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a b s t r a c t 

The cell formation problem is a crucial component of a cell production design in a manufacturing system. 

Problems related to the cell formation problem are complex NP-hard problems. The goal of the work is 

to design the algorithm for the cell formation problem that is more efficient then the best-known al- 

gorithms for the same problem. The strategy of the new approach is to use the specificities of the input 

instances to narrow down the feasible set, and thus increase the efficiency of the optimization process. In 

the dynamic production environment, efficacy is one of the most significant characteristics of the applied 

expert system. The result is, extensible hybrid algorithm that can be used to solve complex, multi-criteria 

optimization cell formation problems. The new algorithm produces solutions that are as good as, or better 

than, the best results previously reported in literature on all commonly used test instances. The time ef- 

ficiency of the proposed algorithm is at least an order of magnitude better than the efficiency of the 

most efficient reported algorithms. The obtained experimental results, modularity and generality of 

the new algorithm imply the significant impact on the expert systems for cell formation problem since 

the proposed strategy can improve the efficiency of existing algorithms for the grouping problems. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Group Technology (GT) is defined as an approach to work

ptimization in which the organizational production units are

elatively independent. In other words, GT is a manufacturing

hilosophy that exploits similarities in product design and product

rocesses. Products needing similar operations and a common

et of resources are grouped into families, the resources being

egrouped into production subsystems, cells. The major advan-

ages of cellular manufacturing reported in the literature include:

eduction in setup time, reduction in labor and overtime costs,

eduction in work-in-process inventories, reduction in material

andling costs, and faster response to internal and external

hanges such as: machine failures, product mix, and demand

hanges ( Wu, Chang, & Yeh, 2009 ). In the globalized and intercon-

ected market, a production system must have a high degree of

exibility and agility to deal with product changes. The Dynamic

ellular Manufacturing System (DCMS) is one of the well-known

roduction systems that meet this requirement. Problems related

o DCMS are complex and time-consuming NP-hard problems in

heir nature. The memory and computational time requirements

re extremely high, and increase exponentially, as the problem size

ncreases. In the dynamic production environment, a multi-period
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lanning horizon is considered where each period has a different

roduct mix and demand necessities. Therefore, the formed cells

n a period may not be optimal for the next period. To address

his production environment, two approaches could be imple-

ented. One is the concept of virtual cells, initially introduced

y ( McLean, Bloom, & Hopp, 1982 ), which allows exploiting the

rocessing of part families into machines grouped virtually. Rapid

dvances in information technologies have nowadays driven tradi-

ional manufacturing all the way to intelligent cloud-based design

nd manufacturing. The cloud-based design for cellular manufac-

uring can be referred to as a “multiscale, uncertain , and dynamic

ervice-oriented network where a set of CAD parts, modeled by set

f features, can be manufactured in intelligent virtual manufac-

uring cells under certain constraints” ( Ostrosi & Fougères, 2018 ).

lso, alternative approaches to manufacturing cell formation use

uch features as vectors of information transmission, and fuzziness

o improve the problem formulation robustness ( Mutel & Ostrosi,

002 ). 

Another approach is to develop extremely efficient algorithms

hat respond to a stable and robust demand and to implement

hem at any change of the production environment. The static Cell

ormation Problem (CFP) is the first and foremost problem for

his group of algorithms. In general, CFP requires the partitioning

f parts and machines with the goal of establishing cells having

aximal number of intra-cell operations and minimal number of

nter-cell operations. The focus in our work is on this group of

lgorithms. 

https://doi.org/10.1016/j.eswa.2019.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.06.019&domain=pdf
mailto:milos.danilovic@fon.bg.ac.rs
mailto:danilovicm@fon.bg.ac.rs
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The aim of this paper is to design a novel algorithm for CFP

that meets the following requirements comparing the best-known

algorithms from the aforementioned group of algorithms: 

– Improved efficacy; 

– Multi-criteria optimization; 

– Extensibility; 

– Modularity; 

– Expert systems character of the approach. 

1.1. Efficacy improvement 

CFP is known as an NP-hard problem ( Ballakur & Steudel, 1987 ),

so the size of the feasible solution set (FSS) is the key parameter

determining the efficacy of a procedure execution. Cardinality of

the feasible solution set is given in ( Wang, 1999 ): ( ( 

w ∑ 

i =1 

(−1) 
w −i 

i r 

i !(w − i ) ! 

) 

∗
( 

w ∑ 

i =1 

(−1) 
w −i 

i q 

i !(w − i ) ! 

) ) 

, 

where w is the number of cells, q is the number of machines and

r is the number of parts. Considering that this number becomes

computationally infeasible, even for small numbers of machines

and parts, in recent years research has been more often directed

toward heuristic search models. 

Regarding some best-known combinatorial NP-hard problems,

CFP shows significant differences in terms of possibilities for nar-

rowing the FSS. For example, for the permutation flow shop prob-

lem, no reduction of FSS is possible based on the instance struc-

ture. One can always construct a schedule of a new job that would

contradict previous conclusions. In contrast, the CFP implies a col-

lection of various constraints that reduce FSS. If, for example, two

machines are in a strong correlation, these machines will belong to

the same cell independently of the operations on other machines.

The common drawback of the significant number of published CFP

algorithms is that the search is performed on the entire or insuffi-

ciently narrowed sollution set. 

The strategy of the new approach is to take advantage of the

FSS reductions and to propose an efficient method that directs the

search towards the global optimum. The core of the approach is

the definition of the reduced input metric, which replaces original

input data. 

1.2. Multi-criteria optimization 

It is well known that the CFP is a multi-criteria problem

( Ballakur & Steudel, 1987 ). In most of the papers that introduce

algorithms from our target group of algorithms, a binary represen-

tation of CFP has been studied. 

For the algorithm, presented in this paper, the binary matrix is

one of possible different input parameters from the data store. This

matrix defines the assignment of parts to machines. All other input

parameters and constrains can be supplemented to the optimiza-

tion process defining the multidimensional distances between en-

tities. In each iteration, distances between entities are recalculated

and used for grouping of machines into cells and parts into fami-

lies. The reduction matrix, that we introduced can serve arbitrary

complex multi-criteria problem models. It represents, the compo-

sition of cells in each iteration. Reduction matrix is recalculated in

each iteration based on the updated values in cluster matrices. In

the paper, two types of cluster matrices were used; the first de-

fines the similarity, and the other the difference between entities.

As a measure of similarity or difference, distance vectors contain-

ing all the multi-criteria requirements of the model can be used. 

