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a b s t r a c t 

Many approaches have been proposed to recognize clusters in subspaces. However, their performance is 

highly sensitive to input parameter values. The purpose and expected ranges of these parameters may not 

available to a non-expert user. The parameter setting producing optimal results can only be known after 

repeated execution of the clustering process every time with a different set, which is very time consum- 

ing. Most of the existing algorithms show high runtimes due to excessive data scans. In this work, we 

propose a subspace clustering technique that estimates the distance threshold parameter automatically 

from the data for each attribute and works on the basis of single linkage clustering, in bottom up, greedy 

fashion. The experimental results show that, the algorithm produces optimal results without accepting 

any input from the user, achieves up to 10 times better runtime and improved accuracy in a single run 

without requiring any tuning of parameter values. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many recent applications capture huge volumes of data that is

ig in both directions, i.e. terms of objects and attributes. Com-

rehending such huge datasets is now beyond human capability

nd requires use of powerful and automated data mining tools.

his wealth of data is of no use unless the knowledge embedded

ithin it, is not uncovered by applying appropriate data mining

lgorithms. Clustering is an unsupervised data-mining task and no

lass labels are present in the data except for the test data wherein

hese labels can be used to verify quality of clustering. The at-

ributes describing the objects are also called as dimensions or

ariables and the objects represent vertices in multi-dimensional

pace described by these attributes. In the literature, datasets hav-

ng more than ten dimensions are called as high-dimensional data

 Han, Kamber, & Pei, 2012 ). Conventional clustering algorithms

how unusual and incorrect behavior on such datasets, the rea-

on being they compute inter-cluster similarity based on full at-

ribute space. Such distance calculations result in a dissimilarity

alue which is nearly equal for all object pairs. Thus all the data

oints are equally similar or dissimilar due to an effect called

Curse of Dimensionality" ( Bellman, 1961 ) observed in high dimen-

ional data spaces. Hence the underlying clustering algorithm can-

ot find clusters or natural grouping of the objects based on this
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imilarity value and show inability to mine meaningful clusters

n high-dimensional data spaces. To overcome this problem, many

ata mining algorithms use a preprocessing step of dimensional-

ty reduction. But it has been observed that, such global attribute

eduction methods preserve the effects of curse of dimensionality.

imensionality reduction methods may also result into loss of use-

ul knowledge that may be hidden in subspaces. 

Subspace clustering has gained attention due to its extensive

pplications in many areas. It is useful where the group of objects

how similarity over few attributes; in business management for

roduct recommendations, in the field of human-machine interac-

ion, bioinformatics, health surveillance systems, text mining, cus-

omer segmentation, computer vision ( Vidal, 2011 ) and for disease

iagnosis leading to better medical treatments. Subspace clustering

lgorithms aim to identify most relevant features locally instead of

lobally. A cluster in subspace is group of data items that show

imilarity over given subset of attributes. The subset of attributes

ustifies the reasons behind the object being grouped together. It

s possible that a subset of objects can show similarity for multi-

le reasons. Hence it is essential to search for all such reasons, i.e.

ll subsets of attributes. Thus, subspace clustering is very useful to

ncover multiple hidden concepts for each item in the data. How-

ver the search for manifold concepts per object may end up in

any analogous clusters. Hence it is desirable that, the clustering

utput should be useful for the purpose it is generated and should

ot have much redundant clusters. 

Although existing subspace clustering approaches seem to

e effective in identifying subspace clusters, they show major

https://doi.org/10.1016/j.eswa.2019.06.011
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limitations. First, their working is controlled by many parameters

( Sim, Gopalkrishnan, Zimek, & Cong, 2013 ). Intuitively setting the

right values of parameters that will result in high quality clus-

tering requires multiple runs and is very much time consuming.

Hence there is a need to reduce number of parameters required

by a subspace clustering algorithm. Second, it has been observed

that, clustering output is very much sensitive to the input param-

eter values and the outcome varies drastically with minor changes

in these values. Hence there is a need to estimate optimal values

of the parameters required by the algorithm automatically. Third,

generally, high quality clustering output is paid with high execu-

tion time of the clustering process. Still in some algorithms for di-

mensionality > 25 meaningful results are not obtained within tol-

erable timeframe due to many database scans and runtimes even

up to several days are shown by some algorithms ( Müller, Gün-

nemann, Assent, & Seidl, 2009b ). Hence practical application of

such algorithms on high dimensional datasets is infeasible. A sub-

space clustering algorithm must have to find the trade-off between

output quality and runtime. Fourth, especially for the algorithms

producing overlapping clusters, the output may contain redundant

clusters with no useful and added information. This is an undesir-

able effect as it may lead to too many interpretations of the same

data and the output rapidly becomes unmanageable. Hence only

meaningful, significant and interesting subspace clusters must be

retained in the output. What is significant in terms of subspace

clusters should be first defined and then accordingly the clustering

algorithm should mine these clusters directly. 

The concept of clustering is subjective. For a single dataset, var-

ious cluster representations are possible. The cluster structures are

driven by the algorithm employed and purpose of clustering. It

means that, most of the times clustering algorithms are biased to-

wards the task for which clustering is done. The clustering results

reflect assumptions and interest of the application. Hence such al-

gorithms show poor results when used in other application areas.

To address these issues, in this paper, we propose a parameter light

subspace clustering algorithm called as CLUSLINK. The algorithm

estimates the most essential parameter required by clustering al-

gorithm – distance threshold automatically from the input data. It

employs greedy approach to reduce computational complexity and

still achieves highly accurate results on synthetic and real datasets.

The algorithm is highly scalable with increase in number of data

items and number of dimensions. The algorithm prunes the sub-

space search space by eliminating the attributes which do not con-

tain any 1-dimensional subspace clusters. The closeness of enti-

ties in a dimension is determined by using Euclidean distance as

similarity measure and all points belonging to a cluster are within

the distance threshold estimated from the data. The algorithm is

able to remove redundant clusters and it outputs maximal clus-

ters. In contrast to other approaches in this area, the algorithm

does not require parameter tuning and in only one run it outputs

high quality clusters. As an application of the method, the output

subspace clusters can be used to identify prominent relationships

and rules existing in the data. The extracted rules can be very use-

ful for building corresponding classification models without user

intervention. 

2. Review of approaches for subspace clustering 

The first subspace clustering method called Clustering-In-QUEst

(CLIQUE) was proposed by Agrawal, Gehrke, Gunopulos, and

Raghavan (1998) . Thereafter research in subspace clustering got

momentum due to manifold applications in various domains. De-

velopments in this field have been reviewed in many surveys

( Kriegel, Kröger, & Zimek, 20 09; Parsons, Haque, & Liu, 20 04; Sim

et al., 2013 ). Muller et al. put forward the OpenSubspace frame-

work ( Müller et al., 2011 ) which addresses the need for an open
ource evaluation solution for subspace clustering. It incorporates

erformance measures to evaluate new solutions and visualization

f the results in order to promote focused research. 

The categorization of existing subspace clustering algorithms

an be done based on strategies employed to find subspaces and

ethods used to identify embedded clusters. One such classifica-

ion can be possible by examining the nature of output produced

y the algorithms – non-overlapping clusters or overlapping clus-

ers. In non-overlapping clustering an object can be part of only

ne cluster over a set of dimensions. Overlapping clusters contain

bjects that may be member of many subspace clusters simulta-

eously. These algorithms try to find every possible object group-

ng in every possible subset of dimensions and some of the objects

ay be common to many subspace clusters. If each dimension in

he data is equally important for cluster definition, such methods

re called Hard Subspace Clustering (HSC) algorithms. These algo-

ithms find exact subspaces. On contrary, Soft Subspace Clustering

SSC) algorithms work by assigning a factor or weight to each at-

ribute indicating the extent of its membership in a subspace clus-

er ( Deng, Choi, Jiang, Wang, & Wang, 2016b ). Thus every subspace

luster has different subsets of attributes having different weigh-

ages and every attribute mandatorily takes part in detection of

lusters. For scalability, these algorithms apply a clustering tech-

ique similar to k-Means ( MacQueen, 1967 ) and iteratively com-

ute attribute weights. Recently, soft subspace clustering is gaining

ttention and hence, many such algorithms have been proposed

 Deng et al., 2016b; Zhu, Cao, Yang, & Lei, 2014; Deng, Choi, Chung,

 Wang, 2010; Zhu, Cao, & Yang, 2011 ). 

