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a b s t r a c t 

Unsupervised near-duplicate detection has many practical applications ranging from social media anal- 

ysis and web-scale retrieval, to digital image forensics. It entails running a threshold-limited query on 

a set of descriptors extracted from the images, with the goal of identifying all possible near-duplicates, 

while limiting the false positives due to visually similar images. Since the rate of false alarms grows 

with the dataset size, a very high specificity is thus required, up to 1–10 −9 for realistic use cases; this 

important requirement, however, is often overlooked in literature. In recent years, descriptors based on 

deep convolutional neural networks have matched or surpassed traditional feature extraction methods in 

content-based image retrieval tasks. To the best of our knowledge, ours is the first attempt to establish 

the performance range of deep learning-based descriptors for unsupervised near-duplicate detection on 

a range of datasets, encompassing a broad spectrum of near-duplicate definitions. We leverage both es- 

tablished and new benchmarks, such as the Mir-Flick Near-Duplicate (MFND) dataset, in which a known 

ground truth is provided for all possible pairs over a general, large scale image collection. To compare 

the specificity of different descriptors, we reduce the problem of unsupervised detection to that of binary 

classification of near-duplicate vs. not-near-duplicate images. The latter can be conveniently characterized 

using Receiver Operating Curve (ROC). Our findings in general favor the choice of fine-tuning deep con- 

volutional networks, as opposed to using off-the-shelf features, but differences at high specificity settings 

depend on the dataset and are often small. The best performance was observed on the MFND benchmark, 

achieving 96% sensitivity at a false positive rate of 1 . 43 × 10 −6 . 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Near-duplicate (ND) image detection or discovery entails find-

ng altered or alternative versions of the same image or scene

n a large scale collection. This technique has plenty of practical

pplications, ranging from social media analysis and web-scale

etrieval, to digital image forensics. Our work was motivated in

articular by applications in the latter domain, as detecting the

e–use of photographic material is a key component of several

assive image forensics techniques. Examples include detection of

opyright infringements ( Chiu, Li, & Hsieh, 2012; Ke, Sukthankar,

 Huston, 2004; Zhou, Wang, Wu, Yang, & Sun, 2017 ), digital

orgery attacks such as cut-and-paste, copy-move and splicing

 Chennamma, Rangarajan, & Rao, 2009; Hirano, Garcia, Sukthankar,

 Hoogs, 2006 ), analysis of media devices seized during criminal

nvestigations ( Battiato, Farinella, Puglisi, & Ravì, 2014; Connor &

ardillo, 2016 ), tracing the online origin of sequestered content
∗ Corresponding author. 

E-mail addresses: lia.morra@polito.it (L. Morra), fabrizio.lamberti@polito.it (F. 

amberti). 

u  

u  

s

ttps://doi.org/10.1016/j.eswa.2019.05.002 

957-4174/© 2019 Elsevier Ltd. All rights reserved. 
 Amerini, Uricchio, & Caldelli, 2017; de Oliveira et al., 2016 ), and

raud detection ( Cicconet, Elliott, Richmond, Wainstock, & Walsh,

018; Li, Shen, & Dong, 2018 ). 

In all the above-mentioned applications, we cannot resort to

tandard hashing techniques, given that even minimal alterations

ould make different copies untraceable. Similarly, it is not possi-

le to rely on associated text, tags or taxonomies for retrieval, as

one for instance in Gonçalves, Guilherme, and Pedronette (2018) ,

ince they would likely change in different sites or devices where

ontent is used. Images may be subject to digital forgery, with

arts of one or more existing images combined to create fake ones.

herefore, it is imperative to resort to content-based image re-

rieval techniques for the task of locating near-duplicates. 

Let us consider, as a motivating example, the case of fraud de-

ection. Many companies, like insurance ones, are relying on user-

upplied photographic evidence to support business processes ( Li,

he, & Dong, 2018 ). Photos of the same object or scene may be re-

sed multiple times to obtain an unfair advantage: such frauds are

nlikely to be detected unless a largely automatic image analysis

ystem is in place. 

https://doi.org/10.1016/j.eswa.2019.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.05.002&domain=pdf
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314 L. Morra and F. Lamberti / Expert Systems With Applications 135 (2019) 313–326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a  

s  

n  

t  

f  

l  

n  

f

 

f  

l  

t  

t  

r  

m

 

 

 

 

 

 

 

 

 

 

 

 

l  

S  

p  

w  

a

2

2

 

r  

s  

b  

i  

m  

E  

c  

t  

f  

g  

2

2

 

a  

i  

e  

t  

s  

i  

c  

(  

p  
It should be noticed that we are adopting a very broad defini-

tion of ND, encompassing all images of the same object or scene,

whereas many papers in literature restrict the definition to copies

of the same digital sources that have been digitally manipulated

( Connor, Cardillo, MacKenzie-Leigh, & Moss, 2015; Foo & Sinha,

2007 ). Naturally occurring NDs, such as images of the same scene

or object acquired at different times or from different viewpoints,

are often more challenging to detect. However, in emerging ap-

plications such as fraud detection, which motivate our work, we

do not wish to restrict ourselves to either definition: as a matter

of fact, we have no reason to assume that, when constructing

fraudulent claims, digital content manipulation is more likely than

simply acquiring different shots of the same scene. This broad

definition brings ND detection closer to the task of instance-level

image retrieval, which is abundantly studied in the literature, but

with a crucial difference: while the latter is usually formulated

as a human-guided supervised search, the former needs as little

human supervision as possible. To achieve this goal, we need to re-

frame the problem from a supervised K –nearest neighbors search

to an unsupervised threshold-limited search, where the distance

is used as a classification function to distinguish ND from non-ND

pairs. 

Realistic datasets in image forensics and fraud detection range

between 10 5 and 10 7 images ( Connor & Cardillo, 2016 ). Since the

number of possible pairs grows quadratically with the dataset size,

a very low false positive rate (or conversely, a high specificity) is

needed to obtain a tractable number of false alarms and therefore

be acceptable by the end user. For a dataset of 10 6 images, a false

positive rate of 10 −9 , which would be considered exceptionally low

in many applications, would still translate to 500 false alarms. 

In recent years, deep convolutional neural networks (CNNs)

have shown unprecedented performance in many computer vision

tasks, and content-based image retrieval is no exception. To the

best of our knowledge, very few papers have exploited CNNs-based

descriptor for ND detection, but if we look at the closely related

task of instance-level retrieval, a consistent body of research has

emerged in recent years favoring the adoption of CNN-based rep-

resentation over traditional SIFT-based methods ( Zheng, Yang, &

Tian, 2017 ). Experimental results on several benchmark datasets

show that they achieve better performance, use more compact rep-

resentations and are faster to compute ( Zheng et al., 2017 ). How-

ever, given the need to re-frame the problem as an unsupervised

threshold-limited search (where the overall performance is dom-

inated by specificity rather than sensitivity), it is not straightfor-

ward to evaluate whether unsupervised near-duplicate search lies

within the grasp of the current state-of-the-art. To the best of

our knowledge, only Connor and Cardillo (2016) have previously

addressed the issue of quantifying the performance of unsuper-

vised near-duplicate detection, and ours is the first contribution to

specifically characterize deep learning descriptors on a wide range

of ND categories. 

One of the underlying reasons for is certainly the lack of suit-

ably annotated benchmark datasets, as well as of an established

methodology to measure a descriptor’s performance. It is crucial

that benchmarks for ND detection include a sufficiently large num-

ber of negative queries , i.e., images for which the absence of NDs

has been established, in order to assess both specificity and sen-

sitivity. In some cases, we can resort to digital transformations to

simulate NDs, but this is not applicable to all transformations. 

Instance-level retrieval benchmarks, such as the Oxford5k, Uk-

bench and Holidays datasets, comprise a variety of naturally oc-

curring and challenging NDs, but are rather small scale and include

only clusters of related images ( Zheng et al., 2017 ). Recently, a new

benchmark has become available to address the specific needs of

ND detection: the Mir-Flickr Near Duplicate (MFND) dataset, based

on the pre-existing MIR-Flickr collection ( Connor et al., 2015 ). In
his benchmark, a large number of NDs were mined using a semi-

utomatic procedure, so that the remaining images can be as-

umed to be negative queries; however, in their initial search Con-

or and colleagues focused on specific subclasses of NDs that limit

he representativeness of this benchmark for applications such as

raud detection. Connor and Cardillo (2016) showed that the prob-

em of unsupervised detection could thus be characterized as a bi-

ary classification problem, and we build upon their contribution

or our experimental methodology. 