For the clarity of the presentation, without loss of generality,

grouping efficacy was chosen as the objective function, and the bi-

nary incidence matrix is used in the examples. All operations are
arried out in the same way as in cases of a complex problem

odel. Another important reason for choosing grouping efficacy is

he possibility of an objective experimental evaluation of the pro-

osed algorithm. The aim of the paper is to show, in the most ob-

ective way, the efficacy improvement of the proposed approach.

ll relevant CFP algorithms have grouping efficacy as an objective

unction. 

.3. Extensibility 

The proposed set of reductions in the novel algorithm is not fi-

ite; one can define a new criterion for a more effective reduction.

his criterion could be easily implemented as a separate procedure

hat is processed in the iterations of the hybrid algorithm. 

.4. Modularity 

Each sub-procedure in the hybrid algorithm could be replaced.

his is an important advantage that enables the improvement of

he existing algorithms. For example, one of the best published al-

orithms ( Brusco, 2015 ) uses Iterated Local Search (ILS) as the im-

rovement heuristic. The obvious improvement of this algorithm is

o implement ILS on the feasible set reduced by our hybrid algo-

ithm. 

.5. Expert systems character of the approach 

The structure of the novel hybrid algorithm emulates the

ecision-making ability of a human expert. Complex and impor-

ant problems in cellular design are solved based on the rules for

he narrowing of the feasible solution set. These rules represent

he knowledge base which is extensible and modular. The hybrid

lgorithm as an inference engine applies the rules to the input data

n the iterations to deduce new, reduced data as the input for the

ollowing iterations. 

.6. Results 

The novel algorithm is compared with the best algorithms

rom the target group of algorithms on the referent set of test

nstances. All relevant CFP algorithms from that group have

een tested on 35 instances which can be downloaded from

ttp://mauricio.resende.info/data/cell-formation/ . The size of the

nstances is specified as the number of machines and the number

f parts. The instances range from dimension 5 × 7 – 40 × 100

nd comprise well-structured, as well as unstructured matrices.

ue to the three-decade period of testing on these instances, the

est-known results are also the optimal results for most of these

nstances. All examples in this paper refer to the instances from

his list. It will be shown that on all relevant test instances from

iterature, the presented algorithm provides best-known results

ith significantly lower consumption of CPU time. 

The remainder of this article is organized as follows. The Lit-

rature review of the related algorithms is given in Section 2 .

he definitions of the problem are presented in Section 3 . The

ew hybrid algorithm is presented in Section 4 . In Section 5 , the

ub-algorithms of the hybrid algorithm are described in detail.

ection 6 shows the computational results, and Section 7 concludes

he paper. In Appendix 1 , a detailed example of the algorithm ex-

cution is presented. 

. State of the art 

Many approaches have been developed to deal with the CFP.

ost of them provide heuristic solutions and only a few exact

http://mauricio.resende.info/data/cell-formation/
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ethods have been suggested. Since a novel algorithm is com-

ared with the algorithms for the binary representation of CFP,

esearches addressing the CFP as a binary part-machine incidence

atrix are reviewed in the following. 

.1. Exact methods 

Elbenani & Ferland (2012) presented a mixed-integer linear

rogramming model which maximizes the grouping efficacy. The

rocedure use, as the input parameter the predefined number of

roduction cells. Therefore, the suggested approach cannot guar-

ntee global optimality of the obtained solutions with respect to

 variable number of production cells. For certain tested instances

he computational times are long, or memory limitations are ex-

eeded, and the optimal solutions cannot be found. ( Brusco, 2015a )

resented two approaches for solving the CFP with the grouping

fficacy objective. The first is a mixed-integer linear programming

odel which is based on a general two-mode clustering formu-

ation. The simplifying assumption is that the numbers of clusters

y rows and columns are equal. In the second, branch-and-bound

lgorithm, a relocation heuristic is used to obtain an initial solu-

ion. The branch and bound approach could solve more problem

nstances regarding the first approach and the computational

imes are improved as well. Pinheiro et al. (2016) reduced the

FP to a bi-cluster graph editing problem and suggested an exact

ethod and a linear programming model which provides good

omputational results for the grouping efficacy objective. Bychkov

 Batsyn (2018) presented the mixed-integer linear programming

odel. They use machine-machine and part-machine assignments

nstead of the widely used machine-part-cell assignment. This

eads to a formulation considering only constraints which ensure

 block-diagonal structure of solutions. It allows them to reduce

he number of variables and constraints in their programming

odel and obtain optimal solutions for some large-sized problem

nstances. 

Exact algorithms for CFP are important as the reference for the

ptimality of the heuristic algorithms for the same problem. In the

xperimental evaluation of the new algorithm, the CPU times for

lgorithms Elbenani & Ferland (2012) and Pinheiro et al., (2016) are

ncluded, as a reference. Exact algorithms cannot be used in the

ynamic environment, due to the enormous processing times for

ven middle-sized input instances. For example, for the most effi-

ient among these algorithms, Bychkov & Batsyn (2018) , reported

rocessing time on the instance No18 is 32,243.10 s, while for the

nstances No27, No29, No32 and No33 no results have been ob-

ained. Another interesting observation regarding these algorithms

s that on some of the small sized instances, reported CPU times

re greater than the times spent when the total search is per-

ormed. 

.2. Heuristic algorithms 

Meta-heuristics algorithms have been adopted to solve the CFP,

roducing the best results obtained so far. Since the list of these

lgorithms is long, here we briefly review the algorithms that have

een reported the best-known results. 

Onwubolu & Mutingi (2001) developed a genetic algorithm to

imultaneously group machines and part families into cells. The

esigner can specify the number of cells, lower and upper bounds

n cell size in advance. Goncalves & Resende (2004) used a local

earch algorithm coupled with the genetic algorithm to improve

he CFP’s solution in several instances. An algorithm based on evo-

ution strategy has been developed by Stawowy (2006) which uses

 modified permutation with a separator encoding scheme and

 unique concept of separators’ movement during the mutation
rocess. James, Brown, & Keeling (2007) utilized a hybrid group-

ng genetic algorithm that combines a local search with a stan-

ard grouping genetic algorithm. The local search first analyzes

he assignment of one part to a group of machines, then ana-

yzes the assignment of a machine to a family of parts. At the

ime of publishing, reported results were among the best results

o far. Wu, Chang, & Chung (2008) considered a simple effective

imulated annealing-based approach. They proposed a local opti-

ization, like the generation of neighboring solutions used by the

abu-search method. They use two kinds of moves; single-move

nd exchange-move to revise the neighborhood of the current

olution. Unler & Gungo (2009) developed a K-harmonic means

lustering algorithm to solve the CFP. Tariq, Hussain, & Ghafoor

2009) developed an approach that combines a local search heuris-

ic with genetic algorithm. Mahdavi, Paydar, Solimanpur, & Hei-

arzade (2009) developed a mathematical model for the CFP based

n cell utilization concept. Algorithm based on genetic algorithm

as designed to solve developed mathematical model. A hybrid

ethodology based on using Boltzmann function of simulated an-

ealing and mutation operator of GA was proposed by Wu et al.

