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a b s t r a c t 

This research introduces the Recursive General Regression Neural Network Oracle (R-GRNN Oracle) and 

is demonstrated on several binary classification datasets. The traditional GRNN Oracle classifier (Mas- 

ters et al., 1998) combines the predictive powers of several machine learning classifiers by weighing the 

amount of error each classifier has on the final predictions. Each classifier is assigned a weight based 

on the percentage of errors it contributes to the final predictions as the classifiers evaluate the dataset. 

The proposed R-GRNN Oracle is an enhancement to the GRNN Oracle in which the proposed algorithm 

consists of an oracle within an oracle – where the inner oracle acts as a classifier with its own predic- 

tions and error contribution. By combining the inner oracle with other classifiers, the R-GRNN Oracle 

produces superior results. The classifiers considered in this study are: Support Vector Machine (SVM), 

Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian Naïve Bayes (GNB), K-Nearest 

Neighbor (KNN), and Random Forest (RF). To demonstrate the effectiveness of the proposed approach, 

several datasets were used, with the primary one being the publicly available Spambase dataset. The pre- 

dictions of SVM, MLP, KNN, and RF were used to create the first GRNN Oracle, which was then enhanced 

with the high performances of SVM and RF to create the second oracle, the R-GRNN Oracle. The combined 

recursive model was 93.24% accurate using 10-fold cross validation, higher than the 91.94% of the inner 

GRNN Oracle and the 91.29% achieved by RF, the highest performance by a stand-alone classifier. The 

R-GRNN Oracle was not only the most accurate, but it also had the highest AUC, sensitivity, specificity, 

precision, and F1-score (97.99%, 91.86%, 94.40%, 93.28%, and 92.57%, respectively). The research contri- 

bution of this paper is introducing the concept of recursion (a concept not fully explored in machine 

learning models and applications) and testing this structure’s ability on further enhancing the perfor- 

mance of the traditional oracle. The recursive model has also been applied to several other datasets: The 

Human Resources, Bank Marketing, and Monoclonal Gammopathy of Undetermined Significance (MGUS) 

datasets. The results of these implementations are summarized in this paper. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The world today produces huge and complex amounts of data

very second. In this new era of big data, advanced analytic meth-

ds can extract valuable information, patterns, trends, and associ-

tions to provide meaningful insights. Processing such data man-

ally would be impractical if not impossible, therefore, the need

o automate such processes is needed. Tasks too complex for hu-

ans to code and process directly require machine learning. Ma-

hine learning helps analyze big data by focusing on designing

lgorithms that can learn patterns in the data to make predic-

ions. It is a branch of artificial intelligence that teaches machines
∗ Corresponding author. 
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ow to learn from experiences and adapt. Successful data min-

ng requires effective machine learning techniques. Data mining

s defined as the process of discovering properties and extracting

aluable information from large, incomplete, and noisy raw data

hat is stored in databases, data warehouses, or other information

epositories. In data mining, the data is stored electronically and

s processed through computers ( Witten, Frank, Hall, & Pal, 2016 ).

t is about solving problems by analyzing data already present in

atabases, where some of its tasks include association rule learn-

ng, clustering, classification, and regression ( Esfandiari, Babavalian,

oghadam, & Tabar, 2014 ). It is applied to various disciplines and

ndustries such as manufacturing, customer relationship manage-

ent, fraud detection, banking, marketing, and healthcare. 

The General Regression Neural Network Oracle (GRNN Oracle),

eveloped by Masters et al. in 1998, combines the predictions of

ndividually trained classifiers and outputs one superior prediction.

https://doi.org/10.1016/j.eswa.2019.06.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.06.018&domain=pdf
mailto:dbaniha1@binghamton.edu
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A classifier is a machine learning model that is used to predict a

categorical output variable while a regressor predicts output vari-

ables that take on continuous values. The GRNN Oracle determines

the error rate for each classifier and assigns weights based on

them. The classifiers with lower error rates have a greater weight

which leads to a greater influence on the final prediction. The final

prediction for an unknown observation is calculated by summing

each classifier’s prediction for belonging in a certain class for that

unknown observation multiplied by the classifier’s weight. As the

weights reflect the percentage of errors, the total weight is equal

to one. 

Because of the strong capabilities of the oracle, in this research,

it has been enhanced and developed to consist of two GRNN

Oracles; one within the other. The first oracle is created through

its own combination of algorithms and acts as a classifier with

its own predictions and error contribution to a set of unknown

observations. It is then combined with other classifiers to create a

new, outer oracle that has been named the Recursive General Re-

gression Neural Network Oracle (R-GRNN Oracle). To demonstrate

the effectiveness of the proposed oracle, it has been applied to the

Spambase dataset Hopkins et al. (1999) that is publicly available

from the UCI (University of California, Irvine) machine learning

repository, where the model’s performance is compared to the

performance of other classifiers through the performance metrics

of accuracy, the area under the receiver operating characteristic

(ROC) curve (AUC), sensitivity, specificity, precision, and F1-score.

These performance metrics are standard in machine learning

when assessing a model’s classification ability. For more details,

the reader is referred to the books “Machine Learning in Python:

Essential Techniques for Predictive Analysis” by Bowles (2015) and

“Data Mining: Practical Machine Learning Tools and Techniques”

by Witten et al. (2016) . 

To further demonstrate the power of the model, it has also been

applied to several other publicly available datasets in which the

results are summarized. The datasets are Human Resources, Bank

Marketing Moro et al. (2014) , and MGUS (Monoclonal Gammopa-

thy of Undetermined Significance) Kyle et al. (2002) . 

There are many machine learning algorithms used for classifi-

cation, regression, or both. Each algorithm has a set of strengths

and weaknesses that distinguish it from other algorithms. A spe-

cific algorithm can perform better than another based on several

factors, such as the nature of the dataset, but no one algorithm

can outperform the rest in all or most prediction problems. This

study addresses this problem by combining the strengths of several

powerful machine learning algorithms to create a R-GRNN Oracle

in which its predictive capability outweighs the predictive capabil-

ities of the other demonstrated classifiers, including the traditional

oracle that envelops its own combination of classifiers. 

The remainder of this paper is organized as follows:

Section 2 presents literature review on machine learning, ensem-

ble learning, and the GRNN Oracle, it also addresses the literature

gap and motivations behind this study. Section 3 explains the

methodology followed in this study and the methodology behind

the R-GRNN Oracle. It also presents the related work to the Spam-

base dataset. Section 4 includes the experimental analysis and

results on the application of the recursive model on the Spambase

dataset, as well as the final results of its application on the other

datasets. Finally, Section 5 presents the conclusion, limitations,

and future work related to this study. 

2. Literature review 

Machine learning techniques are generally separated into three

categories: supervised learning, unsupervised learning, and rein-

forcement learning ( Witten et al., 2016 ). Supervised learning deals

with data that is already labeled (that has a dependent variable:
n output), wherein the algorithm tries to find the relationships

etween the inputs and outputs in order to predict unknown ob-

ervations. An example would be the prediction and diagnosis of

iabetes for a certain patient based on the attributes of previously

ecorded patients. In unsupervised learning however, there are no

abels; therefore, the given algorithm tries to sperate the observa-

ions into clusters that share the same characteristics. An appro-

riate example to give for unsupervised learning is the segmenta-

ion of customers for marketing purposes in order to target each

egment with specific products based on their common interests.

einforcement learning on the other hand deals with algorithms

hat can learn based on their surrounding environments and ad-

ust accordingly. An example would be a self-driving car; based on

ts surroundings, it adjusts its algorithm to maximize the reward

eeded to be obtained. 

