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Numerous methods have been developed in the context of expert and intelligent systems for structural
health monitoring (SHM) with wireless sensor networks (WSNs). However, these techniques have been
proven to be efficient when dealing with continuous signals, and the applicability of such expert sys-
tems with discrete noisy signals has not yet been explored. This study presents an intelligent data min-
ing methodology as part of an expert system developed for SHM with noisy and delayed signals, which

Keywords: are generated by a through-substrate self-powered sensor network. The noted sensor network has been
Structural health monitoring demonstrated as an effective means for minimizing energy consumption in WSNs for SHM. Experimen-
Data mining tal vibration tests were conducted on a cantilever plate to evaluate the developed expert system for

Artificial intelligence
Probabilistic approach
Signal time delay

SHM. The proposed data mining method is based on the integration of pattern recognition, an innova-
tive probabilistic approach, and machine learning. The novelty of the proposed system for SHM with data
interpretation methodology lies in the integration of the noted intelligent techniques on discrete, binary,
noisy, and delayed patterns of signals collected from self-powered sensing technology in the applica-
tion to a practical engineering problem, i.e., data-driven energy-efficient SHM. Results confirm that the
proposed data mining method employing a probabilistic approach can be effectively used to reconstruct
delayed and missing signals, thereby addressing the important issue of energy availability for intelligent
SHM systems being used for damage identification in civil and aerospace structures. The applicability and
effectiveness of the expert system with the data mining approach in detecting damage with noisy sig-
nals was demonstrated for plate-like structures with an accuracy of 97%. The present study successfully
contributes to advance data mining and signal processing techniques in the SHM domain, indicating a
practical application of expert and intelligent systems applied to damage detection in SHM platforms.
Findings from this research pave a way for development of the data analysis techniques that can be em-
ployed for interpreting noisy and incomplete signals collected from various expert systems such as those
being used in intelligent infrastructure monitoring systems and smart cities.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Energy-efficient wireless sensor networks (WSNs) for struc-
tural health monitoring (SHM) have emerged due to progress in
self-powered sensors and low-power data communication proto-
cols. One such network is the through-substrate ultrasonic self-
powered sensor network (Das et al., 2017), which employs ultra-
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sonic pulses to communicate binary signals (from self-powered
sensors) through the material substrate. However, the noted net-
work creates time-delay on the generated signals due to the power
budgeting required for sensing and data transmission. This study
presents an expert system with a data mining approach for SHM
in order to deal with such discrete noisy and delayed signals.
Signal time-delay estimation/reconstruction is a problem that
has attracted considerable attention in the SHM community. Nu-
merous techniques have been developed for signal delay estima-
tion for SHM and damage identification (Giurgiutiu, 2005; Giurgiu-
tiu & Cuc, 2005; Nichols, 2003; Sun, Chaudhry, Rogers, Maj-
mundar, & Liang, 1995; Yan, Royer, & Rose, 2010). Ultrasonic tech-
niques (e.g., lamb wave methods) have been used for time-delay
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estimation for SHM (C. H. Dib & Udpa, 2016; Park, Farrar, di
Scalea, & Coccia, 2006; Petculescu, Krishnaswamy, & Achenbach,
2007; Wang, Rose, & Chang, 2004). Aranguren, Monje, Cokonaj,
Barrera, and Ruiz (2013) proposed a piezoelectric-based SHM sys-
tem for damage detection using lamb waves and delayed signals.
Kudela, Radzienski, Ostachowicz, and Yang (2018) developed an
SHM approach based on lamb waves to increase damage imag-
ing resolution, where the effectiveness of the approach for dam-
age detection with time-delayed signals was demonstrated on a
structural plate. Lamb wave methods have also been incorporated
into techniques called delay-and-sum algorithms for signal delay
reconstruction. Qiu, Liu, Qing, and Yuan (2013) introduced a quan-
titative multi-damage monitoring algorithm using delay-and-sum
imaging algorithms for large-scale composites in order to deal with
delayed signals coming from the actuator-sensor channels. Sharif-
khodaie and Aliabadi (2014) presented a damage detection method
based on lamb waves, and evaluated the applicability of the pro-
posed delay-and-sum algorithms for SHM of aircraft panels with
delayed signals.

