx-

imate solution by a multilayer perceptron network. 

3.1. Overview 

In a traditional reinforcement learning approach, the agent ob-

serves the state s t of an environment, takes an action a t and re-

ceives a reward r t+1 . In a deep reinforcement learning approach

however, the agent perceives the internal dynamics of the environ-

ment from observations o t ∈ O of unknown semantics as shown in

Fig. 3 . 

3.2. Observations 

The internal state s t of the environment is defined by an im-

age o t ∈ R + 2 that encodes the distribution of servers k ( t ) and the
Fig. 3. The agent-environment interaction in a deep reinforcement learning ap- 

proach. 
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equest σ (t) 
j 

at each step of time t . The number of pixels p must

atisfy the condition that n ≤ p , so that all possible distributions

an be encoded. The encoding is done by means of the pixels

ntensity levels defined in an interval [ L min ≤ L ≤ L max ] (grayscale),

here white ( L max = 1 ) is used to define the servers, medium gray

 L = 0 . 5 ) the request and black ( L min = 0 ) the non occupied or sur-

lus pixels. After this, the image is converted into a feature vec-

or x t ∈ R 

n ×1 whose request numerical value is converted to a neg-

tive value and the surplus pixels are removed. This representa-

ion is demonstrated in two examples in which the servers are

efined as k (0) = { k (0) 
1 , 2 

, k (0) 
2 , 3 

} and the request as σ (0) 
4 

(see Fig. 4 ).

he dotted edges are used to illustrate that the encoding is not

ied to the edge connections, it’s a representation that converts

he information about the nodes occupied by the servers and

y the request into symbols used as input units of the neural

etwork. 

Although grayscale representation is used, this modeling is not

estricted to this case, this option is made to reduce the computa-

ional cost involved in processing colored images. 

.3. Actions and future observations 

Once the server distribution and request have been defined, one

f the servers k (t) 
l,i 

must be moved to answer the request σ (t) 
j 

char-

cterizing an action a t . In this situation the number of allowed ac-

ions is equal to k , the number of servers, where a t ∈ { 1 , 2 , . . . , k } .
he distribution of servers and request, associated with an action

aken a k l characterizes an instance of the problem. After the action

s performed a new distribution of servers k (t+1) is characterized

nd another situation happens when a request is in the eminence

f happening, in this case the request σ (t+1) 
j 

can appear in one

f the non occupied nodes characterizing a (n − k ) × k number of

ossible actions a t+1 that defines the future observations x t+1 . 

.4. Multilayer artificial neural network 

The network consists of a fully connected hidden layer with

 sigmoid activation function and a fully connected linear output

ayer coupled to the number of servers. The linear output is used

o represent the entire range of possible real output numbers (see

ig. 5 ). Since we are using the cost involved in the displacement

f the servers as reward, even if the limits of the output are not

nown, there is a guarantee that their values will be represented. 



R.A.S. Lins, A.D.N. Dória and J.D.d. Melo / Expert Systems With Applications 135 (2019) 212–218 215 

Fig. 5. Neural network architecture. 

Fig. 6. Reward function. 
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Fig. 7. The k -server problem as a deep reinforcement learning task. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

w  

b  

t  

i  

s  

�  

m  

a  

t

L

w  

f  

a  

e  

t  

w  

o  

t  

t  

m  

t  

i

∇

 

t  

s  

D  

p  

e  

e  
.5. Reward and return 

For each taken action the environment returns a reward r t+1 

irectly proportional to a cost defined by the minimum cost path

 ( i, j ) between a node i (source) and a node j (destiny) that makes

p a minimum cost matrix C (see Fig. 6 ) defined as: 

 = 

{
c(i, j) , if i � = j 
0 , if i = j 

(1) 

Thus, actions taken through a policy π over time should min-

mize the expected total return denoted by min E [ R ] , in other

ords, the agent must learn how to manage the server displace-

ent so that the total cost is as small as possible. 

.6. Agent-environment interaction 

The environment internal state is perceived by the agent which,

fter taking an action, receives the reward (see Fig. 7 ). The red

rrow indicates the chosen server ( l = 2 ) to service the request

 j = 4 ) and the green edge indicates the minimum cost of moving

he server. 