This study focuses on supervised learning, more specifically, the

lassification task in which classification is a widely used technique

here the algorithm learns how data can be assigned to certain

ategories or classes. The process uses patterns it finds to map new

ata into the class it fits best. These algorithms differ in how they

an separate, distinguish, and map the data into their correspond-

ng classes. Techniques such as ensembles may boost the ability

f prediction models to classify new observations. Ensembles are

ultiple algorithmic systems made up of several “base learners”

here their ability to predict is stronger than that of a single algo-

ithm ( Zhang & Ma, 2012 ). The two most commonly used methods

or ensemble learning are voting and averaging. Voting chooses the

lass of the unknown observation from the majority votes of the

lgorithms that make up the ensemble – this is used for classifi-

ation tasks. However, with regression tasks, the average output of

he algorithms is considered the final output of the ensemble. The

hree types of ensembles most used for combining predictions are

oosting, bagging (bootstrap aggregating), and stacking; the reader

s referred to the book “Ensemble Machine Learning: Methods and

pplications” by Zhang and Ma (2012) for details on these meth-

ds. Many studies tend to use ensemble learning because of its de-

irable performance. 

The remainder of this section provides a review of the litera-

ure relevant to the topic of this research. In Section 2.1 , some of

he recent studies on classification and ensemble learning are pre-

ented and discussed. In Section 2.2 , the studies on the original

RNN Oracle are reviewed. In Section 2.3 , the literature gap and

otivating factors behind this research are explained. A detailed

ook on how the GRNN Oracle works is discussed in Section 3.1 .

he proposed R-GRNN Oracle is tested on multiple datasets, in-

luding the Spambase dataset. For ease of reference in the com-

arative study, a more detailed review of the literature related to

he application of various algorithms on the Spambase dataset is

rovided in Section 3.4 . 

.1. Classification and ensemble learning 

Chaurasia (2017) applied classification and regression trees

CART), iterative dichotomized 3 (ID3), and decision tables to

redict early heart disease where CART achieved the highest

ccuracy of 83.49%. Zheng, Yoon, and Lam (2014) used a hybrid

f K-means and support vector machine (SVM) algorithms to

xtract useful features and diagnose breast cancer. The K-SVM

btained patterns of malignant and benign tumors while reducing

omputation time significantly without losing diagnosis accuracy.

heng et al. (2015) applied machine learning algorithms and

etaheuristics to predict hospital readmissions. The study applied

eural network (NN), random forest (RF), and a hybrid of particle

warm optimization and SVM, where SVM was tuned by PSO.

he proposed model (PSO-SVM) outperformed the other models

nd achieved an accuracy of 78.40%. In Agrawal et al., 2011 used
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lassifier and ensemble schemes such as SVM, NN, J48 decision

ree (DT), RF, LogitBoost, decision stump, random subspace, re-

uced error pruning tree, alternating DT, and voting to predict

isk or mortality for lung cancer patients. The ensemble voting

f five DT-based classifiers and ensembles resulted in the highest

ccuracy. They also developed an online lung cancer outcome

alculator based on the results of their study from the predictors

nd risk factors found. Tan and Gilbert (2003) applied ensemble

earning, bagged and boosted DTs namely, and observed that they

erform better than single DTs (C4.5). They applied their work

n seven gene expression datasets for cancer classification: acute

ymphoblastic leukemia, breast cancer outcome, central nervous

ystem, colon tumor, lung cancer, prostate cancer, and prostate

ancer outcome. 

Bagging and boosting were also applied by Sun, 2002 through

ART to predict pitch accents. They used the acoustic features in-

ividually for prediction, text features individually, and both acous-

ic and text features. They concluded that while using both types

f features, ensemble learning with CART-AdaBoost achieved the

ighest accuracy of 87.17%, while CART-bagging with both features

ere at an accuracy of 86.89%, and 84.26% through using CART

lone. Tsoumakas and Vlahavas (2002) presented an alternative to

he stacking method to combine classifiers that holds a high accu-

acy and a low computational complexity. Their model learns by

veraging the base learners and overcomes problems caused by

he stacking method when scaling up, especially when there are

everal classes in a dataset are involved, while keeping the ad-

antage of modeling complex classifier ensemble behavior. A study

onducted by Liu and Yao in 1999 presented negative correlation

earning for NN ensembles. This method encourages different indi-

idual NNs in the ensemble to learn different parts of the training

ata, which makes the ensemble learn more. The NNs are trained

imultaneously through correlation penalty terms in their error

unctions such that their errors are negatively correlated. Xia, Liu,

a, and Xie (2018) proposed the method bstacking; a novel het-

rogeneous ensemble credit model that combines the stacking and

agging methods. Their research focused on pool generation, se-

ection of base learners, and trainable fuser. Their base learners

ncluded four types of classifiers, SVM, Gaussian process, RF, and

xtreme gradient boosting (XGBoost). They compared their ensem-

le with benchmark models on four credit datasets and found that

heir method is superior. Zi ̨eba, Tomczak, and Tomczak (2016) pro-

osed a novel approach for bankruptcy prediction that utilizes XG-

oost for learning an ensemble of DTs and applied it to Polish com-

anies. Their method proved to be significantly better than exist-

ng benchmark classifiers. They also introduced the concept of syn-

hetic features that improved the accuracy of predictions. 

.2. GRNN Oracle 

Masters, Land, and Maniccam (1998) proposed the GRNN Or-

cle by modifying the original GRNN. They had emphasized that

he results obtained by combining the output of several classifiers

re generally superior to the results obtained by using one clas-

ifier. Land, Masters, and Lo (20 0 0) applied the GRNN Oracle to

aximize the predictive power of mammographic screening data

or breast cancer in which the oracle intelligently combined the

utput of four models trained to classify breast lesions as benign

r malignant. The models included are evolutionary programming

EP), probabilistic neural network (PNN), NN, and linear discrimi-

ant analysis (LDA). The database consisted of 500 cases. Individ-

ally, the EP had an accuracy of 73.2% and an AUC of 80.7%, PNN

ad an accuracy of 77.2% and AUC of 82.43%, NN at 74.4% for accu-

acy and 85.64% for AUC, and LDA with an accuracy of 76.8% and

UC of 85.23%. Also, they averaged their performance by a sim-

le technique where their combined accuracy was 76.4% and their
UC was 85.9%. However, the accuracy and AUC of the GRNN Ora-

le created were at 76.4% and 87.70%, respectively. Campbell, Land,

argolis, Mathur, and Schaffer (2013) applied the GRNN Oracle to

redict colon cancer recurrence in less than five years from gene

icroarrays. They fed 38 classifiers into the oracle to combine their

redictions by using error and weight formulas. They resulted in

n AUC for the validation dataset and the training dataset of 76%

nd 95%, respectively. This was an improvement to their previous

tudy that used the voting-majority ensemble method in which

t resulted in an AUC for the validation dataset and the training

ataset at 73% and 95%, respectively. Xiang et al. (2016) also ap-

lied the oracle for the rapid detection and classification of food

athogens. The pathogens needed to classify were: Escherichia coli

ATCC#25922), E. coli (ATCC#11775), and Staphylococcus epider-

idis (ATCC#12228). By using the differences in metabolic rates

etween the pathogens, they combined the predictions of PNN,

VM radial basis function (RBF), SVM 2-Order Poly, and SVM 3-

rder Poly. The PNN had the highest accuracy among the individ-

al classifiers with 84.4%, however, the GRNN Oracle achieved the

ighest accuracy at 85.4%. 