Time synchronization approaches have also been used for SHM
employing WSNs for dealing with delayed signals (Araujo et al.,
2012; Chae, Yoo, Kim, & Cho, 2012; Kim et al., 2007; Lei, Kiremid-
jian, Nair, Lynch, & Law, 2005; Paek, Chintalapudi, Govindan, Caf-
frey, & Masri, 2005; Wang & Law, 2011). Linderman, Mechitov,
and Spencer (2013) presented a high-throughput real-time wireless
data acquisition on an advanced smart sensor platform used for
SHM with time-delayed signals. In addition, Pyayt et al. (2014) pro-
posed a data-driven SHM approach combining time-frequency fea-
ture extraction, wavelet analysis, and classification techniques for
damage assessment in concrete dams; in which analysis of phase
delay between sensors was performed based on Fourier trans-
forms. Although the noted studies showcase the applicability of
different techniques to reconstruct signal time-delay for SHM with
WSNs, such methods mainly dealt with small amounts of delay,
i.e., few milliseconds, where it has been shown that such small de-
lay values have little impact on the performance of SHM systems.
However, the delay in the noted through-substrate sensor network
is large, and thus the effect of time-delay cannot be disregarded.

Numerous techniques have been developed within the con-
text of expert and intelligent systems for SHM with sensor net-
works (Brownjohn, 2006; Ecke, Latka, Willsch, Reutlinger, & Graue,
2001; Jiang, Zhang, & Zhang, 2011; Loutas, Panopoulou, Roulias,
& Kostopoulos, 2012; Wu et al,, 2010; Zhao, Yuan, Yu, Ye, & Cao,
2008; Zhu, Deng, & Zhang, 2013). Chen & Zang (2011) proposed
a hybrid model for structural damage PR based on combination
of fuzzy clustering and artificial immune PR, where the model
was tested on a benchmark structure. Oliveira, Araujo, Inman, and
Vieira Filho (2018) developed a strategy using fuzzy network with
particle swarm optimization, where the effectiveness of the ap-
proach was demonstrated for SHM of composite structures. Yet,
the applicability of the noted expert systems for SHM was eval-
uated based on the interpretation of continuous time-history sen-
sor data. This is while, as noted, the nature of data/signals from
a self-powered sensing technology are discrete binary and de-
layed (i.e., not continuous in time), and therefore such expert
systems cannot be effectively used when dealing with discrete
noisy and delayed signals. Further, no efficient approach has yet
been proposed within the context of expert and intelligent sys-
tems that can be considered for SHM with large values of delay.
The above-mentioned issues evidently imply the necessity to de-
velop a new class of expert and intelligent systems for data-driven
SHM that are able to interpret and analyze discrete, noisy, and de-
layed/missing signals.

To tackle the problems associated with discrete binary signals
generated by the through-substrate network the authors previously
presented a damage identification methodology employing pattern

recognition (PR) (Salehi, Burguefio, Das, Biswas, & Chakrabartty,
2016; Salehi, Das, Chakrabartty, Biswas, & Burguefio, 2015, 2018),
for which it was hypothesized that damage detection with bi-
nary signals can be treated within the context of PR. Further,
to take into account the effect of time-delay the authors previ-
ously proposed a framework incorporating PR and matrix comple-
tion for damage identification in aircraft structures (Salehi, Das,
Chakrabartty, Biswas, & Burguefio, 2017). Yet, the noted framework
was found to be computationally intensive for SHM purposes. Fur-
ther, the effectiveness of the framework highly depended on the
optimal parameters of a learning algorithm. To address these is-
sues, this paper presents a novel SHM system within the context
of expert and intelligent systems for damage detection with dis-
crete noisy and delayed binary signals. An expert system employ-
ing an intelligent data mining methodology that efficiently deals
with delayed/noisy signals is presented based on integration of PR,
an innovative probabilistic approach, and machine learning using a
support vector machine (SVM) algorithm. The image-based PR ap-
proach is used to represent sensor nodes responses as a pattern.
Another contribution of the study presented herein is the devel-
opment of a probabilistic approach as part of the SHM system to
reconstruct delayed signals. The SVM algorithm is also used to de-
tect the presence of damage and to determine damage detection
accuracy with the reconstructed signals. The novelty of the pro-
posed intelligent SHM system lies in the incorporation of artifi-
cial intelligence techniques (i.e., PR and machine learning) and a
probabilistic approach on discrete noisy and delayed patterns in
the application to a practical engineering problem. The developed
intelligent SHM system could effectively address the important
issue of energy availability for SHM. This significantly improves
safety and decreases maintenance costs of civil and aerospace
structures.