The overarching objective of this study is to evaluate the per-

ormance of state-of-the-art deep learning descriptors and estab-

ish a baseline against which future research can be compared. A

horough experimental comparison includes a wide range of es-

ablished and emerging public benchmarks, as well as data from a

eal-life fraud detection case study. Our contributions can be sum-

arized as follows: 

• we compare the performance of CNN-based descriptors on the

task of unsupervised near-duplicate detection, and show empir-

ically on a variety of datasets that specificity has a large impact

on the relative ranking of different descriptors; 
• we extend considerably the available annotations for the MFND

benchmark to obtain a large-scale benchmark which supports a

wide range of ND definitions and use cases; 
• finally, we extend previous work by Connor and

Cardillo (2016) towards a principled evaluation methodology

that captures the performance requirements of unsupervised

ND discovery; we show analytically and experimentally that

by using hard negative mining, we can approximate the Area

under the ROC curve ( AUC ) that can be used to rank the

performance different descriptors. 

The rest of the paper is organized as follows: in Section 2 , re-

ated work on instance retrieval and ND detection is reviewed.

ection 3 introduces the datasets that are considered in the ex-

eriments. The evaluation methodology is presented in Section 4 ,

hereas the experimental setup is described in Section 5 . Results

re presented and discussed in Sections 6 and 7 , respectively. 

. Related work 

.1. Content-based image retrieval and instance-level retrieval 

Content-based image retrieval systems (CBIR) are designed to

etrieve semantically similar images within a database based on a

pecific query (e.g., by providing another image). This problem can

e decomposed in two main challenges: describing image content

n terms of visual features, and conducting an exact or approxi-

ate nearest neighbor search based on a distance measure ( Bay,

ss, Tuytelaars, & Van Gool, 2008; Zheng et al., 2017 ). Such features

an be hand-crafted, or learned from data by using deep CNNs. In

his section, we will review feature extraction techniques, and re-

er to existing surveys for the challenges related to feature aggre-

ation, quantization, indexing and distance measures ( Zheng et al.,

017; Zhou, Li, & Tian, 2017 ). 

.1.1. Hand-crafted features 

Global features based on the characteristics of the entire im-

ge (color, shape, texture, histogram, etc.) were extensively used

n early CBIR systems. In the early 20 0 0s, local feature extraction

merged as a more effective alternative, which generally involves

wo key steps: key interest point detection and local region de-

cription. In the first step, key salient features in the image are

dentified with high repeatability, using dense sampling or more

ommonly by detecting local extrema in the scale-space domain

e.g. Difference of Gaussians, Hessian matrix, etc.). One or multi-

le descriptors are then extracted from the local region centered
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Table 1 

Comparison of the benchmark datasets. Related IND or NIND pairs were 

grouped into clusters; the average number of images per cluster ranges from 

2.07 to 6.55. IND and NIND pairs are counted separately, where applicable. 

Dataset Size IND clusters (pairs) NIND clusters (pairs) 

CLAIMS 201,961 NA 1037 (1475) 

MFND 1,0 0 0,0 0 0 3825 (4672) 10,454 (18,299) 

California-ND 701 NA 107 (4609) 

Holidays 1491 NA 500 (2072) 
t each interest point, usually designed to be invariant to rotation

hanges and robust to affine distortions, addition of noise, illumi-

ation changes, etc. The most popular local feature descriptors are

IFT and SURF ( Zheng et al., 2017 ). SIFT-based approaches gener-

lly yield very large feature sets, in the order of the thousands per

mage. The Bag of Visual Word (BoVW) is the most common ap-

roach for feature reduction and quantization in CBIR and instance

etrieval. 

.1.2. Deep learning approaches 

Since 2015, deep learning has become the state of the art ap-

roach to CBIR ( Babenko & Lempitsky, 2015; Balntas, Riba, Ponsa,

 Mikolajczyk, 2016; Gordo, Almazán, Revaud, & Larlus, 2016; Wan

t al., 2014; Zagoruyko & Komodakis, 2015 ). Deep CNNs have the

istinct advantage of learning hierarchical, high-level abstractions

lose to the human cognition processes. Similarly to SIFT, CNNs

an be trained to extract features from local regions of interests

patches), after detecting key interest points, which are then quan-

ized e.g., using the BoVW ( Balntas et al., 2016; Zagoruyko & Ko-

odakis, 2015 ). Alternatively, it is possible to extract semantic-

ware features from the activations of top convolutional layers in

n image: it can be shown that such feature vectors can be inter-

reted as an approximate many-to-many region matching, with-

ut the need to explicitly extract key points, and with the ad-

antage of obtaining faster and more compact representations. To

his aim, two fundamental approaches are available. In the first ap-

roach, feature extraction is based on pre-trained models, like the

GG network trained for object recognition, alone or in combina-

ion with traditional visual features ( Babenko & Lempitsky, 2015;

an et al., 2014 ). In the second one, a CNN can be trained to

earn a ranking function in an end-to-end fashion, mapping the in-

ut space to a target latent space such that the Euclidean distance

n latent space approximates visual similarity ( Gordo et al., 2016;

ang et al., 2014 ). In order to optimize a ranking loss, a special

rchitecture called a Siamese network is used ( Gordo et al., 2016;

ordo, Almazan, Revaud, & Larlus, 2017; Wang et al., 2014 ). Usu-

lly, descriptors are pre-trained on ImageNet to learn image se-

antics, and then fine-tuned on a second training set with rele-

ance information ( Gordo et al., 2016; Wang et al., 2014 ). 

.2. Near-duplicate image detection 

Several works have focused on near-duplicate image detec-

ion as a distinct application from content-based image retrieval

 Battiato et al., 2014; Chen, Li, Zhang, Hsu, & Wang, 2017; Chen-

amma et al., 2009; Chum, Philbin, Zisserman et al., 2008; Cic-

onet et al., 2018; Connor & Cardillo, 2016; Foo & Sinha, 2007; Hu

t al., 2009; Kim, Wang, Zhang, & Choi, 2015; Li et al., 2015; Liu,

u, & Suen, 2015; Xie, Tian, Zhou, & Zhang, 2014; Xu, Cham, Yan,

uan, & Chang, 2010; Zhou, Wang et al., 2017 ). 

In order to frame our contribution with respect to previous

iterature, a more precise working definition of near-duplicate is

eeded. Given the range of potential applications, it comes as

o surprise that the definition of near-duplicate image is indeed

uite varied. Starting from the work by Foo and Sinha (2007) , two

ain sources of near-duplicates have been identified in the lit-

rature, namely identical and non-identical near duplicates ( Chen

t al., 2017; Connor et al., 2015; Foo & Sinha, 2007; Jinda-Apiraksa,

onikakis, & Winkler, 2013 ). Identical near-duplicates (INDs) are

erived from the same digital source after applying some transfor-

ations, including cropping and rescaling, changes in image for-

at, thumbnail resizing, insertion of logos or watermarks, or cos-

etic changes (black & white conversion, image enhancement and

o forth). 

Non-identical near-duplicates (NINDs), on the contrary, are de-

ned as images that share the same content (i.e., they depict the
ame scene or object), but with different illuminations, subject

ovement, viewpoint changes, occlusions, etc. ( Foo & Sinha, 2007;

inda-Apiraksa et al., 2013 ). Detecting NINDs is deemed more chal-

enging than INDs, and their definition is more subjective ( Jinda-

piraksa et al., 2013 ); for these reasons, many authors have mostly

argeted INDs. 

Depending on the type of ND targeted and the level of trans-

ormation involved, most papers in literature have either focused

n global features or on SIFT features combined with BoWV quan-

ization. Global features have been mostly used for IND detection

 Chen et al., 2017; Connor & Cardillo, 2016; Li et al., 2015 ). Local

escriptors, such as SIFT features combined with BoVW quantiza-

ion, allow detecting more aggressive alterations (including NINDs),

ub-image retrieval or image forgery (e.g. copy-move attacks). Lo-

al descriptors are prone to false positive matches, as they do not

ake into account spatial coherence; to reduce false alarms, some

uthors have proposed pruning techniques to improve specificity

nd scalability ( Foo & Sinha, 2007; Liu et al., 2015 ), whereas other

uthors have focused on post-query verification ( Hu et al., 2009;

u et al., 2010; Zhou, Wang et al., 2017 ). 