.3. Literature gap and motivating factors 

The traditional GRNN Oracle has not received much attention

n the literature as only very few researchers have published work

n the algorithm, even with its desirable results. The way the ora-

le classifies an unknown observation in which it assigns a certain

eight to each one of its classifiers based on their overall error

ontribution, makes the oracle unique. 

To the best of the authors’ knowledge, the recursion concept

as not been fully explored in machine learning models and ap-

lications. The research contribution of this paper is the integra-

ion of the recursion concept with the GRNN Oracle. Because of the

raditional oracle’s formation, this study implements recursion, by

aving one oracle inside another, and tests this structure’s ability

n further enhancing the performance of the GRNN Oracle. 

Many real-life problems that apply machine learning models to

utomate classifying unknown observations are problems that re-

uire accurate predictions. Tasks such as diagnosing diseases en-

ail precision to avoid serious issues such as false positives and

alse negatives which could potentially lead to problems such as

awsuits or even deaths. When an organization applies machine

earning to create a prediction model, commonly used classifiers

re generally used such as logistic regression, SVM, or NN. Because

f their inadequate performance, stronger classifiers are needed.

ince the traditional oracle is unbiased to any classifier it encom-

asses and its results are encouraging, it has been enhanced using

he recursion concept, and this new enhancement has been named

he R-GRNN Oracle. 

. Research methodology 

The methodology adopted in this study involves several steps

nd phases, as seen in Fig. 1 . The proposed methodology repre-

ents a broad and general view on the creation of the R-GRNN

racle. As shown in this high-level research framework, the pro-

osed methodology is divided into four phases: preprocessing,

ndividual classifiers, GRNN Oracle development, and Recursive

RNN Oracle design and implementation. The first three phases

escribe the process and steps taken to create the traditional

RNN Oracle. The novelty of the proposed work lies in the last

hase, the Recursive GRNN Oracle design and implementation

hase. This phase makes parallel use of the previous phases to

reate one oracle within another. 

To demonstrate the effectiveness of the proposed model,

he R-GRNN Oracle has been tested on several datasets. It is
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Fig. 1. An illustration of the overall research methodology (Tr: training; Ts: testing). 
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noteworthy that not all steps in the preprocessing and individual

classifiers phases were involved in every dataset as each has its

own properties. Therefore, each dataset may need unique prepro-

cessing and preparation to apply the oracles. Six individual classi-

fiers were used in this research: support vector machine (SVM),

multilayer perceptron (MLP), probabilistic neural network (PNN),

Gaussian Naïve Bayes (GNB), k-nearest neighbor (KNN), and ran-

dom forest (RF), in which some were used to create the GRNN Or-

acle, and some were combined with the first oracle to create the

R-GRNN Oracle. The programming language used for this study was

Python 2.7 and the hardware specifications were Intel® Core TM i7-

6700HQ CPU @ 2.60 GHz with 16.0 GB RAM. 

The preprocessing phase includes cleaning the dataset by exam-

ining the data for missing values and removing any that could af-

fect the model’s accuracy. Datasets with imbalanced classes, where

one class is more frequent than the other, were approached based

on how severe the disparity is. If the disproportion was not consid-

ered severe, undersampling was used, but if the disproportion was

considered large, SMOTE and TOMEK methods were applied. While

undersampling removes observations from the majority class at

random to obtain a balanced or near-balanced dataset, SMOTE

(synthetic minority oversampling technique) is an oversampling

technique where synthetic observations are created for the minor-

ity class, and TOMEK is a guided undersampling technique. Data

were then normalized to a range between 0 and 1, where 0 indi-

cates the lowest value in a specific feature and 1 represents the

highest. This allows fair and equal weights for the features that

create the model. The formula of normalization is given in For-

mula 1 where v j is the j -th value in feature V i that needs to be

normalized, v̄ j is the new, normalized j -th value in feature V i ,

min V i is the minimum value in the set of values in feature V i ,

and max V i is the maximum value in feature V i . As for the di-

mensions of a dataset, a phenomenon known as the curse of di-

mensionality means the more features in a dataset, the more di-

a  
ensions it has and more complex it gets. Machine learning algo-

ithms tend to perform poorly on high-dimensional data so there

s a need to keep the number of dimensions low. The Hughes ef-

ect ( Hughes, 1968 ) states that the predictive abilities of an al-

orithm decrease as the number of dimensions increase. Since

any machine learning algorithms rely on similarity-based reason-

ng ( Domingos, 2012 ) such as measuring the distances between ob-

ervations using vectors, the high number of features impact their

erformance greatly, including prediction accuracy, effectiveness,

nd computational time ( Chu et al., 2007 ). 

This paper uses the technique principal component analysis

PCA) to reduce the number of features by creating a new set of

rthogonal variables called principal components. The goal of PCA

s to explain the maximum amount of variance with the fewest

umber of principal components. The drawback of applying PCA is

he loss of information while compressing the data. The amount of

ariance explained by the principal components is based on the

mount of data information left after the data was compressed.

here is a tradeoff between reducing dimensions and losing infor-

ation; the more dimensions reduced, the more information rep-

esenting the data is lost. 

¯
 j = ( v j − min V i ) / ( max V i − min V i ) (1)

In the individual classifiers phase, it regards acquiring final pre-

ictions for each classifier performed solely. If PCA had been car-

ied out, hyperparameter optimization for each classifier is per-

ormed through grid search. However, if the number of features

ould be handled without PCA, a feature selection method was ap-

lied, and with grid search, the hyperparameters of each classifier

ere optimized. With these optimized classifiers, final predictions

ere obtained. The optimized classifiers were tested on a left-out

alidation data subset that was not used for the training nor test-

ng steps of any classifier to avoid overfitting. 

The GRNN Oracle application phase includes creating the oracle,

s described earlier, through some chosen classifiers. The proposed
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Fig. 2. A simple linear SVM. 

m  

b  

i  

t  

p

 

w  

c  

i  

t  

c  

s

3

 

R  

f  

i  

d

 

b  

1  

t  

t  

a  

u  

s  

b  

b  

a  

d  

s  

c  

t  

n

 

m  

l  

N  

c  

t  

o  

c  

t  

o  

w

 

w  

c  

m  

Fig. 3. An MLP NN with one hidden layer ( Mohamed, Negm, Zahran, & Saavedra, 

2015 ). 
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ethodology behind which classifiers are chosen is primarily

ased on high accuracies and high AUCs. After the combination

s chosen, they are encased and the GRNN Oracle is created. It is

ested on the same left-out validation data subset as the previous

hase to ensure a fair comparison. 

The R-GRNN Oracle design and implementation phase is built

ith the same steps as the previous phase but instead, one of the

lassifiers that will be enveloped is the traditional oracle in which

t is chosen with other compatible classifiers. This new combina-

ion is called the R-GRNN Oracle. It produces a superior predictive

apability, as shown by tests on the same left-out validation data

ubset. 

.1. Classifiers and hyperparameter optimization 

The classifiers used in this study are SVM, MLP, PNN, GNB, KNN,

F, and the traditional GRNN Oracle. Some of the hyperparameters

or some of the classifiers were optimized using grid search, which

s also discussed in this section. The following subsections intro-

uce each algorithm used and briefly describe the way they work. 