It is to be noted that the integrated self-powered sensor with
communication technology is under design, fabrication, and test-
ing. Further, experimental validation of the self-powered sensor
and through-substrate communication protocol has been done sep-
arately in prior studies (Das, Lorenz, Dong, Huo, & Biswas, 2015;
Huang & Chakrabartty, 2012; Huang, Lajnef, & Chakrabartty, 2010;
Zhou & Chakrabartty, 2017; Zhou, Abraham, Tang, & Chakrabartty,
2016). Thus, this study contributes to the development and evalu-
ation of expert systems for SHM by using intelligent data mining
methodologies for delayed signals through experimentally cali-
brated numerical simulations on a dynamically loaded cantilever
plate. The proposed SHM system promotes the development of
new class of data interpretation techniques for analysis of noisy
and delayed signals provided by intelligent systems being used
in domains of smart infrastructure monitoring, aerospace moni-
toring, and smart cities. Finally, the presented research, through
development of the expert SHM system, successfully contributes
to advance data mining and signal processing techniques in the
data-driven SHM domain, further showing a practical application
of expert and intelligent systems for energy-efficient SHM and
smart infrastructure monitoring.

2. Nature of signals generated by the through-substrate sensor
network

The expert and intelligent SHM system presented in this re-
search is based on a novel energy-aware through-substrate sen-
sor network aiming to minimize energy consumption for SHM.
The method’s objective is to interpret the binary (i.e., 1 or 0)
and time-delayed signals provided by self-powered analog wireless
sensors (Das et al.,, 2017; Huo, Dong, & Biswas, 2014; Huo, Rao,
& Biswas, 2013), used to measure the structural response, along
with an energy-efficient pulse switching architecture (Huang et al.,
2010), employed for signal communication through the material’s
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Fig. 1. Structural health assessment and performance monitoring employing a through-substrate self-powered sensing technology.

substrate. The uniqueness of the analog wireless sensor is that
it operates on gates with a non-volatile memory that demands
very low energy; thus logging/recording data in a discrete and
asynchronous manner. The communication part employs the pulse
switching protocol in which a minimal number of ultrasonic pulses
are used to encode event location and forwarding information. A
schematic of the through-substrate ultrasonic self-powered sensor
network for SHM of an aircraft wing stabilizer is shown in Fig. 1.
A significant characteristic of such network is that it consists of a
system of low-power through-substrate ultrasonic pulse network-
ing (TUPN) units communicating with each other using the noted
energy-lean pulse switching architecture, and powered by energy
harvested from the substrate’s (i.e., structural) vibrations. The gen-
erated pulses are communicated via multi-hop transmission be-
tween TUPNs to a data logger/sink node, where information re-
ceived from sensors across the structure is accumulated and used
to assess the structure’s condition.

The cellular pulse networking (CPN) protocol is used for the
energy-aware self-powered sensor network. Such protocol is well-
suited for SHM applications where the information to be transmit-
ted is small, i.e., essentially binary information indicating the oc-
currence or absence of a structural event. There can be multiple
factors contributing to the latency of event information delivery
at the sink when CPN is employed in a self-powered sensor net-
work for SHM, such as distance from the source to the sink, en-
ergy availability, event merging policy, and frame size. As shown
in Fig. 2, energy availability depends on the harvested energy as
well as its consumption due to communication, idling leakage, and
sensing. An event merging/processing policy determines how the
generated events will be accumulated in a data buffer based on
available buffer size and the pending event processing status. The
frame size is important in terms of the event buffering time be-
cause events from any cell can be transmitted in only one slot per
frame.

3. Simulation of time-delayed binary signals
The development and validation of the proposed SHM system

employing intelligent data mining approach is based on data ob-
tained through experiments on a cantilever plate. To this aim, vi-

bration tests using conventional strain gages were conducted on a
plate cantilevered from one side. The plate geometry and locations
of output locations (i.e., strain gages) are shown in Fig. 3. The plate
was made of aluminum 2024-T4 with E=73,100 MPa and v =0.33.
Damage on the experimental plate was introduced by means of a
circular hole (see Fig. 3) of varying diameter (13 mm, 19 mm, and
25.5 mm.) Testing consisted on subjecting the plate’s clamped edge
to a dynamic harmonic motion (5mm in amplitude at a frequency
of 2.3 Hz) using a universal testing frame. Strain data was collected
during 10s with a time step of 0.01 s; therefore, the size of dataset
is 1000.

The continuous experimental response (strain) from the vi-
bration tests was post-processed to extract binary signals based
on response thresholds. Consequently, strain responses were col-
lected from the strain gages. However, the acceleration response
is needed to simulate the through-substrate sensor network. To
this aim, an experimentally calibrated finite element (FE) model
of the cantilever test plate was used to extract the acceleration
responses at the stain gage locations. The key idea is that binary
signals are generated based on strain at a local level (i.e., sensor
nodes or strain gages), saved in the sensor cell memory, and
communicated if enough power is available based on accumulated
harvested energy (from acceleration at sensor nodes). Accord-
ingly, experimental strain responses were used to generate binary
signals using a threshold concept, and acceleration responses
extracted from the FE simulations were used to determine har-
vested energy. The acceleration response and binary signals were
thus used in a simulation algorithm of the through-substrate
sensor network employing an energy-aware pulse switching pro-
tocol to generate the time-delayed binary signals. The generated
time-delayed binary signals were finally the input to the SHM
methodology.

