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a b s t r a c t 

Ventricular tachycardia is a rapid heart rhythm that begins in the lower chambers of the heart. When 

it happens continuously, this may result in life-threatening cardiac arrest. In this paper, we apply deep 

learning techniques to tackle the problem of the physiological signal classification of ventricular tachy- 

cardia, since deep learning techniques can attain outstanding performance in many medical applications. 

Nevertheless, human engineers are required to manually design deep neural networks to handle differ- 

ent tasks. This can be challenging because of many possible deep neural network structures. Therefore, 

a method, called ADAG-DNE, is presented to automatically design deep neural network structures using 

deep neuroevolution. Our approach defines a set of structures using probabilistic grammar and searches 

for best network structures using Probabilistic Model Building Genetic Programming. ADAG-DNE takes 

advantages of the probabilistic dependencies found among the structures of networks. When applying 

ADAG-DNE to the classification problem, our discovered model achieves better accuracy than AlexNet, 

ResNet, and seven non-neural network classifiers. It also uses about 2% of parameters of AlexNet, which 

means the inference can be made quickly. To summarize, our method evolves a deep neural network, 

which can be implemented in expert systems. The deep neural network achieves high accuracy. Moreover, 

it is simpler than existing deep neural networks. Thus, computational efficiency and diagnosis accuracy 

of the expert system can be improved. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cardiovascular disease is the leading cause of death among

eople. According to the report released by the American Heart

ssociation ( Benjamin et al., 2018 ), cardiac arrest as an underlying

ause of death in 2015 was 17668; any-mention mortality in 2015

as 366807. If patients suffer from endstage renal disease (a

ype of kidney disease), arrhythmias (i.e. heart rhythm disorder)

nd sudden cardiac death accounts for nearly 40% of the deaths

 Benjamin et al., 2018 ). In this paper, we are focusing on the

iagnosis of ventricular tachycardia in Intensive Care Unit (ICU).

entricular tachycardia is a heart arrhythmia initiated by abnor-

al electrical signals in the lower chambers of the heart ( Berbari,

cherlag, Hope, & Lazzara, 1978; Bradfield, Boyle, & Shivkumar,

017; Uther, Dennett, Duffy, Freedman, & Tan, 1979 ). An ICU in a

ospital is a facility dedicated to providing life support and moni-

oring in patients who are critically ill, for instance, life-threatening
∗ Corresponding author. 

E-mail addresses: pkwong@cse.cuhk.edu.hk (P.-K. Wong), ksleung@cse.cuhk. 

du.hk (K.-S. Leung), mlwong@ln.edu.hk (M.-L. Wong). 

i  

d  

c  

a  

ttps://doi.org/10.1016/j.eswa.2019.06.012 

957-4174/© 2019 Elsevier Ltd. All rights reserved. 
llness, injuries, and multiple organ failures. ICU care is important

o other medical services, including surgery ( World Health Orga-

ization, 2003 ), or care for patients with complications of diseases

 Baker, 2009 ). Higher quality of ICU will also increase citizen con-

dence in the health care system ( Riviello, Letchford, Achieng, &

ewton, 2011 ). In clinical management of ICU, real-time physiolog-

cal measurement systems help clinicians to continually monitor

he physiological status of patients. For example, pulse oximeter

rovides the oxygen saturation values and shows the plethysmo-

raphic waveform of the pulse signal over time ( Shamir, Eidelman,

loman, Kaplan, & Pizov, 1999 ). A report on 2016 Get With The

uidelines programs shows that the location of adult in-hospital

ardiac arrest was 53.7% in the ICU, operating room, or emer-

ency department ( Benjamin et al., 2018 ). Among 16.1% of these

ncidents, the initial recorded cardiac rhythm was ventricular

brillation, ventricular tachycardia, or shockable ( Benjamin et al.,

018 ). Therefore, there is a monitoring system in an ICU to detect

f ventricular tachycardia happens. When ventricular tachycar-

ia happens continuously, this may result in life-threatening

ardiac arrest. When a life-threatening situation is detected, an

larm will be raised. Sometimes, an alarm may not be clinically
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significant. We call this a false alarm. False alarms in the ICU

decreases the quality of care due to the noise disruptions and

desensitization to warnings ( Donchin & Seagull, 2002 ). This can

lengthen the stay for recovery and increase the load on the

health care system ( Chambrin, 2001 ). It is also reported that less

than 10% of alarms are associated with therapeutic modification

( Chambrin et al., 1999; Lawless, 1994 ). Can the accuracy of the

system be improved? 

Recently, Deep Neural Network (DNN) is a powerful machine

learning technique and attains outstanding performance in many

applications. It has been applied in many medical applications,

such as annotation of mitosis in breast cancer histology images

( Cire ̧s an, Giusti, Gambardella, & Schmidhuber, 2013 ), identification

of skin lesions ( Esteva et al., 2017 ), and detection of standard

scan plane during fetal abnormality screening ( Baumgartner et al.,

2016 ). There has been much interest in applying DNN in other

medical applications. Even a slight improvement in the perfor-

mance implies an early diagnosis of diseases which can be criti-

cal to the treatment of patients. We believe that the physiological

status of patients can also be diagnosed using DNN. 

However, manually configuring of a DNN is complicated. Be-

cause the large search space, which is called the design space,

of DNN covers many aspects, such as the topology of the net-

work and the learning parameters. Properly designing DNN can be

complicated to human engineers, medical experts, or other people

who are knowledgeable in other application areas. Secondly, an ex-

pert may have data collected from a group of heterogeneous sen-

sors. Understanding the nature of the signals from these sensors

and performing feature engineering can be time-consuming. In the

early stage of the study, it may be better to use automatic learning

approaches on these signals and prioritize the signal analysis after-

wards. This can increase the productivity of human engineers and

medical experts. In this paper, we explore a physiological applica-

tion of Deep Neuroevolution (DNE) to the automatically design of

Convolutional Neural Network (CNN), which has not been done in

the past. 