From an evaluation point of view, many papers framed the

roblem of ND detection as a supervised K−nearest neighbor

earch, and few papers have addressed the issue of quantify-

ng the specificity of descriptors when performing unsupervised,

hreshold-limited near-duplicate discovery ( Chen et al., 2017; Con-

or & Cardillo, 2016; Kim et al., 2015 ). The most relevant prior

ork is that by Connor et al. who proposed a method to evalu-

te the specificity of ND detectors and choosing the optimal dis-

ance threshold, based on Receiver Operating Curve (ROC) anal-

sis ( Connor & Cardillo, 2016 ). A more in-depth analysis of this

ethodology, and the extensions that we propose, is available in

ection 4 . Other authors have used small test sets to establish

he optimal threshold, that was subsequently applied to a larger

ataset ( Chen et al., 2017 ). For instance, Chen et al. used bloom

ltering and range queries to detect duplicate images under scal-

ng, watermarking and format change transformation ( Chen et al.,

017 ); for evaluation purposes, they estimated the percentage of

alse and correct rejections, as well as precision and recall curves,

n a smaller dataset. 

. Datasets 

The experimental results presented in this paper were based on

our image collections, including a private dataset ( Section 3.1 ) and

hree publicly available benchmarks ( Sections 3.2 –3.4 ). The CLAIMS

ataset was collected for insurance purposes, and therefore con-

titutes a realistic case study for fraud detection applications. The

FND dataset ( Connor et al., 2015 ), based on the MIR-Flickr im-

ge retrieval benchmark ( Huiskes & Lew, 2008 ), contains a vari-

ty of both INDs and NINDs. Both the California-ND and Holidays

atasets contain personal holiday photos and, while much smaller

n size, include several challenging NIND examples ( Jegou, Douze,

 Schmid, 2008; Jinda-Apiraksa et al., 2013 ). Examples of ND pairs

f different com plexity are given in Fig. 1 , whereas a summary of

he datasets characteristics is reported in Table 1 . 
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Fig. 1. Examples of near duplicates pairs of varying complexity from the four datasets included in the comparison. For the CLAIMS dataset, difficulty was evaluated subjec- 

tively by one rater, whereas for the California-ND, it was established based on the agreement between 10 independent raters. 
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3.1. CLAIMS dataset 

The CLAIMS dataset includes a variety of indoor and outdoor

scenes, mostly from residential and commercial buildings. It con-

tains a total of 201961 images coming from 22327 claims. Image

subsets that are associated with a given claim generally include

images of the same scenes or objects, representing a source of rel-

atively rapidly identifiable NINDs. More infrequently, images from

different claims may also represent the same scene or object. This

dataset contains both IND (e.g. insertion of small captions or lo-

gos, changes in aspect ratio, format change, compression, etc.) and

NIND clusters (e.g. sequential snapshots of the same scene, view-

point changes, etc.). 

The collection was annotated to generate both positive queries

(i.e., with known NDs) and negative queries (i.e., for which absence

of NDs was confirmed). NDs were annotated following a semi-

manual procedure, in which a set of claims was randomly selected.

For each claim, all potential image pairs were generated and the

ND pairs were manually selected. Connected pairs of NDs from the

same claim were grouped to form clusters. 

Non-near duplicate (NND) pairs were randomly extracted fol-

lowing a hard negative mining strategy (see Section 4.1 for details).

The results were visually inspected obtaining additional 103 near-

duplicate pairs. The final annotated set included 1475 ND pairs,

forming 1037 distinct clusters; the average number of images per

cluster is 2.2. 

3.2. MIR-Flickr Near Duplicate 

The MIR-Flickr Near Duplicate (MFND) collection is a recent re-

visitation of the MIR-Flickr image retrieval benchmark ( Huiskes &

Lew, 2008 ). Connor and colleagues observed a significant number

of NDs in this one million image collection, which were semi-

automatically retrieved using different ND finders ( Connor et al.,

2015 ). We have expanded their annotations by adopting a broader

definition of ND, as well as using different descriptors. 

The first MFND annotation was generated using a set of four

global descriptors (based on MPEG-7 and perceptual Hashing

global features) and five distance measures, which were com-

bined to form different similarity functions ( Connor et al., 2015 ).

A threshold-limited nearest-neighbor search was conducted using

approximated metric search techniques, yielding a few thousand

potential ND pairs for every function. We have expanded this an-

notation by using the three CNN-based descriptors included in this

study, and the Euclidean distance. Several threshold-limited, K -

nearest neighbor searches were performed (with K = 5 and K = 1),

yielding a few hundred thousands potential ND pairs which were

visually inspected. Exact duplicates were eliminated based on the

MD5 hash. 
Each of the resulting image pairs was manually assigned to one

f three categories, IND, NIND or other, following the categoriza-

ion illustrated in Section 2.2 ( Connor et al., 2015 ). The strength

f this methodology is that it minimizes biases with respect to

he images in the collection, as well as to the method with which

he near-duplicates have been detected. We assumed, as in previ-

us work ( Connor et al., 2015 ), that both IND and NIND relations

re transitive, allowing the identification of clusters of images that

hare the same content. The resulting clusters were also visually

nspected for consistency. 

As for the CLAIMS collection, NND pairs were generated

hrough a hard negative mining procedure; results were visually

nspected identifying 120 additional NIND pairs. 

The available annotations were thus substantially extended

rom 1958 to 3825 IND clusters (4672 vs. 2407 pairs) and from

79 to 10454 NIND clusters (18299 pairs). Many new IND pairs de-

ected were subject to digital content manipulations, cropping or

olor alterations; we found that CNN-based descriptors were par-

icularly robust to colorization techniques. A total of 30925 images

ere found to have at least one IND or NIND in the collection, with

 mean cluster size of 2.2. The MFND collection is publicly avail-

ble at http://mfnd.similarity.eu/ . 

.3. California-ND 

The California-ND collection comprises 701 photos taken from

 real user’s personal photo collection ( Jinda-Apiraksa et al., 2013 ).

t includes many challenging NIND cases, without resorting to ar-

ificial image transformations. To account for the intrinsic ambi-

uity of NIND definition, the collection was manually annotated by

0 different observers, including the photographer himself. Instruc-

ions such as “If any two (or more) images look similar in visual

ppearance, or convey similar concepts to you, label them as near-

uplicates.” were given to the raters. Out of 245350 unique pos-

ible combinations, 4609 image pairs were identified as ND by at

east one subject; notably, in 82% of the cases raters disagreed to

ome extent on whether or not a pair of images should be consid-

red ND. The image pairs form 107 clusters of NIND images, where

ach cluster contains on average 6.55 images; the ND pairs were

rouped assuming that the ND relationship is transitive (which is

ot generally the case, but seemed reasonable in this particular sit-

ation). 

.4. Holidays 

The INRIA Holidays dataset ( Jegou et al., 2008 ), a popular

enchmark for instance retrieval, is mainly composed by the au-

hors’ personal holidays photos. The images, all high resolution, in-

lude a large variety of scene types (natural, man-made, water and

http://mfnd.similarity.eu/
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re effects, etc.). Images were grouped by the authors in 500 dis-

oint image clusters, each representing a distinct scene or object,

or a total of 1491 images and an average cluster size of 2.98 im-

ges. From the 500 clusters, a total of 2072 ND pairs, mostly NIND,

an be identified. 

. Performance evaluation 

In this section, we illustrate the performance metrics and proto-

ol used to evaluate the specificity and sensitivity of unsupervised

D detection. In the first battery of test, we extended the work

f Connor and colleagues ( Connor & Cardillo, 2016 ), reducing the

roblem of unsupervised discovery to that of binary classification;

OC analysis can be used to measure the ability of a ND detector

o distinguish ND pairs from visually similar examples, as detailed

n Section 4.1 . The second battery of test involves estimating the

verage false positive rates generated by a negative query, and is

xplained in Section 4.3 ; the relationship between these two per-

ormance measures is also explored. An overview of the methodol-

gy is presented in Fig. 2 . 