Further categorization of subspace clustering algorithms can be

ased on the search methodology used to find subspaces. The

earch can be performed in top-down or bottom-up manner. Top-

own methods start the process with all available attributes and

hen iteratively reduce them while searching for candidate sub-

paces. Hence these approaches are also called as subspace cluster-

ng with dimensionality-reduction. Due to the nature of processing,

hey create partitions of the data in given subspace. Proper param-

ter tuning is an important issue in these algorithms for obtain-

ng meaningful results. Some of the parameters like size of sub-

paces and the count of clusters are generally very hard to estimate

efore hand, when the information about underlying data distri-

ution is not known. The parameter - subspace size compels the

op-down algorithms to output subspace clusters that are of fixed

ized. When sampling is involved, sample size is another impor-

ant parameter that plays a vital role in determining quality of the

utput. These algorithms have a major limitation that, they are un-

ble to find even small number of hidden clusters without explor-

ng every possible combination of subspaces and objects and hence

esult into exponential complexity. They are not scalable and show

oor quality output after few tens of attributes. 

Bottom-up algorithms determine the prospective subspaces

tarting with each dimension as a one-dimensional subspace. Then

hey try to find clusters in these one-dimensional subspaces by us-

ng a search method analogous to mining of frequent item-sets.

he problem resembles frequent item-set mining because each at-

ribute can be called an item and the corresponding subspace clus-

er can be called transaction of attributes. The frequent item-set

ining problem has exponential search space but can be reduced

y proper heuristics. CLIQUE and ENCLUS ( Cheng, Fu, & Zhang,

004 ) are some of the important algorithms based on this ap-

roach, which use a fixed grid size to split each attribute into equal

ized bins. CBF ( Chang, 2005 ), MAFIA ( Goil, Nagesh, & Choud-

ary, 1999 ), DOC ( Procopiuc, Jones, Agarwal, & Murali, 2002 ) are

ome other examples of bottom-up approach. The parameters re-

uired for bottom-up approaches are hard to set since improper

alues may result into one cluster mistakenly reported as two or

ore smaller clusters. Even if the parameters are tuned properly,
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ome small and important clusters may be missed by the pruning

tage. 

Based on orientation of output clusters in given N -dimensional

pace, the algorithms are broadly grouped into two categories -

xis parallel and arbitrarily oriented approaches. The advantage of

xis-parallel approach is that, instead of infinite subspace search,

earching for subspaces containing clusters can be reduced to sub-

paces excluding irrelevant attributes. This characteristic is also

seful in dimensionality reduction and data compression as the at-

ributes having high variance must only be preserved at a higher

recision level for all cluster members. In case of similarity search,

he high variance variables should only be searched individually

nd index should be constructed accordingly. Research in this field

ould be focused in the direction of identifying relevant and irrel-

vant attributes and reducing the exponential search space by ap-

lying proper heuristics. Kriegel et al. (2009) point out that axis-

arallel paradigm is a favored approach in many existing algo-

ithms 

The algorithms producing arbitrary oriented clusters do not re-

trict the clusters to be axis-parallel. A dimensionality technique

alled as Principal Components Analysis (PCA) ( Sapatnekar, 2011 )

an be used over neighboring collection of data items to define

ew vectors which are the principal components, i.e. set of vectors

hat best defines selected subset of data. The major disadvantage

f techniques that use Principal Components Analysis is that they

how high runtimes. These techniques show scalability linear or at

he most quadratic in terms of number of data points. But in terms

f number of dimensions in the data set, usually they show cu-

ic time complexity. Another drawback of PCA based dimensional-

ty reduction is that the interpretation of subspace clusters is hard

nd less intuitive as original attributes are transformed to a com-

letely new set of derived attributes. The advantage is that, they

re capable of expressing complex negative and positive correla-

ions existing between different attributes. This knowledge is most

seful when the cluster subspaces are arbitrarily oriented in the D -

imensional space and the attributes have a complex dependency

etween them. The rules identified by this dependency character-

ze the clusters and are useful for interpretation of the data. 

Projected clustering is another variant of subspace clustering

hich separates the input data into mutually disjoint clusters. The

trict object partitioning creates only few, non-redundant output

lusters. Hence these algorithms do not face efficiency problems.

ut these methods have disadvantage that they cannot identify all

nseen concepts in various subspace projections. Disjoint clusters

ay result into loss of meaningful clusters during the partition-

ng phase. Thus projected clustering methods represent a relatively

estricted clustering output. Subspace clustering approaches over-

ome this drawback at the cost of increase in complexity and effi-

iency. 

Depending on the method used to identify closeness of in-

tances, subspace clustering algorithms are divided into three ma-

or variants - density based, window based and grid based. In

ll these variants, the distance measurement is generally speci-

ed in terms of Euclidean distance. The subspace clustering algo-

ithms based on density notions work on local optimization prin-

iple. They examine the local structure of the objects to identify

enser areas. The dense areas are separated from each other by

reas with low data density. As dense regions are not restricted

o be axis-parallel as in the case of grid based methods, density

ased methods are able to find clusters having arbitrary shape.

hese algorithms operate with parameters that specify - the dis-

ance measure to be employed, radius of the neighborhood and

ensity threshold and are sensitive to these parameters. 

Cell-based methods first create a grid and find density of ob-

ects falling inside each grid cell. All cells which show density

bove predefined threshold are joined to form clusters. These
ethods use important parameters such as density threshold and

ize of grid that highly impact output quality. Improper parameter

etting may result into poor quality of the output. The clusters are

lways axis parallel and have polygon shape. It has been observed

hat, for medium range dimensionality, the algorithms show better

erformance. However, after certain dimensionality, the count of

ells increases drastically which degrades the performance, result-

ng into poor quality output and increased runtime. In such situa-

ions, density based methods perform better. 

It is generally observed that the subspace clustering algorithms

hat attempt to improve quality show high execution times, be-

ause they require multiple scans through the database to get opti-

al results. In a comparative evaluation, Muller et al. mention that,

hen dimensionality of the input datasets is more than 25, some

f the well known algorithms did not produce meaningful output

ithin acceptable timeframe ( Müller, Assent, Krieger, Günnemann,

 Seidl, 2009a ). These algorithms took even several days to pro-

uce some output (SUBCLU ( Kailing, Kriegel, & Kröger, 2004 ) took

 days to finish on an arbitrary data set). As many of the recent

atasets have hundreds of dimensions, such high time complex-

ty limits practical use of these algorithms. The authors also men-

ion that a subspace clustering algorithm should maintain balance

etween computational efficiency and output quality by applying

roper heuristics. 

. Parameter-free subspace clustering 

The thought of parameter-free data mining was first suggested

y Keogh et al. The authors empirically show that parameter-laden

lgorithms tend to overfit the results particularly in the case of

nomaly detection. These algorithms achieve high accuracy on a

est dataset whereas completely fail on other datasets of similar

ind. As a first step towards mitigating these problems, to de-

ise parameter-free data mining algorithms, the authors proposed

 Compression-based Dissimilarity Measure (CDM) ( Keogh, Lonardi,

 Ratanamahatana, 2004 ) which can be applied to clustering,

nomaly detection and classification. CDM is designed as a dissim-

larity measure and it can be used to prune search spaces. The em-

irical evaluation shows that such a parameter-free algorithmic ap-

roach outperforms parameter-laden algorithms. The authors claim

hat CDM can be useful to solve wide variety of data mining prob-

ems working on wide variety of data types. 