2009) to optimize the initial clustering obtained from similar-

ty coefficient method. Tunnukij & Hicks (2009) presents the En-

anced Grouping Genetic Algorithm that replaces the replacement

euristic in a standard Grouping Genetic Algorithm with a Greedy

euristic and employs a rank-based roulette-elitist strategy, as a

ew mechanism for creating successive generations. Wu, Chung, &

hang (2010) adopted the water flow-like algorithm and designed

 heuristic algorithm for solving the CFP. Noktehdan, Karimi, &

usseinzadeh Kashan (2010) used a grouping and hybridized ver-

ion of differential evolution algorithm together with a local search

lgorithm to solve the CFP Li, Baki, & Aneja (2010) used a Max-Min

nt colony optimization meta-heuristic to solve the machine-part

FP, implemented in the hyper-cube framework. Pailla, Trindade,

arada, & Ochi (2010) used an evolutionary algorithm and a local

earch around some of the solutions it visits. In addition, an ap-

roach based on simulated annealing was implemented that uses

he same representation scheme of a feasible solution. Dura ́n, Ro-

riguez, & Consalter (2010) used a modified particle swarm opti-

ization algorithm for clustering problems. Arkat, Hosseini, & Fara-

ani (2011) presented a bi-objective programming model to si-

ultaneously minimize the number of exceptional elements and

he number of voids in the part machine incidence matrix. Be-

ause of the NP-hardness of the model, they have also developed

 bi-objective genetic algorithm for large-scale problems. Feng &

heng (2011) proposed an exact schema theorem that can pre-

ict the expected number of copies of schemas in the next GA

eneration which applied for machine cell formation. Ying, Lin, &

u (2011) developed a simulated annealing algorithm with vari-

ble neighborhood search for CFP empirically evaluated in terms

f grouping efficacy. Dıaz, Luna, & Luna (2012) proposed a GRASP

euristic to obtain lower bounds for the optimal solution of the

roblem. They used a greedy randomized adaptive search proce-

ure that consists of two phases. In the first phase an initial par-

ition of machines into machine-cells or parts into part families

s obtained, while in the second phase the assignment of parts

o machine cell or machines to part-families is considered. Brusco

2015) , applies a generally known repetition of a two-steps pro-

ess: (i) perturbing an incumbent locally and (ii) applying a local –

earch heuristic to return the perturbed solution to a local opti-

um. In the source code of the algorithm there is a limitation

hat the number of clusters can’t be above 20. Parameter k de-

nes the number of iterations, regardless of the specificity of the

nstance proceeded. The tests were performed with three values

or k : 10 3 , 10 4 and 10 5 . Experimental results for these three values

how an unfavorable trend: larger instances require larger values

f k . Best results for 35 instances were obtained with k = 10 4 and
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Table 1 

A brief review of the algorithms in the related literature. 

No. Method Algorithm Source Measure Test 

1 GA Genetic Onwubolu & Mutingi (2001) GE ∗

2 EA Evolutionary Goncalves & Resende (2004) GE ∗

3 ES Evolutionary strategy Stawowy (2006) GE ∗

4 HGGA Hybrid grouping genetic James et al. (2007) GE ∗

5 SACF Simulated annealing Wu et al. (2008) GE ∗

6 KHC K-harmonic means clustering Unler & Gungo (2009) GE 

7 HGA Hybrid genetic Tariq et al. (2009) GE ∗

8 GAA Genetic approach Mahdavi et al. (2009) EX and V ∗

9 HHA Hybrid heuristic Wu et al. (2009) GE ∗

11 EnGGA Enhanced grouping genetic Tunnukij & Hicks (2009) GE ∗

12 WFA Water flow-like Wu et al. (2010) GE ∗

13 HGDE Differential evolution Noktehdan et al. (2010) GE ∗

14 ACO Ant colony optimization Li et al. (2010) GE ∗

15 SA Simulated annealing Pailla et al. (2010) GE ∗

16 PSO Particle swarm opt. Dura ́n et al. (2010) GE 

17 BGA Bi-objective genetic alg. Arkat et al. (2011) EX and V 

18 EST Genetic Feng & Pheng (2011) –

19 SAYLL Simulated annealing with variable neighborhood Ying et al. (2011) GE ∗

20 GRASP GRASP heuristic Dıaz et al. (2012) GE ∗

21 GAVNS Genetic with variable neighborhood Paydar & Saidi-Mehrabad (2013) GE ∗

22 ILS Iterated Local Search Brusco (2015) GE ∗

23 CFPAS Hybrid VN Descent Martinsa et al. (2015) GE ∗

24 GLCA League Championship Noktehdan et al. (2016) GE ∗
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k = 10 5 . Obtained results categorize this algorithm as the best algo-

rithm so far. Martinsa, Pinheiroa, Prottia, & Ochi (2015) developed

an algorithm based on the Iterated Local Search metaheuristic cou-

pled with a variant of the Variable Neighborhood Descent method

that uses a random ordering of neighborhoods in a local search

phase. Noktehdan, Seyedhosseini, & Saidi-Mehrabad (2016) pro-

posed a grouping version of the league championship algorithm.

Their algorithm can reach the best-known solution for 29 of the

35 referent instances. 

In Table 1 , a brief review of the most important heuristics in

the related literature are presented. This table shows the solution

method and the applied measure (GE denotes grouping efficacy,

EXV denotes optimization of the number of exceptions and voids).

Asterix in the column Test denotes that the results of heuristic

are presented and compared in the experimental evaluation of the

new algorithm. 

2.3. Discussion 

Regarding the modularity and extensibility, all algorithms have

their logic drowned in the iteration process. For example, one

of the best algorithms so far ( Brusco, 2015 ), applies a generally

known iterated local search heuristic. Calculations of the values of

the objective function are an integral part of the iteration process

and cannot be replaced or extracted. In the similar way, crossover

operators are the core of the evolutionary algorithms and any

change of these operators implies the change of the overall algo-

rithm as well. 

Multi-criteria optimization in the reviewed heuristics can be

performed only for the concrete model that is defined in ad-

vance. An algorithm is designed for the specific set of criteria in

advance and this set cannot be changed. A novel approach pre-

sented in this paper can implement any criteria for any arbitrary

model. The values of the objective function through the itera-

tions are obtained using the reduction matrix, the distances be-

tween entities are tracked through the clustering matrices and

the constrains are handled through the definition of the forbidden

assignments. 