The main contribution of this paper is that we propose a new

procedure to evolve DNN structures from a set of convolutional

layers, which are called modules, using Probabilistic Model Build-

ing Genetic Programming (PMBGP) approach. Theoretically, it is

demonstrated that simpler and better DNNs can be evolved by

evolutionary computation. Moreover, we also showed that struc-

tural dependencies within components in DNN can be encoded in

grammar and then used by DNE. This enhances the search space

modeling of DNNs during DNE. Finally, it is demonstrated that DNE

is applicable to, not only image classification, but also physiological

signal classification. A set of DNN structures are specified by a set

of rules in Probabilistic Context-Sensitive Grammar (PCSG) in PM-

BGP. Each rule tells how a network structure is formed, how mod-

ules are connected, and which combinations of modules are pre-

ferred. In each iteration, the rules are updated iteratively based on

the feedback from the fitness evaluation to guide evolution. There

are several advantages to this approach. First of all, it explicitly

models the preference for combinations among different modules

via probabilistic dependencies in the set of DNNs. The probabilistic

dependencies are captured by a set of Bayesian networks associ-

ated with every rule. The task to train a DNN is computationally

expensive. As PMBGP approach can automatically learn the rules to

compose the network modules, it can reduce the number of times

of training DNNs with inappropriate structures. Secondly, since the

DNN is represented in grammar, it is now possible to discover new

forms of regularities and extract new traits to better optimize the

DNN structures. The system can learn and decide what compo-

nents to be inserted using context, i.e. information about the lo-

cation of a new component concerning other existing components

in a network structure. The context information can be nicely in-
orporated in PCSG while this is also the first study to apply PCSG

nd PMBGP on DNE. Experts in DNN can study the patterns and

earn from the evolved design. 

. Related works 

.1. Neuroevolution 

The development of neuroevolution began in the late 1980s

 Montana & Davis, 1989 ). There are three aspects of Artificial Neu-

al Network (ANN) and DNN which can be evolved: 1) evolu-

ion of connection weights; 2) evolution of architectures; 3) evo-

ution of learning algorithms. The evolution of these configura-

ions has been proposed in neuroevolution of ANN and reviewed in

ao (1999) . These configurations can be controlled through hyper-

arameters and meta-heuristics. Evolution of connection weights is

bout finding a set of real values for ANN. Genetic Algorithm (GA)

an encode the weights in a vector ( Holland, 1992 ). Covariance

atrix Adaptation Evolution Strategy (CMA-ES) has been applied

o the adaptation of weights on fixed ANN structure ( Igel, 2003 ).

MA-ES is a stochastic, derivative-free approach for numerical

ptimization ( Hansen & Ostermeier, 2001 ). Gomez and Miikku-

ainen (1997) proposed to evolve a hidden layer in ANN with re-

urrent connections to tackle a prey capture problem. Liang and

iikkulainen (2015) applied neuroevolution to control helicopter

overing. 

The evolution of architectures is about designing the connec-

ions and choosing the transfer function of each node in ANN. One

ay is to encode the connections in a connection matrix using a

inary string ( Dasgupta & McGregor, 1992 ). It is also possible to

epresent the connections in an adjacency list. A node is trans-

ormed by dividing into more nodes. Liu et al. (2017a) evolved

NNs using Sequential Model-Based Optimization (SMBO) by grad-

ally increasing the complexity of the network. In particular, they

pply surrogate models to estimate the performance of the struc-

ures to improve the search efficiency. AmoebaNets introduces a

ew tournament selection scheme, which replaces the oldest indi-

idual by an offspring from the best of a group of random sam-

le of individuals when evolving DNN ( Real, Aggarwal, Huang,

 Le, 2018 ). Rawal and Miikkulainen (2018) evolved a recurrent

ode using Genetic Programming (GP) and applied Long-Short

erm Memory (LSTM) as a surrogate model to estimate the per-

ormance of the network. The authors tested their approach on

reating homogeneous and heterogeneous Recurrent Neural Net-

ork (RNN) layers. Cartesian Genetic Programming (CGP) ( Miller

 Thomson, 20 0 0 ) can be adopted to optimize CNN architectures

 Suganuma, Shirakawa, & Nagao, 2017 ). 

In addition, the evolution of learning algorithms is about how

o adjust the connection weights during learning from data. This

ncludes the rules to update the weights and choices of learning

lgorithms. In the context of multi-task learning, evolution can be

pplied to create a learning plan for the tasks. 

Co-evolution of the above configurations is also viable. Neu-

oEvolution of Augmenting Topologies (NEAT) introduces histori-

al markings, applies niching, incrementally grows structure, and

volves weights to achieve significant performance gains. Com-

ositional Pattern Producing Network (CPPN) encodes the struc-

ural relationships in the complicated developmental process (i.e.

rowth from a small starting point to a mature form) with-

ut simulating itself ( Stanley, 2007 ). In the same paper, the au-

hors propose CPPN NEAT to evolve the composition of trans-

er functions and produce patterns of repetition with variation.

oDeepNEAT evolves blueprints of network topology and 15 hy-

erparameters. A blueprint contains some placeholders for DNN

ayers, such as convolutional, feed-forward and recurrent layers.
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he hyperparameters specify the type of a layer of DNN and the

ettings in the gradient-based learning algorithm. 