Support Vector Machine (SVM): The original SVM was introduced

y Vapnik and Chervonenkis in 1963; however, in Boser et al.,

992 suggested a way to create nonlinear classifiers by introducing

he kernel trick which produces higher dimensions to better divide

he classes. SVMs are supervised machine learning algorithms that

re used for classification and regression tasks. They are widely

sed and are based on statistical learning theory ( Cholette, Borghe-

ani, Di Gialleonardo, & Braghin, 2017 ). SVM maximizes the margin

etween classes in the feature space and classifies new samples by

uilding a mechanism to separate data into different categories by

 n -dimensional hyperplane that computes from a given training

ataset ( Al-Yaseen, Othman, & Nazri, 2017 ) as seen in Fig. 2 , where

upport vectors are points in the dataset that help create and lo-

ate the hyperplane. SVMs help solve many problems including

ext and hypertext categorization, image classification and recog-

ition, and they have been applied in biology and other sciences. 

Multilayer Perceptron (MLP): MLP is a feedforward NN that is a

odification of the standard linear perceptron and can solve prob-

ems that are not linearly separable. It is the most frequently used

N ( Hossain, Ong, Ismail, & Khoo, 2017 ) and is widely-used for

lassification, regression, recognition, prediction, and approxima-

ion tasks. It consists of an input layer, a hidden layer(s), and an

utput layer. MLP uses a supervised machine learning technique

alled backpropagation for training and adjusting the weights of

he model. The term perceptron describes a single-layer network

f binary threshold neurons. Fig. 3 illustrates an example of a NN

ith one hidden layer with five hidden nodes. 

Probabilistic Neural Network (PNN): PNN is a feedforward NN

hich is used in classification and recognition problems. It is a

lassifier version, which combines the Baye’s strategy for decision-

aking with a non-parametric estimator for obtaining the prob-
bility density function (PDF) ( Karthikeyan, Gopal, & Venkatesh,

008 ). Every such PDF is estimated through a kernel den-

ity estimation technique that is known as the Parzen method

 Berno et al., 2003 ). It consists of three layers: an input layer, a

idden layer, and an output layer. 

Gaussian Naïve Bayes (GNB): GNB is a widely used supervised

earning algorithm which uses Bayes theorem as its framework

or classification ( Griffis, Allendorfer, & Szaflarski, 2016 ) and has

trong independence assumptions between the features. It assigns

he label of the class that maximizes the posterior probability of

ach observation, under the assumption that the voxel contribu-

ions are conditionally independent and follow a Gaussian distribu-

ion ( Ontivero-Ortega, Lage-Castellanos, Valente, Goebel, & Valdes-

osa, 2017 ). Parameter estimation for naïve Bayes models uses the

ethod of maximum likelihood. One advantage of GNB is that it

ould estimate the parameters necessary for classification by train-

ng on a small training set. It is widely used for classification prob-

ems because of its simplicity and accurate results ( Farid, Zhang,

ahman, Hossain, & Strachan, 2014 ). 

K-Nearest Neighbor (KNN): KNN is a lazy learning method for

lassification and regression tasks ( Zhang et al., 2016 ) where lazy

earning refers to when the target function is approximated lo-

ally making it successful for changes in the data. k represents the

umber of known observations closest to the unknown observation

apped out in the feature space. For classification tasks, the class

f the new observation is based on the majority class of k neigh-

ors surrounding it. For regression tasks, the new observation is

aken as the average of its k neighbors. 

Random Forest (RF): RF is an ensemble created by Ho (1995) that

onsists of many DTs and exploits the bagging technique to im-

rove the model’s performance by decreasing the model’s vari-

nce without increasing the bias. The trees are created by draw-

ng a subset of the training data through replacement ( Belgiu &

r ̆agu ̧t , 2016 ). Each tree consists of a random subsample of fea-

ures ( Wang, Lin, & Ho, 2018 ). RF is used for classification and re-

ression tasks with one of its main advantages is the ability to be

obust against DTs habit of overfitting. Because of its simplicity and

uperior performance, it is widely used in various research fields

uch as biological and biomedical research. 

Grid Search: Grid search is an exhaustive search and a tradi-

ional approach to manual hyperparameter tuning in which all

ossible combinations of the parameters selected are tested. It is

uided by a performance metric and typically measured by cross

alidation on the training set or an evaluation on a validation sub-

et ( Hsu, Chang, & Lin, 2003 ). 
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Table 1 

Computing final prediction ( ̂ y ) for unknown observation through GRNN Oracle. 

For each unknown observation, for each classifier ( k ) 

I: Train Classifier (k) Each classifier ( k ) is trained on the training subset and applied on the testing subset to obtain predictions for 

the observations 

II: Mean Squared Error (MSE) From the testing data subset, the MSE of each observation ( i ) for each classifier ( k ) is calculated through its 

actual prediction (actual class) and its predicted output (probability of belonging to each class) 

erro r i,k = 

∑ num _ classes 
m =1 ( A P m − P P m,k ) 

2 /num _ classes 

III: Distances and Weights The distance between each unknown observation in the validation set and all the known samples in the 

testing subset is calculated, and each known observation has a particular weight for each unknown 

observation 

D ( � x , � x i ) = 

1 
p 

∑ p 
j=1 

( ( x j − x i j ) / σ j ) 
2 

weigh t i = e −D ( � x , � x i ) 

IV: Predicted Squared Error For each unknown observation, for each classifier ( k ), the predicted squared error is attained through the MSE 

and weight of each known observation 

erro r k ( � x ) = ( 
∑ n 

i =1 erro r i,k ∗ weigh t i ) / 
∑ n 

i =1 weigh t i 
V: Classifier’s Trust (Weight) Each classifier ( k ) has an amount of trust for the final prediction of the unknown observation where the 

higher the weight, the more likely the classifier can output an accurate prediction 

w k = ( 1 /erro r k ) / ( 
∑ L 

l=1 1 /erro r k ) 

Where: 
∑ L 

k =1 w k = 1 

VI: Final Prediction Through the amount of error each classifier ( k ) contributes, their trust/weight is multiplied by the unknown 

observation’s prediction, and summed up to form the final prediction for that particular unknown observation 

ˆ y = 

∑ L 
k =1 w k ∗ q k 

Table 2 

List of mathematical notations and their descriptions. 

Description 

error i,k Mean squared error of a known observation ( i ) from classifier ( k ) 

num _ classes The total number of classes (two in binary classification) 

AP m The actual probability of the known observation ( i ) for being in class ( m ) 

PP m,k The predicted probability of being class ( m ) from classifier ( k ) 

�
 x The vector of features belonging to the unknown observation, [feature 1, feature 2, …, feature p ] 

p The total number of features 

�
 x i The feature vector for the known observation 

x j The j -th feature of the unknown observation 

x ij The j -th feature of the known observation 

σ j An adjustable sigma parameter for the j -th feature 

w k The weight (trust) of classifier ( k ) on the prediction of the unknown observation 

L The total number of classifiers 

l Indicates classifier ( l ) from all classifiers ( L ) 

ˆ y The prediction of the unknown observation outputted by the GRNN Oracle represented as a class membership vector 

q k The predicted class membership vector for the unknown observation given by classifier ( k ) 
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GRNN Oracle: The GRNN Oracle combines the predictive pow-

ers of several machine learning classifiers that were trained in-

dependently to form one superior prediction through the amount

of error each classifier contributes. For example, if observations A,

B, and C were correctly classified by classifier X and misclassified

by classifier Z, and observations D, E, and F were classified cor-

rectly by classifier Z and misclassified by classifier X, the GRNN

Oracle may improve the predictions by combining the predictions

of both classifiers X and Z. This also means that if the predic-

tions of both classifiers are identical, the GRNN Oracle’s accuracy

would not be significantly different as there is not much differ-

ence in the information or classification provided by the classi-

fiers ( Li, 2014 ). Table 1 shows the logic behind the GRNN Oracle

through a pseudocode in which it explains the oracle’s prediction

for one unknown observation. It shows the high-level formulation

of the GRNN Oracle developed by Masters et al. (1998) . A subset

of the data (its majority) is used for training and testing the model

to gain the amount of error each classifier has from the testing

set’s predictions – as the actual predictions exist. Another subset

of data, the validation set, is set aside for the GRNN Oracle to per-

form on. The reader is referred to Land et al. (20 0 0), Masters et al.