The strain responses from the vibration tests were used to cal-
ibrate the FE model. Simulated and experimental strain histories
(for the first 4 s of the experiment) at nodes 1 and 4 are plotted in
Fig. 4, from which it can be observed that they are in good agree-
ment in spite of the experimental uncertainties and noise. Simi-
lar results were observed for other strain gages (nodes), indicating
that the numerical and experimental strain responses were essen-
tially equal. With such validation of the numerical simulation, the
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acceleration responses at the strain gage locations were extracted
from the FE model and used in the simulated pulse communica-
tion protocol for generating energy-dependent timed-delayed bi-
nary signals corresponding to the experiments.

4. Proposed SHM methodology with delayed signals

The time-delayed signals considered in this study are crucial to
the SHM system, and therefore a new SHM system is presented
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is reported in prior works (Salehi et al., 2015; Salehi et al., 2016;
Salehi et al., 2018). However, a brief summary is presented here
to highlight its implementation. To apply the PR approach, the ar-
rangement of sensor nodes (and consequently the distribution of
binary signals generated from structural response) was considered
as a pattern/image. Consistent with image data analysis techniques,
each pattern (image) was treated as a matrix and represented by
specific features (binary signals according to local rules). The di-
mension of the generated matrix, which herein is the dimension
of the PR problem, depends on the number of time steps and dis-
tribution of sensor nodes; while each of the matrix elements de-
notes a pattern’s feature (binary signal) at each sensor. In other
words, sensor node responses for the entire simulation time were
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Fig. 4. Strain response of the cantilever plate: (a) Node #1, and (b) Node #4.
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arranged in m rows and n columns, where m denotes number of
time steps and n refers to the number of sensor nodes in the net-
work. Accordingly, if the number of sensors is n, each pattern was
represented by n features at each time step.

Once sensor node responses were arranged as a pattern, a PR
approach employing anomaly detection (Basharat, Gritai, & Shah,
2008; Moshtaghi, Leckie, Karunasekera, & Rajasegarar, 2014) was
used to identify patterns as normal or damaged. A schematic il-
lustration of the proposed image-based PR approach for damage
detection of a simply supported plate with 9 sensor nodes is pre-
sented in Fig. 6. The resulting patterns from the structures’ regu-
lar (in-service) response are memorized and used as benchmarks
for damage detection model. A change in structural response is
expected when damage or decay occurs under consistent loading,
which leads to a different pattern because the binary-event thresh-
olds are exceeded at different locations (see Fig. 6). If a pattern re-
sulting from the noted material/structural changes is recognized as
new, with respect to the benchmark, it is thought to be represen-
tative of damage.

4.2. Reconstruction of time-delayed signals with probabilistic
approach

Binary signals at the sensor nodes were created based on a
threshold concept. A simple pilot-type local rule for binary signal
generation was defined in terms of a strain threshold R1, namely
120 micro-strains, at the sensor nodes (i.e., strain gages locations).
Consequently, a binary signal was generated if the value of the
longitudinal strain at the strain gage location exceeded thresh-
old R1. Preliminary results indicated that the layout shown in

Fig. 3(a) provided adequate information for robust data analysis.
Thus, the number of sensors for the cantilever plate was set at
9, and therefore each pattern was represented with 9 features
(binary values).

Preliminary results show that the variation of signal delay with
respect to the number of event readings has a Gaussian distribu-
tion. Thus, the probability density functions (PDF) of delivery de-
lay values at the sensor nodes were determined. The PDF plots of
delivery delay for strain gages 1 to 6 obtained from experiments
of the intact plate are shown in Fig. 7(a) and (c); while those for
the damaged plate with a hole diameter of 19 mm are presented
in Fig. 7(b) and (d). The variations in the PDF plots of the noted
sensing nodes/strain gages confirm that the distribution of event
delivery delay values is Gaussian.

Given the Gaussian distribution of signal delay, the PDF of each
sensor node was determined. Thereafter, it was decided to develop
a statistical approach using a conditional probability concept. That
is, the probability that sensor node S; observes binary signal (1) at
time ¢; should be combined with the anticipated delay function d;,
as shown in Eq. (1).

P(t; = 1|d;) (1)

In Eq. (1), d; ~N(,u,-,ai2), where w; and o; are average and
standard deviation of signal delay for sensor node S;.