.7. Algorithm 

From G the k -server environment is encoded in o t and con-

erted into x t . The input vector propagates forward passing

hrough the neurons of the network approximating the Q-function.

ext, the policy π maps the action a k l through the ε-greedy algo-

ithm defined by: 

 k l 
= 

{
argmin 

a t 

Q(x t , a t ; w t ) wit probability 1 − ε

random (uniform) with probability ε
(2) 
here ε represents the factor of randomness that guarantees the

alance of the strategy of exploration-intensification of new solu-

ions, increasing the network generalization power. Once the action

s defined, the reward r t+1 is received and next state s t+1 repre-

ented by x t+1 is observed. Therefore, the error signal defined as:

˜ Q (x t , a t ) = 

˜ Q target ︷ ︸︸ ︷ (
c(i, j) + γ min 

a t+1 

Q(x t+1 , a t+1 ; w ) ︸ ︷︷ ︸ 
˜ Q f uture 

)
− Q(x t , a t ; w ) (3)

ust be minimized so that the predicted Q -value, denoted by Q ( x t ,

 t ; w ), is approximated to the target Q -value ( ̃  Q 

target ) according to

he Huber objective function ( Huber et al., 1964 ) defined as: 

 δ(� ˜ Q ) = 

⎧ ⎨ 

⎩ 

1 

2 

( ̃  Q 

target − Q(x t , a t ; w )) 2 | � ˜ Q | ≤ δ

δ
(
| ̃  Q 

target − Q( x t , a t ; w ) | − 1 

2 

.δ
)

otherwise 
(4) 

here δ = 1 represents the behavior threshold of the objective

unction. For values below δ, the objective function behaves as

 quadratic function, while for larger values it behaves as a lin-

ar function. This property provides greater convergence capability

han a purely quadratic (mean square error) behavior since the re-

ard is directly linked to the server displacement cost preventing

utliers from having a major impact on learning. The weight vec-

or w , initialized according to Glorot and Bengio (2010) , is adjusted

hrough the backpropagation algorithm so the error can be mini-

ized ( LeCun, Bengio, & Hinton, 2015 ). In this way, differentiating

he objective function in weights terms we have that its gradient

s defined as: 

 w 

L δ(� ˜ Q ) = 

⎧ ⎨ 

⎩ 

( ̃  Q 

target − Q(x t , a t ; w )) ∇ w 

˜ Q (x t , a t ) | � ˜ Q | ≤ δ

˜ Q 

target − Q( x t , a t ; w ) 

| ̃  Q 

target − Q( x t , a t ; w ) | otherwise 

(5) 

For a better integration between Q-learning algorithm and

he neural network the agent experience e t = (s t , a t , r t+1 , s t+1 ) is

tored in a memory structure M = { e 1 , . . . , e M 

} with size of M .

uring the training phase the weights are updated from sam-

les (or batches) randomly withdraw from memory denoted as

 b , where b ∈ { 1 , 2 , . . . , B } , being B the size of batch. The experi-

nce replay ( Lin, 1993 ) prevents certain instances from spending
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Table 1 

Hyperparameter table. 

n, k M B α γ ε τ θ w 

10, 2 10,0 0 0 10 0.01 0.9 0.2 10 0.001 64: 2 

15, 2 0.01 128: 2 

20, 2 30 256: 2 

20, 3 10 0,0 0 0 100 0.05 1024: 3 

20, 4 1024: 4 

20, 5 1024: 5 
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too much time without being visited. Once the weights are mod-

ified the actual target state-action value is affected by the modifi-

cation and there is no guarantee that Q(s t , a t ; w ) ≈ ˜ Q 

target , a char-

acteristic that causes the network to diverge. To deal with this

non-stationary process the weight w that defines the approximate

value Q(s t+1 , a t+1 ; w ) , denoted here as ˜ Q 

f uture , must be kept con-

stant for a period τ , so that Q(s t+1 , a t+1 ; w ) = Q(s t+1 , a t+1 ; w 

−) ,

increasing the network convergence potential ( Mnih et al., 2015 ).

Although part of the gradient (semi-gradient) is used, this does not

interfere with the learning being continuous and online ( Sutton

& Barto, 2018 ), an intrinsic characteristic to the k -server problem.

Thus, the weights are modified at each sample set instead of being

updated at each iteration. 

The proposed algorithm belongs to the gradient-based algo-

rithms family adapted to the k -server problem and its pseudocode

is shown in Algorithm 1 . 

Algorithm 1 Q-learning with MLP for the k -server problem. 

Require: G, α, ε, γ , τ , M and B 

Initialize w 

Initialize w 

− = w 

Compute C

repeat 

Encode s into o

Perform the pre-processing of o into x 

Determine the action ( ε-greedy) 

a k l = 

{ 

argmin 

a t 

˜ Q (x, a ) with probability 1 − ε

random (uniform) with probability ε

Receive r and observe s ′ 
Store the experience e in M 

Remove a set of samples e b ∼ U(M ) 

Update w from samples reducing the Huber error: 

L δ(� ˜ Q ) = 

{ 

1 

2 
( ̃  Q target − ˜ Q (x b , a b )) 

2 | � ˜ Q | ≤ δ

δ
(
| ̃  Q target − ˜ Q (x b , a b ) | − 1 

2 
.δ

)
otherwise 

where Q target = c(i, j) + γ min 
a ′ 

b 

Q(x ′ 
b 
, a ′ 

b 
; w 

−) − Q(x b , a b ; w ) 

After each τ step w 

− = w 

until the stopping criterion is reached 

4. Case study 

The codes were elaborated in Matlab and tested on a com-

puter equipped with 4 gigahertz processor (4 cores), 32 gigabyte

of memory and Windows 10 operating system. 

