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a b s t r a c t 

Numerous methods have been developed in the context of expert and intelligent systems for structural 

health monitoring (SHM) with wireless sensor networks (WSNs). However, these techniques have been 

proven to be efficient when dealing with continuous signals, and the applicability of such expert sys- 

tems with discrete noisy signals has not yet been explored. This study presents an intelligent data min- 

ing methodology as part of an expert system developed for SHM with noisy and delayed signals, which 

are generated by a through-substrate self-powered sensor network. The noted sensor network has been 

demonstrated as an effective means for minimizing energy consumption in WSNs for SHM. Experimen- 

tal vibration tests were conducted on a cantilever plate to evaluate the developed expert system for 

SHM. The proposed data mining method is based on the integration of pattern recognition, an innova- 

tive probabilistic approach, and machine learning. The novelty of the proposed system for SHM with data 

interpretation methodology lies in the integration of the noted intelligent techniques on discrete, binary, 

noisy, and delayed patterns of signals collected from self-powered sensing technology in the applica- 

tion to a practical engineering problem, i.e., data-driven energy-efficient SHM. Results confirm that the 

proposed data mining method employing a probabilistic approach can be effectively used to reconstruct 

delayed and missing signals, thereby addressing the important issue of energy availability for intelligent 

SHM systems being used for damage identification in civil and aerospace structures. The applicability and 

effectiveness of the expert system with the data mining approach in detecting damage with noisy sig- 

nals was demonstrated for plate-like structures with an accuracy of 97%. The present study successfully 

contributes to advance data mining and signal processing techniques in the SHM domain, indicating a 

practical application of expert and intelligent systems applied to damage detection in SHM platforms. 

Findings from this research pave a way for development of the data analysis techniques that can be em- 

ployed for interpreting noisy and incomplete signals collected from various expert systems such as those 

being used in intelligent infrastructure monitoring systems and smart cities. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Energy-efficient wireless sensor networks (WSNs) for struc-

ural health monitoring (SHM) have emerged due to progress in

elf-powered sensors and low-power data communication proto-

ols. One such network is the through-substrate ultrasonic self-

owered sensor network ( Das et al., 2017 ), which employs ultra-
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onic pulses to communicate binary signals (from self-powered

ensors) through the material substrate. However, the noted net-

ork creates time-delay on the generated signals due to the power

udgeting required for sensing and data transmission. This study

resents an expert system with a data mining approach for SHM

n order to deal with such discrete noisy and delayed signals. 

Signal time-delay estimation/reconstruction is a problem that

as attracted considerable attention in the SHM community. Nu-

erous techniques have been developed for signal delay estima-

ion for SHM and damage identification ( Giurgiutiu, 2005; Giurgiu-

iu & Cuc, 20 05; Nichols, 20 03; Sun, Chaudhry, Rogers, Maj-

undar, & Liang, 1995; Yan, Royer, & Rose, 2010 ). Ultrasonic tech-

iques (e.g., lamb wave methods) have been used for time-delay
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estimation for SHM (C. H. Dib & Udpa, 2016; Park, Farrar, di

Scalea, & Coccia, 2006; Petculescu, Krishnaswamy, & Achenbach,

2007; Wang, Rose, & Chang, 2004 ). Aranguren, Monje, Cokonaj,

Barrera, and Ruiz (2013) proposed a piezoelectric-based SHM sys-

tem for damage detection using lamb waves and delayed signals.

Kudela, Radzienski, Ostachowicz, and Yang (2018) developed an

SHM approach based on lamb waves to increase damage imag-

ing resolution, where the effectiveness of the approach for dam-

age detection with time-delayed signals was demonstrated on a

structural plate. Lamb wave methods have also been incorporated

into techniques called delay-and-sum algorithms for signal delay

reconstruction. Qiu, Liu, Qing, and Yuan (2013) introduced a quan-

titative multi-damage monitoring algorithm using delay-and-sum

imaging algorithms for large-scale composites in order to deal with

delayed signals coming from the actuator-sensor channels. Sharif-

khodaie and Aliabadi (2014) presented a damage detection method

based on lamb waves, and evaluated the applicability of the pro-

posed delay-and-sum algorithms for SHM of aircraft panels with

delayed signals. 

Time synchronization approaches have also been used for SHM

employing WSNs for dealing with delayed signals ( Araujo et al.,

2012; Chae, Yoo, Kim, & Cho, 2012; Kim et al., 2007; Lei, Kiremid-

jian, Nair, Lynch, & Law, 2005; Paek, Chintalapudi, Govindan, Caf-

frey, & Masri, 2005; Wang & Law, 2011 ). Linderman, Mechitov,

and Spencer (2013) presented a high-throughput real-time wireless

data acquisition on an advanced smart sensor platform used for

SHM with time-delayed signals. In addition, Pyayt et al. (2014) pro-

posed a data-driven SHM approach combining time-frequency fea-

ture extraction, wavelet analysis, and classification techniques for

damage assessment in concrete dams; in which analysis of phase

delay between sensors was performed based on Fourier trans-

forms. Although the noted studies showcase the applicability of

different techniques to reconstruct signal time-delay for SHM with

WSNs, such methods mainly dealt with small amounts of delay,

i.e., few milliseconds, where it has been shown that such small de-

lay values have little impact on the performance of SHM systems.