(1998) , and Campbell et al. (2014), for more detailed explanation. 

Table 2 shows the list of the mathematical notations concerning

Table 1 and their descriptions. 

In this study, the performance of each individual classifier, with

respect to its accuracy, AUC, sensitivity, and specificity, directs the

fi  
hoosing of which classifiers should be fed into the GRNN Oracle

nd which should be left out. The best combination of classifiers

hat complement each other and individually provides a strong

erformance regarding a dataset are chosen to create either or

oth oracles. Fig. 4 illustrates the formulation of the oracle (pre-

ented in Table 1 ) through a flowchart. 

.2. Strength and weaknesses of the classifiers 

Table 3 lists the significant and fairly standard strengths and

eaknesses of the classifiers: SVM, MLP, PNN, GNB, KNN, RF,

nd the GRNN Oracle. For more details, the reader is referred

o books such as “Machine Learning: An Algorithmic Perspec-

ive” by Marsland (2011) , “Foundations of Machine Learning” by

ohri, Rostamizadeh, and Talwalkar (2012) , and “Machine Learn-

ng: Algorithms and Applications” by Mohammed, Khan, and

ashier (2016) . 

.3. Recursive GRNN Oracle 

The best combination of classifiers that were trained and tested

ndividually and independently with respect to accuracy, AUC, sen-

itivity, and specificity was used to make the first oracle. By hav-

ng predictions outputted from the oracle, it now acts as any other

achine learning classifier would. The best combination of classi-

ers that would enhance the performance of the first GRNN Oracle
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Fig. 4. A detailed flowchart of the GRNN Oracle binary classification formulation. 

Table 3 

Strength and weaknesses of the classifiers used in this study. 

Strengths Weaknesses 

SVM 

• Uses a subset of observations (support vectors) to define 

the margin between classes. 
• Effective in high-dimensional spaces. 

• Less effective as the data size grows. 
• Sensitive and less effective on noisy data. 

MLP • Handles nonlinearly separable data. 
•Effective with large datasets. 

• It has a “black box” nature. 
• Requires large amounts of data for training. 
• Training is computationally expensive (slow). 

PNN 

• Handles nonlinearly separable data. 
• Effective with large datasets. 
• Trains faster than an MLP. 
• Generates predicted target probability scores. 

• Its “black box” nature. 
• Requires large amounts of data for training. 
• Training is computationally expensive (slow). 
• Predicts slower than an MLP. 

GNB • Ease of implementation. 
• Fast training time. 
• Works well with small training sets. 
• Effective when assumption of feature independence 

holds. 

• Works under the assumption of feature independence. 
• Unable to make a prediction if a testing label was not 

observed during training (the zero-frequency problem). 

KNN 

• Simple and intuitive. 
• Ease of implementation. 
• Lazy learner (the target function is approximated locally 

making it successful for changes in the data). 
• Handles multi-class problems well. 

• Classification is highly dependent on the number of 

neighbors ( k ). 
• Sensitive and less effective on noisy data. 
• Does not work well with high-dimensional datasets. 
• Less effective on imbalanced data. 

RF • Effective with large datasets. 
• Robust against overfitting. 
• Handles missing data well. 
• Does not require data scaling. 

• Complex and time-consuming as the number of trees 

grow. 
• Hard to interpret. 

GRNN O. • High accuracy. 
• Effective with large datasets. 
• Unbiased classifier that distributes prediction weight 

based on error contribution. 

• Training is computationally expensive (slow). 
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s selected and then, this selected combination, including the first

racle, creates the second oracle, the R-GRNN Oracle. The combi-

ation of classifiers that are used to enhance the first oracle is

hosen based on the overall performance of each classifier; clas-

ifiers that have high accuracies and AUCs are able to help boost

he performance of the first oracle. This is also how the traditional

racle works; the classifiers chosen to create the oracle are cho-

en based on which classifiers perform best. Another consideration

hat is taken, which is dependent on the results of the individual
lassifiers, is that if the inner oracle has a lower sensitivity than its

pecificity. For example, it would be favorable to combine it with

 classifier that has high sensitivity to help even out the difference

n both metrics (this concept also applies to when the inner oracle

as a lower specificity than its sensitivity). 

The accuracy, AUC, sensitivity, specificity, precision, and F1-

core of the R-GRNN Oracle’s final predictions are taken, along

ith the same performance metrics of the inner GRNN Oracle and

he individual classifiers for the final comparison. Fig. 5 presents
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Fig. 5. An overview of the first (traditional) GRNN Oracle (A) and the second (proposed) GRNN Oracle, the R-GRNN Oracle (B). 
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the formation of the traditional oracle and the proposed recursive

oracle. 

3.4. Related work to the spambase dataset 

Many studies have been carried out on the Spambase dataset –

and of these studies several validation methods have been used. As

this study applies the 10-fold cross validation method to validate

the performance of the model, only the studies that have applied

k-fold cross validation were chosen as the baseline to evaluate

the recursive model to ensure a fair comparison of the perfor-

mance metrics. Readers interested in published work that did not

use k-fold cross validation are referred to Caruana, Li, and Liu

(2013), Ferreira and Figueiredo (2012) , and Tabakhi, Moradi, and

Akhlaghian (2014) . The k-fold cross validation method produces

a lower accuracy rate than other methods; however, using it to

evaluate a model minimizes biases and gives an accurate and con-

sistent view of performance. Testing the performance of a certain

model on the same subset of data that the model was trained on

would most likely generate a high accuracy because of overfitting.

To avoid this problem, the model should be tested on data not

involved in the training phase. The k-fold cross validation works

through splitting the dataset into a k number of same-sized par-

titions (folds) in which training is done on k -1 subsets and tested

on the left-out k and is repeated k times until each fold has been

trained k -1 times and tested on once. The accuracy (or error) is

computed by taking the average accuracy (or error) of all the folds.

In terms of benchmark studies that have applied various clas-

sifiers on the Spambase dataset, Covões, Hruschka, de Castro, and

Santos (2009) proposed a filter-based method for feature selection,

the simplified silhouette filter (SSF), and applied the method to ten

datasets including the Spambase dataset. They performed a 10-fold

cross validation for the GNB and KNN algorithms on the datasets.

With their proposed feature selection method, the GNB achieved

an accuracy of 58.60% while KNN was at 65.01%. Nonparametric

statistical techniques have been used by García, Fernández, Lu-

engo, and Herrera (2010) in the comparison of several machine

learning algorithms where a control treatment is compared to
ther treatments. The positive definite fuzzy classifier (PDFC)

ad the highest accuracy of 92.4% with 10-fold cross validation.

 study conducted by Mitra, Murthy, and Pal (2002) introduced

 new feature similarity measure for feature selection called

aximum information compression index (MICI) and applied it to

arious datasets through GNB and KNN. Their resulted accuracy

or the Spambase dataset was 90.01% for KNN and 88.19% for GNB.

uan et al. (2018) proposed a noise filtering technique, named

nhanced soft majority voting by exploiting unlabeled data (ES-

VU), which is an ensemble that adopts the soft majority voting

echnique. On the Spambase dataset, they reached an accuracy of

9.23% using their proposed method; however, the highest accu-

acy they obtained was using the consensus filter (CF) at 90.34%. 