.1. ROC analysis 

As suggested by Connor and Cardillo (2016) , a near-duplicate

nder can be modeled as a positive numeric function D over any

wo image descriptors x and y , where normally D will be a proper

istance metric. To run an unsupervised search, it is necessary to

se D as a classification function over images pairs, which without

oss of generality can be achieved by choosing a threshold t : 

 t ( x, y ) = D ( x, y ) < t (1)

The problem of unsupervised discovery can be characterized as

nding the near-duplicate intersection of two image sets X ∩ ND Y ,

hat is the set of pairs of images from sets X and Y that satisfy the

onceptual near-duplicate relation ND ( Connor & Cardillo, 2016 ). If

ens ( t ) and Spec ( t ) are the sensitivity and specificity of D t ( x, y ), the

umber of true positive (TP) matches will be 

 P ( t ) = Sens ( t ) | X ∩ ND Y | (2) 

nd the number of false positives (FP) will be 

 P ( t ) = ( 1 − Spec ( t ) ) | X | | Y | (3) 

ssuming that | X ∩ ND Y | � | Y |. In our setting, | X | = K is the number

f query images and | Y | = M is the size of the collection. Another
ig. 2. Methodology employed to calculate the performance on the MFND benchmark. Fi

ique (step 1). On the remainder of the collection, hard negative mining is used to ident

his step needs to be repeated for each descriptor. Using the distance as a classification fun

o distinguish near-duplicates from not-near duplicate pairs. From ROC analysis, suitable 

erformance at query time can be thus be reliably estimated (step 5). 
seful figure to define is the number of false positives / query im-

ge, which can be computed as 

 P q ( t ) = ( 1 − Spec ( t ) ) M (4) 

Given a set of ND and NND pairs, the sensitivity (or recall) and

he specificity of a ND detector can be estimated as follows: 

ens ( t ) = 

No. of correctly identified ND pairs 

Total no. of ND pairs 
(5) 

pec ( t ) = 

No. of correctly identified NND pairs 

Total no. of NND pairs 
(6) 

Both quantities are function of the threshold t , and the overall

erformance can be characterized by ROC analysis. 

.2. Hard negative mining 

In a realistic dataset the pool of NND images is very large,

ompared to the number of ND pairs - it is not feasible to eval-

ate all possible pairs. Hard negative mining extracts a compact

et of NND from a large image collection, starting from a subset

f randomly selected query images, for which we can assume that

 near-duplicate match does not exist in the collection. For each

uery image, the pairwise distances between the query images and

ll the other images in the collection are calculated, and the most

difficult” examples are selected. 

Starting from a random sample of query images, two hard neg-

tive mining strategies were considered: 

• the nearest neighbor for each query is selected ( hn1 ); 
• the K -nearest neighbors for all queries are retrieved and sorted;

the most difficult pairs (i.e., those with the smallest distances)

are then selected ( hn2 ). 

Notably, the hard negative mining procedure depends on the

elative ranking of the images, and hence has to be repeated for

ach descriptor and for each distance formulation. 

The distances of the hard negatives are among the smallest of

he K × M distances measured, where K is the number of query im-

ges and M is the dimension of the dataset: if a distance thresh-

ld exists such that all the “difficult” pairs are successfully iden-

ified, then we can assume that all potential NND pairs in the

ollection will be identified as well. For instance, for the CLAIMS
rst, all near-duplicate pairs are discovered through a semi-supervised search tech- 

ify hard samples of visually similar, but not near-duplicate pairs (step 2); crucially, 

ction (step 3), ROC analysis can be used to characterize the ability of the descriptor 

thresholds on the distance can be selected based on the application requirements. 
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dataset K = 4400 and M = 80 , 0 0 0 , yielding a specificity of 1–

1/353,0 0 0,0 0 0 = 1–2.83 × 10 −9 , which is the smallest possible

sensitivity that can be measured in this setting. 

The specificity measured on the hard negative samples can be

used to approximate the true specificity that would be observed

at large. For instance, a 0.9 specificity (0.1 FP rate), would allow

to successfully discard 0.9 M NND pairs; however, it would also fail

to discard at least 0.1 K NND pairs, and hence would correspond

to a specificity of at most 1–1 . 25 × 10 −6 . In this way, it is possi-

ble to estimate a lower bound on the amount of FPs generated on

datasets of arbitrary size. 

4.2.1. Area under the ROC curve 

The AUC is a common summary metrics that quantifies the

global performance of a classifier ( Bradley, 1997 ). We estimated the

AUC for each descriptor and 95% confidence intervals were calcu-

lated under the normal assumption according to Hanley and Mc-

Neil (1982) . 

Since the ROC is calculated on a subset of all possible negative

pairs, the resulting AUC will be an approximation of the true AUC

if all pairs were taken into account. We will refer in the follow-

ing to AUC hn 1 and AUC hn 2 to denote the AUC calculated on pairs

extracted using hard negative mining strategies hn 1 and hn 2, re-

spectively. 

Let p 1 , . . . , p N + be ND pairs (i.e., positive samples) and

n 1 , . . . , n N − be all the NND pairs (i.e., negative samples), where in

our case N 

− = K × M. The AUC can be expressed as a sum of indi-

cator functions ( Hanley & McNeil, 1982 ): 

AUC = 

1 

N 

+ N 

−

N + ∑ 

i =1 

N −∑ 

j=1 

1 f (p i ) > f (n j ) (7)

where f ( · ) is a scoring function which, in our case, is the distance

between the descriptors of the two images in the pair. 1 For sim-

plicity, we omit f ( · ) from the notation in the rest of the paper. 

Let n l , . . . , n H − be the hard negative NND pairs, where H 

− � N 

−.

The estimated AUC can be expressed as follows: 

AUC hn = 

1 

N 

+ H 

−

N + ∑ 

i =1 

H −∑ 

l=1 

1 p i >n l (8)

Since in general 

1 p i >n j ≤ 1 p i >n l ∀ n j ∈ N 

− − H 

− ∀ n l ∈ H 

− (9)

it can be demonstrated that for both hard negative mining strate-

gies AUC hn is an upper bound for the true AUC . It follows that the

most appropriate choice would be to use the strategy that provides

the tighter bound. Analytical proof is provided in Appendix A . 

4.3. Range query performance 

ROC analysis does not directly represent the observed system

performance, which also depends on the distribution of the type

of images, the size of the clusters, and so forth. We analyzed an

alternative performance measure, obtained by simulating the case

of a single query image x compared against a collection of images

Y , which is a special case of the general problem of near-duplicate

detection described in Section 4.1 . An unsupervised, threshold-

limited range search is conducted to retrieve a list of potential

near-duplicates, and used to estimate the number of FPs/query or

FP q ( t ). In practice, it is convenient to restrict the search to the K –

nearest neighbors in order to cap the number of FPs/query to a
1 We follow here the notation normally used in ROC literature where the posi- 

tive samples are expected to be scored higher than negative samples, whereas in 

our case the scoring function is a distance and pairs with lower distance would be 

scored higher 

1  

d  

P  

v  

n

easonable number. The proposed experimental setup executes a

umber of positive queries (i.e., images with one or more known

D), and negative queries (i.e., images that have no expected NDs),

ver a dataset constructed as follows: 

• positive queries were derived from the clusters of ND images,

where the first image are used as queries and the rest are in-

serted in the database, as normally done for Holidays and other

image retrieval benchmarks; 
• negative query images were selected from the NND pairs, and a

set of distractors are used to evaluate specificity; in practice, we

use for convenience the same image pool used for hard nega-

tive mining. 

For varying values of the threshold t = T i on the distance mea-

ure, we compared the average recall , calculated over all positive

ueries, and the average number of FPs/query , calculated over all

egative queries. Note that average recall is different from pair-

ise sensitivity used in ROC analysis, as each query may contain

ultiple pairs of varying “difficulty”. The FPs/query depend on the

ize of the dataset and the specificity as predicted by Eq. 3 . 

. Experimental setup 

In this section, a detailed analysis of the experimental setup is

iven concerning the descriptors selection, their implementation,

nd the hard negative mining parameters. 

.1. Descriptors 

Two sets of descriptors were compared in this work: global de-

criptors, and CNN-based descriptors; for the latter, we compared

xamples of the two main approaches (aggregation of raw deep

onvolutional features without embedding and Siamese networks)

escribed in Section 2 . 