A general conclusion can be drawn that in all reviewed al-

gorithms, the specifies of the input instances are not sufficiently

used. The logical consequence is, that all these algorithms would

be more efficient when processed on the reduced instance. 
. Problem formulation 

The task of the CFP is to design the cellular manufacturing sys-

em to process similar parts within the same production cell, min-

mize parts movement from one cell to another, and balance ma-

hines workload during the production process. In almost all stud-

es reviewed in the State-of-the-art Section, grouping efficacy has

een accepted as the measure of the objective function: 

= 

n − e 

n + v 
= 

r 

n + v 
, (1)

here n is the total number of operations (ones in the machine-

art matrix), e is the number of exceptions (ones outside the cells),

 is the number of voids (zeros within cells), and r is the number

f operations within cells (ones within cells). 

The CFP is a multi-criteria problem and the binary incidence

atrix is a simplified presentation of the model. Eq. (1) is chosen

s the objective function for two reasons: 

– Clarity of the explanation of procedures and examples: without

loss of generality; in the next Section, the multi-criteria charac-

ter of the approach is elaborated; 

– Objectivity of the evaluation, since all the referent algorithms

use the same objective function. 

Regarding the minimal size of a cell, two different structures

re: cells containing only machines or parts ( residuals ) and cells

ith one machine and several parts or vice versa ( singletons ). Al-

hough some studies don’t allow the existence of residuals, consid-

rations in this paper include residuals for two reasons: (1) restric-

ion on residuals artificially narrows FSS, so it represents a simpler

ersion of the problem, discussed in this paper; all presented state-

ents and procedures concerning FSS reduction are also valid for

his case; (2) from the point of practical applications, it is unjus-

ified to insert a machine or a part into the cell if this insertion

ecreases the value of the objective function. 

Due to the duality of features, for the clarity of explanation,

achines and parts are denoted as entities, en . Number of entities

machines or parts) is denoted as N . When referenced separately,

achines are denoted as m , while parts are denoted as p . For each

ntity, define the neighbors as the set of entities of another kind,

aving common operations with this entity (for example, machine

eighbors are all parts processed on that machine …). Superscript

 refers to machines, while P refers to parts. 
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One of the main tasks in the process of designing algorithm for

FP is to define a measure that quantifies the similarity (or dissim-

larity) between entities. There are only two ways to do that. First

s to explicitly define the measure and second is to implicitly im-

lement this measure into the processing logic. The advantage of

xplicitly defined measure is that it can be replaced and adapted

o fit the considered model. In this paper, for the clarity of expla-

ation, Jaccard’s similarity measure, s i,j = s ( i, j ) is used: 

 = ‖ 

s ( i, j ) ‖ 

; 1 ≤ i ≤ N ; 1 ≤ j ≤ N, where s ( i, j ) 

= 

q ( i, j ) 

q ( i, j ) + g ( i, j ) 
; 0 ≤ s ( i, j ) ≤ 1 . (2) 

The variable q ( i, j )represents the number of common neighbors

or entities i and j , while g ( i, j ) is the number of distinct neighbors

or these entities. Since this measure is used in the iterations of

he new algorithm only to produce current best options for group-

ng, this measure can be replaced with any other, even multidi-

ensional measure. 

The matrix T = ‖ t ( i, j ) ‖ , 1 ≤ i ≤ N ; 1 ≤ j ≤ N is additionally

sed as a measure of the dissimilarity between entities, where: 

(i, j) = q (i, j) − g(i, j) . (3)
Fig. 1. Block diagra
The rest of the notation is: 

ρ = 

n 
N M N P 

– density of operations, 

d l – degree of l ; the number of neighbors of entity l , 

d̄ l = 

d l 
N – average degree of entity l , 

C = { c 1 , ... , c k , ... , c w 

}– set of cells; w is the number of cells, 

n k - number of entities in cell k, 

d C – total dimension of cells, d C = d C 
1 

+ ... + d C 
k 

+ ... + d C w 

=∑ w 

k =1 (n M 

k 
· n P 

k 
) , 

e l – number of exceptions formed by entity l , 

v l – number of voids formed by entity l . 

Therefore, the grouping efficacy can be expressed as: 

= 

r 

n + d C − r 
. (4) 

. The novel hybrid algorithm 

The new algorithm, Cell Formation Optimization algorithm,

FOPT, is presented as the block diagram on Fig. 1 . 

At the beginning of the execution, the possible exact reductions

re performed, and the global parameters of the obtained reduced
m of CFOPT. 
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Table 2 

Matrix A for the instance No.4. 

M/P 1 2 3 4 5 6 7 8 

1 0 1 0 1 0 0 1 0 

2 1 1 1 0 1 1 1 1 

3 0 0 1 0 0 1 0 1 

4 0 0 0 1 0 0 1 0 

5 1 0 1 0 1 1 0 1 

6 0 0 0 1 0 0 1 0 

Table 3 

Matrix B for the instance No.4. 

1,5 3,6,8 2 4 7 

4,6 0 0 0 2 2 

1 0 0 1 1 1 

2 2 3 1 0 1 

3 0 3 0 0 0 

5 2 3 0 0 0 
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set are calculated. Depending on the values of the global param-

eters, the total search is performed, or the procedure continues.

Prior to the iteration loop of the algorithm, potential residuals and

outliers are removed from the process. 

In the main loop, similarity matrices for machines and parts

are calculated. The entities having maximal similarity value form

the group of machines and the family of parts. Assignment of such

grouped parts to machines is obtained and new cells are formed.

If the cardinality of the reduced feasible set is below the de-

fined threshold, the improvement heuristic is applied, and the final

grouping of the original machines and parts are obtained using the

procedure FINAL. 

In the case that the cardinality of the FSS is above the pre-

defined threshold, the iteration is repeated. If no improvement in

the value of the objective function is achieved, restricted pairs for

grouping are obtained using dissimilarity matrices. Using these re-

stricted groupings, the improvement heuristic GCACFP obtains the

final formation of cells. 

5. Sub-algorithms in CFOPT 

In this Section the definitions of the sub-algorithms in CFOPT

are presented. Examples on the instances from the referent set

of the test instances are used to clarify the procedures. In the

Appendix 1 , the example of all CFOPT steps is attached. 