However, the delay in the noted through-substrate sensor network

is large, and thus the effect of time-delay cannot be disregarded. 

Numerous techniques have been developed within the con-

text of expert and intelligent systems for SHM with sensor net-

works ( Brownjohn, 2006; Ecke, Latka, Willsch, Reutlinger, & Graue,

2001; Jiang, Zhang, & Zhang, 2011; Loutas, Panopoulou, Roulias,

& Kostopoulos, 2012; Wu et al., 2010; Zhao, Yuan, Yu, Ye, & Cao,

2008; Zhu, Deng, & Zhang, 2013 ). Chen & Zang (2011) proposed

a hybrid model for structural damage PR based on combination

of fuzzy clustering and artificial immune PR, where the model

was tested on a benchmark structure. Oliveira, Araujo, Inman, and

Vieira Filho (2018) developed a strategy using fuzzy network with

particle swarm optimization, where the effectiveness of the ap-

proach was demonstrated for SHM of composite structures. Yet,

the applicability of the noted expert systems for SHM was eval-

uated based on the interpretation of continuous time-history sen-

sor data. This is while, as noted, the nature of data/signals from

a self-powered sensing technology are discrete binary and de-

layed (i.e., not continuous in time), and therefore such expert

systems cannot be effectively used when dealing with discrete

noisy and delayed signals. Further, no efficient approach has yet

been proposed within the context of expert and intelligent sys-

tems that can be considered for SHM with large values of delay.

The above-mentioned issues evidently imply the necessity to de-

velop a new class of expert and intelligent systems for data-driven

SHM that are able to interpret and analyze discrete, noisy, and de-

layed/missing signals. 

To tackle the problems associated with discrete binary signals

generated by the through-substrate network the authors previously

presented a damage identification methodology employing pattern
ecognition (PR) ( Salehi, Burgueño, Das, Biswas, & Chakrabartty,

016; Salehi, Das, Chakrabartty, Biswas, & Burgueño, 2015, 2018 ),

or which it was hypothesized that damage detection with bi-

ary signals can be treated within the context of PR. Further,

o take into account the effect of time-delay the authors previ-

usly proposed a framework incorporating PR and matrix comple-

ion for damage identification in aircraft structures ( Salehi, Das,

hakrabartty, Biswas, & Burgueño, 2017 ). Yet, the noted framework

as found to be computationally intensive for SHM purposes. Fur-

her, the effectiveness of the framework highly depended on the

ptimal parameters of a learning algorithm. To address these is-

ues, this paper presents a novel SHM system within the context

f expert and intelligent systems for damage detection with dis-

rete noisy and delayed binary signals. An expert system employ-

ng an intelligent data mining methodology that efficiently deals

ith delayed/noisy signals is presented based on integration of PR,

n innovative probabilistic approach, and machine learning using a

upport vector machine (SVM) algorithm. The image-based PR ap-

roach is used to represent sensor nodes responses as a pattern.

nother contribution of the study presented herein is the devel-

pment of a probabilistic approach as part of the SHM system to

econstruct delayed signals. The SVM algorithm is also used to de-

ect the presence of damage and to determine damage detection

ccuracy with the reconstructed signals. The novelty of the pro-

osed intelligent SHM system lies in the incorporation of artifi-

ial intelligence techniques (i.e., PR and machine learning) and a

robabilistic approach on discrete noisy and delayed patterns in

he application to a practical engineering problem. The developed

ntelligent SHM system could effectively address the important

ssue of energy availability for SHM. This significantly improves

afety and decreases maintenance costs of civil and aerospace

tructures. 

It is to be noted that the integrated self-powered sensor with

ommunication technology is under design, fabrication, and test-

ng. Further, experimental validation of the self-powered sensor

nd through-substrate communication protocol has been done sep-

rately in prior studies ( Das, Lorenz, Dong, Huo, & Biswas, 2015;

uang & Chakrabartty, 2012; Huang, Lajnef, & Chakrabartty, 2010;

hou & Chakrabartty, 2017; Zhou, Abraham, Tang, & Chakrabartty,

016 ). Thus, this study contributes to the development and evalu-

tion of expert systems for SHM by using intelligent data mining

ethodologies for delayed signals through experimentally cali-

rated numerical simulations on a dynamically loaded cantilever

late. The proposed SHM system promotes the development of

ew class of data interpretation techniques for analysis of noisy

nd delayed signals provided by intelligent systems being used

n domains of smart infrastructure monitoring, aerospace moni-

oring, and smart cities. Finally, the presented research, through

evelopment of the expert SHM system, successfully contributes

o advance data mining and signal processing techniques in the

ata-driven SHM domain, further showing a practical application

f expert and intelligent systems for energy-efficient SHM and

mart infrastructure monitoring. 