Wei et al. (2017) also used unlabeled data for noise filtering.

he proposed the multiple filtering with the aid of unlabeled

ata using confidence measurement (MFUDCM). Regarding the

pambase dataset, their applied method gave them an accu-

acy of 89.23%, however, as the previous study mentioned,

hey applied CF which resulted in the same accuracy of the

revious study at 90.34%. Unler and Murat (2010) proposed a

odified particle swarm optimization algorithm for feature se-

ection and compared it with tabu search and scatter search

lgorithms using logistic regression and applied them on sev-

ral datasets. Their proposed modification on the testing set

or the Spambase dataset was the highest at 90.20% at i = 8,

here i is the number of features selected from the original 57

ndependent variables. Sharma and Sahni (2011) applied four

T algorithms to the Spambase dataset. They used: ID3, J48,

ART, and ADTree. With 10-fold cross validation, they achieved

ccuracies of 92.76%, which was the highest, with the J48 al-

orithm, 92.63% with CART, 90.91% with ADTree, and ID3, with

he lowest accuracy, was at 89.11%. Panagopoulos, Pappu, Xan-

hopoulos, and Pardalos (2016) applied a new binary classification

ethod called constrained subspace classifier (CSC) for high

imensionality datasets. They tested their methodology on six

atasets including the Spambase dataset and reached an ac-

uracy of 87.90%, however, SVM obtained a higher accuracy at

1.00%. 
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Fig. 6. The methodology followed for the Spambase dataset through a high-level flowchart. 

Table 4 

The Spambase dataset feature description. 

Description Details 

1–48 Word Frequency The frequency with which the word appears (measured in percentage) 

49–54 Character Frequency The frequency with which the character appears (measured in percentage) 

55–57 Capital Run Length The length of consecutive capital letters 

58 Spam/Non-Spam Whether the email was classified as spam or non-spam 

Table 5 

Mean run time and standard deviation for all classifiers 

in seconds (using PCA). 

Mean Run Time Standard Deviation 

SVM 2.896 0.110 

MLP 7.087 0.347 

PNN 1.274 0.061 

GNB 0.055 0.006 

KNN 0.674 0.032 

RF 1.512 0.030 

GRNN O. 51.665 0.689 

R-GRNN O. 716.951 11.501 
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Fig. 7. Overview of the Recursive GRNN Oracle on the Spambase dataset. 
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Wahbeh, Al-Radaideh, Al-Kabi, and Al-Shawakfa (2011) con-

ucted a comparison study between four data mining programs:

EKA (Waikato Environment for Knowledge Analysis), Orange,

anagra, and KNIME (Konstanz Information Miner). They applied

ine publicly available datasets on the four programs and com-

ared their accuracies. They used the holdout cross validation

ethod, in which they gave a 66% split for the training set and

tilized the 10-fold cross validation method. Their 10-fold cross

alidation regarding the Spambase dataset had the highest ac-

uracy of 92.98% using the C4.5 classifier on the WEKA pro-

ram. They concluded that Weka had the best results regarding

pplicability and accuracies when compared to Orange, Tanagra,

nd KNIME. Wang and Witten (2002) obtained an 88.70% accu-

acy by using the maximum likelihood estimator (MLE) but the

ethod they suggested in their study yielded a lower accuracy

f 86.90%. The proposed method adopts the MLE’s well-known

symptomatic normality property to transform the original pa-

ameters into dummy ones and reduce the model’s dimensions.

u, Wang, and Yoon (2018) proposed a genetic algorithm-based on-

ine gradient boosting (GAOGB) and applied it to three datasets

ncluding the Spambase dataset. They obtained an accuracy of

8.79%. 

. Experimental analysis and results 

To illustrate the performance of the proposed algorithm, the R-

RNN Oracle was applied on four datasets: Spambase, Human Re-

ources, Bank Marketing, and MGUS. The detailed application of

he recursive model was applied to the Spambase dataset; a clas-
ification dataset of spam and non-spam emails. This dataset is

sed as a detailed example to test the proposed algorithm to com-

are its performance with the performances of other traditional

pproaches in several metrics such as classification accuracy. The

erformance of the R-GRNN Oracle on the other datasets has been

ummarized. To reach a more accurate evaluation for all the clas-

ifiers, 10-fold cross validation was used. 

.1. Dataset description 

The Spambase dataset consists of 4601 observations, each clas-

ifying an email as spam or not based on 57 independent variables

features) that describe the content of a specific email ( Table 4 ).

he methodology followed in this study for the Spambase dataset

s shown in Fig. 6 . 

.2. Data preprocessing 

Outliers were removed to increase the robustness and accuracy

f the proposed model and undersampling was carried out as a

ata balancing technique. All independent variables have been nor-

alized and scaled down to the range of [0,1], this helps in creat-

ng a more accurate model because of having all features weigh

imilarly before the model creation. The resulted dataset contained

891 emails. 
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Table 6 

Performance metrics for all classifiers on the Spambase dataset. 

Accuracy AUC Sensitivity Specificity Precision F1-Score 

SVM 0.9175 0.9682 0.8984 0.9337 0.9198 0.9090 

MLP 0.9071 0.9636 0.8873 0.9239 0.9091 0.8974 

PNN 0.8814 0.9378 0.8196 0.9337 0.9128 0.8637 

GNB 0.8493 0.9128 0.8631 0.8376 0.8182 0.8399 

KNN 0.9046 0.9499 0.8676 0.9358 0.9197 0.8929 

RF 0.9129 0.9657 0.8974 0.9260 0.9113 0.9043 

GRNN O. 0.9194 0.9736 0.9043 0.9321 0.9189 0.9114 

R-GRNN O. 0.9324 0.9799 0.9186 0.9440 0.9328 0.9257 

Table 7 

The performance of the R-GRNN Oracle on other datasets. 

Accuracy AUC Sensitivity Specificity Precision F1-Score 

Human 

Resources 

SVM 0.9337 0.9624 0.9301 0.9372 0.9357 0.9329 

MLP 0.9429 0.9722 0.9237 0.9618 0.9597 0.9413 

PNN 0.8975 0.9212 0.9155 0.8798 0.8821 0.8985 

GNB 0.6644 0.8196 0.8662 0.4663 0.6146 0.7190 

KNN 0.8990 0.9420 0.9073 0.8910 0.8911 0.8991 

RF 0.9604 0.9804 0.9365 0.9838 0.9827 0.9590 

GRNN O. 0.9535 0.9803 0.9302 0.9763 0.9748 0.9520 

R-GRNN O. 0.9685 0.9919 0.9506 0.9860 0.9853 0.9676 

Bank Marketing SVM 0.8020 0.8767 0.8061 0.7986 0.7693 0.7872 

MLP 0.7911 0.8704 0.8144 0.7717 0.7499 0.7786 

PNN 0.6972 0.7178 0.6655 0.7236 0.6675 0.6664 

GNB 0.7424 0.8130 0.7077 0.7712 0.7206 0.7141 

KNN 0.7558 0.8175 0.6872 0.8129 0.7540 0.7189 

RF 0.7989 0.8766 0.8233 0.7787 0.7562 0.7882 

GRNN O. 0.8031 0.8834 0.8185 0.7903 0.7653 0.7906 

R-GRNN O. 0.8209 0.8929 0.8344 0.8097 0.7852 0.8090 

MGUS SVM 0.8446 0.9380 0.8264 0.8633 0.8615 0.8435 

MLP 0.8356 0.9426 0.8556 0.8150 0.8513 0.8414 

PNN 0.9079 0.9709 0.9940 0.8194 0.8499 0.9163 

GNB 0.7479 0.8313 0.8610 0.6316 0.7061 0.7759 

KNN 0.8682 0.9437 0.9648 0.7688 0.8110 0.8812 

RF 0.9227 0.9806 0.9367 0.9083 0.9132 0.9247 

GRNN O. 0.9113 0.9781 0.9561 0.8652 0.8798 0.9162 

R-GRNN O. 0.9364 0.9860 0.9729 0.8988 0.9083 0.9394 
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4.3. Dimensionality reduction and hyperparameter optimization 