The selection of parameter values for getting optimal subspace

lustering output is not trivial and requires a trial-and-error ap-

roach. It involves repeatedly conducting clustering task every

ime with different set of parameter values and then the set re-

ulting in optimal output is selected as best parameter combina-

ion for the given dataset. That means, the process should be re-

eated for every new dataset. In Müller et al. (2009a) the authors

ention that, for fair evaluation of various algorithms and to get

ptimal results, they tried on average 100 parameter settings per

lgorithm per dataset. The authors also report runtimes of sev-

ral days for some algorithms. When it involves high dimensional

atasets which may be complex in three directions – in terms of

ount of objects, count of dimension and count of clusters embed-

ed, this method of deciding parameter values is practically infea-

ible. Hence it is desirable to have parameter-free or if not possi-

le at least parameter-light subspace clustering solutions for high

imensional datasets. Such algorithms can be designed by utilizing

he knowledge hidden in the data itself and by avoiding human in-

ervention. Table 1 highlights input parameters accepted by some

rominent subspace clustering approaches. 

There are some recent algorithms that tackle the problem of

arameter sensitivity of subspace clustering methods. Yao, Cao,

hao, Meng, and Xu (2018) modified the Expectation Maximiza-

ion (EM) algorithm in order to identify parameter values for the
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Table 1 

Input parameters accepted by some prominent subspace clustering ap- 

proaches. 

Clustering method Input parameters 

CLIQUE Number of Intervals and Unit Selectivity 

Threshold 

ENCLUS Entropy Threshold, Interest Gain Threshold 

PROCLUS Average Dimensions count, Clusters Count 

MAFIA Cluster Dominance Factor 

DOC Size of Grid, Density Threshold, Balance 

Factor Between Points and Dimensions 

DENCOS Equal Length Intervals, Unit Strength Factor, 

Maximum Subspace Cardinality 

DUSC Density Threshold 

DENCLU Density Threshold and Neighborhood Radius 

OPTIGRID Density Threshold and Neighborhood Radius 

SUBCLU Density Threshold and Neighborhood Radius 

FIRES Density Threshold and Neighborhood Radius 

DiSH Density Threshold and Neighborhood Radius 

PreDeCon Density Threshold and Neighborhood 

Radius, two Preference Parameters 

INSCY Neighborhood Radius and Density 

Threshold, Redundancy Factor 
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Fig. 1. Steps followed by the proposed algorithm. 
proposed PMoG-LRR algorithm. Subspace Memory Clustering

(SuMC) ( Struski, Tabor, & Spurek, 2018 ) is proposed which auto-

matically determines optimal values of the parameters - number

of clusters, dimensions of clusters and compression ratio. A den-

sity estimator to estimate object counts in denser areas is pro-

posed by Müller et al. in the algorithm DensEst ( Müller et al.,

2009a ). The estimation accuracy is improved by incorporating cor-

relations between attributes. The authors claim that the density es-

timation method can be easily incorporated to improve accuracy

and efficiency of subspace clustering and frequent itemset mining

algorithms. Another efficient density based subspace clustering ap-

proach is proposed by Lakshmi, Madhuri, and Shashi (2017) by dy-

namically computing the value of ε. 

In Zhu, Mozo, and Ordozgoiti (2016) , the authors highlight that

the subspace clustering algorithms that use cell-based approach

show poor quality if the grid size if not set properly. Other pa-

rameters such as density threshold and location of denser units

also affect the output. The authors propose a method that cre-

ates precise grids for given input data without accepting value of

grid size from the user. They also estimate density threshold adap-

tively to avoid bias towards certain dimensionality in the output.

Deng, Choi, Jiang, Wang, and Wang (2016a ) present a comprehen-

sive review of soft subspace clustering (SSC) algorithms. They ob-

serve that most of the SSC methods are sensitive to parameters.

They suggest that for a given dataset, outputs of multiple runs on

different parameter values can be combined by using ensemble

learning and the best output can be selected. However they also

mention that, it is difficult to determine volume of the results to

be used for the merging process. 

Wang et al. (2016) highlight that, choosing the right values

of tuning parameters requires domain knowledge, which is rarely

available. They emphasized further research for automatic estima-

tion of parameter values producing optimal results. They mention

that, the existing subspace clustering methods use a single dis-

tance metric for measuring dissimilarity between objects belong-

ing to a single attribute. However such a global distance function

cannot handle datasets having multifaceted structures. The authors

propose a method to create Composite Kernel Space (CKS) by us-

ing basis kernels which integrates distance metric learning into the

framework. To tackle the parameter sensitivity issue, the authors in

Zhang et al. (2016) propose a parameter free subspace clustering

algorithm that works on data cohesion model. The cluster purity

is calculated by using entropy. The attributes having low entropy

value and the most frequent values in the selected attributes are
hosen as basis for finding pure clusters. In Lakshmi, Shashi and

adhuri (2017) , the authors suggest an algorithm to output inter-

sting and non-redundant subspace clusters. In Huang et al. (2016) ,

n objective function is proposed for time series data clustering.

hey highlight the need of estimating the required parameters au-

omatically. 

. Proposed algorithm 

Similarity value amongst two data items is a reflection of the

trength of relationship between them. Thus measurement of dis-

ances is mandatory in the clustering process. In case of numerical

ttributes, similarity/distance measurement is generally done by

pplying a distance measure such as Minkowski, Euclidean, Man-

attan distance on the attribute values. Euclidean distance (straight

ine distance) is the most popular distance metric for numerical

ata. Conventional distance based clustering algorithms calculate

imilarity between objects over all dimensions. In case of high di-

ensional data, the similarity between objects is calculated over

dentified subspace i.e. on subset of attributes. In order to make

he subspace clustering process less dependent on user expertise,

t is essential to determine the distance threshold value automati-

ally from the data to be clustered. As an attempt in this direction,

 novel method is proposed in this paper. 

The hierarchical algorithm that uses minimum distance criteria

o merge two clusters is called as nearest-neighbor clustering al-

orithm or single-linkage algorithm. The clustering process stops

hen the distance amongst two nearest neighbors goes beyond

ser specified threshold. Thus single linkage clustering method

inimizes the sum of linkages – the distances between clusters

o be merged. The proposed method uses a single-linkage based

ottom-up approach to find subspace clusters. As in CLIQUE, the

roposed algorithm first identifies dense regions in each dimension

ased on the distance threshold value it has computed. Then it

uilds higher dimensional clusters by merging these 1-dimensional

lusters. It operates with default values of parameters which spec-

fy how coarse or fine the resulting clusters should be. The steps

ollowed by the algorithm are shown in Fig. 1 below: 
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Fig. 2. Pseudo-code of the steps followed by the proposed method. 
Step 1: Estimation of distance threshold separately for each

imension 

The proposed method estimates the distance threshold value

utomatically for every attribute. In this step, objects in each of the

 attributes are arranged in non-decreasing order. Then a closely

acked 5 elements region in it is identified and in case of tie, it

s resolved randomly. The window size is set to five elements be-

ause subspace clusters having less than five objects are assumed

o be non-significant ( Zhang et al., 2016 ). The maximum separa-

ion between two consecutive elements in the group is rounded

o next decimal point and is recorded as the distance thresh-

ld for that dimension. The estimation of distance threshold is

ighly accurate and produces near optimal results on synthetic

atasets. 

The complexity of this step is calculated as follows: the sort-

ng of objects to find distance threshold can be performed by us-

ng an algorithm like quick sort having time complexity of the

rder O( N log N ), where N is the count of objects. Then to find

istance threshold for each dimension separately, consecutive ele-

ents in each attribute are compared, which requires ( N −1 ) com-

arisons. Hence, total time complexity of this phase is D × ( N log

 ) + D × ( N −1) which is of the order O( N log N ). 