The key idea behind the proposed probabilistic approach is to
use the PDF values of the sensor nodes to determine the proba-
bilities that can be further used for classification. Assuming that a
binary signal is received at time t;, the aim is to determine what
would be the probability that such signal comes from ¢;_4, t;_,, etc.
For such purpose, a time lag factor parameter () is introduced to
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designate the time (i.e., number of readings) that we should go be-
hind the current time ¢; to capture a delay. Fig. 8 schematically il-
lustrates the proposed probabilistic approach. The figure illustrates
a situation in which the binary signal is observed by sensor node
4 at time t=0.7s. The goal is to determine the probabilities that
such binary signal was actually generated at times t=0.6, 0.5, 0.4,
0.3, 0.2, and 0.1s, given the time lag is 0.6s. The time lag of 0.6s
refers to the six previous readings, indicating the probabilities that
the signal comes from one of the six previous readings need to be
determined. The noted probabilities are written in Eq. (2). Further,
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for experimental plate: (a) and (c) intact plate, (b) and (d) damaged plate.

Pitj in Fig. 8 refers to the probabilities obtained from the PDF of
sensor node i at time step tj.

P(V4=1[j=0.1) ~ P(d4 = 0.6) P(V4=1|j=0.2) ~ P(dy = 0.5)
P(V4=1[j=03) ~ P(d4 = 0.4) P(V4 =1|j =0.4) ~ P(d4 = 0.3)
P(V4=1[j = 0.5) ~ P(d4 = 0.2) P(V4 =1|j = 0.6) ~ P(d4 = 0.1)

(2)

The implementation and different steps of the proposed algo-
rithm are presented in Fig. 9. Once the time delay is reconstructed
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Fig. 8. Schematic of a proposed probabilistic approach for delayed signal reconstruction.

using the proposed probabilistic algorithm, support vector ma-
chine (SVM) is employed to detect damage and to classify the
reconstructed signals. It is noted that the classification with SVM
is based on probability values and not binary signals.

4.3. Classification with SVM algorithm

Support vector machine (SVM) is one of the well-established
learning algorithms for pattern classification (Cortes & Vap-
nik, 1995). SVM is able to achieve good performance as it uses the
structural risk minimization principle, while it introduces a ker-
nel trick (Salehi & Burguefio, 2018). SVM is attractive for struc-
tural damage identification due to its effectiveness and robustness
when dealing with insufficient information, noise, and uncertainty.
Yan et al. (2014) reported on the use of back-propagation neural
networks and SVM for damage assessment in beams mounted on
ocean platforms. Liu, Liu, & Liu (2009) studied SVM for damage de-
tection of a long span cable-stayed bridge and demonstrated that

SVM is more accurate compared to a back-propagation neural net-
work. Therefore, SVM was used in this study to detect damage due
to the following main reasons:

e SVM has a regularization parameter to avoid over-fitting, while
it generalizes new samples well if appropriate parameters are
chosen

Unlike other Al methods (e.g., neural networks), which produce
multiple solutions based on local minima, SVM is guaranteed to
converge to a unique global solution.

The SVM optimization technique is based on convex optimiza-
tion to prevent local minima problems.

If linear decision hyperplanes are not adequate to separate the
classes SVM projects the input data into a high dimension fea-
ture space, thus resulting in a nonlinear classifier.

SVM uses a kernel trick, thus making the user able to design
different kernels for the decision function via an engineering
approach.
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Algorithm A Probabilistic Approach for Reconstruction of Delayed Signals

Input: An mxn matrix 4 which includes delayed binary signals, where m is the number of time steps
and » is the number of sensors in the network.

1. for each sensor S; (i=1,2,...,n) do

Compute the average delivery g, and standard deviation o, of delay function d;.

Given a Gaussian distribution for delivery delay values, determine the probability density function
(PDF) using a Gaussian distribution for each sensor node S;.

if (A(m,n)=0) at time ¢

Assign a probability of 0.05 for a probability value, 4(m,n)=0.05.
end

if (A(m,n)=1)

Introduce a lag factor (1) to determine the time that we need to go behind the current time #
(G=1,2,...,m) to capture the delay and to combine the probability of getting binary event (1) with
delay that we anticipate.

Determine the probability that the value of sensor i at time #=j is 1 given a delay function d; as
P(ti=1|d)= P(Si=1|j=1) in order t to model delay.

Compute the probability that the binary signal (1) observed at time j comes from time j to j-(I-1);
calculate P(Si=1\di=0), P(Si=1|di=1),.., P(Si=1|di=I-1) using the PDF values determined for each
sensor Si.

end

end

2. Output an mx n matrix V including the determined probabilities which are used for classification.

Fig. 9. Implementation of the proposed algorithm for signal reconstruction.