.2. Grammar-based neuroevolution 

Grammar is an alternative representation of the configurations

n ANN and DNN. Grammar-Based Genetic Programming (GBGP)

s designed to search within the possible configurations defined

y the grammar ( Whigham, 1995; Wong & Leung, 1995 ). For ex-

mple, Grammatical Evolution (GE) ( O’Neill & Ryan, 2003 ) evolve

rograms from Backus-Naur Form grammar, which is a Context-

ree Grammar (CFG). Prior works evolve the network structure of

 hidden layer in feed-forward neural networks using GE while

ptimizes the weights using back-propagation ( Soltanian, Tab, Zar,

 Tsoulos, 2013 ) or GA ( Ahmadizar, Soltanian, AkhlaghianTab, &

soulos, 2015 ). Tsoulos, Gavrilis, and Glavas (2008) applied GE to

onstruct the structure and set the weights of a hidden layer in

eed-forward neural networks. Jung and Reggia (2006) presented

 high-level descriptive language to represent modules and inter-

ayer connections hierarchically so as to enhance human readabil-

ty and understandability of the search space. The language can

epresent Elman network, which is a three-layer recurrent network

 Elman, 1990 ). Their approach can evolve the connectivity, hyper-

arameters, and learning rules. Cellular Encoding grows a graph

rom a node, while optimizes the structure and weights of boolean

NN at the same time ( Gruau & Whitley, 1993 ). Fuzzy Petri nets

an be evolved using Cellular Encoding ( Wong, 1998 ). 

Loshchilov and Hutter (2016) applied CMA-ES to evolve 19 hy-

erparameters, such as selection pressure, batch size, dropout rate,

umber of filters, and learning rate of the optimizer to perform

lassification on the MNIST dataset using deep CNN. Their network

xes the number of layers. Baldominos, Saez, and Isasi (2017) and

ssunção, Lourenço, Machado, and Ribeiro (2018) aimed to cover

he evolution of all aspects of design in deep CNN, including

he structures, the activation functions, and the learning hyper-

arameters. The configurations are encoded in chromosome and

rammar so that they can be searched via GA and GE respec-

ively ( Baldominos et al., 2017 ). They were able to design deep

NN for human activity recognition in sensor-rich environments

 Baldominos, Saez, & Isasi, 2018 ). 

.3. Probabilistic model building genetic programming 

Mühlenbein and Paass (1996) introduces Probabilistic Model

uilding Genetic Algorithm (PMBGA) or Estimation of Distribu-

ion Algorithm (EDA). Given an optimization problem, the objec-

ive of PMBGA is to gradually learn a probabilistic model which

an (frequently) generate the best solution(s). Comprehensive sur-

eys of these algorithms can be found in studies by Larrañaga and

ozano (2001) and Hauschild and Pelikan (2011) . Instead of rep-

esenting each solution in an array of values, PMBGP approaches

epresent each solution in a tree structure. For example, probabilis-

ic prototype tree model-based methods operate on a fixed-length

hromosome (( Hasegawa & Iba, 2008; Salustowicz & Schmidhu-

er, 1997; Sato, Hasegawa, Bollegala, & Iba, 2012 )). In probabilis-

ic grammar model-based methods, a grammar is incorporated to

rovide an alternative representation of the trees. There is such

 wide variety of grammars to choose from, such as Stochastic

FG ( Ratle & Sebag, 2001; Shan, McKay, Abbass, & Essam, 2003 ),

robabilistic Context-Free Grammar (PCFG) with Latent Annota-

ions ( Hasegawa, 2012; Hasegawa & Iba, 2009 ), Ant Tree Adjoining

rammars ( Abbass, Hoai, & McKay, 2002 ), PCSG ( Wong, Lo, Wong,

 Leung, 2014a; 2014b ), and hierarchical PCSG ( Wong, Wong, & Le-

ng, 2016 ). 
.4. Classification tasks on ECG signals 

For the classification tasks on Electrocardiogram (ECG) sig-

als, there are varieties of methods, such as harmonic analysis

 Dzwonczyk, Brown, & Werman, 1990; Tripathy et al., 2018 ), time-

requency analysis ( Millet-Roig, Rieta-Ibanez, Vilanova, Mocholi, &

horro, 1999 ), wavelet-based analysis ( Balasundaram, Masse, Nair,

 Umapathy, 2013; Namarvar & Shahidi, 2004 ), high-order statis-

ics ( Martis et al., 2013 ), complexity measures ( Acharya et al.,

016 ), independent component analysis ( Sarfraz, Khan, & Li, 2014 ),

nd so on. Individually considering the signal features, such as

agnitude features and phase features obtained from harmonic

nalysis, during classification often cannot achieve similar perfor-

ance across multiple data sets due to the preselection of signals

 Amann, Tratnig, & Unterkofler, 2005 ). Therefore, it is necessary to

ombine different signal features to make better prediction. Ma-

hine learning techniques, such as Support Vector Machine (SVM)

 Alonso-Atienza, Morgado, Fernandez-Martinez, García-Alberola, & 

ojo-Alvarez, 2014; Polat, Akdemir, & Güne ̧s , 2008 ), decision tree

 Xu, Wang, Zhang, Ping, & Feng, 2018 ), k-nearest neighbour classi

r (KNN) ( Arif, Malagore, & Afsar, 2012 ), and random forest

 Masetic & Subasi, 2016 ), have been proposed to combine signal

eatures. As an alternative, DNN can perform representation learn-

ng. For example, CNN learns different feature extractors and per-

orms feature selection automatically. For the detection of ventricu-

ar ectopic beats and supraventricular ectopic beats, Kiranyaz, Ince,

nd Gabbouj (2016) developed a 1-D CNN for real-time patient-

pecific ECG classification. Zubair, Kim, and Yoon (2016) classi-

ed every beat in the signals into five categories using CNN. For

he classification of shockable and non-shockable life-threatening

entricular arrhythmias from ECG signals, a 11-layer CNN was re-

ently proposed by Acharya et al. (2018) . Yıldırım, Pławiak, Tan,

nd Acharya (2018) utilized a 16-layer CNN of cardiac arrhyth-

ia detection involving 17 classes. Evolutionary algorithms can be

ombined with CNN. Recently, an evolutionary-neural system was

eveloped for the automatic recognition of myocardium dysfunc-

ions by Pławiak (2018) . This system utilized GA to optimize signal

eature selection, and classifier parameters of probabilistic neural

etwork ( Specht, 1990 ) and radial basis function neural network

 Broomhead & Lowe, 1988 ). 

Our Adaptive Grammar-based Deep Neuroevolution (ADAG- 

NE) method is a grammar-based neuroevolution method and

ses Grammar-based Genetic Programming with Bayesian Network

BGBGP) to model probabilistic dependencies among the network

odules ( Wong et al., 2014a ). In the following sections, the ADAG-

NE system is described. We begin by explaining the search space.