Among global descriptors, GIST ( Oliva & Torralba, 2001 ) was se-

ected based on previous results on the MFND collection ( Connor &

ardillo, 2016 ). The GIST, or spatial envelope, is a bio-inspired fea-

ure that simulates human visual perception to extract rough but

oncise context information ( Oliva & Torralba, 2001 ). The input im-

ge is decomposed using spatial pyramid into N blocks, filtered by

 number of multi-scale, multi-orientation Gabor filters (4 scales, 8

rientations per scale), and then summarized by a feature extractor

hat captures the “gist” of the image, handling translational, angu-

ar, scale and illumination changes. We experimented with percep-

ual Hashing, however the results are not reported as they were

enerally very poor. 

The SPoC (Sum-Pooled Convolutional) descriptor was initially

roposed by Babenko and Lempitsky (2015) . The features are ex-

racted from the top convolutional layer of a pre-trained neural

etwork and spatially aggregated using sum pooling. The length of

he feature vector will thus be equal to the depth of the final con-

olutional layer (usually in the order of the hundreds). Best results

ere obtained extracting features after ReLU activation, confirm-

ng previous findings ( Babenko & Lempitsky, 2015 ). PCA whitening

nd compression is applied, and the vectors are normalized to unit

ength (L2 normalization). 

The R-MAC architecture, proposed by Tolias, Sicre, and Jé-

ou (2015) , builds a compact feature vectors by encoding several

mage regions in a single pass. First, sub-regions are defined using

 fixed grid over a range of progressively finer scales l ranging from

 to L ; then, max-pooling is used to extract features from each in-

ividual region. Each region feature vector is post-processed with

CA-whitening and L2 normalization. Finally, the regional feature

ectors are summed into a single image vector, which is again L2

ormalized. 



L. Morra and F. Lamberti / Expert Systems With Applications 135 (2019) 313–326 319 

Table 2 

Synthetic description of the descriptors used. 

Descriptor Label Size Parameters 

GIST ( Oliva & Torralba, 2001 ) GIST4 512 Number of blocks = 4 

GIST ( Oliva & Torralba, 2001 ) GIST8 512 Number of blocks = 8 

Deep Retrieval ( Gordo et al., 2016 ) DeepRet800 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 800 , no multiresolution 

Deep Retrieval ( Gordo et al., 2016 ) DeepRet500 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 500 , no multiresolution 

Deep Retrieval ( Gordo et al., 2016 ) DeepRet500MR 2048 ResNet101, Fine-tuned on Landmarks dataset, S = 500 , multiresolution (2) 

SPoC ( Babenko & Lempitsky, 2015 ) SP_VGG19IN 512 VGG19, Trained on ImageNet 

SPoC ( Babenko & Lempitsky, 2015 ) SP_VGG16PL 512 VGG16, Trained on Places205 

SPoC ( Babenko & Lempitsky, 2015 ) SP_VGG16HY 512 VGG16, Trained on Hybrid (Places205 & ImageNet) dataset 

SPoC ( Babenko & Lempitsky, 2015 ) SP_ResNet101IM 2048 ResNet101, Trained on ImageNet dataset 

SPoC ( Babenko & Lempitsky, 2015 ) SP_ResNet152IM 2048 ResNet152, Trained on ImageNet dataset 

SPoC ( Babenko & Lempitsky, 2015 ) SP_ResNet152HY 2048 ResNet152, Trained on Hybrid (Places365 & ImageNet) dataset 

R-MAC ( Tolias et al. (2015) ) RMAC 2048 ResNet101, Trained on ImageNet dataset, L = 2 
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The DeepRetrieval architecture, proposed by Gordo et al. (2016) ,

mploys a Siamese network to learn a ranking function based on

he triplet loss function. Let I q be a query image with descriptor q ,

 + be a relevant image with descriptor d + , and I − be a non-relevant

mage with descriptor d −. The ranking triplet loss is defined as 

 ( I q , I + , I −) = 

1 

2 

max (0 , m + ‖ 

q − d + ‖ 

2 − ‖ 

q − d −‖ 

2 
) (10)

here m is a scalar that controls the margin. At test time, the

eatures are extracted from the top convolutional layer and aggre-

ated using sum-pooling and normalization. The Deep Retrieval ar-

hitecture includes an additional proposal network, similar to the

-MAC grid network, so that the features are calculated on several

otential regions of interest, as opposed to the entire image. The

eep Retrieval network is pre-trained on the Landmarks dataset

 Babenko, Slesarev, Chigorin, & Lempitsky, 2014 ). 

.2. Implementation 

The tested descriptors, and related parameters, are summarized

n Table 2 . For SPoC and GIST, images were resized to 512 × 512,

hereas for Deep Retrieval images were rescaled so that the

ongest side is equal to S. 

A Python re-implementation of the original Matlab code by

live and Torralba was used for GIST, after converting images to

rayscale. 2 The SPoC descriptor was computed from pre-trained

etworks architectures such as VGG ( Simonyan & Zisserman, 2014 )

nd Residual Networks ( He, Zhang, Ren, & Sun, 2016 ). We included

oth models pre-trained on ImageNet ( Deng et al., 2009 ), as well

s on the Places205 or Places365 datasets ( Zhou, Lapedriza, Khosla,

liva, & Torralba, 2017; Zhou, Lapedriza, Xiao, Torralba, & Oliva,

014 ), and on a hybrid dataset including images from both Ima-

eNet and Places. The R-MAC descriptor was re-implemented in

ython based on the original Matlab implementation by the au-

hors 3 ; R-MAC was calculated only for the ResNet101 architec-

ure. All networks were available in Caffe; pre-trained models were

ownloaded from the Caffe Model Zoo, 4 or were made available by

he authors for the Places dataset. 5 , 6 

We trained the PCA parameters, without reducing the number

f features, on a representative set of the collection (95230 for

LAIMS and 10 0 0 0 0 for MFND), which was not used in testing. The

arameters trained on the MFND collection were also used for the

olidays and California-ND collection; although the image charac-
2 http://people.csail.mit.edu/torralba/code/spatialenvelope/ . 
3 https://github.com/gtolias/rmac . 
4 https://github.com/BVLC/caffe/wiki/Model-Zoo . 
5 https://github.com/CSAILVision/places365 . 
6 http://www.europe.naverlabs.com/Research/Computer-Vision/ 

earning- Visual- Representations/Deep- Image- Retrieval . 
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eristics in the two datasets is different, this is consistent with pre-

ious works in literature ( Jegou et al., 2008 ). 

The FAISS library ( Johnson, Douze, & Jégou, 2017 ), specifically

he flat index with L2 exact search, was used to index the col-

ection and perform range queries. All experiments were run on

 system with a i7-7700 CPU @3.60 GHz and GTX1080Ti nVIDIA

PU. 

.3. Hard negative mining 

For each dataset (CLAIMS and MFND), we randomly selected a

et of negative query images (450 0 and 50 0 0, respectively), and a

arger pool for mining (80 0 0 0 and 70 0 0 0 images, respectively), af-

er excluding IND or NIND pairs and images used to train the PCA

arameters. The two hard negative mining strategies introduced in

ection 4.2 , were compared: in hn2 , the 10 nearest neighbors were

ound for each query images, and then the 10,0 0 0 most difficult

airs were selected. The number of samples was increased for hn2

o account for images that belong to more than one pair, which we

bserved experimentally, and ensure sufficient diversity. For GIST

nd Deep Retrieval, the hard negative mining procedure was calcu-

ated for one parameter set, to reduce the computational cost. For

he Holidays and California-ND datasets, we used the NND pairs

ined for MFND; this is consistent with previous works that have

sed the same collection as distractors for large scale retrieval test-

ng ( Jegou et al., 2008 ). For both datasets, the hard negative min-

ng procedure was repeated for a large number of descriptors (8

or MFND, and 13 for the CLAIMS dataset), and the results were

isually inspected for the presence of near duplicates. A total of

01 (2.2%) and 121 (2.4%) ND pairs were found for the CLAIMS and

FND datasets, respectively, and their labels were changed accord-

ngly. 

. Results 

In this section, results of the ROC analysis are compared

cross different descriptors ( Section 6.1 ) and different datasets

 Section 6.2 ). Finally, the performance obtained from random

ueries is analyzed and compared with that predicted by ROC anal-

sis in Section 6.3 . 