5.1. Handling input data 

One of the main characteristics of the novel algorithm is that it

can be applied to solve the multi-criteria CFP problems. The re-

quired part of the input data is the data that represents opera-

tions of parts on machines. Any form of this information can be

handled; for the clarity of explanation, without loss of general-

ity, hereinafter the incidence matrix will be used. Optionally, ad-

ditional data, representing other parameters and relations for the

specific model, could be supplemented. This data is used in the

calculations of the distances between entities, through the itera-

tions of the algorithm. The definition of the similarity matrices,

Eq. (2) , could be arbitrary changed in the way that it represents a

multidimensional distance between entities. In each iteration, the

entities having minimal mutual distance are grouped. In that way,

grouping is performed based on the current model of the produc-

tion environment. Constraints from the model could be handled

through the part of the algorithm that tracks the forbidden group-

ings. 

The main issue in the proposed approach is to find the effective

way to calculate the value of the objective function on the reduced

problem through the iterations of the algorithm. For this purpose,

the reduction matrix , denoted as B , is introduced, together with two

lists of joined entities, E ( E M and E P ). The list E consists of y sets of

joined entities, where i th set has x i entities: 

E = { en 1 = { en 1 (1),..., en 1 ( x 1 )},..., en y = { en y (1),..., en y ( x y )}}. Thus,

x 1 + x 2 + ... + x y = n and the dimension of B is y M × y P . The entries

of matrix B = ‖ b ( i, j ) ‖ are equal to the sum of the corresponding

joined entries of matrix A . 

As an example, Table 2 shows the matrix A , relevant to the

problem No.4 ( Kusiak & Cho, 1992 ) from the reference list of 35

instances. 

Let E M = {{4,6},{1},{2},{3},{5}} and E P = {{1,5},{3,6,8},{2},{4},{7}}.

Matrix B for this example is presented in Table 3 . The first row

represents joined machines 4 and 6, so, for example, number 2 in

the first row and column 7 is obtained as a sum a 4,7 + a 6,7 from

the matrix A. 

Additionally, the matrix H = ‖ h ( i, j ) ‖ is introduced, having same

dimensions as B , where h (i, j) = x M 

i 
· x P 

j 
. In other words, the entry

of H represents the dimension of the corresponding joined cell. 
tatement 1. If b ( i, j ) belongs to any block, it participates to the

verall value of v with h ( i, j ) − b ( i, j ), otherwise it participates to

he overall value of e with b ( i, j ). 

roof. The entry b ( i, j ) is obtained as the sum: 

a (en M 

i (1) , en P j (1)) + a (en M 

i (1) , en P j (2)) + ... + a (en M 

i (1) , en P j (x P j )) + 

a (en M 

i (2) , en P j (1)) + a (en M 

i (2) , en P j (2)) + ... + a (en M 

i (2) , en P j (x P j )) + 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
a (en M 

i (i ) , en P j (1)) + a (en M 

i (i ) , en P j (2)) + ... + a (en M 

i (i ) , en P j (x P j )) 

�

Each summand has value one or value zero, so b ( i, j ) is equal

o the number of ones in the corresponding cell. As the number

f summands is x M 

i 
· x P 

j 
= h (i, j) , the number of zeros in the corre-

ponding cell is h ( i, j ) − b ( i, j ). 

orollary. The grouping efficacy for the original instance can be di-

ectly obtained from B and H . 

Therefore, complete optimization of the original problem can be

arried out as the optimization of the reduced problem; the infor-

ation concerning reduction, embedded in E , should be used only

t the end of the process to obtain a final partition. 

Entries in similarity matrices S and T , defined in (2) and (3) are

unctions of common neighbors, q ( i, j ) and distinct neighbors, g ( i,

 ). In the reduced problem, determination of common and distinct

eighbors for any pair of reduced entities i and j is simple. Let

 be an entity of another kind, concerning i and j . Denote as b 1 
he entry from B that corresponds to i and l , and denote as b 2 the

ntry from B that corresponds to j and l . If entity l participates in

he value q ( i, j )with Q and l participates in the value g ( i, j ) with

 , two cases can occur: When h 1 + h 2 ≥ 2( b 1 + b 2 ) then Q = 0 and

 = b 1 + b 2 . Otherwise, Q = min ( b 1 , b 2 ) and G = h 1 + h 2 − b 1 − b 2 . 

Due to the above relations, complete optimization could be im-

lemented using B and H instead of A . Reduction is a polynomial

rocedure consuming negligible CPU time, so overall time efficacy

s directly increased by the degree of reduction. 

.2. Exact reductions 

First, exact reduction removes outliers and residuals from con-

ideration. The outlier is an entity having all entities of the other

ind as neighbors. For machines, the condition is d M 

i 
= N 

P and

or parts d P 
j 

= N 

M . Next, identities , i.e. entities having s ( i, j ) = 1 are

rouped together. Finally, exact reduction removes well-structured
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Table 4 

Matrix B for the instance No.22. 

1 2 3 4 5 6 7 

1 20 0 0 0 0 0 0 

2 0 0 0 0 0 0 24 

3 0 16 0 0 0 0 0 

4 0 0 0 0 0 14 0 

5 0 0 0 30 0 0 0 

6 0 0 12 0 0 0 0 

7 0 0 0 0 15 0 0 
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arts of the input instance, denoted as exact singletons . In the ma-

rices A or B , exact singleton is an entry greater than zero having

eros in all other entries of the corresponding row and column. It

s clear, without proving, that exact singleton is a cell in the opti-

al solution of the original problem. 

Exact reductions are straightforward and represents no nov-

lty in the CFP algorithms. However, missing to implement them

n the real production problems is impractical. This conclusion

an be presented on the instance No.22 ( Chandrasekharan &

ajagopalan, 1989 ). This is a 24 × 40 instance, having density

3.65%. The instance has no exact outliers or residuals. Reduc-

ion of identities results in a 7 × 7 matrix B , presented in Table 4 .

his is a well-structured matrix with seven exact singletons, and

fter the reduction of these singletons, the exact final solution

s obtained. Thus, the optimal solution is obtained in a few mi-

roseconds of CPU consumption. By comparison, the exact algo-

ithm CPLEX ( Elbenani & Ferland, 2012 ) obtained the same result,

n 108.58 s, while the best reported heuristics spent few seconds

or the same result. It must be noted that these heuristics have no

onfirmation that the obtained result is optimal. 

Exact reductions have the main purpose to prepare the matrix

 for heuristic reductions, presented in next Subsection. In some

xamples with ill-structured instances, matrix B can be identical to

he initial matrix A , but the heuristic reductions just may benefit

rom those specificities of this ill-structure. 

Exact reductions assume the existence of special procedures

hat transforms the solution of the reduced problem to a solution

f the original problem. These procedures must satisfy two impor-

ant requirements: 

1. If the reduced solution is optimal for the reduced problem, then

the final solution, obtained by this procedure, is the optimal so-

lution for the original problem; 

2. If two entities belong to the same cell in the reduced prob-

lem, corresponding joined entities from the original problem

must be in the same cell in the optimal solution of the orig-

inal problem, no matter whether the reduced solution is opti-

mal or not. Hereinafter these procedures are referred as final

procedures and are performed by procedure FINAL. 