. Deep neural network structure search space 

A DNN model contains a DNN structure of several DNN modules

nd a set of weights. A DNN topology is a specification describing

 set of DNN structures of interest. This specification is described

sing a grammar and a translation program. A translation program

onverts a parse tree, which can also be called an individual, de-

ived from the grammar to a DNN structure. 

In this paper, structures of DNN are built from eight network

odules. An input module casts the input data to a specific di-

ension required by the set of network structures. It is a convolu-

ional layer which has an incoming edge from the input data. An

utput module is a fully connected layer to transform its input to

 class output in the one-hot encoding which is a representation

f categorical variables as binary vectors. One network structure

as exactly one input module and one output module. As for the

emaining six modules, their incoming edges and outgoing edges

onnect to one of the eight network modules. 
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Fig. 1. Local features extraction modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Grammar used in ADAG-DNE. 

1.1 Start → [Input Module → ], Topology 1 , [ → Output Module] 

2.1 Topology → [BRC Module → ], Topology 2 , [ → ], Topology 3 
2.2 Topology → LFETopology 1 
3.1 LFETopology → [LFE(4,0)] 

3.2 LFETopology → [LFE(5,0)] 

3.3 LFETopology → [LFE(2,2)] 

3.4 LFETopology → [LFE(3,2)] 
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A BRC module is composed of a batch normalization layer ( Ioffe

& Szegedy, 2015 ), a rectified linear layer ( Nair & Hinton, 2010 ),

and a convolutional layer ( LeCun et al., 1989 ), which are connected

in sequential order. This composition has been used in CNN ( He,

Zhang, Ren, & Sun, 2016; Liu et al., 2017b ). For the convolution

layer, there are four kernels. The size, stride, and padding size of

each kernel are 3, 2, and 1 respectively. It is noted that pooling

layer is not included in the module because this layer aggregates

statistics of features at various locations in the input and down-

sizes the height and/or width of the feature maps. This layer will

constrain the depth of the network. Moreover, modern architec-

tures seldom use pooling layer ( Dai, Li, He, & Sun, 2016; He et al.,

2016; Yu & Koltun, 2015 ). 

Besides, the total number of incoming edges is not fixed. There-

fore, an aggregator module is introduced to combine multiple in-

coming edges into a single outgoing edge. Since the dimensions of

the data from the incoming edges are controlled to be constant,

the aggregator module is an addition function that preserves the

dimensions in its output. 

Lastly, four local features extraction (LFE) modules are intro-

duced. It is composed of several BRC modules and aggregator mod-

ules. The local features extraction modules analyze the input and

extract the local features in parallel. BRC modules can be con-

nected in parallel to allow the intermediate processing modules to

extract multiple features. Refer to Fig. 1 a, four BRC modules are

connected in parallel to form a parallel part of size four. BRC mod-

ules can be connected in series to extract more high-level features.

Fig. 1 c shows another LFE module, which contains three branches:

a parallel part of size two (i.e. the first two branches on the left)

and a sequential part of size two (i.e. the rightmost branch). Let

LFE ( m, n ) denote a LFE module, where m and n are the size of

the parallel part and the size of the sequential part respectively.

Hence, Fig. 1 a and b can be labeled as LFE(4,0) and LFE(5,0) re-

spectively. LFE(2,2) represents the module construction in Fig. 1 c.

Lastly, Fig. 1 d represents LFE(3,2). 
. Deep neural network topology 

In this section, the grammar, the meaning of context, and the

ranslation program are explained. 

.1. Topology grammar 

A DNN topology grammar is proposed to represent how DNN

odules are assembled. BGBGP searches a set of DNN structures.

t generates DNN parse trees from a PCSG which is an extension

f a context-free grammar. The grammar in Table 1 restricts the

earch space for the DNN structures. The 7 rules in the grammar

re labeled from 1.1 to 3.4. Terminals are embraced by a pair of

quare brackets while other are non-terminals. Rule 1.1 defines the

tarting point and ending point of a network structure, i.e. an input

odule and an output module. Rule 2.1 says that a network topol-

gy Topology can be composed of two network topologies. The in-

ut to the compositions of network topologies is preprocessed by

 BRC module. Rule 2.2 means that a LFE topology ( LFETopology ),

hich is defined in rules 3.1 to 3.4, is also a network topology.

ule 3.1 specifies a LFE module, where the parameter values of this

odule are 4 and 0 respectively. Rule 3.2 allows the formation of

FE(5,0). LFE(2,2) can be constructed from rule 3.3. Finally, LFE(3,2)

an be constructed from rule 3.4. 

The PCSG comprises of a set of rules associated with a Bayesian

etwork for each of them. The Bayesian networks model the prob-

bilistic dependencies among different non-terminals. Because the

on-terminals in the grammar represent the topologies, the prob-

bilistic dependencies among different topologies are captured by

he Bayesian networks. The details of the derivation can be found

n Wong et al. (2014a) . In brief, the derivation begins from the rule

or Start non-terminal on the left-hand side of the arrow. The non-

erminals on the right-hand side of the arrow will be derived by

ne of the rules which have the same non-terminal on the left-

and side of the arrow. The rule is selected following the proba-

ility distribution in a Bayesian network. This process repeats until

ll non-terminals are derived, and a parse tree is formed. Some

ossible network structures derived from the grammar are shown

elow: 

• Input Module → BRC Module → LFE(4,0) → LFE(5,0) → Out-

put Module 
• Input Module → BRC Module → BRC Module → LFE(4,0) →

LFE(5,0) → LFE(2,2) → LFE(3,2) → Output Module 
• Input Module → LFE(2,2) → Output Module 

.2. Structural context 

In Wong et al. (2014a) , three context variables are introduced

o affect derivation. In the context of this paper, they encode con-

extual information about the network structures. The first context

ariable is Depth . It is the depth of a node in a parse tree, which is

he number of edges from the node to the parse tree’s root node.

efer to Fig. 2 a, the depth of the shaded node is 1. Fig. 2 b shows

he corresponding DNN structure represented by the parse tree in

ig. 2 a. Depth 1 means the shaded block is in the second layer of
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Fig. 2. The meaning of context variables in the parse tree and the corresponding 

network structure. 
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oxes in the DNN structure. In general, depth d means the block is

n the (d + 1) th layer of boxes in the DNN structure. 