Step 2: Formation of 1-dimensional subspace clusters in each

imension 

In this step, dense regions of objects in each dimension are

ound based on distance threshold value identified in Step 1. Ini-

ially each object in the dimension is placed in a separate clus-

er. If the distance between any one object from a cluster and

ny one object in another cluster is within the distance thresh-

ld then the two clusters are merged. The process of merging two

lusters is repeated until no new clusters can be formed. This

tep works in a way similar to single linkage clustering. The 1-

imensional clusters which are having density of objects less than

bject_density_threshold are marked non-significant and pruned

rom further processing. The default value of object_density_

hreshold is set to 5. Time complexity of Step 2 is D × O( N ), as

 -1 comparisons are needed to find neighboring objects. 

Step 3: Formation of higher dimensional subspace clusters 

Higher dimensional clusters are formed by connecting 1-

imensional subspace clusters sharing common objects. If an out-

ier object is by chance becomes part of a one dimensional cluster,

t will be absent in clusters present in remaining dimensions and

ts support will be below attribute_threshold. Such outlier objects

et eliminated in this step. The attributes containing 1-dimensional

lusters are arranged in non-decreasing order on the basis of per-

entage of coverage of the data items belonging to the clusters. The

bjects in a 1-dimensional cluster in an attribute are connected

o objects in next attribute in the sequence if they contain com-

on object indices to form higher dimensional subspace clusters.

f the count of dimensions in a subspace cluster is less than at-

ribute_threshold, those clusters are pruned from further process-

ng. The default value of attribute_threshold is set 5. The time com-

lexity of this step is O(N). 

Step 4: Removal of redundant clusters 

A subspace cluster is dispensable if it is subset of a larger sub-

pace cluster. In step 3, many redundant clusters may be formed.

n Step 4, redundant clusters are removed by applying an al-

orithm proposed in Kuhn (1955) . As a high dimensional data

s inherently sparse, it can be assumed that the subspace clus-

ers cover less than 10% of the total sub-objects. Assuming that

here are Q subspace clusters identified in Step 3, then intersec-

ion operation can be done by an algorithm of complexity O(N),

hich makes Q iterations to find non-redundant subspace clus-

ers. Hence the time complexity of this Step is O(N). Here the

oints input for intersection are less than 10% of total number of

bjects (N). 
Time complexity of the proposed method 

After summing up the time complexities of Steps 1 to 4, the

ime complexity the proposed algorithm is estimated as O(N log

) + O(N) + O( N ) + O(N) ∼= 

O(N log N). 

Fig. 2 shows pseudo code of the algorithm. 
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5. Experimental results 

5.1. Quality measures for subspace clustering 

The performance of a clustering algorithm is evaluated in terms

of execution time and quality of clustering results. If true re-

sults are already known, the quality of clustering can be measured

by extrinsic methods and the clustering result can be compared

with the ground truth. If such information is unavailable, intrin-

sic methods can be applied that evaluate how well the groups in

the result are separated from each other. The information of ob-

jects participating in clusters is already known in case of synthetic

datasets. If the true clusters hidden in a dataset are denoted as

H = {H 1 ,…., H m 

}; the clusters found by given algorithm are denoted

as R = {C 1 , …., C k }; then the quality of clustering is evaluated by

determining the score of conformity of output clusters to the true

clusters. 

Object and subspace based measures 

For traditional algorithms, extrinsic clustering quality evalua-

tion measures assume that all attributes in the given data are part

of output clusters and the evaluation is done accordingly. How-

ever, for subspace clustering, the evaluation measures should ac-

count for a subset of attributes relevant to a given subspace clus-

ter. For evaluation of subspace clustering result, each data point is

divided into sub-objects annotated with attributes. If the dataset

has D dimensions and N items, then each object O i , is divided as

sub-objects O i1 , …, O iD . Hence there will be N × D sub-objects. A

subspace cluster then comprises of subset of these all sub-objects.

As a result, two output subspace clusters will match only when

they share the same sub-objects. Based on this notion of repre-

sentation, the evaluation measures specific to subspace clustering

are described in following paragraphs. The evaluation measures to

be used for subspace clustering are based on knowledge of objects

and attributes participating in the true subspace clusters. Hence

these measures are called as subspace and object based evaluation

scores. 

Let a structured numerical dataset DS contains N data items and

D variables. 

A = {A 1 , A 2 , …, A D } is the set of attributes and O = {O 1 , O 2 ,

…, O N } where O i = 〈 O i1 ,O i2 , …, O i D 〉 . A hidden or true cluster is

denoted by H i = (I i , S i ) ε H, where I i ⊆ O and S i ⊆ A. The quality of

clustering produced by the proposed method is evaluated in terms

of F-measure, accuracy, Clustering Error (CE) and Relative Non In-

tersecting Area (RNIA) ( Patrikainen & Meila, 2006 ). The efficiency

and scalability of the proposed algorithm is measured in terms of

execution time measured in seconds. The true clusters are mapped

to output clusters by applying method suggested in Kuhn (1955) . 

Precision: A high precision indicates that most of the sub-

objects in the output cluster are true sub-objects. Optimal value

of precision is 1.0. 

Precision = True Positives / (True Positives + False Positives) 

Recall: A high recall indicates that the identified clusters cover

a large fraction of the true sub-objects. Optimal value of recall is

1.0. 

Recall = True Positives / (True Positives + False Negatives) 

F1-measure: F1-measure corresponds to extent of conformity

of output to the true clusters and to what extent the algorithm is

able to exclude false results. Optimal value of F1-measure is 1.0.

If the true result contains m subspace clusters, the F1 value is

calculated obtained as follows: 

F1 = 

∑ m 

i =1 

(
( 2 ∗Precision ( i ) ∗Recall ( i ) ) 

( Precision ( i ) + Recall ( i ) ) 

)

Accuracy : Accuracy is the measure of the extent to which the

lgorithm is able to mark true sub-objects in the clusters and out

f the clusters. Optimal value of accuracy is 1.0. 

ccuracy = (True Positives + True Negatives) / (count of all sub-

bjects) 

RNIA : The subspace clustering quality is high if it covers all and

nly true sub-objects and does not include objects not supposed to

e part of any subspace cluster. This aspect is measured by Relative

onintersecting area (RNIA) measure. Let U indicates count of ob-

ects in union of true and output clusters. Let I indicates count of

bjects common to true and output clusters. Then RNIA = (U −I)/U.

ptimal value of RNIA is 0.0. 

CE: RNIA measure does not reflect the case when a true cluster

s partitioned into several small clusters in the output or several

rue clusters are merged to form an output cluster. CE measure re-

uces the clustering quality value in such cases. Here a mapping of

rue and output clusters is first generated. Let U indicates count of

bjects in union of true and output clusters. Let I’ indicates count

f objects common to mapped and output clusters. Then CE =
U – I’)/U. Optimal value of CE is 0.0. 

Extrinsic evaluation of output of a subspace clustering algo-

ithm is generally done on synthetic as well as real datasets. In

ase of synthetic datasets, the information of embedded clusters

hidden clusters) is known a priori. However such information is

issing for most of the real world datasets. Hence for evaluation

f quality on real data, those datasets which contain class labels

or all objects are chosen. Generally such datasets are available for

alidation of classification models. The objects I i belonging to class

 are then considered as members of cluster H i = (I i , S i ), where

 i is the subspace of H i . However as the real world dataset is in-

ended for classification, all attributes should be assumed equally

mportant for subspace clustering. Hence for real data set the rel-

vant dimensions for all hidden subspace clusters is set to A, i.e.

he whole set of attributes. By using this convention, the hidden

lusters H = {H 1 , …., H m 

} can be known for real datasets also. 