The SVM problem originated from a supervised binary classi-
fication, in which most of the solutions are evaluated by obtain-
ing a separating hyperplane among classes. To express the SVM it
can be assumed that T={(x;,y;): i=1,...,N} denotes a train-
ing data set consisting of an N number of m-dimensional extracted
feature vectors x; € R™*1, and the corresponding labels of these
feature vectors are y; € { —1, 1}). It is noted that N is the number
of training samples. The goal of the SVM model is to find the sepa-
rating boundary between two data classes by maximizing the mar-
gin between the decision/separating hyperplane and the datasets,
as illustrated in Fig. 10, while minimizing the misclassification. The
decision hyperplane can be defined as (Vapnik, 1998):

wix+b=0 (3)
where w and b denote the weight vector defining the direction of
the separating boundary and bias, respectively. The constraint for
classification in the original feature space can be stated as:

yi(wTx; +b) > 1 (4)

For the SVM, the decision function is expressed according to the
following equation:

f(x) = sgn(w'x; + b) (5)

Accordingly, sgn(«)is defined as:

Optimal separating

Xo hyperplane
+ wl. x; +b=0 .
Optimal w.x;tb> 1
margin ‘/ S |
5 .
Support vectors
° .
wl.x+b< -1 0@ . Positive hyperplane
e °® . N whx+b=1
Negative hyperplane .
wl.x;+b=-1
> X

Fig. 10. Schematic illustration of the SVM with optimal margin and separating hy-
perplane.

1, a>0

sgn(a) = {_1’ o =0 (6)

SVM attempts to maximize the margin by minimizing |w||,
thus resulting in the following constrained optimization prob-
lem:
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min 7y (w, §) = min
w,E wé

1, N
5wl +CY &
i=1

subject to y;(W'x; +b) > 1-§&;, & >0,C>0,i=1,..N (7)

where 71(.), |I.||%, and &; refer to the objective function, L-norm,
and slack variable, respectively.

Misclassification is decreased by minimizing the non-negative
slack variables in Eq. (7). Further, C denotes the regularization pa-
rameter that balances the significance between the maximization
of margin and the minimization of the misclassification error. In-
troducing a Lagrange multiplier « leads to following optimization
problem:

. LA N
H'(IXIIIW((X) = i ZZyiyjaiaj(xi,xj) — ZO(]'
=1 j=1 =1
N
Subject to » ey =0, 0 <a; <C (8)

i=1

Accordingly, the corresponding decision function can be written as:

N
fx) =sgn| > awi(x[x) +b (9)

i=1

SVM is able to offer an alternative solution for pattern classi-
fication when the data is linearly inseparable. In this regard, SVM
uses a kernel trick method that projects the data into a higher di-
mensional feature space, such that the data becomes divisible. If
®(.): R°— R" represents the projection/mapping from the original
into the high dimensional feature space, the inner product of the
original space x,.T -xcan be substituted by the inner product of the
transformed space ®7(x;) - ®(x). Yet, it is computationally inexpen-
sive to evaluate the inner product of the transformed space. There-
fore, a kernel function provides an effective path to overcome this
difficulty, such that a kernel function K{(-) satisfies the Mercer the-
orem as shown in Eq. (10):

K(X,‘,Xj) = (DT(X,‘) . CD(X]‘) (10)

There after, the decision function can be defined as:

N
fx) =sgn| > awyiK(x,x) +b (11)
i=1
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In fact, the kernel function defines the nonlinear mapping from
the input space into a high dimensional feature space. Typical ker-
nel functions include linear, polynomial, radial basis, and sigmoid
functions. In the present study, SVM is used for damage classifica-
tion using the probabilities determined as the output of the algo-
rithm presented in Fig. 9.

5. Results and discussion

To examine the effectiveness of the SHM system on a realis-
tic structure, experimental validation was conducted using event-
based time-delayed binary signals. The experimental dataset for
the analysis was randomly divided into three subsets: training,
validation, and testing. Further, k-fold cross validation was used
to prevent overfitting problems. In this research, 10-fold cross-
validation (assuming k=10) was used. Vibration tests were con-
ducted for 10s with a time step of 0.01; therefore, the size of
dataset was 1000. To implement the SVM algorithm, the dataset
(patterns) was classified into 7 classes. Classes 4 to 6 represented
patterns due to normal condition of the plate, classes 1 and 3 de-
noted patterns due to damage, and class 2 represented noisy and
time-delayed patterns. Matlab (2014) was utilized for implement-
ing the method and algorithms. The damage detection accuracy
with SVM was determined according to Eq. (12). Results are pre-
sented in terms of different measures, namely: confusion matrices,
the receiver operating characteristic (ROC) curve, and the cumula-
tive match characteristic (CMC) curve.