In addition, Rule context variable tells which grammar rule ap-

lies leading to the derivation of the current rule. In Fig. 2 a, the

haded rectangle representing 2.1 is applied due to rule 1.1 in the

rammar, hence the Rule context variable becomes 1.1. Refer to
Fig. 3. Adaptive Grammar-based 
ig. 2 b, this context variable encodes what kind of box (which is

ormed by rule 1.1) the shaded box is in. 

Last but not least, Term context variable is about which non-

erminal leading to the derivation of the current rule. In the exam-

le, rule 2.1 is applied during the derivation of the non-terminal

opology 1 . This uniquely identifier tells where the rule is applying,

r what type of box is using the shaded box in the DNN structure

uring derivation. 

.3. Translation 

After obtaining the parse tree of a DNN structure as described

bove, it will be converted into Python code. DNN code utilizes the

ibraries in PyTorch. The code is invoked as a Python module by

nother main program, which loads the data, trains the network,

nd evaluates the results. Since the code is provided, this network

an be reused in any problem. Unlike Keras ( Chollet et al., 2015 )

dopted in Baldominos et al. (2017) , PyTorch ( Paszke et al., 2017 )

mproves the flexibility for the researchers to optimize their newly

roposed modules in the future. 

. Adaptive grammar-based deep neuroevolution 

ADAG-DNE system integrates the components developed in the

revious sections into one system. As shown in Fig. 3 , it involves

ve steps. 
Evolvable (ADAGE) system. 
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Fig. 4. A network structure discovered by ADAG-DNE system. 
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1. Deriving DNN structures encoded in parse trees according to

the grammar; 

2. Translating the parse trees into Python code; 

3. Evaluating the performance of the network using data; 

4. Collecting samples from the parse trees of the set of good net-

works (by their ranking); 

5. Updating Bayesian networks in the grammar. 

Steps 1–5 are repeated until it reaches the maximum number

of generations. The evolutionary system is based on BGBGP sys-

tem, and the evaluation step relies on PyTorch. Stochastic gradient

descent algorithm is adopted to optimize the weights in DNNs. 

6. Data set 

PhysioNet is a research resource for complex physiological sig-

nals ( Goldberger et al., 20 0 0 ). It provides data sets and software for

the physiological signal processing. In this paper, a bedside mon-

itor data set collected from four hospitals in the USA and Europe

was downloaded. The physiological measures from electrocardio-

graphy leads and pulse oximetry were used in the experiment.

There are 310 records. Each record lasts 20 s long and contains

50 0 0 features (time points) in total. Our goal is to detect if ven-

tricular tachycardia occurs immediately after 20 s. The records can

be categorized into two classes. Patients in ICU who suffered from

ventricular tachycardia, which contributes 29% of records. Another

class of records were collected from patients in ICU who did not

suffer from ventricular tachycardia. Note that the samples were

collected from patients in ICU where patients are usually with se-

vere and life-threatening illnesses and injuries. Therefore, the pro-

cedure to diagnose ventricular tachycardia can be risky for these

patients. 

7. Evaluation: comparison with other classifiers 

The ADAG-DNE using Depth and Term context variables 1 was

adopted using a population of size 30 for 50 generations for 10

runs. The records in the dataset are divided into three parts while

maintaining the class distribution to be similar. 30% of records are

reserved for testing. Training and validation used 80% and 20% of

the remaining records. The training set was used to fit the weights

of the network structures. With the validation set, the stopping

criteria for the training of a network structure can be adaptable

to suppress overfitting. Network structures such that the differ-

ence between the training accuracy and the validation accuracy

is within 5% were identified. Among them, ten network structures

that attained the highest validation accuracy in each run were se-

lected. The selected network structures were run for 10 runs, and

the one attaining the highest average validation accuracy was se-

lected as our final model. We now discuss the performance of our

final model selected produced from ADAG-DNE. It was compared

with the results of neural network methods and non-neural net-

work methods. In our experiment, each method was run for 50

runs. The best model of each method was compared with our

evolved network. 
1 The BGBGP system with these context variables attained the lowest amount of 

fitness evaluations in the royal tree problem when the depth of the parse trees is 

high as reported in Wong et al. (2014a) . 
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Table 2 

Results compared with other neural network classifiers. 

ADAG-DNE AlexNet-A AlexNet-B 

Parameters 0.064M 24M 2.8M 

Accuracy 76% 75% 75% 
The network structure of the best model is shown in Fig. 4 .

he number of model parameters is around 0.064M using initial

earning rate of 0.01 which decays by 10% for every 10 epochs.

he network was trained for a maximum of 500 epochs. Six neu-

al networks were chosen to cover a different amount of param-

ters (from 0.031M to 53M) and network structures. The results

re shown in Table 2 . ADAG-DNE denotes the best model discov-

red using our method. AlexNet ( Krizhevsky, Sutskever, & Hinton,

012 ) and ResNet ( He et al., 2016 ) are state-of-the-art CNNs, which

re designed by experts in DNN originally aiming at solving im-

ge classification problems. Apart from solving image classifica-

ion problems, CNN has been applied to signal classification prob-

ems as well ( OShea, Roy, & Clancy, 2018; Yang, Nguyen, San, Li, &

rishnaswamy, 2015 ). ResNet introduces a novel architecture with

kip connections over some layers by asymptotically approximating

he residual functions ( He et al., 2016 ). With this architecture, the

raining time of ResNet is shorter than that of normal CNN given

he same network depth. AlexNet, denoted by AlexNet-A, contains

nly eight layers: five convolutional layers and three fully con-

ected layers. AlexNet-B differs from AlexNet-A by reducing the

umber of neurons in the fully connected layers from 4096 to 16,

hich is the same as that in our evolved network. This dramati-

ally reduces the number of parameters. We can see that ADAG-

NE is better than AlexNet-A and AlexNet-B regarding accuracy

ut the number of parameters in ADAG-DNE is only 2.2% of that

n AlexNet-B. We varied the depth of ResNet such that ResNet10

nd ResNet18 have 10 and 18 convolutional layers respectively. The

ccuracy of ResNet10 is significantly less than ADAG-DNE (i.e. 59%

s 76%). ADAG-DNE is better than ResNet18 regarding accuracy, but

he number of parameters used in ADAG-DNE is only 0.05% of that

n ResNet18. 