. Nature of signals generated by the through-substrate sensor 

etwork 

The expert and intelligent SHM system presented in this re-

earch is based on a novel energy-aware through-substrate sen-

or network aiming to minimize energy consumption for SHM.

he method’s objective is to interpret the binary (i.e., 1 or 0)

nd time-delayed signals provided by self-powered analog wireless

ensors ( Das et al., 2017; Huo, Dong, & Biswas, 2014; Huo, Rao,

 Biswas, 2013 ), used to measure the structural response, along

ith an energy-efficient pulse switching architecture ( Huang et al.,

010 ), employed for signal communication through the material’s



H. Salehi, S. Das and S. Biswas et al. / Expert Systems With Applications 135 (2019) 259–273 261 

Fig. 1. Structural health assessment and performance monitoring employing a through-substrate self-powered sensing technology. 
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ubstrate. The uniqueness of the analog wireless sensor is that

t operates on gates with a non-volatile memory that demands

ery low energy; thus logging/recording data in a discrete and

synchronous manner. The communication part employs the pulse

witching protocol in which a minimal number of ultrasonic pulses

re used to encode event location and forwarding information. A

chematic of the through-substrate ultrasonic self-powered sensor

etwork for SHM of an aircraft wing stabilizer is shown in Fig. 1 .

 significant characteristic of such network is that it consists of a

ystem of low-power through-substrate ultrasonic pulse network-

ng (TUPN) units communicating with each other using the noted

nergy-lean pulse switching architecture, and powered by energy

arvested from the substrate’s (i.e., structural) vibrations. The gen-

rated pulses are communicated via multi-hop transmission be-

ween TUPNs to a data logger/sink node, where information re-

eived from sensors across the structure is accumulated and used

o assess the structure’s condition. 

The cellular pulse networking (CPN) protocol is used for the

nergy-aware self-powered sensor network. Such protocol is well-

uited for SHM applications where the information to be transmit-

ed is small, i.e., essentially binary information indicating the oc-

urrence or absence of a structural event. There can be multiple

actors contributing to the latency of event information delivery

t the sink when CPN is employed in a self-powered sensor net-

ork for SHM, such as distance from the source to the sink, en-

rgy availability, event merging policy, and frame size. As shown

n Fig. 2 , energy availability depends on the harvested energy as

ell as its consumption due to communication, idling leakage, and

ensing. An event merging/processing policy determines how the

enerated events will be accumulated in a data buffer based on

vailable buffer size and the pending event processing status. The

rame size is important in terms of the event buffering time be-

ause events from any cell can be transmitted in only one slot per

rame. 

. Simulation of time-delayed binary signals 

The development and validation of the proposed SHM system

mploying intelligent data mining approach is based on data ob-

ained through experiments on a cantilever plate. To this aim, vi-
ration tests using conventional strain gages were conducted on a

late cantilevered from one side. The plate geometry and locations

f output locations (i.e., strain gages) are shown in Fig. 3 . The plate

as made of aluminum 2024-T4 with E = 73,100 MPa and ν = 0.33.

amage on the experimental plate was introduced by means of a

ircular hole (see Fig. 3 ) of varying diameter (13 mm, 19 mm, and

5.5 mm.) Testing consisted on subjecting the plate’s clamped edge

o a dynamic harmonic motion (5 mm in amplitude at a frequency

f 2.3 Hz) using a universal testing frame. Strain data was collected

uring 10 s with a time step of 0.01 s; therefore, the size of dataset

s 10 0 0. 

The continuous experimental response (strain) from the vi-

ration tests was post-processed to extract binary signals based

n response thresholds. Consequently, strain responses were col-

ected from the strain gages. However, the acceleration response

s needed to simulate the through-substrate sensor network. To

his aim, an experimentally calibrated finite element (FE) model

f the cantilever test plate was used to extract the acceleration

esponses at the stain gage locations. The key idea is that binary

ignals are generated based on strain at a local level (i.e., sensor

odes or strain gages), saved in the sensor cell memory, and

ommunicated if enough power is available based on accumulated

arvested energy (from acceleration at sensor nodes). Accord-

ngly, experimental strain responses were used to generate binary

ignals using a threshold concept, and acceleration responses

xtracted from the FE simulations were used to determine har-

ested energy. The acceleration response and binary signals were

hus used in a simulation algorithm of the through-substrate

ensor network employing an energy-aware pulse switching pro-

ocol to generate the time-delayed binary signals. The generated

ime-delayed binary signals were finally the input to the SHM

ethodology. 