.1. ROC analysis 

The Area under the ROC curve (AUC) for all descriptors, along

ith 95% confidence intervals, is reported in Tables 3 and 4 . There

s a large difference in estimated performance depending on the

ard negative mining technique employed, with hn1 yielding op-

imistically biased estimates. This is most evident for the CLAIMS

ataset, which contains a larger number of visually similar, but not

uplicate images. 

http://people.csail.mit.edu/torralba/code/spatialenvelope/
https://github.com/gtolias/rmac
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/CSAILVision/places365
http://www.europe.naverlabs.com/Research/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval
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Table 3 

Area under the ROC curve (AUC) with 95% confidence intervals. The NND pairs are extracted using the first hard negative mining strategy 

( hn1 ). For the MFND dataset, the AUC is calculated separately for both IND and NIND pairs (AUROC-all), and for IND pairs vs. NND pairs; in 

the latter case, NIND are not counted as either FP or TP. The average AUC across all descriptors provides a semi-quantitative estimate of the 

“difficulty” of each dataset. 

Descriptor CLAIMS MFND California-ND Holidays 

AUROC AUROC-IND AUROC-all AUROC AUROC 

GIST4 0.397 (0.381–0.413) 0.808 (0.799–0.817) 0.5 (0.491–0.509) 0.598 (0.587–0.610) 0.365 (0.351–0.378) 

GIST8 0.45 (0.433–0.467) 0.854 (0.847–0.862) 0.561 (0.552–0.569) 0.696 (0.685–0.706) 0.493 (0.478–0.508) 

DeepRet800 0.891 (0.88 –0.903) 0.994 (0.993–0.996) 0.983 (0.981–0.984) 0.929 (0.924–0.934) 0.744 (0.731–0.758) 

DeepRet500 0.88 (0.868–0.892) 0.992 (0.991–0.994) 0.979 (0.978–0.981) 0.917 (0.911–0.923) 0.748 (0.734–0.761) 

DeepRet500MR 0.891 (0.88 –0.903) 0.992 (0.99 –0.994) 0.983 (0.982–0.984) 0.938 (0.933–0.943) 0.789 (0.777–0.802) 

SP_VGG19_IM 0.391 (0.375–0.407) 0.934 (0.929–0.940) 0.904 (0.901–0.908) 0.88 (0.873–0.887) 0.671 (0.656–0.685) 

SP_VGG16_PL 0.446 (0.429–0.463) 0.907 (0.901–0.914) 0.881 (0.877–0.886) 0.909 (0.903–0.915) 0.675 (0.66 –0.689) 

SP_VGG16_HY 0.418 (0.401–0.434) 0.929 (0.923–0.934) 0.906 (0.903–0.910) 0.896 (0.89 –0.903) 0.697 (0.683–0.711) 

SP_ResNet101IM 0.518 (0.501–0.536) 0.961 (0.957–0.965) 0.941 (0.938–0.943) 0.93 (0.925–0.936) 0.776 (0.763–0.789) 

SP_ResNet512IM 0.522 (0.505–0.540) 0.963 (0.959–0.967) 0.944 (0.941–0.946) 0.921 (0.916–0.927) 0.78 (0.767–0.793) 

SP_ResNet512HY 0.459 (0.442–0.476) 0.924 (0.918–0.930) 0.916 (0.913–0.920) 0.866 (0.859–0.874) 0.737 (0.723–0.751) 

RMAC 0.323 (0.308–0.338) 0.99 (0.988–0.992) 0.945 (0.942–0.947) 0.88 (0.873–0.888) 0.737 (0.723–0.751) 

Average 0.549 0.937 0.870 0.863 0.684 

Table 4 

Area under the ROC curve (AUC) with 95% confidence intervals. The NND pairs are extracted using the second hard negative mining strategy 

( hn2 ). For the MFND dataset, the AUC is calculated separately for both IND and NIND pairs (AUROC-all), and for IND pairs vs. NND pairs; in 

the latter case, NIND are not counted as either FP or TP. The average AUC across all descriptors provides a semi-quantitative estimate of the 

“difficulty” of each dataset. 

Descriptor CLAIMS MFND California-ND Holidays 

AUROC AUROC-IND AUROC-all AUROC AUROC 

GIST4 0.108 (0.101–0.114) 0.706 (0.696–0.715) 0.317 (0.31 –0.323) 0.398 (0.389–0.408) 0.178 (0.17 –0.186) 

GIST8 0.121 (0.114–0.128) 0.756 (0.747–0.765) 0.346 (0.339–0.352) 0.462 (0.452–0.472) 0.243 (0.234–0.253) 

DeepRet800 0.381 (0.366–0.395) 0.99 (0.988–0.992) 0.969 (0.967–0.970) 0.929 (0.924–0.934) 0.628 (0.614–0.642) 

DeepRet500 0.428 (0.412–0.443) 0.987 (0.985–0.989) 0.962 (0.96 –0.964) 0.917 (0.911–0.923) 0.614 (0.6 –0.628) 

DeepRet500MR 0.46 (0.4 4 4–0.476) 0.987 (0.985–0.989) 0.97 (0.968–0.971) 0.938 (0.933–0.943) 0.676 (0.663–0.690) 

SP_VGG19_IM 0.24 (0.229–0.251) 0.882 (0.876–0.889) 0.82 (0.816–0.825) 0.787 (0.779–0.796) 0.52 (0.507–0.534) 

SP_VGG16_PL 0.288 (0.274–0.302) 0.866 (0.859–0.873) 0.821 (0.817–0.826) 0.859 (0.851–0.866) 0.577 (0.563–0.591) 

SP_VGG16_HY 0.267 (0.255–0.279) 0.881 (0.874–0.887) 0.834 (0.83 –0.838) 0.814 (0.806–0.822) 0.563 (0.55 –0.577) 

SP_ResNet101IM 0.397 (0.382–0.412) 0.943 (0.939–0.948) 0.911 (0.908–0.914) 0.892 (0.885–0.898) 0.685 (0.671–0.698) 

SP_ResNet512IM 0.396 (0.381–0.411) 0.947 (0.943–0.952) 0.917 (0.914–0.920) 0.885 (0.878–0.891) 0.694 (0.68 –0.707) 

SP_ResNet512HY 0.327 (0.313–0.340) 0.881 (0.874–0.887) 0.866 (0.862–0.870) 0.784 (0.776–0.793) 0.627 (0.613–0.641) 

RMAC 0.336 (0.322–0.350) 0.985 (0.983–0.988) 0.917 (0.914–0.920) 0.825 (0.817–0.833) 0.641 (0.627–0.655) 

Average 0.312 0.901 0.804 0.791 0.554 
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For IND detection, the difference between global features and

deep learning based features is less pronounced. The results are

lower than previously reported in literature, because the IND

dataset has been significantly expanded, and the new pairs include

transformations to which previous descriptors were less robust.

The DeepRetrieval architecture generally outperforms SPoC for all

datasets, despite being trained on a different dataset (Landmarks)

with no fine-tuning. The actual gap in performance is very low for

the MFND dataset, and increases for other datasets, with CLAIMS

exhibiting the highest gap. It is worth noting, however, that Deep-

Retrieval is also more prone to FPs due to visually similar images,

and the performance estimates are more sensitive than for SPoC to

the hard negative mining strategy. The R-MAC descriptor performs

slightly better than SPoC for the MFND dataset, and slightly worse

for the other datasets. 

The performance of the SPoC descriptor strongly depends on

the network architecture, with Residual Networks consistently out-

performing VGG on all datasets. The dataset on which the net-

work was trained has instead a limited impact, possibly due to

the effect of PCA whitening. ROC curves for selected descrip-

tors and datasets are reported in Fig. 3 . The remaining ROC

curves are available as supplementary material. On the MFND

collection, the best performance is obtained by the DeepRet de-

scriptor, retrieving 96% of the true positives at a FP rate of

1 . 43 × 10 −6 . 
.2. Dataset comparison 

In order to better highlight differences between the datasets,

e computed the false FP and TP rate w.r.t. the distance threshold

or each dataset and for each of the two best performing descrip-

ors, as detailed in Fig. 4 . 

Not surprisingly, INDs are more easily detected than NINDs.

he CLAIMS dataset contains the most challenging near duplicates,

losely followed by the Holidays dataset. Given the annotation pro-

edure followed for the MFND benchmark, it is possible that the

IND examples are skewed towards examples that are more easily

etected using the present descriptors, and future experiments will

ikely find new examples. Examples of ND pairs that were poorly

cored are reported in Fig. 5 ; empirically, large changes in view-

oint appear among the most challenging differences. 