Damage Detection Accuracy
_ Number of patterns correctly classified
Total number of patterns

5.1. Results of PR approach

An image-based PR was used to recognize patterns represent-
ing different conditions of the experimental plate. The identified
patterns are presented in Fig. 11, where patterns 1 and 2 denote
normal conditions, pattern 3 was due to noise and time delay, and
patterns 4 to 6 were recognized due to damage (i.e., damaged plate
with varying hole diameters). The blue and grey regions in the fig-
ure denote active and inactive sensor nodes, respectively, whereas
red regions represent the binary signals generated due to damage
(hole) in a cantilever plate.

Noisy Pattern 3

g g P
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Fig. 11. Identified patterns on experimental plate using image-based PR approach. (For interpretation of the references to color in the text, the reader is referred to the web

version of this article.)
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Fig. 12. (a) Selection of optimal kernel parameter, (b) Tuning optimal kernel degree, (c) optimization of the kernel parameter C, and (d) Optimization of the kernel

parameter y.

5.2. Results of SVM classification

It is of importance to select the optimal hyper-parameters of
the SVM algorithm. On this basis, grid-search on C and y (i.e., ker-
nel parameters) was conducted in this study using 10-fold cross-
validation. Several pairs of (C,y) were thus used, and the pair
with best cross-validation accuracy was selected as optimal hyper-
parameters. The training and validation data sets were used to
optimize the regularization and kernel parameters. Different ker-
nel functions, i.e., polynomial, radial basis function (RBF), and sig-
moid, were utilized for implementing the SVM method. However,
as shown in Fig. 12(a), performance with the polynomial kernel
was found to be superior compared to other kernels; where the
maximum accuracy (polynomial kernel) was 94.62% and 94.56% for
the validation and training data set, respectively. The optimal de-
gree of the polynomial kernel function was determined through
the optimization process, with the best degree value found being
2 (see Fig. 12(b)).

Once the polynomial kernel was selected as the optimal kernel,
the grid-search with 10-fold cross validation for different pairs of
(C,y) was conducted to determine the optimum kernel parameters.
Consequently, the noted hyper-parameters were tuned through the
optimization process. Results from the grid-search in terms of the
variation of the damage detection accuracy as a function of the
kernel parameters C and y are presented in Fig. 12(c) and (d).
As can be seen, the best damage detection accuracy was achieved
for a polynomial kernel with d=2, C=10, and y =0.02. The noted
values were thus selected and used as the optimal SVM hyper-
parameters.

As previously noted, the dataset was randomly divided into
three subsets. In addition, the effectiveness of the approach with
respect to size of the subsets was also explored. In this context,
the dataset was divided to four different cases as follows:

e Case 1: training & 10-fold cross validation (70%), test (30%)
e Case 2: training & 10-fold cross validation (75%), test (25%)
e Case 3: training & 10-fold cross validation (80%), test (20%)

Table 1
Damage detection accuracy for different time lags.

Time lag (sec)  Data pre-processing  Damage detection accuracy (%)

Training  Ten-fold CV  Test
3 Case 1 71.64 69.93 78.19
Case 2 73.74 72.15 79.96
Case 3 75.18 73.58 83.09
Case 4 75.4 74.20 85.86
4 Case 1 94.56 94.62 95.41
Case 2 94.89 94.74 96.40
Case 3 95.23 94.58 97.63
Case 4 95.51 95.17 97.30
5 Case 1 92.40 92.30 92.63
Case 2 92.24 91.97 93.14
Case 3 92.36 91.73 94.02
Case 4 92.33 91.64 96.24

e Case 4: training & 10-fold cross validation (85%), test (15%)

Confusion matrices for the actual/target and predicted/output
classification results using SVM were determined for different data
subset sizes and shown in Fig. 13. Results reveal that SVM is able
to identify damage with good classification accuracy. Nonetheless,
the best classification accuracy was achieved based for Case 2
(97.6%), where the error for damage class 1 was 8.2%.

The effect of time lag parameter on the performance of the
SHM method was also assessed. As previously noted, the size of
data set was 1000. Therefore, time lags of 3, 4, and 5s imply that
300, 400, and 500 readings, respectively, were considered. Results
of damage detection accuracy with different time lags based on
noted cases are presented in Table 1, from which it can be ob-
served that by damage detection accuracy increases by increasing
the number of samples in the test set (e.g., from 92.63% to 96.24%
for cases 1 to 4 and a time lag of 5s.) The best classification result
was for the time lag of 4s, which was 97.63% for case 3.In other
words, the highest classification accuracy was achieved when, after
a sensor received a binary signal, the probabilities of the previous
400 readings are computed and used to reconstruct the signals.
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Fig. 13. Confusion matrix using SVM for different size of data subsets.