The strain responses from the vibration tests were used to cal-

brate the FE model. Simulated and experimental strain histories

for the first 4 s of the experiment) at nodes 1 and 4 are plotted in

ig. 4 , from which it can be observed that they are in good agree-

ent in spite of the experimental uncertainties and noise. Simi-

ar results were observed for other strain gages (nodes), indicating

hat the numerical and experimental strain responses were essen-

ially equal. With such validation of the numerical simulation, the
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Fig. 2. Factors affecting one-hop event delivery delay when using CPN in energy-harvesting-powered wireless sensor networks. 

Fig. 3. Geometry and strain gages layout of a cantilever plate for vibration testing. 
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acceleration responses at the strain gage locations were extracted

from the FE model and used in the simulated pulse communica-

tion protocol for generating energy-dependent timed-delayed bi-

nary signals corresponding to the experiments. 

4. Proposed SHM methodology with delayed signals 

The time-delayed signals considered in this study are crucial to

the SHM system, and therefore a new SHM system is presented
Fig. 4. Strain response of the cantilever p
ithin the context of expert systems to efficiently deal with such

ignals. The SHM platform with the proposed data mining method-

logy, schematically presented in Fig. 5 , is designed upon merging

n image-based PR approach, an innovative probabilistic approach,

nd machine learning with SVM algorithm. Theoretical considera-

ions for each of the noted techniques are provided in following

ub-sections. 

.1. Representation of sensor nodes responses using an image-based 

R approach 

Detailed information of the proposed image-based PR approach

s reported in prior works ( Salehi et al., 2015; Salehi et al., 2016;

alehi et al., 2018 ). However, a brief summary is presented here

o highlight its implementation. To apply the PR approach, the ar-

angement of sensor nodes (and consequently the distribution of

inary signals generated from structural response) was considered

s a pattern/image. Consistent with image data analysis techniques,

ach pattern (image) was treated as a matrix and represented by

pecific features (binary signals according to local rules). The di-

ension of the generated matrix, which herein is the dimension

f the PR problem, depends on the number of time steps and dis-

ribution of sensor nodes; while each of the matrix elements de-

otes a pattern’s feature (binary signal) at each sensor. In other

ords, sensor node responses for the entire simulation time were
late: (a) Node #1, and (b) Node #4. 



H. Salehi, S. Das and S. Biswas et al. / Expert Systems With Applications 135 (2019) 259–273 263 

Fig. 5. Proposed data mining methodology for intelligent SHM system using noisy and delayed signals. 
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rranged in m rows and n columns, where m denotes number of

ime steps and n refers to the number of sensor nodes in the net-

ork. Accordingly, if the number of sensors is n , each pattern was

epresented by n features at each time step. 

Once sensor node responses were arranged as a pattern, a PR

pproach employing anomaly detection ( Basharat, Gritai, & Shah,

008; Moshtaghi, Leckie, Karunasekera, & Rajasegarar, 2014 ) was

sed to identify patterns as normal or damaged. A schematic il-

ustration of the proposed image-based PR approach for damage

etection of a simply supported plate with 9 sensor nodes is pre-

ented in Fig. 6 . The resulting patterns from the structures’ regu-

ar (in-service) response are memorized and used as benchmarks

or damage detection model. A change in structural response is

xpected when damage or decay occurs under consistent loading,

hich leads to a different pattern because the binary-event thresh-

lds are exceeded at different locations (see Fig. 6 ). If a pattern re-

ulting from the noted material/structural changes is recognized as

ew, with respect to the benchmark, it is thought to be represen-

ative of damage. 

.2. Reconstruction of time-delayed signals with probabilistic 

pproach 

Binary signals at the sensor nodes were created based on a

hreshold concept. A simple pilot-type local rule for binary signal

eneration was defined in terms of a strain threshold R1, namely

20 micro-strains, at the sensor nodes (i.e., strain gages locations).

onsequently, a binary signal was generated if the value of the

ongitudinal strain at the strain gage location exceeded thresh-

ld R1. Preliminary results indicated that the layout shown in
ig. 3 (a) provided adequate information for robust data analysis.

hus, the number of sensors for the cantilever plate was set at

, and therefore each pattern was represented with 9 features

binary values). 

Preliminary results show that the variation of signal delay with

espect to the number of event readings has a Gaussian distribu-

ion. Thus, the probability density functions (PDF) of delivery de-

ay values at the sensor nodes were determined. The PDF plots of

elivery delay for strain gages 1 to 6 obtained from experiments

f the intact plate are shown in Fig. 7 (a) and (c); while those for

he damaged plate with a hole diameter of 19 mm are presented

n Fig. 7 (b) and (d). The variations in the PDF plots of the noted

ensing nodes/strain gages confirm that the distribution of event

elivery delay values is Gaussian. 