.3. Global parameters 

Global parameters define the criteria for the directions of the

lgorithm execution. According to the first set of global parameters

nd the value of the Threshold, defined in advance, the decision

s made if the Total search should be performed. Through the ex-

cution of the iterations Threshold1 defines the criteria when to

mplement the improvement heuristic. 

.3.1. Total search 

The most important information, in the process of construct-

ng a combinatorial optimization algorithm, is the dependence be-

ween the size of the FSS and the instance size. The lack of this in-

ormation has as the consequence that, in some step of a program

xecution, longer processing is performed instead of performing
he total search on the unexplored part of the FSS. In almost all

apers related to the CFP, regarding certain instances, the pro-

osed algorithms obtain worse results with a longer working time

n comparison with a simple total search algorithm. 

The formation of machine cells or part families is a well-known

roblem of set partitioning. The partitions of a set are the ways

o regard that set as a union of nonempty, disjoint subsets called

locks ( Knuth, 2011 ). For example, the five essentially different par-

itions of S 3 = {1, 2, 3} can be written in the form: �( S 3 ) = 123,

2|3, 13|2, 1|23, 1|2|3, using a vertical line to separate one block

rom another. In this list the elements of each block could have

een written in any order, and so could the blocks themselves, be-

ause 13|2 and 31|2 and 2|13 and 2|31 all represent the same par-

ition. In the previous example we have standardized the represen-

ation by agreeing to list the elements of each block in increasing

rder, and to arrange the blocks in increasing order of their small-

st elements. With this convention, a simple generator of all parti-

ions �( S k ) from a given partitions of �( S k − 1 ) can be formulated

s PARTGEN ( Algorithm 1 ): 

lgorithm 1 PARTGEN. 

1: procedure PARTGEN( �( S k − 1 )) 

2: For each of the partitions par in �( S k − 1 ) 

3: Add k as the last element of the blocks, once at a time ; 

4: Generate a new partition “par | k ”

5: Next 

6: end 

Using PARTGEN we can iteratively construct the partition of any

iven set: 

�(S 1 ) : −1 

�(S 2 ) : −12 1 | 2 

�(S 3 ) : −123 12 | 3 13 | 2 1 | 23 1 | 2 | 3 

�(S 4 ) : −1234 123 | 4 124 | 3 12 | 34 12 | 3 | 4 134 | 2 13 | 24 13 | 2 | 4 

14 | 23 1 | 234 1 | 23 | 4 14 | 2 | 3 1 | 24 | 3 1 | 2 | 34 1 | 2 | 3 | 4 

According to this simple generator, a triangle matrix K = ‖ k i,j ‖
an be constructed, where k i,j stores the number of partitions of

he set with i elements having exactly j blocks. Entries k i,j are

btained using simple relations: k i ,1 = k i,i = 1; k i,j = k i − 1, j − 1 + j ·
 i − 1, j . Matrix K, for the sets, having up to 15 elements is presented

n Table 5 . 

Any limitation on the partition composition lowers the table

ntries. For example, if the minimal number of elements in a block

s two, k 6,3 becomes 15 instead 90. Data from Table 3 , as well as

he corresponding partitions, can be stored in a database, so their

valuation does not overload the execution time of the algorithm.

t a first glance, the total number of combinations is calculated by

ultiplying the corresponding element of the matrix for machines

ith the corresponding element of the matrix for parts. For the

xample with 6 machines, 10 parts and 3 cells, 90 is multiplied

ith 9330. However, due to the correlation between the partition-

ng of parts and machines, the considered number of combinations

s only 90 (the number of machines is lower than the number of

arts). Nevertheless, as 90 ∗ 9330 = 839,700; the total search can

e processed, almost instantly for this example. 

.3.2. Threshold 1 

Allowed number of cells is calculated based on simple following

onsiderations regarding dimensions of cells: 

When all entities are in one cell, there are no exceptions, r = n

nd the grouping efficacy is: 

= 

n 

n + v 
= 

n 

n + N 

M N 

P − n 

= ρ. 
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Table 5 

Number of partitions for a given cardinality and number of blocks. 

1 2 3 4 5 6 7 8 9 10 

1 1 

2 1 1 

3 1 3 1 

4 1 7 6 1 

5 1 15 25 10 1 

6 1 31 90 65 15 1 

7 1 63 301 350 140 21 1 

8 1 127 966 1701 1050 266 28 1 

9 1 255 3025 7770 6951 2646 462 36 1 

10 1 511 9330 34,105 42,525 22,827 5880 750 45 1 

11 1 1023 28,501 145,750 246,730 179,487 63,987 11,880 1155 55 

12 1 2047 86,526 611,501 1379,400 1323,652 627,396 159,027 22,275 1705 

13 1 4095 261,625 2532,530 7508,501 9321,312 5715,424 1899,612 359,502 39,325 

14 1 8191 788,970 10,391,745 40,075,035 63,436,373 49,329,280 20,912,320 5135,130 752,752 

15 1 16,383 2375,101 42,355,950 210,766,920 420,693,273 408,741,333 216,627,840 67,128,490 12,662,650 
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Construction of cells makes sense only if η > ρ . The density

of operations determines allowed values for d C . If the lower bound

for efficacy is ˆ η, Eq. (4) implies that the bounds for d C are: 

ρ < ˆ η ≤ n − e 

d C + e 
≤ 1 ⇒ n − 2 e ≤ d C ≤ n − ( ̂  η + 1) · e 

ˆ η
. (5)

Thus, for example, when ˆ η = 0 . 5 , then d C can have only n –

e different values. This limitation further reduces the set of pos-

sible values for the dimensions of cells. If singletons and resid-

uals are removed from calculations, the smallest dimension of a

cell is 2 × 2. In this case, the maximum number of cells is w =
� min ( N M , N P ) 

2 � . As, for a given number w of cells, maximal d C im-

plies ( w- 1) cells having dimension 2 × 2, and minimal d C implies

cells having equal dimensions, then: 

N 

M N 

P 

w 

≤ d c ≤ 4(w − 1) + 

[
N 

M − 2(w − 1) 
][

N 

P − 2(w − 1) 
]
. (6)

The similar conclusions can be derived in the situations when

singletons are considered. In the paper Chandrasekharan & Ra-

jagopalan (1986a) , the upper limit for the number of independent

cells, when singletons are considered is: 

w ≤ 1 + 

⌊ 

( N 

M + N 

P − 1) −
√ 

[ ( N 

M + N 

P − 1) 
2 − 4( N 

M N 

P − n )] 

2 

⌋ 

For example, when ρ > 0.5 and when lower degree residuals

are removed, a cell formation procedure may produce maximally

three cells and the most probable number of cells is two. This fur-

ther implies simple, efficient CFP procedure for instances having ρ
> 0.5. Instances No.2, No.3, No.4, No.9 and No.34 have ρ > 0.5

and optimal partitions into two cells can be easily determined for

each of them. 