We also compared FP rates on the MFND and CLAIMS datasets

ith the two hard negative mining strategies. For hn1 , MFND ap-

ears to be more difficult than CLAIMS, whereas for hn2 the two

atasets are quite comparable for both descriptors. Given a random

uery image, it is more likely to find a similar image for MFND

han CLAIMS, but CLAIMS contains larger clusters of images that

re both semantically and visually similar, as is likely going to be

he case for any dataset that comes from a focused domain. Ex-

mples of hard negatives ( hn2 ) for both datasets are reported in

ig. 5 . 
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Fig. 3. ROC curves for the Deep Retrieval descriptors for hard negative mining strategy hn1 (a–d) and hn2 (e–h) respectively. A logarithmic scale was used for the FP rate axis 

to highlight low values in the 0.01–0.1 range. Since the NND pairs were extracted using a hard negative mining strategy, a 0.1 FP rate corresponds to a projected minimum 

FP of 1 . 25 × 10 −6 and 1 . 43 × 10 −6 for the CLAIMS and MFND datasets, respectively. 
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Fig. 4. Comparison of TP rate and FP rates across different datasets for selected descriptors: SP_ResNet101_ImageNet (a–b), and DeepRet800 (c–d). For FPs, pairs selected 

with both hard negative mining strategies hn1 and hn2 are separately plotted. 

Fig. 5. Examples of challenging image pairs for unsupervised near-duplicate detection. Examples (a–e) are challenging negative examples which, despite high semantic and 

visual similarity, are not near duplicates. Examples derived from CLAIMS (a–c) are related to image types that are particularly common this collection, whereas examples 

from MFND (d–e) are mostly of subjects which are particularly popular on the Internet, such as sunsets and cats. Examples (g–h) are challenging near-duplicates from the 

CLAIMS dataset which were given low similarity scores by all descriptors; common patterns that are difficult to detect include drastic changes in viewpoint, or when one of 

the two images in the pair represents a detail of a larger scene. 
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6.3. Query performance analysis 

In this section, the two best performing descriptors at ROC

analysis were compared: DeepRet800 and SP_ResNet152IN, using

the experimental setup detailed in Section 4.3 . 

We performed threshold-limited queries at thresholds T corre-

sponding to a FP rate in the [0.01–0.1] range, and a maximum

number of results/query K between 2 and 10. 
The results are plotted in Fig. 6 . Since we are using the same

ataset for both hard negative mining and estimating query per-

ormance, it can be easily shown from Eq. (4) that a FP rate of

.1 should correspond to an average number of FPs/query of 0.1

s well. Estimates based on hn1 have larger deviations from ex-

ected values, especially for the DeepRet descriptor on the CLAIMS

ataset, which is a 20x larger than expected. For hn2 , actual mea-

ured FPs/query are usually slightly lower than predicted. Since we
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Fig. 6. Average recall vs. FPs/query for the CLAIMS (a–b, e–f) and MFND dataset (c–d, g–h), with thresholds calculated using hard negative mining hn1 (top row, a–d) and 

hn2 (bottow row, e–h). Performance is measured at fixed thresholds (dots in the above curves), bars indicate the standard error. The maximum number of images retrieved 

by each query is limited to K = 2 , 4 , 6 , 8 , 10 , results are plotted as separate curves. 
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limit the maximum number of images retrieved by each query, this

factor may explain the discrepancy, which is higher for the CLAIMS

dataset where images are more tightly clustered in feature space. It

should also be noticed that in Eq. (4) the specificity depends only

on the threshold, and not on the query image; our experiments,

however, suggest that this does not hold true in practice, and that

certain types of images are more prone to false positives. 

7. Discussion 

7.1. Dataset and methodology 

Our contributions are a crucial step towards a principled eval-

uation methodology through which estimating the specificity of

unsupervised detection in arbitrarily sized datasets is reduced to

the simpler problem of binary classification of ND vs. NND pairs; a

tractable number of NND pairs can be extracted through hard neg-

ative mining strategies. In the simplest implementation, hard nega-

tives can be mined by finding the nearest neighbors in the dataset,

using exact or approximate search depending on the size. 

We established the first benchmark for unsupervised NIND de-

tection, an extension of the MFND benchmark comprising more

than 20,0 0 0 pairs of INDs or NINDs. We followed a semi-automatic

procedure that potentially could locate almost all pairs of NDs in

the dataset ( Connor et al., 2015 ). In our experiments, occasion-

ally hard negatives mined may still contain a small percentage (1–

2%) of NDs: hence, annotation of the MFND benchmark should be

regarded as an ongoing process, that will grow as new descrip-

tors will be tested. For comparison, in an initial experiment per-

formed before extending the dataset ( Connor et al., 2015 ), roughly

8% of the hard negative mined were either NIND or IND pairs.

Our experimental comparison on state-of-the-art descriptors sug-

gests that, when compared with a real-life dataset representative

of a fraud detection application, MFND is a surprisingly realistic

benchmark for estimating the specificity. On the contrary, NIND

samples in MFND are on average slightly easier to detect than

other datasets, albeit the difference is much reduced compared to

IND samples. The presented methodology builds upon previous re-

sults from Connor and Cardillo (2016) on IND detection; we proved

that the accuracy of the estimated specificity crucially depends

on choosing a proper hard negative mining strategy. We provide

two additional contributions that strengthen the adoption of this

methodology: first, we show analytically that the AUC of the ROC

obtained on the hard negative subset is an upper bound of the true

AUC. Secondly, we show experimentally that, starting from the ex-

perimental ROC, we are able to predict quite accurately the false

positive rate per query, which is an indirect proof that the ROC

is indeed a good approximation of the true curve. For this exper-

imental comparison, we used the same dataset for hard negative

mining and performance evaluation, but in principle, it would be

more convenient to perform the hard negative mining on a smaller

dataset. Future work is needed to determine whether the false pos-

itive rate can be extrapolated to a larger dataset. 

An alternative, more intuitive, figure of merit would be the av-

erage recall and FPs/query as a function of the distance threshold

t . This curve is less practical to use as it depends on the size of

the dataset and, being unbounded, defining summary performance

measures such as the Area under the ROC curve is not straight-

forward. It closely resembles the Free-Response Receiver Operating

Characteristics (FROC), an extension of ROC analysis used for many

diagnostic tasks where the observer (human or machine) can iden-

tify the location of an arbitrary number of potential abnormalities,

as opposed to the binary prediction task of determining whether

an abnormality is present or not ( Petrick et al., 2013 ). In that con-

text, alternatives to the AUC have been proposed and could be ex-

tended to our use case. 
.2. Performance comparison 

To the best of our knowledge, this the first attempt to evalu-

te deep learning descriptors on unsupervised discovery of non-

dentical near duplicates. 

Connor and Cardillo (2016) argued that global descriptors are

ufficient for IND detection. Our experience on the GIST descriptor,

hich obtained the highest performance in the previous compar-

son, suggests that CNN-based descriptors offer significant advan-

ages also in this case, and compare favorably in terms of execution

ime. 

We have included in our comparison three widely used archi-

ecture: SPoC, R-MAC and DeepRetrieval. Note that the DeepRe-

rieval architecture includes region pooling (like R-MAC), but un-

ike other descriptors the features are fine-tuned on the Landmarks

ataset for the retrieval task using a Siamese network. Confirm-

ng previous results on instance-level image retrieval benchmarks,

icely summarized by Zheng et al. (2017) , our experimental re-

ults overall favor the choice of fine-tuning the representation for

etrieval, as opposed to using off-the-shelf features trained using

lassification loss ( Gordo et al., 2016 ). The actual performance gap,

owever, strongly depends on factors related to both the network

rchitecture, the chosen trade-off between specificity and sensitiv-

ty, and the underlying dataset structure. 

The Holidays dataset has been extensively used to bench-

ark instance-level retrieval tasks, and all descriptors analyzed

n this paper were also previously tested on this dataset, albeit

sing a different approach for performance assessment. The per-

ormance (mean Average Precision) is reported in previous litera-

ure as follows: 75.9 (SPoC), 85.2 (R-MAC) and 86.7 (DeepRetrieval)

 Gordo et al., 2016 ). For the Holidays near-duplicate detection task,

he best results for the three descriptors are 0.641 (R-MAC), 0.694

SPoC) and 0.676 (DeepRetrieval), suggesting that SPoC may out-

erform architectures that are significantly more complex to train

nd deploy. We should note that none of the descriptors were

rained on the Holidays dataset, but the PCA for SPoC and R-MAC

as trained on the MFND dataset, which is used as distractors for

he near-duplicate detection task. 