Given the Gaussian distribution of signal delay, the PDF of each

ensor node was determined. Thereafter, it was decided to develop

 statistical approach using a conditional probability concept. That

s, the probability that sensor node S i observes binary signal (1) at

ime t j should be combined with the anticipated delay function d i ,

s shown in Eq. (1) . 

 

(
t i j = 1 | d i 

)
(1) 

In Eq. (1) , d i ∼ N( μi , σ
2 
i 
) , where μi and σ i are average and

tandard deviation of signal delay for sensor node S i . 

The key idea behind the proposed probabilistic approach is to

se the PDF values of the sensor nodes to determine the proba-

ilities that can be further used for classification. Assuming that a

inary signal is received at time t j , the aim is to determine what

ould be the probability that such signal comes from t j -1 , t j -2 , etc.

or such purpose, a time lag factor parameter ( l ) is introduced to
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Fig. 6. Schematic illustration of image-based PR approach. 

Fig. 7. The PDF plot of delivery delay for sensors/strain gages 1 to 6 for experimental plate: (a) and (c) intact plate, (b) and (d) damaged plate. 
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designate the time (i.e., number of readings) that we should go be-

hind the current time t j to capture a delay. Fig. 8 schematically il-

lustrates the proposed probabilistic approach. The figure illustrates

a situation in which the binary signal is observed by sensor node

4 at time t = 0.7 s. The goal is to determine the probabilities that

such binary signal was actually generated at times t = 0.6, 0.5, 0.4,

0.3, 0.2, and 0.1 s, given the time lag is 0.6 s. The time lag of 0.6 s

refers to the six previous readings, indicating the probabilities that

the signal comes from one of the six previous readings need to be

determined. The noted probabilities are written in Eq. (2) . Further,
i,tj in Fig. 8 refers to the probabilities obtained from the PDF of

ensor node i at time step tj . 

 ( V 4 = 1 | j = 0 . 1 ) ≈ P ( d 4 = 0 . 6 ) P ( V 4 = 1 | j = 0 . 2 ) ≈ P ( d 4 = 0 . 5 )
 ( V 4 = 1 | j = 0 . 3 ) ≈ P ( d 4 = 0 . 4 ) P ( V 4 = 1 | j = 0 . 4 ) ≈ P ( d 4 = 0 . 3 )
 ( V 4 = 1 | j = 0 . 5 ) ≈ P ( d 4 = 0 . 2 ) P ( V 4 = 1 | j = 0 . 6 ) ≈ P ( d 4 = 0 . 1 )

(2)

The implementation and different steps of the proposed algo-

ithm are presented in Fig. 9 . Once the time delay is reconstructed
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Fig. 8. Schematic of a proposed probabilistic approach for delayed signal reconstruction. 
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approach. 
sing the proposed probabilistic algorithm, support vector ma-

hine (SVM) is employed to detect damage and to classify the

econstructed signals. It is noted that the classification with SVM

s based on probability values and not binary signals. 

.3. Classification with SVM algorithm 

Support vector machine (SVM) is one of the well-established

earning algorithms for pattern classification ( Cortes & Vap-

ik, 1995 ). SVM is able to achieve good performance as it uses the

tructural risk minimization principle, while it introduces a ker-

el trick ( Salehi & Burgueño, 2018 ). SVM is attractive for struc-

ural damage identification due to its effectiveness and robustness

hen dealing with insufficient information, noise, and uncertainty.

an et al. (2014) reported on the use of back-propagation neural

etworks and SVM for damage assessment in beams mounted on

cean platforms. Liu, Liu, & Liu (2009) studied SVM for damage de-

ection of a long span cable-stayed bridge and demonstrated that
VM is more accurate compared to a back-propagation neural net-

ork. Therefore, SVM was used in this study to detect damage due

o the following main reasons: 

• SVM has a regularization parameter to avoid over-fitting, while

it generalizes new samples well if appropriate parameters are

chosen 

• Unlike other AI methods (e.g., neural networks), which produce

multiple solutions based on local minima, SVM is guaranteed to

converge to a unique global solution. 
• The SVM optimization technique is based on convex optimiza-

tion to prevent local minima problems. 
• If linear decision hyperplanes are not adequate to separate the

classes SVM projects the input data into a high dimension fea-

ture space, thus resulting in a nonlinear classifier. 
• SVM uses a kernel trick, thus making the user able to design

different kernels for the decision function via an engineering
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Fig. 9. Implementation of the proposed algorithm for signal reconstruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Schematic illustration of the SVM with optimal margin and separating hy- 

perplane. 
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The SVM problem originated from a supervised binary classi-

fication, in which most of the solutions are evaluated by obtain-

ing a separating hyperplane among classes. To express the SVM it

can be assumed that T = { (x i , y i ) : i = 1 , . . . , N} denotes a train-

ing data set consisting of an N number of m -dimensional extracted

feature vectors x i ∈ R m × 1 , and the corr esponding labels of these

feature vectors are y i ∈ { − 1 , 1}). It is noted that N is the number

of training samples. The goal of the SVM model is to find the sepa-

rating boundary between two data classes by maximizing the mar-

gin between the decision/separating hyperplane and the datasets,

as illustrated in Fig. 10 , while minimizing the misclassification. The

decision hyperplane can be defined as ( Vapnik, 1998 ): 

w 

T x + b = 0 (3)

where w and b denote the weight vector defining the direction of

the separating boundary and bias, respectively. The constraint for

classification in the original feature space can be stated as: 

y i ( w 

T x i + b) ≥ 1 (4)