.2. Experimental setup 

.2.1. Synthetic data generator 

Evaluation of a clustering algorithm on artificially generated

synthetic) datasets is an effective and widely used technique in

he data mining community. For synthetic datasets, the structure

f embedded clusters is known precisely. Hence the performance

f clustering algorithm under consideration can be determined by

valuating the conformity between true partitions and the group-

ng identified by the clustering algorithm. Another advantage of us-

ng synthetic datasets is that the structure and dimensions of the

lusters to be embedded can be controlled as per the requirements

f the clustering method. 

The data generator used in this work is programmed in R,

hrough which the structure and size of the data to be generated

an be specified. The generator accepts following input from the

ser: 

i. Number of objects (N) 

ii. Count of dimensions (D) 

ii. Attribute domain (minimum, maximum) 

iv. Count of embedded subspace clusters (N c ) 

v. Count of data items participating in each of the subspace clus-

ters (C o ) 

i. Number of attributes in each subspace cluster (C a ) 

ii. The standard deviation of objects participating in each subspace

cluster (S d ) 

ii. The percentage of outliers (N o ) 

The experiments were done on synthetic datasets as described

n Table 2 . 
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Table 2 

Description of synthetic datasets. 

Number of dimensions (D) 10 0, 20 0, 30 0, 40 0, 50 0 

Number of objects (N) 10 0 0, 20 0 0, 30 0 0, 40 0 0, 50 0 0 

Minimum value of objects in a 

dimension (minimum) 

1.0 

Maximum value of objects in a 

dimension (maximum) 

100.0 

Standard Deviation (S d ) 0.01 

Percentage of outliers (N o ) 10 

Size of subspace clusters (C o and C a ) 10 objects and 10 dimensions 

20 objects and 20 dimensions 

Count of subspace clusters (N c ) 5, 10, 20, 50 
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.2.2. Real datasets 

UCI machine learning repository has many real world datasets

hat are being used for evaluation of data mining methods. Infor-

ation about true classes of the objects in the datasets is provided

s the last attribute in the data matrix. The Iris dataset contains

 attributes and 140 objects which are classified into 3 classes.

he Ecoli dataset has 7 attributes and 336 objects divided into 8

lasses. The Glass dataset has 6 classes, 214 objects each described

y 9 features. The Liver dataset has 2 classes, 345 objects and 6

ttributes. Pima dataset contains 768 items each with 8 attributes

nd the objects are divided into 2 classes. The Vowel dataset has

1 classes, 990 instances each with 13 features. 

.3. Empirical evaluation of quality of output produced by CLUSLINK 

This section discusses about the effects of accurate distance

hreshold estimation on quality of output produced by the pro-

osed method. Empirical evaluation of the method was done on

elf generated synthetic datasets and real datasets available on UCI

achine learning repository ( Dua & Karra Taniskidou, 2017 ). The

ubspace clustering evaluation measures described in ( Müller et al.,

009a ) were used which are mainly of extrinsic type. All experi-

ents were conducted on personal computer having Intel(R) Pen-

ium® P6200 CPU @ 2.13 GHz, 2.00 GB RAM, Windows 7 Operating

ystem, R version 3.4.3. 

The output was assessed based on following criteria: 

i. The quality of output produced by CLUSLINK is compared with

other 5 well known algorithms. Synthetic data having 10 0 0 ob-

jects and dimensions varied from 100 to 500 and varied count

and dimensionality of embedded clusters was used for evalua-

tion. 

ii. The quality of output produced by CLUSLINK is compared with

other 5 well known algorithms on 6 real datasets. The param-

eter values used are the default values suggested in “subspace”

package of R ( Hassani, 2015 ). 

ii. The quality of output produced by CLUSLINK is compared with

optimal results reported in Müller et al. (2009a) for 10 well

known algorithms on 2 real datasets from UCI machine learning

repository ( Dua & Karra Taniskidou, 2017 ). 

.3.1. Clustering quality on synthetic datasets 

.3.1.1. Experiments on datasets having varied sizes. The quality was

valuated on synthetic datasets containing 5 subspace clusters con-

aining 10 instances and 10 dimensions each. The object count was

aried from 10 0 0 to 50 0 0 and dimension count was varied from

00 to 500. 

Figs. 3–6 show following results: 

Accuracy of the output is between 1 and 0.94. F1-score is ap-

roximately 1.0 in all runs. 

The F1-score value is optimal i.e. 1.0 in most of the cases only

ue to accurate estimation of the distance threshold. RNIA value is

etween 0.0 and 0.06. CE value lies between 0.0 and 0.06. 
As depicted in Fig. 7 , the algorithm identifies all 5 clusters em-

edded in the dataset exactly. To check if the improved clustering

uality is only due to accurate distance estimation, experiments

ere also carried out by keeping distance threshold value constant

t 0.5 for all dimensions, instead of estimating it in the first Step

f CLUSLINK. Synthetic datasets used for the experiments had 10 0 0

bjects and dimensions varied from 100 to 500. Tables 3 and 4 re-

ect the fact that, the algorithm could produce high quality output

nly due to accurate distance estimation in the first Step. 

.3.1.2. Comparison of output quality with other algorithms on syn-

hetic datasets. Using the synthetic data generator mentioned

bove, five synthetic datasets with N = 10 0 0 objects were gener-

ted each having 5 subspace clusters containing 10 objects and

0 attributes randomly were embedded in the data. The dimen-

ionality of the five datasets was 10 0, 20 0, 30 0, 40 0 and 500 re-

pectively. An implementation of CLIQUE, FIRES, P3C, PROCLUS and

UBCLU is available in package ‘Subspace’ of R ( Hassani, 2015 ).

he parameter setting used during the experiments for FIRES,

ROCLUS and SUBCLU was as provided in the package. The set-

ing was changed for CLIQUE and P3C as shown in Table 5 for

etting some output, as the default values could not produce

ny result. CLUSLINK was executed with default values of ob-

ect_density_threshold and attribute_threshold set to 5. A compar-

son of quality of the output of CLUSLINK with abovementioned

ubspace clustering algorithms is presented in Fig. 8 . 

Result analysis 

CE: As shown in Fig. 8 (a), the clustering error of the proposed

ethod is 0.06 for synthetic dataset with 400 dimensions and

00 objects and in rest of the cases it is 0.0 which is the opti-

um. Other algorithms show clustering error of more than 0.98.

his is because the experiments were done with default values of

arameter specified in the package ‘Subspace’. As highlighted in

üller et al. (2009a) , getting values of optimal parameter setting

equires repeated runs of these algorithms every time with a new

et of values. In contrast to this, the proposed algorithm could get

ptimal results in single run, without accepting any input from the

ser. 

RNIA: In case of RNIA measure as shown in Fig. 8 (b), the same

bservations hold true and RNIA value of the clustering produced

y the algorithm is near optimal. 

F1-measure: Fig. 8 (c) highlights that, F1 value of the proposed

ethod is more than 0.96 for d = 400 and in other cases it is 1.0

hich is again the optimal value. CLIQUE could produce F1-value

p to 0.3 and for rest of the algorithms it is less than 0.11. 

Accuracy: As shown in Fig. 8 (d), accuracy of the proposed

ethod is optimal i.e. 1.0 in all cases except for d = 400 where it

s 0.94. CLIQUE shows maximum accuracy as 0.59 on d = 500 and

IRES shows 0.78 on d = 300 which is better than remaining algo-

ithms. 

Count of output clusters: The algorithm CLUSLINK outputs ex-

ctly the same number of clusters as those are embedded in the

ata as shown in Table 6 . CLIQUE and P3C output too many redun-

ant clusters. 

The results show that, the algorithm produces near optimal re-

ults on synthetic datasets. The optimal results are outcome of ac-

urate distance threshold estimation. 