4.1. Online mobile emergency problem 

To test the algorithm we define the k -server problem in a con-

text of intelligent transport systems providing a practical vision on

how the proposed algorithm can be applied. The problem is de-

fined as follows: the city population must be assisted in medical

emergency cases characterized by situations that may lead to suf-

fering, sequelae or death. Emergencies are attended by mobile ser-

vice units (equals) denoted by ambulances distributed through dif-

ferent locations in the city. The goal is to minimize the total time

associated with emergency care. To simplify the problem, the pa-

tient transportation to a health facility is not considered, only the

situation of moving the ambulance to attend an emergency. 

Formalizing in terms of the k -server problem we have that G

represents a city, each node n ∈ G a different place (region) of
mergency in the city, k the amount of ambulances (servers) and

the sequence of emergencies (requests) that can arise in any city

ocation. The attendance of an emergency is characterized when an

mbulance k (t) 
l,i 

is moved to the place of the emergency σ (t) 
j 

. Asso-

iated with the displacement of each ambulance there is a cost c t ( i,

 ) defined here as being the time spent (undefined unit) in the at-

endance of each emergency. The goal is to minimize the total time
 T 
t c t (i, j) involved in attending a sequence of emergencies. 

.2. Problem settings 

In order to verify the proposed algorithm performance, a city,

andomly generated (uniform distribution), was defined with 10

egions to be served and 2 ambulances available to attend the

mergencies that randomly (uniform distribution) appear at each

egion. After this, the city was expanded to 15 and 20 regions and

he number of ambulances were gradually increased from k = 2 to

 = 5 . 

We did not try to define the best hyper-parameters (see

able 1 ) in such a way that after some initial tests they were set

ith fixed values. To use a sufficient number of requests to obtain

 satisfactory approximate policy, the mean value and standard de-

iation of the Huber error (by batches) below a limit value denoted

y θ were used as the stopping criterion. For the Q-learning algo-

ithm the learning rate was defined as α = 0 . 1 and the same values

f ε and γ were used, having the same number of requests used

n the approximate approach as stop criterion. 

.3. Performance analysis 

The proposed solution was analyzed in two stages, during the

raining phase and after, where its performance was compared

ith the Q-learning and greedy algorithms. The greedy heuristic

oes not require training and was used to illustrate an agent be-

avior that aims a short-term return. 

The convergence for Q-learning algorithm optimal solution is

nsured if all state-action pairs are visited an “infinite” number of

imes. Considering the high computational cost that this criterion

equires, the analysis of neural network learning was performed

or the simplest configuration ( n = 10 and k = 2 ). The learning

urves obtained for predicted and target Q -values of the instance

 k 1 , 3 , k 2 , 5 , σ4 , a k 1 } using Q-learning and the neural network are

hown in Figs. 8 and 9 , respectively. Whenever server 1 was lo-

ated at node 3, server 2 at node 5, request at node 4 and server

 was moved to attend the request, Q -values were recorded un-

il the cost function error reached stop criterion (see Fig. 10 ). The

otted green line (see Fig. 9 ) represents the predicted Q -value ob-

ained with Q-learning algorithm. It was used to illustrate the sim-

lar learning behavior between the algorithms. 

The algorithm performance was tested in six different prob-

em configurations. For each one, 100 experiments (distinct) com-

ounded by a random sequence of emergencies were performed.

or each sequence, the total time spent 
∑ T 

t=0 c t (i, j) by each agent

n the ambulance displacement was calculated. At the end of

he experiments the lowest, highest and average time spent were
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Fig. 8. State-action values with Q-learning. 

Fig. 9. State-action values with a neural network. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 10. Loss function. 
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ecorded. Then, a scoring test was carried out among the agents,

he ones who shifted the ambulances in less time were considered

ictorious. In cases they were even, no score was considered. In or-

er to evaluate the performance in short and long term were con-

idered emergency sequences of duration T = 100 , T = 10 0 0 and

 = 10,0 0 0 . 
Table 2 

Performance test for different dimensions of the problem. 