For the SVM, the decision function is expressed according to the

following equation: 

f (x ) = sgn ( w 

T x i + b) (5)

Accordingly, sgn (α) is defined as: 
gn (α) = 

{
1 , α ≥ 0 

−1 , α < 0 

(6)

SVM attempts to maximize the margin by minimizing ‖ w ‖ ,
hus resulting in the following constrained optimization prob-

em: 
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i  

p  

n  

p  

w  

u  

r  

F

v

min 

w,ξ
τ1 ( w, ξ ) = min 

w,ξ

[ 

1 

2 

‖ 

w ‖ 

2 + C 

N ∑ 

i =1 

ξi 

] 

ubject to y i ( w 

T x i + b) ≥ 1 − ξi , ξi > 0 , C > 0 , i = 1 , ..., N (7) 

here τ 1 (.), ‖ . ‖ 2 , and ξ i refer to the objective function, L 2 -norm,

nd slack variable, respectively. 

Misclassification is decreased by minimizing the non-negative

lack variables in Eq. (7) . Further, C denotes the regularization pa-

ameter that balances the significance between the maximization

f margin and the minimization of the misclassification error. In-

roducing a Lagrange multiplier α leads to following optimization

roblem: 

min 

α
W ( α) = 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

y i y j αi α j 

(
x i , x j 

)
−

N ∑ 

j=1 

α j 

Subject to 

N ∑ 

i =1 

αi y i = 0 , 0 ≤ αi ≤ C (8) 

ccordingly, the corresponding decision function can be written as:

f (x ) = sgn 

( 

N ∑ 

i =1 

αi y i (x T i x ) + b 

) 

(9) 

SVM is able to offer an alternative solution for pattern classi-

cation when the data is linearly inseparable. In this regard, SVM

ses a kernel trick method that projects the data into a higher di-

ensional feature space, such that the data becomes divisible. If

(.): R o → R h represents the projection/mapping from the original

nto the high dimensional feature space, the inner product of the

riginal space x T 
i 

· x can be substituted by the inner product of the

ransformed space �T ( x i ) · �( x ). Yet, it is computationally inexpen-

ive to evaluate the inner product of the transformed space. There-

ore, a kernel function provides an effective path to overcome this

ifficulty, such that a kernel function K ( ·) satisfies the Mercer the-

rem as shown in Eq. (10) : 

( x i , x j ) = �T ( x i ) · �( x j ) (10)

There after, the decision function can be defined as: 

f (x ) = sgn 

( 

N ∑ 

i =1 

αi y i K( x i , x ) + b 

) 

(11) 
(

ig. 11. Identified patterns on experimental plate using image-based PR approach. (For in

ersion of this article.) 
In fact, the kernel function defines the nonlinear mapping from

he input space into a high dimensional feature space. Typical ker-

el functions include linear, polynomial, radial basis, and sigmoid

unctions. In the present study, SVM is used for damage classifica-

ion using the probabilities determined as the output of the algo-

ithm presented in Fig. 9 . 

. Results and discussion 

To examine the effectiveness of the SHM system on a realis-

ic structure, experimental validation was conducted using event-

ased time-delayed binary signals. The experimental dataset for

he analysis was randomly divided into three subsets: training,

alidation, and testing. Further, k -fold cross validation was used

o prevent overfitting problems. In this research, 10-fold cross-

alidation (assuming k = 10) was used. Vibration tests were con-

ucted for 10 s with a time step of 0.01; therefore, the size of

ataset was 10 0 0. To implement the SVM algorithm, the dataset

patterns) was classified into 7 classes. Classes 4 to 6 represented

atterns due to normal condition of the plate, classes 1 and 3 de-

oted patterns due to damage, and class 2 represented noisy and

ime-delayed patterns. Matlab (2014) was utilized for implement-

ng the method and algorithms. The damage detection accuracy

ith SVM was determined according to Eq. (12) . Results are pre-

ented in terms of different measures, namely: confusion matrices,

he receiver operating characteristic (ROC) curve, and the cumula-

ive match characteristic (CMC) curve. 