.3.1.3. Experiments on variable sized embedded subspace clusters.

his section compares performance of CLUSLINK with other algo-

ithms on synthetic datasets having 10 0 0 objects and 100 dimen-

ions, by varying cluster counts to 5, 10, 20 and 50. Each cluster

as sizes of (i) 10 objects and 10 dimensions and (ii) 20 objects

nd 20 dimensions. The objective of the experiment was to check

f varied cluster dimensionality affects the quality the output. The

utcome of the experiments is shown in Fig. 9 . 
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Fig. 3. Accuracy of CLUSLINK on synthetic datasets. 

Table 3 

Quality of clustering by CLUSLINK with and without distance estimation. 

#Dimensions 

CE after 

distance 

estimation 

CE without 

distance 

estimation 

RNIA after 

distance 

estimation 

RNIA 

without 

distance 

estimation 

F1 after 

distance 

estimation 

F1 without 

distance 

estimation 

Accuracy 

after 

distance 

estimation 

Accuracy 

without 

distance 

estimation 

100 0 0.99 0 0.99 1 0.04 1 0.21 

200 0 0.99 0 0.99 1 0.02 1 0.10 

300 0 0.99 0 0.99 1 0.014 1 0.11 

400 0.06 0.99 0.06 0.99 0.96 0.014 0.94 0.09 

500 0 0.99 0 0.99 1 0.008 1 0.13 

Table 4 

Number of output clusters with and without distance estimation. 

#Dimensions 

Count of output clusters 

after distance estimation 

Count of output clusters 

without distance estimation 

100 5 650 

200 5 1363 

300 5 2014 

400 5 2724 

500 5 3338 

Table 5 

Parameter settings for the experiments. 

Algorithm Parameter values 

CLIQUE Xi = 50, tau = 0.03 

FIRES base_dbscan_minpts = 4, base_dbscan_epsilon = 1, k = 1, 

minimumpercent = 25, minclu = 1, mu = 1, 

post_dbscan_epsilon = 1, split = 0.66, post_dbscan_minpts = 1 

P3C ChiSquareAlpha = 0.50, PoissonThreshold = 2 

PROCLUS k = 12, d = 2.5 

SUBCLU epsilon = 1, minSupport = 5 
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Fig. 4. F1-SCORE of CLUSLINK on synthetic datasets. 

Table 6 

Number of output clusters on data having 10 0 0 objects and 5 embedded clusters. 

#Dimensions CLUSLINK CLIQUE FIRES P3C PROCLUS SUBCLU 

100 5 117 1 121 12 4 

200 5 191 1 152 12 4 

300 5 349 1 195 12 4 

400 5 440 1 177 12 4 

500 5 534 1 297 12 4 
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Result analysis 

CE and RNIA: The results in Fig. 9 (a) and (b) highlight that,

LUSLINK has Clustering error and RNIA value less 0.02 in all cases,

hereas for other algorithms, the error is very high. 

F1-measure: CLUSLINK could produce F1-value in the range

.00–0.98 which is optimal one as depicted in Fig. 9 (c). CLIQUE

chieves better results in terms of F1-value compared to other al-

orithms. 

Accuracy: As shown in Fig. 9 (d) the accuracy of the algorithm

aries from 1.00 to 0.98 which is the best in the group. FIRES and
LIQUE are better in terms of accuracy compared to remaining al-

orithms. 

Count of output clusters: As shown in Table 7 , CLUSLINK out-

uts precisely the same number of clusters as those embedded in

he dataset in all cases, whereas CLIQUE and P3C produced more

han 100 clusters, FIRES could output only 1 cluster, PROCLUS 12

lusters and SUBCLU could output 4 clusters in each case. 

The results highlight that, CLUSLINK produces high quality re-

ults on synthetic datasets containing varied cluster dimensional-

ty. 

.3.2. Clustering quality on real datasets 

.3.2.1. Comparison of quality with other algorithms on default pa-

ameter setting. This section describes experimental results on real

atasets mentioned in Section 5.2.2 . The performance of CLUSLINK

as compared with other state of the art algorithms mentioned in

able 5 . The parameter setting for these algorithms is also spec-

fied in the table. Default values of object_density_threshold and

ttribute_threshold for CLUSLINK were set to 5. The algorithms -

LUSLINK, CLIQUE, FIRES, P3C, PROCLUS, and SUBCLU were exe-

uted on each of datasets. 
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Fig. 5. RNIA of CLUSLINK on synthetic datasets. 

Table 7 

Number of clusters identified against embedded. 

Cluster Dimensions Obj. X Dim. Number of embedded Clusters CLUSLINK CLIQUE FIRES P3C PROCLUS SUBCLU 

10 × 10 5 5 109 1 143 12 4 

10 × 10 10 10 156 1 157 12 4 

10 × 10 20 20 159 1 188 12 4 

10 × 10 50 50 272 1 107 12 4 

20 × 20 5 5 182 1 163 12 4 

20 × 20 10 10 378 1 N. A. ∗ 12 4 

20 × 20 20 20 706 1 N. A. ∗ 12 4 

20 × 20 50 50 1104 1 N. A. ∗ 12 4 

∗ N.A.- P3C could not finish within 30 min; hence data of clusters output is not available. 
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CE: Fig. 10 (a) shows the clustering error on various real datasets

by each of the algorithms. The clustering error of CLUSLINK is the

minimum compared with other algorithms. 

RNIA: Fig. 10 (b) shows that, RNIA value of CLUSLINK and FIRES

is found to be the least in the group. However on Pima dataset

FIRES shows poor performance in terms of RNIA. 

Accuracy: Accuracy of FIRES is the optimal i.e. 1.0 on 4 datasets.

CLUSLINK shows Accuracy in the range of 0.81 to 0.99 over 4

datasets. FIRES shows very poor performance on Pima dataset in

terms of Accuracy ( = 0.13), whereas CLUSLINK shows the best per-
ormance with Accuracy = 0.81. On Iris Accuracy of CLUSLINK is

.99 which is the best amongst all. Fig. 10 (c) shows graph of Accu-

acy. 

F1-measure: CLUSLINK performs the best in terms of F1-value

or all datasets compared to other algorithms. Fig. 10 (d) reflects F1-

core. 

Count of clusters output: Table 8 displays the number of

lusters output by all the algorithms against the classes actually

resent in the data. The table shows that no algorithm could out-

ut the same number of clusters as those are present in the data.
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Fig. 6. CE of CLUSLINK on synthetic datasets. 

Fig. 7. Clusters identified by CLUSLINK against actually present. 
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Fig. 8. Comparison of quality of output on synthetic datasets. 

 

 

 

 

Fig. 9. Comparison of CLUSLINK on synthetic data having varied cluster sizes. 
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Some of the algorithms – FIRES, PROCLUS, SUBCLU output a con-

stant number of clusters irrespective of the dataset input to the al-

gorithm. CLUSLINK outputs comparatively less number of clusters

than CLIQUE and it can be further improved to output all and only

true clusters. 
Above results show that CLUSLINK is highly effective on real

atasets also. It could produce the high quality results in a single

un without requiring any parameter setting by the user. 

.3.2.2. Comparison of quality with other algorithms on optimal

arameter setting. The results obtained in section 5.3.2.1 show
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Fig. 10. Comparison of quality of output on real datasets. 
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hat, most of the algorithms could not perform well on the de-

ault parameter setting specified in “subspace” package of R. In

üller et al. (2009a) the authors proposed a methodical frame-

ork to evaluate various subspace clustering approaches. They per-

ormed large number of experiments each with different parame-

er setting (around 100 parameter settings per algorithm) and re-
orted the optimal results for each algorithm on real world data

ets. These results can be used as baseline for evaluation of new

ethods. CLUSLINK was executed only once on each real dataset

nd with no input parameters to set by the user. Fig. 11 presents

he comparison of quality of results by CLUSLINK and optimal re-

ults shown by other algorithms on PIMA and VOWEL datasets as

eported in Müller et al. (2009a) . Table 9 shows the number of

lusters output by each algorithm against those actually present in

he datasets. 