Algorithms n, k T = 100 T = 10 0 

Min Max Mean Wins Min 

Q-learning 10, 2 291 432 355.59 20 3273 

Q-learning with MLP 284 432 356.14 12 3257 

Greedy 294 417 362.52 11 3358 

Q-learning 15,2 334 510 411.30 27 3836 

Q-learning with MLP 319 503 408.64 46 3761 

Greedy 324 522 418.96 15 3913 

Q-learning 20,2 348 497 419.29 20 3973 

Q-learning with MLP 343 501 411.78 67 3887 

Greedy 373 496 428.10 8 4099 

Q-learning 20,3 277 393 344.75 33 3263 

Q-learning with MLP 285 415 344.31 46 3248 

Greedy 301 433 353.51 17 3373 

Q-learning 20,4 258 384 317.74 13 2963 

Q-learning with MLP 226 381 294.94 50 2814 

Greedy 250 369 302.90 34 2797 

Q-learning 20,5 253 381 314.51 0 2961 

Q-learning with MLP 199 320 252.25 58 2351 

Greedy 199 321 258.26 42 24 4 4 

Keywords: Min 

Max 

Max 
From the results analysis (see Table 2 ) in the first problem con-

guration it was observed that the Q-learning algorithm demon-

trated a better displacement policy thus obtaining a greater num-

er of victories. In this case the tabular approach required a storage

tructure with 900 state-action pairs, while the approximate solu-

ion required 770 parameters. As the number of nodes and servers

ere increased the proposed algorithm obtained a more efficient

isplacement policy. In the cases with 20 nodes and 4–5 servers,

he Q-learning algorithm required a storage structure with 387,600

nd 1,550,400 state-action pairs, while the approximate solution

equired 24,596 and 25,620 parameters, respectively. The storage

tructure of the neural network was not influenced so much by

he exponential growth of the number of instances of the problem

s the table used in the traditional approach. The Q table, which

as its storage structure directly associated with the increase in

he number of state-action pairs, was unable to generate satisfac-

ory displacement policies in a timely manner. 

In all cases, it was possible to observe that the agent intelligent

ehavior in long term was evident with the increase of emergen-

ies attended. 

Although the instances discussed here are considered small

nd medium-sized, larger problems can be addressed through

arallelization strategies. The attendance to each region can be

onsidered a localized subproblem, although possible displace-
0 T = 10,0 0 0 

Max Mean Wins Min Max Mean Wins 

3745 3509.69 42 34,227 35,778 35,047.11 94 

3738 3513.74 40 34,258 35,821 35,091.05 6 

3777 3568.77 10 35,039 36,360 35,704.00 0 

4324 4058.46 13 40,008 41,319 40,681.76 0 

4282 4019.94 86 39,716 40,913 40,303.76 100 

4356 4144.74 1 40,892 42,020 41,485.92 0 

4452 4230.58 3 41,731 42,952 42,343.22 0 

4384 4136.27 97 40,649 42,126 41,368.35 100 

4575 4318.00 0 42,510 43,993 43,210.14 0 

3761 3509.33 19 34,417 35,767 35,081.79 9 

3708 3469.00 78 34,156 35,663 34,790.00 91 

3773 3597.96 0 35,325 36,646 36,003.36 0 

3386 3206.60 0 31,272 32,507 31,943.31 0 

3143 2980.62 89 29,250 30,566 29,819.78 100 

3214 3055.83 11 30,114 31,131 30,568.75 0 

3436 3205.79 0 31,500 32,843 32,058.52 0 

2724 2526.08 93 24,682 26,041 25,318.13 100 

2738 2600.74 7 25,267 26,652 26,072.42 0 

- Minimum time spent 

- Maximum time spent 

- Maximum time spent 

Wins - Victories 
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ments of the servers between the regions are allowed, thus dealing

with larger dimensions of the problem as carried out by recent

approaches ( Bertsimas et al., 2019; Costa et al., 2016; Rudec et al.,

2013 ). 

5. Conclusion 

In this work, an algorithm based on the deep reinforcement

learning paradigm was presented as an alternative solution to

the k -server problem. To verify the performance of the proposed

solution the algorithm was applied to a mobile emergency ser-

vice simulation. Through the results obtained, the new algorithm

demonstrated satisfactorily to be able to perform the displacement

of health units in different problem configurations. The scalabil-

ity of the proposed algorithm was evident in the larger cases of

the problem, where emphasis was given to the increase of server

quantity. Although an initial state is required to initialize the prob-

lem, the solution is not restricted to this condition. Its performance

was evaluated considering different possible initial states, a condi-

tion that increases problem degree of uncertainty and makes the

solution even more robust. In general, the proposed algorithm pre-

sented a better performance in the tests than the other algorithms,

reducing satisfactorily emergency time response. The results ob-

tained here indicate that the new algorithm can be an effective

approach on the solution of the k -server problem. 
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