Damage Detection Accuracy 

= 

Number of patter ns cor rectly classi f ied 

T otal number of patterns 
(12) 

.1. Results of PR approach 

An image-based PR was used to recognize patterns represent-

ng different conditions of the experimental plate. The identified

atterns are presented in Fig. 11 , where patterns 1 and 2 denote

ormal conditions, pattern 3 was due to noise and time delay, and

atterns 4 to 6 were recognized due to damage (i.e., damaged plate

ith varying hole diameters). The blue and grey regions in the fig-

re denote active and inactive sensor nodes, respectively, whereas

ed regions represent the binary signals generated due to damage

hole) in a cantilever plate. 
terpretation of the references to color in the text, the reader is referred to the web 
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Fig. 12. (a) Selection of optimal kernel parameter, (b) Tuning optimal kernel degree, (c) optimization of the kernel parameter C, and (d) Optimization of the kernel 

parameter γ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Damage detection accuracy for different time lags. 

Time lag (sec) Data pre-processing Damage detection accuracy (%) 

Training Ten-fold CV Test 

3 Case 1 71.64 69.93 78.19 

Case 2 73.74 72.15 79.96 

Case 3 75.18 73.58 83.09 

Case 4 75.4 74.20 85.86 

4 Case 1 94.56 94.62 95.41 

Case 2 94.89 94.74 96.40 

Case 3 95.23 94.58 97.63 

Case 4 95.51 95.17 97.30 

5 Case 1 92.40 92.30 92.63 

Case 2 92.24 91.97 93.14 

Case 3 92.36 91.73 94.02 

Case 4 92.33 91.64 96.24 
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5.2. Results of SVM classification 

It is of importance to select the optimal hyper-parameters of

the SVM algorithm. On this basis, grid-search on C and γ (i.e., ker-

nel parameters) was conducted in this study using 10-fold cross-

validation. Several pairs of ( C , γ ) were thus used, and the pair

with best cross-validation accuracy was selected as optimal hyper-

parameters. The training and validation data sets were used to

optimize the regularization and kernel parameters. Different ker-

nel functions, i.e., polynomial, radial basis function (RBF), and sig-

moid, were utilized for implementing the SVM method. However,

as shown in Fig. 12 (a), performance with the polynomial kernel

was found to be superior compared to other kernels; where the

maximum accuracy (polynomial kernel) was 94.62% and 94.56% for

the validation and training data set, respectively. The optimal de-

gree of the polynomial kernel function was determined through

the optimization process, with the best degree value found being

2 (see Fig. 12 (b)). 

Once the polynomial kernel was selected as the optimal kernel,

the grid-search with 10-fold cross validation for different pairs of

( C , γ ) was conducted to determine the optimum kernel parameters.

Consequently, the noted hyper-parameters were tuned through the

optimization process. Results from the grid-search in terms of the

variation of the damage detection accuracy as a function of the

kernel parameters C and γ are presented in Fig. 12 (c) and (d).

As can be seen, the best damage detection accuracy was achieved

for a polynomial kernel with d = 2, C = 10, and γ = 0.02. The noted

values were thus selected and used as the optimal SVM hyper-

parameters. 

As previously noted, the dataset was randomly divided into

three subsets. In addition, the effectiveness of the approach with

respect to size of the subsets was also explored. In this context,

the dataset was divided to four different cases as follows: 

• Case 1: training & 10-fold cross validation (70%), test (30%) 
• Case 2: training & 10-fold cross validation (75%), test (25%) 
• Case 3: training & 10-fold cross validation (80%), test (20%) 
• Case 4: training & 10-fold cross validation (85%), test (15%) 

Confusion matrices for the actual/target and predicted/output

lassification results using SVM were determined for different data

ubset sizes and shown in Fig. 13 . Results reveal that SVM is able

o identify damage with good classification accuracy. Nonetheless,

he best classification accuracy was achieved based for Case 2

97.6%), where the error for damage class 1 was 8.2%. 

The effect of time lag parameter on the performance of the

HM method was also assessed. As previously noted, the size of

ata set was 10 0 0. Therefore, time lags of 3, 4, and 5 s imply that

0 0, 40 0, and 50 0 readings, respectively, were considered. Results

f damage detection accuracy with different time lags based on

oted cases are presented in Table 1 , from which it can be ob-

erved that by damage detection accuracy increases by increasing

he number of samples in the test set (e.g., from 92.63% to 96.24%

or cases 1 to 4 and a time lag of 5 s.) The best classification result

as for the time lag of 4 s, which was 97.63% for case 3.In other

ords, the highest classification accuracy was achieved when, after

 sensor received a binary signal, the probabilities of the previous

00 readings are computed and used to reconstruct the signals. 
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Fig. 13. Confusion matrix using SVM for different size of data subsets. 
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The receiver operating characteristic (ROC) ( Bradley, 1997;

awcett, 2006 ) based on SVM was determined and plotted. The

rea under the ROC curve (AUC) is a metric used to assess a clas-

ifier’s performance; such that an AUC value close to 1 indicates

etter classification performance. ROC curves for all cases (1 to

) and damaged classes are shown in Fig. 14 for a time lag of

 s. Although good damage classification accuracy was obtained for

ll cases, case 3 (training & validation (80%), test (20%)) had the

est performance, as its UAC value was slightly higher than the

ther cases. In summary, classification results, i.e., confusion ma-

rices and ROC curves, indicate good performance of the proposed

HM methodology, even with time-delayed data. 