First, the task is different, not only because the performance

easure is different, but also because in our experimental setting,

mages from the MFND collection are used as negative samples;

his is needed to evaluate specificity, which is difficult to do di-

ectly on Holidays due to the small size of the dataset and the ab-

ence of distractor images. We found experimentally that in many

ases the increase in sensitivity is counterbalanced by a corre-

ponding increase in the false positive rate. This is especially ev-

dent for the R-MAC descriptor, for which the overall performance

ecreases in all datasets except MFND. Secondly, each descriptor

as many parameters, and the best combination is dataset depen-

ent. While exploring all possible combinations is a daunting task,

ur experiments provide some useful insights. We found that the

ackbone depth and architecture were the single most important

actor affecting performance. The original SPoC paper, and many

ubsequent comparisons ( Babenko & Lempitsky, 2015; Gordo et al.,

016; Zheng et al., 2017 ), employed the VGG architecture as back-

one, but we found a major boost in performance by using Resid-

al Networks; the DeepRetrieval architecture, on the contrary, uses

esNet101 as backbone ( Gordo et al., 2017 ). In our experiments, the

epth of the architecture appears a more relevant factor than the

pecific feature training, and this an important consideration that

hould be kept in mind by practitioners. 

When compared on the same backbone architecture

Resnet101), the DeepRetrieval outperformed SPoC on CLAIMS

nd MFND, but not on Holidays. The Holidays dataset contains a

ot of outdoors and natural scenes imagery, which may not suffi-

iently covered by the Landmarks dataset. We expected that SPoC
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eatures extracted from networks trained on a scene recognition

ask, for instance on the Places dataset, or a mixture of Places

nd ImageNet, could perform better for near-duplicate detection,

ince many near-duplicates include complex scenes. However, we

id not find consistent advantages, especially when using Residual

etworks as the backbone architecture. 

In a high specificity setting, the difference between pre-trained

nd fine-tuned networks is further reduced, as visually similar im-

ges tend to generate many false positives. Future work will be

edicated to training a specific descriptor for unsupervised near-

uplicate detection, incorporating specificity requirements at train-

ng time as well as test time. In literature, feature weighting

chemes have also been proposed ( Kalantidis, Mellina, & Osindero,

016; Mohedano, McGuinness, Giró-i Nieto, & O’Connor, 2018 );

uch descriptors could be trained in an unsupervised fashion, or do

ot require any training at all. The performance of such schemes

rom the point of view of specificity is another direction worth ex-

loring. 

In this work, we have used the same descriptor and distance

unction for all images, regarding of their content. Notably, images

re not uniformly distributed in the embedded feature space, and

he specificity is largely affected by the presence of clusters of im-

ges that are very similar from a semantic and visual point of view.

his behavior is observed in both CLAIMS and MFND datasets, de-

pite their different origin. Exploiting this underlying structure to

mprove the performance of ND discovery is an important avenue

or future research. 

. Conclusions 

Unsupervised discovery of near-duplicate detection is an impor-

ant problem in digital forensics and fraud detection. As the num-

er of false alarms grows quadratically with the size of the in-

ut dataset, practical applications require a very high specificity, or

onversely low false positive rate, often in the range of 10 −7 –10 −10 .

ard negative mining can be used to select a subset of the dataset,

n which ROC analysis can be used to evaluate the performance. 

We have evaluated a selection of descriptors based on Con-

olutional Neural Networks following the proposed methodol-

gy. While the task of NIND detection is conceptually similar

o instance-level image retrieval, we experimentally found that

he same descriptors may be ranked differently, as the Area un-

er the ROC curve depends more strongly on specificity than the

ean Average Precision. This strengthens the need for a dedicated

enchmark, targeting applications where unsupervised search is

equired. Our findings in general favor the choice of fine-tuning

eep convolutional networks, as opposed to using off-the-shelf fea-

ures, but differences at high specificity settings strongly depend

n the specific dataset and are often small. On the MFND collec-

ion, promising performance is obtained by the DeepRet descrip-

or, retrieving 96% of the true positives at a FP rate of 1 . 43 × 10 −6 .

owever, further improvement in specificity would benefit many

pplications, especially in the forensics domain. 
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ppendix A. Hard negative mining provides an upper bound 

or the AUC 

In this section, proof that the AUC calculated using either hard

egative mining strategies is an upper bound for the true AUC is

rovided. 

roposition 1. When using hard negative mining strategy hn 2, the

esulting AUC hn 2 is an upper bound for the true AUC. 

roof. Hard negative mining strategy hn 2 ensures that the selected

 l pairs are the most difficult pairs within the set N 

−; it follows

hat: 

f (n j ) ≤ f (n l ) ∀ n j ∈ N 

− − H 

− ∀ n l ∈ H 

− (A.1)

nd consequently: 

 p i >n j ≤ 1 p i >n l ∀ n j ∈ N 

− − H 

− ∀ n l ∈ H 

− (A.2)

The AUC can be decomposed in two terms 

UC = 

1 

N 

+ N 

−

[ 

N + ∑ 

i =1 

H −∑ 

l=1 

1 p i >n l + 

N + ∑ 

i =1 

N −−H −∑ 

j=1 

1 p i >n j 

] 

(A.3) 

here the first term is known and is proportional to AUC hn 2 from

q. (8) , and the second term is the contribution of the negative

amples that are not observed. However, we can substitute the sec-

nd term by replicating the hard negative samples 	 N −−H −
H − 
 times,

nd combining with Eq. (A.2) we conclude that: 

UC ≤ 1 

N 

+ N 

−

⎡ 

⎣ 

N + ∑ 

i =1 

H −∑ 

l=1 

1 p i >n l + 

N −−H −
H −∑ 

k =1 

N + ∑ 

i =1 

H −∑ 

l=1 

1 p i >n l 

⎤ 

⎦ 

= 

1 

N 

+ N 

−

[
N 

+ H 

−AUC hn 2 + 

(
N 

− − H 

−

H 

− N 

+ H 

−
)

AUC hn 2 

]
= AUC hn 2 

�

roposition 2. When using hard negative mining strategy hn 1, the

esulting AUC hn 1 is an upper bound for the true AUC. 

roof. Again, let us decompose the AUC as the sum of two terms,

here the first term is known and is proportional to AUC hn 1 , and

he second term is the contribution of the negative samples that

re not observed, as detailed in Eq. (A.3) . 

Each sample n j consists of a pair of images ( x k , y m 

), where x k ∈ X

nd y m 

∈ Y ; in other terms, N 

− = { (x k , y m 

) , k = 1 , . . . K, m =
 , . . . , M} . Then according to the definition of hn 1, 

 

− = { (x k , y m 

∗ ) | m 

∗ = arg max 
m 

f (x k , y m 

) } (A.4)

he sum over l = 1 , . . . , H 

− and j = 1 , . . . , N 

− in Eq. (A.3) can be

ecomposed in terms of k = 1 , . . . , K and m = 1 , . . . , M as follows:

UC = 

1 

N 

+ N 

−

[ 

N + ∑ 

i =1 

K ∑ 

k =1 

1 p i > (x k ,y m ∗ ) + 

N + ∑ 

i =1 

K ∑ 

k =1 

M ∑ 

m =1 ,m � = m 

∗
1 p i > (x k ,y m ) 

] 

(A.5) 

here N 

− = K × M , and according to the definition of hn1 there

re exactly K hard negative pairs. 
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By definition, f (x k , y m 

) ≤ f (x k , y m 

∗ ) and thus 

1 p i > (x k ,y m ) 
≤ 1 p i > (x k ,y m ∗ ) ∀ k = 1 , . . . , K ∀ m � = m 

∗ (A.6)

Combining Eqs. (A.5) and (A.6) , we conclude that: 

AUC ≤ 1 

N 

+ N 

−

[ 

N 

+ H 

−AUC hn 1 + 

N + ∑ 

i =1 

K ∑ 

k =1 

M ∑ 

m =1 ,m � = m 

∗
1 p i > (x k ,y m ∗ ) 

] 

= 

1 

N 

+ N 

−
[
N 

+ KAUC hn 1 + (M − 1) N 

+ KAUC hn 1 

]
= AUC hn 1 

�

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.eswa.2019.05.002 . 
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