To reduce the number of dimensions while maintaining most

of the dataset’s information, PCA was applied to the 57 indepen-

dent variables. At an explained variance of 82%, 26 principal com-

ponents were retained, where the user-set threshold was set to no

less than 80%. Regarding computational-time before and after ap-

plying PCA with 3891 observations, 15 runs were executed for each

method and the average run time was recorded. After the use of

PCA, the average time noted was 11 min and 57 s, with a standard

deviation of 11.5 s. When executing the algorithm without apply-

ing PCA, the average run time was 18 min and 39 s, with a stan-

dard deviation of seven seconds. Table 5 displays the mean run

time and their standard deviation for all classifiers in seconds af-

ter the use of PCA. It clearly shows a significant difference in the

R-GRNN Oracle’s computational-time in comparison to the rest of

the classifiers involved including the traditional GRNN Oracle. Un-

fortunately, this is a major drawback for the proposed model. The

hardware specifications used for running the algorithms were In-

tel® Core TM i7-6700HQ CPU @ 2.60 GHz with 16.0 GB RAM. 

To guarantee better accuracy, the hyperparameters for SVM,

MLP, KNN, and RF were optimized using grid search through 10-

fold cross validation. The optimized hyperparameters for SVM were

the regularization hyperparameter ( c ) and the Gaussian kernel hy-

perparameter ( γ ), with the kernel set to RBF. The MLP’s optimized

hyperparameters included the number of hidden layers, the num-

ber of nodes in each hidden layer, the learning rate, and the mo-

mentum, where the activation function was set to ReLU (Recti-

s  
ed Linear Unit). And the hyperparameters optimized for KNN and

F were the number of neighbors ( k ) and the number of deci-

ion trees, respectively. Hyperparameter optimization was not per-

ormed on GNB due to its non-existence, nor was it applied to PNN

ue to its insignificance. 

.4. Recursive GRNN Oracle 

For the first GRNN Oracle (the inner oracle), the classifiers fed

nto it were SVM, MLP, KNN, and RF. The oracle performed slightly

etter than the performance of each classifier modeled separately.

he accuracy and AUC for all the classifiers are as follows, respec-

ively: SVM: 91.75% and 96.82%; MLP: 90.71% and 96.36%; KNN:

1.29% and 94.99%, and RF: 91.29% and 97.26%. The performance of

he first oracle had an accuracy of 91.94%, AUC of 97.36%, sensi-

ivity of 90.43%, and specificity of 93.21%. PNN and GNB were not

hosen because of their inferior performances when compared to

he others. 

For the R-GRNN Oracle, the first GRNN Oracle, which now acts

s a classifier with its own predictions, was combined with SVM

nd RF, because the strategy of choosing a combination was based

n high accuracies, AUCs, sensitivities, and specificities. As SVM

nd RF had better performances than others, they were chosen as

 match with the first oracle to create the second oracle. The sensi-

ivity and specificity of SVM, respectively, were 89.84% and 93.37%,

nd RF was at 89.74% and 92.60% respectively. Fig. 7 illustrates the

lassifiers feeding into each one of the two oracles. 

The first oracle achieved an accuracy of 91.94% which was

lightly above the highest of the individual classifiers, RF, which
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Fig. 8. Graphical representation of the performance metrics for all classifiers on the Spambase dataset (in percentage). 
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as at 91.29%. However, the recursive model had the highest in all

he metrics (accuracy at 93.24% and AUC at 97.99%). Table 6 and

ig. 8 show the accuracy, AUC, sensitivity, specificity, precision, and

1-score of all the classifiers: six individual classifiers (perform-

ng on their own), the GRNN Oracle, and the R-GRNN Oracle. As it

an be seen, the R-GRNN Oracle outperformed every other model

n every performance metric. The recursive model’s AUC was at

7.99% demonstrating a strong capability in distinguishing between

he two classes. The sensitivity, specificity, precision, and F1-score

ere 91.86%, 94.40%, 93.28%, and 92.57%, respectively, where the

ensitivity indicates that the model is able to predict 91.86% of ac-

ual spam emails as spam, and the specificity indicates that the

odel is able to predict 94.40% of actual non-spam emails as non-

pam. 

One-way analysis of variance (ANOVA) was carried out in which

t showed statistical and significant differences in the accuracies of

ll the classifiers involved including the R-GRNN Oracle. A pairwise

omparison using t -test and the Holm-Bonferroni method at a sig-

ificance level of 0.05 showed that the R-GRNN Oracle performed

tatistically better than the rest of the classifiers (p-value < 0.05). 

.5. Additional evaluation of the recursive GRNN Oracle 

The recursive model was also applied to other datasets: Human

esources dataset, acquired from Kaggle, a platform for predic-

ive modeling and analytics competitions, Bank Marketing dataset,

vailable on the UCI dataset repository, and MGUS dataset, avail-

ble through datasets distributed by R language. 

The Human Resources dataset holds 14,999 observations and

onsists of nine independent variables and one dependent variable.

he task is to predict whether an employee would leave their work

r not based on several factors. The independent variables are: the

epartment the employee worked at, their salary, their satisfac-

ion level, last evaluation score, number of projects they worked

n, average monthly hours, time spent at the company, if they had

 work accident, and if they were promoted in the last five years.
he dependent variable is whether the employee left their work or

ot. 

The Bank Marketing dataset originally has 11,162 observations,

owever, after preprocessing, the dataset has been reduced to 7842

bservations. The dataset consists of 16 independent variables and

ne dependent variable. The task is to predict if the client will sub-

cribe to a term deposit during a marketing campaign. The inde-

endent variables are: client’s age, job, marital status, education,

hether they have credit in default, balance, whether they have a

ousing loan, whether they a personal loan, contact communica-

ion method, day of the month they were last contacted, last con-

act month of the year, contact duration, number of contacts per-

ormed during the campaign, number of days that passed by after

he client was last contacted from a previous campaign, number of

ontacts performed before this campaign, and the outcome of the

revious marketing campaign. The dependent variable is whether

he client subscribed to the term deposit or not. 

The MGUS dataset has 1384 observations with eight indepen-

ent variables and one dependent variable. The task is to pre-

ict the progression of patients diagnosed with MGUS to multi-

le myeloma. The independent variables are: the patient’s age, sex,

emoglobin level, creatinine level, M-spike (myeloma gamma glob-

lin), time from MGUS until diagnosis of plasma cell myeloma,

onths from diagnosis to last follow-up or death, and whether a

atient died or not. The dependent variable is whether MGUS pro-

ressed to multiple myeloma. 