Next, two neural networks were created to show that there

s no guarantee the performance of the network will increase

y merely increasing the number of parameters, since networks

ith more parameters can represent a more complicated decision

oundary. Net-A is made of three fully connected layers in which

he number of neurons is 16. There are about 0.016M more param-

ters in Net-A than ADAG-DNE does, but the performance of Net-A

rops by 14%. Net-B connects a convolutional layer to a fully con-

ected layer such that the number of parameters is only half of
ResNet10 ResNet18 Net-A Net-B 

5.0M 11M 0.080M 0.031M 

59% 74% 62% 56% 
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Table 3 

Results compared with non-neural network classifiers. 

ADAG-DNE Logistic Bayes Naive Decision Rand. SVM AdaBoost 

Regression Network Bayes Tree Forest 

Accuracy 76% 64% 69% 35% 66% 72% 72% 66% 

Table 4 

Total amount of DNNs searched. 

Max depth Rand D R T DR DT RT DRT Plain 

6 11,042 4929 4642 4827 5521 4426 3570 4158 3406 

8 11,067 3998 4009 4322 2911 5096 3341 4726 4315 

Table 5 

Total amount of stable DNNs searched and the retention rate. 

Max depth Rand D R T DR DT RT DRT Plain 

6 6602 3084 2902 2924 3668 2771 2072 2542 1885 

60% 63% 63% 61% 66% 63% 58% 61% 55% 

8 6118 2310 2239 2513 1584 30 0 0 1905 2896 2453 

55% 58% 56% 58% 54% 59% 57% 61% 57% 

Table 6 

Total amount of stable and predictive DNNs searched and the retention rate. 

Max depth Rand D R T DR DT RT DRT Plain 

6 4030 1949 1774 1753 2303 1724 1212 1595 1167 

36% 40% 38% 36% 42% 39% 34% 38% 34% 

8 3734 1400 1376 1481 984 1894 1170 1690 1455 

34% 35% 34% 34% 34% 37% 35% 36% 34% 
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hat in ADAG-DNE. The performance drops by 20%. This suggests

hat neuroevolution on the DNN structure is vital to achieve high

ccuracy using a small number of parameters. 

Last but not least, seven well-known non-neural network

lassifiers, including logistic regression, Bayes network classifier

 Heckerman, Geiger, & Chickering, 1995 ), naive Bayes classifier

 John & Langley, 1995 ), decision tree ( Quinlan, 1993 ), random

orest ( Breiman, 2001 ), SVM ( Hearst, Dumais, Osuna, Platt, &

cholkopf, 1998 ), and AdaBoost ( Freund, Schapire et al., 1996 ), are

ested. Table 3 shows the results. Only random forest and SVM can

chieve over 72% accuracy, whereas ours is 76%. Despite of 4% dif-

erence, it is very important in this life-threatening problem. Other

lassifiers do not perform well. When we compare the results from

eural network classifiers and non-neural network classifiers in

ables 2 and 3 , ADAG-DNE, AlexNet-A, AlexNet-B, and ResNet18 are

etter than the non-neural network classifiers by 2–4% regarding

ccuracy. 

. Evaluation: comparison among different variants 

In this section, we analyze the performance of all combinations

f context variables in the ADAG-DNE system. Each combination

f context variables was executed for 10 runs. The system evolved

 population of size 30 for 50 generations for every run. Train-

ng accuracy of a network structure is used as its fitness value.

he depth-based, rule-based and non-terminal-based context vari-

bles are abbreviated by D, R , and T respectively. For example,

he variant ADAG-DNE/D means that only depth-based context is

sed in the Bayesian networks; the variant ADAG-DNE/DR means

hat both depth-based and rule-based context variables are used in

he Bayesian networks. If the structural context is not used in the

ayesian networks, we label it as ADAG-DNE/Plain . If ADAG-DNE

ystem does not use any Bayesian networks, we label it as ADAG-

NE/Rand , i.e. its grammar is not adapted by learning Bayesian net-
 b  
orks. This is a GBGP approach for DNE. The other parameters are

ept constant in the study unless otherwise specified. 

Table 4 shows how many distinct DNNs are searched when the

alues of maximum depth of parse trees are set to 6 and 8 respec-

ively. Since each configuration executes using a population size

f 30 for 50 generations for 10 runs, the maximum number of

amples is 15,0 0 0 for each configuration. ADAG-DNE/Rand samples

1,042 and 11,067 DNNs at maximum depth 6 and 8 respectively,

hich are the highest among other settings ( Table 4 ). When using

ontext variables, the system can search less than about 50% of the

otal DNNs searched by ADAG-DNE/Rand ( Table 4 ). 

Observing that many DNNs were generated, but only some of

hem are good structures. During the evaluation, each DNN was as-

ociated with a training accuracy and a validation accuracy. Only if

he difference between the training accuracy and the validation ac-

uracy is within 5%, such DNN is regarded as stable. Table 5 shows

he total amount and the percentage of the stable DNNs for each

onfiguration. Around 34–45% of DNNs are discarded after the se-

ection because they are not stable. 