The receiver operating characteristic (ROC) (Bradley, 1997;
Fawcett, 2006) based on SVM was determined and plotted. The
area under the ROC curve (AUC) is a metric used to assess a clas-
sifier’s performance; such that an AUC value close to 1 indicates
better classification performance. ROC curves for all cases (1 to
4) and damaged classes are shown in Fig. 14 for a time lag of
4s. Although good damage classification accuracy was obtained for
all cases, case 3 (training & validation (80%), test (20%)) had the
best performance, as its UAC value was slightly higher than the
other cases. In summary, classification results, i.e., confusion ma-
trices and ROC curves, indicate good performance of the proposed
SHM methodology, even with time-delayed data.

The  cumulative match  characteristic (CMC) curve
(Bowyer, Chang, & Flynn, 2006), a rank-based metric, was com-
puted. To determine a CMC curve, each test data is compared
to each class, and the resulting scores are ranked. The rank at
which a true match occurs is determined, while the probability of
observing the correct classification within top ranks is computed.

Plotting the noted probabilities against ranks yields a CMC curve
that represents the accuracy of the SVM classifier with different
ranks. To this aim, multinomial logistic regression was utilized to
compute the predicted probabilities for the model. CMC curves for
different size of data subsets and damaged classes are presented
in Fig. 15. Results indicate that the accuracy for the first rank
for all of the cases is good, further confirming the satisfactory
performance of the damage identification approach.

6. Conclusions and future studies

This paper presented a methodology for structural health mon-
itoring (SHM) within the context of expert and intelligent sys-
tems with delayed signals from a novel through-substrate self-
powered sensor network. The proposed expert system for energy-
efficient SHM employs an intelligent data mining method merging
an image-based pattern recognition (PR) approach, a probabilistic
approach, and machine learning with a support vector machine
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Fig. 15. CMC curve with SVM for different size of data subsets.

(SVM) algorithm. The PR approach is used to represent sensor node
responses as a pattern, while a proposed probabilistic approach al-
lows reconstruction of the time-delayed signals. SVM is used for
damage classification with the reconstructed signals. The effect of
size of the data subsets and time lag parameter, defined within
the probabilistic approach on the SHM system’s performance, was
evaluated. Experimental vibration tests were conducted to explore
and validate the applicability of the intelligent SHM system. The
following conclusions were reached:

1) The distribution of the delayed signals is Gaussian. Further, re-
sults confirmed that the proposed probabilistic approach can be
successfully used as part of the developed expert system to re-
construct delayed signals.

2) The time lag parameter has an effect on the performance of the
approach. However, such effect was found to be minimum for
the set up presented in this study.

3) Results of classification, confusion matrices, ROC, and CMC
curves indicated that SVM led to acceptable damage detection
accuracy with noisy and delayed signals.

4) Damage classification accuracy on the test set increased with
an increase in the number of data in the set.

The presented study demonstrated that the proposed SHM sys-
tem can be effectively used within the context of expert and in-
telligent systems for damage identification with noisy and delayed
binary signals. Results evidently indicated that the developed ex-
pert system for SHM can be employed to reconstruct delayed and
noisy signals in the application to a practical engineering prob-
lem, i.e., data-driven SHM. Development of the expert system pre-
sented in this paper significantly addressed the important issue
of energy availability for intelligent systems being used for struc-
tural/infrastructure health monitoring and aerospace monitoring.
This study also contributed to promote data mining and signal pro-
cessing techniques in the SHM domain, demonstrating a practical
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application of expert and intelligent systems in such domain. Un-
like other expert systems studied for SHM, for which the perfor-
mance of the system strongly depends on continuous data/signal
availability, the developed intelligent SHM system shows satisfac-
tory performance, even with noisy and incomplete signals. This
clearly indicates the significance of the proposed expert system for
data-driven SHM. However, there are still some challenges that are
the focus of on-going studies. Particularly, the proposed intelligent
SHM system should be evaluated in full-scale experiments using
the through-substrate sensor network to validate its efficiency.

The PR approach used in this study is a supervised learning
algorithm based on the labeled patterns. A future research topic
will focus on evaluating the applicability of unsupervised machine
learning methods for an intelligent SHM platform for the cases
where target classes are unknown. To this aim, an investigation on
unsupervised learning algorithms is being conducted to select the
best algorithm leading to highest damage classification accuracy.
Besides, future work should be done using dimensionality reduc-
tion techniques such as principal component analysis and indepen-
dent component analysis to reduce the dimension of the feature
space, thereby optimizing the required time consumption. Finally,
future research topics should incorporate feature extraction tech-
niques with the developed expert system to extract the most sig-
nificant features and generate an optimal subset of features, which
will lead to a notable improvement in the SHM system’s perfor-
mance and an increase in computational efficiency of such intelli-
gent systems.
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