Results analysis 

In the works by Huang et al. (2014) and Müller et al. (2009a) ,

he authors mention that they executed 100 runs of each algorithm

nder consideration with different set of parameters to arrive at

he best values of F1-score, accuracy, and other quality measures.

pposite to this, CLUSLINK requires only a single run without any

arameter setting. As shown in Fig. 11 , it outperforms other algo-

ithms in terms of Accuracy and produces comparable results for

1-measure and RNIA. Still the algorithm can be further improved

o reduce CE values. The CE measure penalizes for splitting or

erging of true clusters in different output clusters. Table 9 shows

he comparison of number of clusters reported. Most of the algo-

ithms output many small clusters when only 2 true clusters are

resent in the input datasets. CLUSLINK can be improved in this

ssue by applying adaptive merging strategy. This will also result

n improvement of CE values. The improved clustering accuracy

hown by CLUSLINK is the outcome of accurate distance estima-

ion. Overall the algorithm outperforms in terms of accuracy and

roduces comparable results for other evaluation measures due to

ccurate estimation of the most important parameter – the dis-

ance threshold. 

.4. Improving execution time by using greedy clustering approach 

Optimization problems try to minimize or maximize given ob-

ective functions. These problems generally belong to NP-hard cat-

gory ( Manning, Raghavan, & Schütze, 2008 ). The clustering prob-

em falls in the category of optimization problems, as it attempts

o minimize inter-cluster distances and maximize intra-cluster dis-

ances. A subspace clustering algorithm that aims to optimize the

lustering results always shows exponential time complexity on

atasets with few tens of dimensions. Sometimes, these algorithms

lso fail to output any results in reasonable time. Today, most of

he datasets have hundreds of dimensions. However, existing sub-

pace clustering algorithms show poor scalability on high dimen-

ional datasets having more than 25 dimensions ( Müller et al.,

009a ). This happens due to the reason that, they iterate mul-

iple times over the dataset to optimize results ( Nagesh, Goil, &

houdhary, 20 0 0 ; Zhu, Mara, & Mozo, 2015 ). To obtain a trade-

ff between execution time and quality of output, the proposed

ethod uses greedy approach. Greedy algorithms find locally opti-

al choices. These approaches are significantly scalable than other

pproaches like backtracking and dynamic programming, because

hey do not reiterate through the input data to revise their earlier

hoices. Although greedy approaches do not generally produce op-

imal solutions, as discussed in Section 5.3 , the proposed algorithm

as proven its effectiveness in terms of high quality of the results. 

.4.1. Empirical evaluation of scalability of the algorithm 

This section presents evaluation results of the proposed method

ased on following criteria: 

i. The scalability of CLUSLINK by increasing dimensionality and

number of instances in the synthetic data. 

ii. The execution time of CLUSLINK in comparison with other 5

well known algorithms on synthetic data having 10 0 0 objects

and dimensions varied from 100 to 500. The experiments were
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Fig. 11. Comparison of CLUSLINK with optimal results of other algorithms. 
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then repeated by varying count and dimensionality of embed-

ded clusters. 

ii. The comparison of execution time of CLUSLINK with other 5

well known algorithms on 6 real datasets. The default values

of parameters suggested in “subspace” package of R were used

during these experiments ( Hassani, 2015 ). 

iv. The comparison of execution time of CLUSLINK with optimal re-

sults reported in Müller et al. (2009a) for 10 well known algo-

rithms on 2 real datasets from UCI machine learning repository

( Dua & Karra Taniskidou, 2017 ). 

.4.2. Execution time on synthetic datasets 

.4.2.1. Scalability of CLUSLINK on datasets having varied sizes. Scal-

bility results of the proposed algorithm are presented in this sec-

ion. The objective was to check changes in runtime by increasing

imensionality and cardinality of the datasets. The object count

as varied from 100 to 500. 5 subspace clusters containing 20

ata items and 20 attributes were embedded. The empirical re-

ults shown in Fig. 12 reveal that, the execution time increases lin-

arly with increase in N up to 40 0 0 data items. For N > 40 0 0, due

o formation of many one-dimensional subspace clusters. Hence

n process of joining one-dimensional clusters to form multidi-

ensional subspace clusters, many set matching operations are

erformed. This results into noticeable increase in the execution

ime. The graph at N = 50 0 0 resembles graph of time complexity

(N × log(N)). 

Experiments were also carried out by keeping distance thresh-

ld value constant at 0.5 for all dimensions, instead of estimat-

ng it through the first Step of CLUSLINK. Synthetic datasets used

or the experiments had 10 0 0 objects and dimensions varied from

00 to 500. Table 10 reflects that, the excellent runtime shown by

LUSLINK is only due to accurate distance estimation in the first

tep of the algorithm. 

.4.2.2. Comparison of execution time with other algorithms. Us-

ng the synthetic data generator mentioned earlier, five synthetic

atasets having 10 0 0 objects were generated. Each dataset was

aving 5 subspace clusters containing 10 objects and 10 attributes

andomly embedded in the data. The dimensionality of the five

atasets was set to 10 0, 20 0, 30 0, 40 0 and 500 respectively. An

mplementation of CLIQUE, FIRES, P3C, PROCLUS and SUBCLU avail-

ble in package ‘Subspace’ of R ( Hassani, 2015 ) was used for

he experiments. The parameter setting used during the exper-

ments for these algorithms is mentioned in Table 5 . CLUSLINK

as executed with default values of object_density_threshold and

ttribute_threshold set to 5. A comparison of execution time of

LUSLINK with abovementioned subspace clustering algorithms is

resented in Table 11 . 

Result analysis 

CLUSLINK has the best execution time in the group for all

atasets. The method is highly scalable and shows negligible in-

rease in runtime with increased dimensionality. The excellent ex-

cution time shown by CLUSLINK is due to application of greedy

pproach for selection of cluster members. The assignment of ob-

ects to clusters is done in a single pass over each attribute. As

he one-dimensional clusters are formed by using distance thresh-

ld estimated automatically by the algorithm, the clusters are op-

imal and need no revision. Thus the best execution time shown

y CLUSLINK is outcome of accurate distance threshold estimation

nd use of greedy technique. 

.4.2.3. Comparison of execution time on variable sized subspace clus-

ers. This section shows comparison of performance on synthetic

atasets having 10 0 0 objects and 10 0 dimensions, by embedding

, 10, 20 and 50 clusters each having sizes (i) 10 objects and 10

imensions and (ii) 20 objects and 20 dimensions. The objective
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Fig. 12. Scalability of CLUSLINK. 

Table 8 

Number of clusters output by various algorithms. 

Dataset Classes in dataset #Clusters CLUSLINK #Clusters CLIQUE #Clusters FIRES #Clusters P3C #Clusters PROCLUS #Clusters SUBCLU 

Iris 3 3 47 1 3 12 4 

Pima 2 66 71 2 1 12 4 

Ecoli 8 10 87 1 1 12 4 

Glass 6 86 175 1 3 12 4 

Liver 2 26 31 1 1 12 4 

Vowel 11 183 122 1 8 12 4 
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f the experiments is to check if varied dimensionality and count

f embedded clusters affects the execution time. The outcome of

he experiments is shown in Table 12 . The results highlight that,

LUSLINK has the best execution time in the group and the algo-

ithm shows linear growth with increased cluster count and di-

ensionality. 