Apart from the stability, human engineers and domain experts

sually want to find a replacement of the existing (generic) clas-

ification methods. Random forest classifier and support vector

achine are arguably better algorithms (and this is discussed in

ection 7 ). As such, the cut-off validation accuracy is set to 72%

sing these classifiers as a reference. The following criterion is ap-

lied to select a subset from the set of stable networks: the vali-

ation accuracy should be at least 72%. The new subset of DNNs

s now stable and predictive in Table 6 . From the table, ADAG-

NE/Rand discovers 4030 stable and predictive DNNs, which con-

ributes 36% of the whole set, when maximum depth is set to 6.

DAG-DNE/DR discovers slightly more stable and predictive DNNs

n term of percentage. This means ADAG-DNE/DR is slightly more

fficient. At maximum depth equal to 8, the efficiency of discover-

ng stable and predictive DNNs generated by ADAG-DNE/DR drops

y 8%, which is quite high when compared to other configurations.
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Table 7 

Average accuracies compared among different variants of ADAG-DNE. 

Max depth D R T DR DT RT DRT Plain 

6 73.93% 74.56% 74.06% 74.16% 74.19% 73.60% 74.07% 73.86% 

8 73.85% 73.92% 73.78% 73.73% 74.17% 73.58% 74.04% 74.04% 

Table 8 

The p-values from Mann–Whitney U test on the set of stable and predictive DNNs using the test 

accuracy. 

Max depth D R T DR DT RT DRT Plain 

6 4.47 5.84 3.45 3.03 2.30 9.90 1.45 8.10 

×10 −2 ×10 −2 ×10 −3 ×10 −6 ×10 −2 ×10 −1 ×10 −1 ×10 −1 

8 9.69 9.38 9.77 1.00 7.27 9.78 7.68 1.00 

×10 −1 ×10 −1 ×10 −1 × 10 0 ×10 −3 ×10 −1 ×10 −1 × 10 0 
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Since only a threshold is used to define the stable and predictive

set, we then compare the classification performance of these net-

works with that of ADAG-DNE/Rand. 

Next, the classification performance of different variants were

compared. The best DNN structure in 10 runs for different vari-

ants were selected, and then the average test accuracy of these

structures from each variant were computed. As shown in Table 7 ,

when the maximum depth is set to 6, ADAG-DNE/R attain the

highest accuracy, which is better than that of ADAG-DNE/DR and

ADAG-DNE/DT by around 0.04%. When the maximum depth is set

to 8, ADAG-DNE/DT attains the highest accuracy (74.17%). More-

over, when maximum depth increases from 6 to 8, the accuracies

of some variants decrease. In particular, the accuracy of ADAG-

DNE/R decreases by 0.64% while that of ADAG-DNE/DR decreases

by 0.43%. ADAG-DNE/DT, ADAG-DNE/RT, and ADAG-DNE/DRT main-

tain a quite stable performance across different maximum depths. 

To quantify the difference, Mann–Whitney U test is adopted. It

is a nonparametric test comparing two populations that may not

be normal distributed, which is observed in our case. Its statistic

is the sum of the ranks for observations from one of the sam-

ples. Table 8 shows the test on whether using probabilistic de-

pendencies lead to better test accuracy. When the statistics is less

than 0.05, the value (in bold) is statistically significant. When the

maximum depth is set to 6, ADAG-DNE/D, ADAG-DNE/T, ADAG-

DNE/DR, and ADAG-DNE/DT attain values below 0.05. The popula-

tion of individuals generated by these methods is better than that

by ADAG-DNE/Rand. When the maximum depth is increased to

8, only ADAG-DNE/DT can perform statistically better than ADAG-

DNE/Rand. The experimental results demonstrate ADAG-DNE/DT

helps to evolve stable and predictive DNNs. 

Lastly, the evolutionary behaviors of the variants are studied. It

is possible to gain insight into why some combination of context

variables perform better than the others. Besides, we want to see

if it is possible to estimate how many samples of DNN structures

are required such that ADAG-DNE/D, ADAG-DNE/T, ADAG-DNE/DR,

and ADAG-DNE/DT outperform ADAG-DNE/Rand. To do this, we set

an upper limit on how many samples are generated so far in each

run. Suppose the upper limit is set to 100, then the p -value from

Mann–Whitney U test statistics of the first 100 DNN structures

of each variant are computed. In Fig. 5 , the p-value from Mann–

Whitney U test statistics is plotted against the upper limit. 

Concerning the evolutionary behavior when maximum depth

is set to 6, the p -value tends to decrease as the upper limit in-

creases for all variants, except ADAG-DNE/Plain and ADAG-DNE/RT.

If the total number of samples is less than 100, ADAG-DNE/R and

ADAG-DNE/DT performs slightly better than ADAG-DNE/Rand. Be-

yond the upper limit of 100, ADAG-DNE/T and ADAG-DNE/DR are

capable of reducing the p-value below 0.05 after the upper limit

is set to around 300 respectively. ADAG-DNE/DT and ADAG-DNE/D
re less efficient but still reach below 0.05 at around 600 and 900

espectively. At maximum depth 8, only ADAG-DNE/DT is capable

f reducing the p-value below 0.05 after collecting 700 samples. It

s also observed that there is a small bump before the search can

educe the p -value below 0.05. This is the exploration phase in the

volution. 

. Discussion and future work 

.1. Findings and implications 

Cardiovascular disease is the leading cause of death among peo-

le. Since the problem of detection of abnormal heart rhythm is

revalent, ADAG-DNE provides a viable solution to design suit-

ble CNNs for ECG signal classification. From our results, we found

hat ADAG-DNE is slightly better than AlexNet-A, AlexNet-B, and

esNet18 regarding accuracy, but the number of parameters used

n ADAG-DNE is only 0.05% of that in ResNet18. We also showed

hat the performance of the learnt model is also better than seven

ell-known non-neural network classifiers. In terms of clinical ap-

lication, our proposed solution has the potential to be deployed in

CU to reduce the number of deaths caused by ventricular tachy-

ardia and various heart diseases. This will improve the quality of

he health care system in the long run. Since our approach can

educe the size of CNN for physiological signal classification, it is

ore feasible to deploy our learnt network on a computer chip of

ealth monitoring gadgets than other CNNs tested. 