The cumulative match characteristic (CMC) curve

 Bowyer, Chang, & Flynn, 2006 ), a rank-based metric, was com-

uted. To determine a CMC curve, each test data is compared

o each class, and the resulting scores are ranked. The rank at

hich a true match occurs is determined, while the probability of

bserving the correct classification within top ranks is computed.
lotting the noted probabilities against ranks yields a CMC curve

hat represents the accuracy of the SVM classifier with different

anks. To this aim, multinomial logistic regression was utilized to

ompute the predicted probabilities for the model. CMC curves for

ifferent size of data subsets and damaged classes are presented

n Fig. 15 . Results indicate that the accuracy for the first rank

or all of the cases is good, further confirming the satisfactory

erformance of the damage identification approach. 

. Conclusions and future studies 

This paper presented a methodology for structural health mon-

toring (SHM) within the context of expert and intelligent sys-

ems with delayed signals from a novel through-substrate self-

owered sensor network. The proposed expert system for energy-

fficient SHM employs an intelligent data mining method merging

n image-based pattern recognition (PR) approach, a probabilistic

pproach, and machine learning with a support vector machine
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Fig. 14. (a) ROC curves based on SVM classification algorithm for different size of data subsets, (b) a close-up view of the ROC curves. 

Fig. 15. CMC curve with SVM for different size of data subsets. 
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(SVM) algorithm. The PR approach is used to represent sensor node

responses as a pattern, while a proposed probabilistic approach al-

lows reconstruction of the time-delayed signals. SVM is used for

damage classification with the reconstructed signals. The effect of

size of the data subsets and time lag parameter, defined within

the probabilistic approach on the SHM system’s performance, was

evaluated. Experimental vibration tests were conducted to explore

and validate the applicability of the intelligent SHM system. The

following conclusions were reached: 

1) The distribution of the delayed signals is Gaussian. Further, re-

sults confirmed that the proposed probabilistic approach can be

successfully used as part of the developed expert system to re-

construct delayed signals. 

2) The time lag parameter has an effect on the performance of the

approach. However, such effect was found to be minimum for

the set up presented in this study. 
3) Results of classification, confusion matrices, ROC, and CMC

curves indicated that SVM led to acceptable damage detection

accuracy with noisy and delayed signals. 

4) Damage classification accuracy on the test set increased with

an increase in the number of data in the set. 

The presented study demonstrated that the proposed SHM sys-

em can be effectively used within the context of expert and in-

elligent systems for damage identification with noisy and delayed

inary signals. Results evidently indicated that the developed ex-

ert system for SHM can be employed to reconstruct delayed and

oisy signals in the application to a practical engineering prob-

em, i.e., data-driven SHM. Development of the expert system pre-

ented in this paper significantly addressed the important issue

f energy availability for intelligent systems being used for struc-

ural/infrastructure health monitoring and aerospace monitoring.

his study also contributed to promote data mining and signal pro-

essing techniques in the SHM domain, demonstrating a practical
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pplication of expert and intelligent systems in such domain. Un-

ike other expert systems studied for SHM, for which the perfor-

ance of the system strongly depends on continuous data/signal

vailability, the developed intelligent SHM system shows satisfac-

ory performance, even with noisy and incomplete signals. This

learly indicates the significance of the proposed expert system for

ata-driven SHM. However, there are still some challenges that are

he focus of on-going studies. Particularly, the proposed intelligent

HM system should be evaluated in full-scale experiments using

he through-substrate sensor network to validate its efficiency. 

The PR approach used in this study is a supervised learning

lgorithm based on the labeled patterns. A future research topic

ill focus on evaluating the applicability of unsupervised machine

earning methods for an intelligent SHM platform for the cases

here target classes are unknown. To this aim, an investigation on

nsupervised learning algorithms is being conducted to select the

est algorithm leading to highest damage classification accuracy.

esides, future work should be done using dimensionality reduc-

ion techniques such as principal component analysis and indepen-

ent component analysis to reduce the dimension of the feature

pace, thereby optimizing the required time consumption. Finally,

uture research topics should incorporate feature extraction tech-

iques with the developed expert system to extract the most sig-

ificant features and generate an optimal subset of features, which

ill lead to a notable improvement in the SHM system’s perfor-

ance and an increase in computational efficiency of such intelli-

ent systems. 
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