.4.3. Execution time on real datasets 

.4.3.1. Comparison of execution time on default parameter setting.

his section describes experimental results on real datasets men-

ioned in Section 5.2.2 . The execution time of CLUSLINK was com-

ared with other algorithms mentioned in Table 5 . The parame-

er setting for the algorithms is also specified in the table. De-

ault values of object_density_threshold and attribute_threshold for

LUSLINK were set to 5. Table 13 shows the comparison of process-

ng time on real datasets. The table reflects that CLUSLINK shows
he least execution time in the group in most of the cases. The

xecution time of CLUSLINK is comparable to SUBCLU. However, as

hown in Fig. 11 , the quality of results produced by SUBCLU is very

oor on default parameter setting. 

.4.3.2. Comparison of execution time with other algorithms on op-

imal parameter setting. In this section, the results of CLUSLINK

re compared with the optimal results reported in Müller et al.

2009a) . Table 14 presents the comparison of execution time taken

y CLUSLINK and optimal results for other algorithms on PIMA and

OWEL. The authors in Müller et al. (2009a) executed the experi-

ents on a compute cluster containing compute nodes having four

pteron quad core CPUs @ 2.3 GHz, 1.5GB RAM. They restricted

untime for each processing to 30 min. CLUSLINK was executed a

omputer having CPU P6200, 2 GB RAM and 2.13 GHz. frequency.

he hardware configuration used for executing CLUSLINK is low



234 B.A. Kelkar, S.F. Rodd and U.P. Kulkarni / Expert Systems With Applications 135 (2019) 219–236 

Fig. 13. Scalability with changed cluster dimensionality. 

Table 9 

Number of output clusters for real datasets. 

Algorithm Number of output clusters 

PIMA (2 Classes) LIVER (2 Classes) 

CLUSLINK 66 26 

CLIQUE 201 19 

DOC 17 13 

MINECLUS 3 32 

SCHISM 21 68 

SUBCLU 325 64 

FIRES 1 1 

INSCY 3 130 

PROCLUS 3 2 

P3C 1 1 

STATPC 27 4 

Table 10 

Execution time by CLUSLINK with and without distance estimation. 

#Dimensions 

Execution time (second) 

after distance estimation 

Execution time (second) 

without distance estimation 

100 0.57 12.86 

200 1.37 81.65 

300 1.76 210.07 

400 2.79 348.32 

500 3.46 426.62 

 

 

 

 

 

c  

b  

n  

r  

a  

t  

i  

e  

i  

c  

r  

f  

g  

n  

a  

a

 

f  

e  

n  

e  

a  

o  

r  

u  

t  

c  

m  

d  

O  

c  

t  

t

 

p  
compared to that used in Müller et al. (2009a) . Still the execution

times of all algorithms are compared with CLUSLINK to draw con-

clusion about the efficiency approximately. 

6. Conclusion and future scope 

Every data mining model operates based on a set of parameters.

The processing control is generally encapsulated in many arbitrary

parameters. These parameters are the deciding factors to obtain ac-
Table 11 

Execution time (in second) on synthetic datasets 

Dimensions CLUSLINK CLIQUE FIRES

100 0.98 0.58 40.34

200 1.37 1.65 246.3

300 1.76 7.49 520.7

400 2.79 14.07 1757.3

500 3.46 25.15 5262.
urate results and in an efficient manner. However, such threshold-

ased data mining poses another requirement on the process i.e.

eed of an expert user who has extensive knowledge of the algo-

ithm as well as data to be processed. Although parameter-laden

lgorithms are necessary to control noise and unwanted results,

hey work as a double-edge sword. First, it restricts the capabil-

ty of a data mining algorithm to find novel and interesting knowl-

dge due to constraining parameters values which are based on

ncomplete knowledge of a non-expert. Second, it is difficult to

ompare different approaches which work on different kind of pa-

ameterizations. Generally the parameters are estimated using the

ull dataset and hence tend to overfit the test data and are not

eneralized for real unseen data. While there are some recent tech-

iques aiming at automatic tuning of parameters, these techniques

re themselves based on some parameters which may result into

n infinite regression. 

The work presented in this paper is a step towards parameter

ree data mining. The proposed algorithm makes use of knowledge

mbedded in the data itself for estimating distance threshold for

umerical data. The method uses separate distance threshold for

ach dimension rather than using global distance threshold for all

ttributes. The algorithm has proven to be very is very effective

n sparse high dimensional datasets and produces highly accu-

ate results on synthetic and real datasets. The experimental eval-

ation of the quality and runtime of the algorithm demonstrates

hat, the algorithm accurately estimates the distance threshold for

lustering in subspaces. The greedy approach employed by the

ethod reduces exhaustive database scans required to find can-

idate subspace projections. The algorithm has time complexity of

(N × log(N)). On some of the real datasets, the count of output

lusters is comparatively high. CLUSLINK can be improved further

o adaptively merge neighboring clusters if they fall at a short dis-

ance from each other. 

Future direction in this field could be estimation of other im-

ortant parameters such as density threshold for clustering. The
having 10 0 0 objects. 

 P3C PROCLUS SUBCLU 

 334.37 24.23 4.74 

3 648.10 25.18 37.05 

8 2502.03 54.48 62.80 

 2768.17 244.50 156.86 

71 1888.22 123.56 74.18 
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Table 12 

Execution time (in second) by varying cluster count and dimensionality. 

Cluster Dimensions Obj. X Dim. Number of embedded Clusters CLUSLINK CLIQUE FIRES P3C PROCLUS SUBCLU 

10 × 10 5 0.86 2.45 65.98 164.63 12.51 27.12 

10 × 10 10 1.06 1.95 83.43 258.72 54.07 14.73 

10 × 10 20 1.64 2.12 74.72 115.69 23.03 18.67 

10 × 10 50 5.03 8.24 78.80 844.73 19.93 11.76 

20 × 20 5 1.16 2.78 26.53 669.02 39.72 11.31 

20 × 20 10 1.83 6.26 82.81 N. A. ∗ 25.82 20.53 

20 × 20 20 4.48 22.76 79.24 N. A. ∗ 15.21 14.87 

20 × 20 50 19.10 227.46 91.63 N. A. ∗ 18.26 13.3 

N.A. ∗- P3C could not finish within 30 min; hence execution time is not available. 

Table 13 

Execution time (in second) on real datasets (with default parameter setting). 

Dataset CLUSLINK CLIQUE FIRES P3C PROCLUS SUBCLU 

Iris 0.01 0.05 0.05 0.03 0.05 0.01 

Pima 0.11 0.25 0.20 1.06 0.16 0.11 

Ecoli 0.03 0.20 0.08 0.14 0.10 0.03 

Glass 0.11 0.21 0.05 0.18 0.05 0.04 

Liver 0.03 0.06 0.06 0.07 0.06 0.05 

Vowel 0.61 1.05 1.17 43.89 0.47 0.25 

Table 14 

Execution time (in second) on real datasets 

(with optimal parameter setting). 

Algorithm PIMA LIVER 

Runtime(sec) Runtime(sec) 

CLUSLINK 0.11 0.03 

CLIQUE 203 15 

DOC 51,640 1625 

MINECLUS 62 1954 

SCHISM 250 Not available 

SUBCLU 58,718 47 

FIRES 360 46 

INSCY 33,531 234 

PROCLUS 109 31 

P3C 141 32 

STATPC 4657 781 
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istance threshold estimation method can be used for other tradi-

ional and subspace clustering algorithms. The method can be ex-

ended to handle categorical and binary data. The algorithm is in-

ended to process data sets containing no missing values. The dis-

ance threshold estimation function can be modified to handle data

hat may have missing values. In this work, one-dimensional sub-

pace clusters are expanded across remaining dimensions by ap-

lying set intersection operation on object indices, which are of

nteger type. The object matching step can be made faster by us-

ng graph data structures and a suitable graph searching method.

he algorithm can be further modified to output hierarchy of sub-

pace clusters which can reveal interesting relationships between

utput clusters. 
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