In addition, we have summarized the pros and cons of differ-

nt classifiers to classify heart rhythms in Table 9 . ADAG-DNE of-

ers several distinctive advantages to data scientists and engineers

orking in the hospitals: 1) Our system does not require much fea-

ure engineering and feature selection; 2) Our system does not re-

uire hand-crafted CNN structure for the ECG signal classification;

) The DNN that our system learnt is a CNN. Therefore, the net-

ork is invariant to translation; 4) The results of our experiments

ndicate that the learnt CNN model is simple and effective. The

etwork uses less parameters while achieve a similar or even bet-

er performance when compared with other state-of-the-art CNN

odels. 

Theoretically speaking, our results show that there exist some

impler CNN models to attain the same level of classification per-

ormance. In other words, there are redundant neurons in some

NN models. Moreover, these simpler and better models can be

volved via evolutionary computation. When the evolved physio-

ogical signal classifier is deployed on medical devices, there will

e a huge reduction in the computational cost and other opera-

ional cost. Furthermore, our novel method using DNE is a gen-

ralization of existing CNN methods since our approach does not

equire hand-crafted CNN structure. We suspect that the hidden
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Fig. 5. Evolutionary behavior of our ADAG-DNE system under different configurations. Each graph shows the performance of different configurations of the context variables. 

The X -axis is the upper limit of the number of samples and the Y -axis is the p -value. Each line represents one configuration of the system. 

Table 9 

Comparison of selected studies conducted for the detection of abnormal heart rhythm using ECG signals. 

Classifier Computation 

time 

Feature 

selection 

Feature 

engineering 

Handle missing 

signal features 

Design of neural 

network 

structure 

Model 

interpretability 

Bayesian ANN classifier ( Gao, Madden, 

Chambers, & Lyons, 2005 ) 

Fast Needed Hand-crafted Yes Manual Low 

Least square SVM ( Polat et al., 2008 ) Fast Needed Via kernel 

function 

No Not applicable High 

ANN ( Lahiri, Kumar, Mishra, Sarkar, & Roy, 

2009 ) 

Fast Needed Hand-crafted No Manual Low 

Pruned and simple KNN ( Arif et al., 2012 ) Fast Needed Hand-crafted No Not applicable High 

SVM ( Alonso-Atienza et al., 2014 ) Fast Needed Via kernel 

function 

No Not applicable High 

Random forest ( Masetic & Subasi, 2016 ) Fast Auto-regressive 

Burg method 

Hand-crafted No Not applicable Low 

Boosted-CART classifier ( Xu et al., 2018 ) Fast Needed Via adaptive 

variational mode 

decomposition 

No Not applicable High 

1-D CNN ( Kiranyaz et al., 2016 ) Fast with 

GPGPU 

Not required Learnt 

automatically 

No Manual Low 

1-D CNN ( Zubair et al., 2016 ) Fast with 

GPGPU 

Not required Learnt 

automatically 

No Manual Low 

1-D CNN ( Yıldırım et al., 2018 ) Fast with 

GPGPU 

Not required Learnt 

automatically 

No Manual Low 

1-D CNN produced by DNE (Our approach) Fast with 

GPGPU 

Not required Learnt 

automatically 

No Automatic Low 



246 P.-K. Wong, K.-S. Leung and M.-L. Wong / Expert Systems With Applications 135 (2019) 237–248 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

 

A  

 

 

 

 

 

A  

 

 

 

 

A  

 

A  

B  

B  

 

B  

B  

 

B  

 

 

 

B  

 

 

 

 

 

 

 

 

B

B  

C  

C  

 

 

C

C  

 

 

D  

 

 

D  

 

 

D  

D  

 

 

E

 

 

 

 

signal patterns, such as magnitude features, of a cardiovascular dis-

ease may be captured with a customized multilayer structure of

CNN by DNE. 

9.2. Limitations and directions 

Although the ADAG-DNE method is effective and can reduce

the CNN model complexity, CNN in general has some drawbacks.

Firstly, training time of CNN can be long, especially when a graph-

ical processing unit is not used in the training process. Secondly,

CNN is a black box, meaning that it is difficult to trace a prediction

result back to identify which signal features are important. Finally,

our current CNN model cannot handle missing feature values due

to unrecorded information and noisy measurements. 

There are many possible directions for future work. In terms

of methodology, our approach can be further improved as the

learning rules for training CNN have not be evolved yet. For ex-

ample, the CNNs generated can be trained using layerwise un-

supervised pretraining ( Erhan et al., 2010 ) or curriculum learn-

ing ( Bengio, Louradour, Collobert, & Weston, 2009 ). In curriculum

learning, a network can be trained in a way such that simpler

concepts are learnt first and then higher level concepts are con-

structed from the simpler ones. Since our ADAG-DNE system can

generate various (irregular) forms of CNN structures, we can also

study if non-gradient based search techniques, such as CMA-ES

( Loshchilov & Hutter, 2016 ), is a good strategy to learn their pa-

rameters. 

Next, because many heart diseases share the same risk fac-

tors, such as hypertension, diabetes, hyperlipidemia, and obesity

( Olafiranye, Jean-Louis, Zizi, Nunes, & Vincent, 2011 ), ECG signals

of different heart diseases may also share similar signal patterns as

risk factors. Therefore, another interesting research direction will

be to include existing pretrained DNNs (mentioned in Section 2.4 )

learnt from other relevant datasets in the search space. It is worth

investigating whether DNE can intelligently select suitable combi-

nations of networks and construct new structures for the networks.

This can utilize existing knowledge and may improve the com-

prehensibility of the final networks based on the knowledge from

other heart diseases. This method may also save time and effort

by structurally fine-tuning the DNNs. In the future, our ADAG-DNE

method will take advantages of the increasing amount of computa-

tional resources to design better networks to solve more significant

and challenging problems. 
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