5.4. Extraction of potential residuals and outliers 

Heuristic reductions use similar parameters like exact reduc-

tions, with potential as the prefix: potential outliers and potential

residuals . 

The existence of outlier machines is a signal to a manager to

consider a duplication of such machines. Potential outlier is entity

l having density of operations ρ l close to one. In the experimental

evaluation it is considered that the potential outliers are entities

having highest value of density greater than 0.85. Such entity is re-

moved and after the completion of algorithm processing, potential

outlier is added to the most suitable cell using procedure FINAL. 

Potential residuals are entities having weak correlations to

other entities. The idea is to remove them from processing, thus

reducing the size of the problem, and to insert them into the
ost suitable cell, or leave them outside of cells after the com-

letion of the algorithm. Selection of potential residuals at the

eginning of the processing is not critical because their informa-

ional value in the cell formation procedure is small. Smaller val-

es s l = 

∑ ne 
j=1 s (l, j) and d̄ l imply greater possibility that l is resid-

al. Selection of potential residuals is performed through the sim-

le procedure: Sort s l in ascending order; Define the first position

os in this sorted list when d l > � d̄ l 2 � . Potential residuals are enti-

ies that correspond to the first ( pos – 1) elements in the sorted

ist. 

Additionally, all entities having d l = 1 are selected as potential

esiduals. The reason for this selection is the measure of contribu-

ion of e and v to the efficacy value, defined in Statement 2 . This

tatement defines the sufficient condition for efficacy improvement

hen interiors r and voids v are changed by �r and �v . 

tatement 2. The efficacy η is improved when: 

1. �r 
�v ≥ η when �r > 0 ∧ �v > 0 

2. �r 
�v < η when �r ≤ 0 ∧ �v < 0 

Proof : r+�r 
n + v +�v ≥ r 

n + v = η ⇒ �r · (n + v ) ≥ �v · o ⇒
r ≥ η · �v . �

In the trivial case when �v = 0, any �r > 0 improves the effi-

acy. This completes the proof. An important conclusion is that the

atio �r 
�v establishes the measure of improvement quality. 

Suppose, without loss of generality, that the considered entity,

aving degree one, is a machine. If this machine belongs to a cell

aving x parts, it participates to the overall efficacy value with one

nterior and ( x – 1) voids. If this machine is residual, it partici-

ates to the overall efficacy value with one exception. Thus, the

rst option has �r = 1 and �v = x − 1 comparing the option when

he considered machine is residual. The conclusion is that, when η
 0.5 ⇒ x ≤ 2 or when η > 0.34 ⇒ x ≤ 3. Thus, if the considered

achine is not a residual, it could belong to a cell with maximum

hree parts for any reasonable efficacy value. Also, after the exact

eductions are performed, two machines having degree one must

rocess different parts. These conclusions allow a simple inclusion

f these potential residuals to a final partition. 

The proposed selections of residuals can be clarified on the ex-

mples with instances. No.33 and No.34 . The high-density instance

o.34 has 37 machines and 53 parts, and density 49.82%. Exact re-

uctions reduce the problem size to 30 ×40. Five exact outliers (11,

4, 17, 21, 26) are removed. The sorted list s for machines is pre-

ented in Table 6 . 

Row lr shows indices of the reduced problem, while row

 contains indices of the original problem. From the condition

 

d̄ l � = � n � = � 977 � = 13 , first 8 entities are selected as potential
2 2 ·N 2 ·37 
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Table 6 

Sorted list s for the instance No.34. 

lr 13 30 28 4 31 7 23 20 19 11 29 8 14 26 

l 12 36 34 2 37 5 29 25 24 9 35 6 13 32 

s 1.38 2.45 4.16 5.48 5.93 5.95 6.66 7.51 8.00 8.17 8.38 8.75 8.77 8.79 

d 4 4 5 8 10 11 9 11 19 17 20 15 19 22 

Table 7a 

Matrix A for the instance No.11. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 

2 1 1 1 1 1 

3 1 1 1 1 

4 1 1 1 1 

5 1 1 1 1 1 

6 1 1 1 1 1 

7 1 1 1 1 1 

8 1 1 1 1 1 

9 1 1 1 1 

10 1 1 1 1 1 
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Table 7c 

Matrix B ’ for No.11. 

1 2 3 4 

1 17 

2 12 2 

3 15 
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L  
esiduals {12, 36, 34, 2, 37, 5, 29, 25}. All these potential residuals

re also residuals in the optimal solution of the original problem. 

The low-density instance No.33 has 30 machines and 90 parts,

nd density 11.19%. Exact reductions reduce the problem size to

9 ×72. One exact singleton (18, 26) is a final cell. According to

he sorted list, seven potential residual machines (1, 2, 6, 8, 10, 13,

3) are selected. Additionally, machine 18, having degree one, is

elected. In the final optimal partition, machines 2, 6, 13 and 23

re the only machine residuals. Machines 8, 10 and 18 are in the

ne-machine - one-part cells, while machine 1 forms a singleton

ith three parts. For parts, potential residuals are obtained from

9 parts having degree one (1, 3, 6, 7, 10, 12, 17, 18, 20, 23, 24, 26,

2, 34, 38, 39, 44, 45, 53). Their removal did not affect the optimal

artitioning of the reduced instance. 

.5. Grouping of machines and parts 

The next reduction step is an iterative grouping of high ranked

imilar entities. Through the iterations, entities having current

aximal s i,j are grouped. The procedure halts when current maxi-

al s i,j falls below the limits, defined in Threshold1. Table 7a shows

atrix A for No.11 while Table 7b presents reduced B after exact

eductions. 

E M = {{2,5,8},{7,10},{1},{3},{4},{6},{9}} and 

E P = {{2,10,11,12},{3,5,8,13,15},{9,14},{1},{4},{6},{7}}. 

Matrix B ’, obtained after the first iteration of grouping, is pre-

sented in Table 7c . 

E M = {{3,4,6,9},{7,10,1},{2,5,8}} and 

E P = {{1,4,6,9,14},{2,10,11,12},{3,5,8,13,15},{7}}. 

E M is the optimal partitioning. Procedure ASSIGNMENT, pre-

sented in the next Subsection transforms, in one step, E P to

the optimal partition assigning {7} to {2,10,11,12}. 
Table 7b 

Matrix B for No.11. 