Concerning the Human Resources dataset, the R-GRNN out-

erformed all the other classifiers in all performance metrics, as

hown in Table 7 . As for the Bank Marketing dataset, the recur-

ive model outperformed the rest in all performance metrics ex-

ept specificity, where it came in second after KNN. Lastly, for

he MGUS dataset, it outperformed the rest in the accuracy, AUC,

nd F1-score, however, for sensitivity, it came in second best after

NN; for specificity, it came in second best after RF; and for preci-

ion, it also came in second best after RF. The results for the pro-

osed model indicate practical significance; in the context of these

atasets, predicting if an employee would leave their work would
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Table 8 

Comparison of the accuracy in the literature with this study. 

Method Accuracy 

This Study R-GRNN Oracle 93.24% 

Wahbeh et al. (2011) C4.5 Classifier 92.98% 

Sharma and Sahni (2011) J48 Classifier 92.76% 

García et al. (2010) PDFC 92.40% 

Panagopoulos et al. (2016) SVM 91.00% 

Guan et al. (2018) CF 90.34% 

Wei et al. (2017) ) CF 90.34% 

Unler and Murat (2010) LR with PSO 90.20% 

Mitra et al. (2002) KNN with MICI 90.01% 

Lu et al. (2018) GAOGB 88.76% 

Wang and Witten (2002) MLE 88.70% 

Covões et al. (2009) KNN with SSF 65.01% 
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help any company’s human resources department plan ahead and

accordingly. The recursive model would also help banks by target-

ing their marketing campaigns to clients who are more susceptible

to subscribing to certain products which would evidently help de-

crease marketing costs. The R-GRNN Oracle can also be extremely

valuable and advantageous in the medical field to diagnose dis-

eases and track their progression such as the MGUS dataset ex-

ample. 

4.6. Summary of the results 

Tables 6 and 7 show the performance metrics achieved by all

classifiers, including the R-GRNN Oracle, on the four datasets used

in this study. In the Spambase and Human Resources datasets, the

recursive model outperformed the rest of the classifiers in every

performance metric. For the dataset Bank Marketing, the proposed

model surpassed the rest in all metrics expect for specificity in

which it was still able to come in second best. However, for the

MGUS dataset, it had the highest accuracy, AUC, and F1-Socre, but

came in second in the sensitivity, specificity, and precision metrics.

The results on these four datasets are promising; the R-GRNN Or-

acle has great potential to be considered for use in real-life prob-

lems, and since the proposed model displayed remarkable results,

the benefits of the recursive structure should be further investi-

gated in machine learning. 

5. Conclusion and future work 

This study proposed the R-GRNN Oracle classifier

as an enhancement to the GRNN Oracle introduced by

Masters et al. (1998) and was evaluated on four datasets in

which it proved its strong capability. This study introduced the

GRNN Oracle’s background through literature, and literature re-

garding classification and ensemble learning and the applied

dataset, the Spambase dataset. The classifier proposed in this

research, the R-GRNN Oracle, proved its superiority among all the

classifiers considered: SVM, MLP, PNN, GNB, KNN, RF, and GRNN

Oracle, regarding the Spambase dataset. It proved to be robust as

no matter how the data was shuffled (different sets each run),

the recursive model would always generate superior predictions.

Its detailed application was tested on the Spambase dataset re-

garding classifying emails to spam and non-spam. The recursive

model outperformed the rest in all the evaluation metrics. The

R-GRNN Oracle combined the predictive powers of SVM, RF, GRNN

Oracle, and the classifiers within the GRNN Oracle: SVM, MLP,

KNN, and RF. PNN and GNB performed poorly on the dataset and

were excluded from both oracles. Compared to the literature, the

R-GRNN Oracle obtained an accuracy of 93.24% using 10-fold cross

validation while the highest in the literature studied, to the best of

the authors’ knowledge, which also used 10-fold cross validation,
as at 92.98% reached by Wahbeh et al. in 2011 ( Table 8 ). How-

ver, for the other three classification datasets, the R-GRNN Oracle

utperformed all the other classifiers in the Human Resources

ataset; outperformed the rest in all metrics expect specificity

n the Bank Marketing dataset; and outperformed the rest in the

ccuracy, AUC, and F1-score in the MGUS dataset. 

The research contribution of this paper was introducing the re-

ursion concept to the GRNN Oracle to further enhance its perfor-

ance. Because of the way the traditional oracle works, integrat-

ng the recursive structure was possible. The GRNN Oracle works

hrough assigning weights to the classifiers it encompasses based

n their predictive abilities; the more error a classifier contributes

o the overall error all classifiers give, the less weight it is assigned,

ence, the less contribution it has towards the final prediction. This

nique way of classification makes the final prediction unbiased,

nd also, suitable to integrate the recursion concept by treating

he whole oracle as any other machine learning classifier, therefore

eeding it to a new oracle, creating a recursive structure which has

een named as the R-GRNN Oracle. 

Insightful implications of the proposed model include its con-

ideration when building a classification prediction model, and

ossibly designing a decision support system (DSS) that automates

ts implementation and result interpretation that would be most

seful to those who are not experts in data science and machine

earning. The recursive model can be applied to any domain, espe-

ially domains where model performance metrics are crucial and

aramount, such as disease diagnostics in medicine. In addition,

achine learning programming languages, such as Python, have al-

orithms predefined and written by some users to help others use

heir block of code to execute algorithms in a few lines rather than

rogram the whole algorithm from the ground up. These blocks of

odes that are reused by others are often called packages and li-

raries, and it would be beneficial if one was created for the R-

RNN Oracle. 

Limitations regarding this study include the size of the dataset

s the R-GRNN Oracle requires five splits of data; the size of the

ataset should be large enough to train on an acceptable subset

o obtain more accurate results and to avoid overfitting. The

eave-one-out cross validation method could be used for smaller

atasets, as the previous literature showed, however, the way the

ecursive model works requires two independent training sets for

ach oracle and two independent testing sets along with a left-out

alidation set which calls for the reason that requires the oracle

o need a relatively large dataset. Computational-time has also

een found to be a major drawback of the recursive model; this

s especially the case when dealing with extremely large datasets,

hether the large size relates to the number of observations or

o the number of features. Another limitation is finding the best

ombination of classifiers to create each oracle. There are many

lassifiers that were not considered in this study, which means

ifferent combinations may yield even better results. This same

roblem applies to finding the optimal set of hyperparameters for

ach classifier. Grid search was used for hyperparameter optimiza-

ion, but this involves having predetermined values and sets to

hoose from, which results in the problem of getting stuck in a

ocal minimum regarding the loss or cost function. Because of this

eason, grid search has a great disadvantage of not searching the

ntire search space for all possible solutions, as the actual search

pace is infinite, and the number of combinations grid search gives

s a very small finite number in comparison. 

Future work might include applying the proposed model to

ore datasets including real-life datasets and applying it to non-

inary (multi-class) classification to assess its capabilities further.

long with that, applying the recursive model to smaller datasets

nd using the leave-one-out cross validation method for training,

esting, and validation, while making sure there is a left-out data
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ubset for validation purposes. Another recommendation includes

he use of metaheuristics for hyperparameter optimization instead

f grid search. A few of the metaheuristics that could be consid-

red are those that work well on continuous problems, such as

enetic algorithm, simulated annealing, and particle swarm opti-

ization. A hybrid of metaheuristics would also be interesting to

mplement to evaluate its performance in comparison with indi-

idual metaheuristics. 
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