1 2 3 4 5 6 7 

1 15 

2 8 2 

3 4 

4 2 1 1 

5 2 1 1 

6 2 1 1 1 

7 2 1 1 
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.6. Machine-part assignment 

Exact reductions produce matrix B and Heuristic reductions

roduce matrix ˆ B . Each row or column of ˆ B corresponds to one

r more rows and columns in B . In that way, the initial assign-

ent of entities to cells is obtained: i th row and i th column of B̂

epresents i th cell, so all entities from B that correspond to that

ow and that column are in the i th cell. In a total search for CF, as

oted in Section 5.3.1 , the number of combinations is calculated as

 product of the corresponding elements of the matrix K , for ma-

hines and parts. This non-linearity reduces the size of instances

hat can be processed with a total search within a reasonable time.

ortunately, the specificity of the CFP makes it possible to parti-

ion machines based on the partition of parts and vice versa. In

his case the total search should be processed through the smaller

ntity (machines or parts). In the following, three kinds of assign-

ent are introduced: (i) machines to parts; (ii) cell successors for

on-assigned entities and (iii) forbidden assignments. It can be as-

umed that, without loss of generality, the number of machines is

ower than the number of parts. 

.6.1. Machine-part correlation 

The correlation between machines and parts is one among few

FP specificities, which are discussed in literature. In the paper

i et al. (2010) , an important Theorem is proved that, for a given

achine partitions, each part j is optimally assigned to cell c k if: 

 = arg min { e P j,t + η ′ v P j,t } , t = 1 , . . . , w. (7)

here e P 
j,t 

is the number of exceptions formed by assigning part j

o cell t , and v P 
j,t 

is the number of voids produced by assigning part

 to cell t . In the papers dealing with a machine-part correlation,

he rules for part assignments are defined for non-optimal machine

ssignments. Thus, η′ is a current, not optimal value, which implies

hat the assignment of a part depends on the assignment of other

arts. 

The following Statement introduces a stronger condition for

arts assignment. 
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Fig. 2. Matrix T M for the instance No.35. 
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Statement 3. For a given partition of machines, the sufficient con-

dition that p j is optimally assigned to cell c k is: 

r P j,k − v P j,k − e P j,k > 0 . (8)

This assignment does not depend on the assignment of other

parts. 

Proof. The worst case for assigning p j to c k is when an alterna-

tive cell can be formed that contains only the machines outside

c k that proccesses p j . The efficacy in this case is η = 

r+�e 
n + v . Thus,

the sufficient condition to assign p j to c k is r+�r 
n + v +�v ≥ r+�e 

n + v = η ≤
1 ⇒ �r ≥ �v + �e . This condition does not depend on η, so

the assignment p j to c k does not depend on the assignment

of the other parts. This completes the proof. The main advantage of

the proposed condition is that the assignment does not depend

on the current efficacy value. Thus, the assignment of a part to a

cell does not change any of the previous part assignments. �

Statement 3 can be used to extend the proposed parts assign-

ment to reassignment of machines and parts. For this purpose, the

definition of cell successors is introduced. 

Definition 1. A cell successor is a machine, or a part, satisfying

sw i,k = r i,k − v i,k − e i,k > 0. The value sw i,k is a successor’s weight . Cell

c k is a dominator for its successors. 

5.6.2. Restrictions in cell assignment 

The limit values of similarity are s i,j = 1 (two identical rows or

columns in matrix A ) and s i,j = 0 (logical operation OR between the

binary representation of these two rows or columns returns the

value FALSE). If two entities having s i,j = 0 are in the same cell, all

operations within cell of one entity are voids for another. Unlike

large values of s , value s i,j = 0 hides degrees of dissimilarities. Ma-

trix T , defined in (3) , represents an appropriate measure of dissim-

ilarities. This measure can effectively be used to reduce the FSS in

the following manner. Declare two entities, en i and en j , as oppo-

sites , denoted as opos ( en i , en j ) if t i,j is below the defined limit. In

that way, all opposites form a list of pairs of entities that belong to

different cells which can’t be merged before the final procedures.

In our experimental research, the threshold for opposites is defined

as an average value of all entries in T . This threshold was the right

choice for all tested instances. 

One can notice the convenience of opposites in the reduction

process on the example with the largest instance No.35 (40 × 100).

After the exact reductions, the reduced instance has dimensions

39 × 59. After iterative heuristic groupings the reduced instance

has dimensions 14 × 17 and matrix B ’ is presented in Table 8 . 
Table 8 

Matrix B ’ for the instance No.35. 

1 2 3 4 5 6 7 8 9

1 2 36 

2 40 1

3 62 2 1 1 

4 11 5 1 

5 1 88 

6 1 1 1 

7 12 1 1

8 2 18

9 23 1 

10 

11 4 

12 4 1

13 1 1 1 

14 1 3 1 2 1 
Corresponding partitioning is: 

E M = {{2,10,16,21,31},{1,3,7,32},{6,12,26,38,40},{18,33,34}, 

{5,8,22,23,37,39},{19,25,28},{14,35},{11,13},{4,9,20}, 

{24,27,29},{15},{17},{30},{36}} and 

E P = {{36,38,42,51,52,64,65,70,72,74,75,76,80,87},{45,67,71,91}, 

{6,15,16,24,27,60},{35,47,53,78,79,83,88,93}, 

{8,11,13,14,20,22,23,32},{39,73}, 

{10,18,29,33,34,37,44,49,50,54,55}, 

{63,66,68,69,82,84,85,89,90,92,94,96,97,98,99,100}, 

{1,2,3,4,5,7,21,25,28},{9,12,17,19,26,30,31,40,43,46}, 

{56,57,58,59,61,62},{41},{48},{77},{81},{86},{95}}. 

The threshold for machines is −42 and the number of opposites

s 33 ( Fig. 2 : yellow coloured entries on the upper or lower triangle

f the matrix, together with the entry coloured in colour bisque,

hich represents the entry having minimal t i,j ). 

For parts, the threshold is −29 and the number of opposites

s 46. First ten grouped machines and first eleven grouped parts

orm clearly separated sub-matrices. From Fig. 3 it is clear that all

erged parts, except grouped part 6 must belong to the different

ells. Thus, all ten cells from the optimal partition are defined, and

he final procedure, almost immediately finds the optimal solution.

nstance No.35 is the largest instance in the list (40 × 100) with

ensity 10.5%. Thus, the optimal solution is reached in 0.09 s. By

omparison, the exact algorithm CPLEX ( Elbenani & Ferland, 2012 ),

btains the same result, in 1572,184.5 s, while the best reported

euristics spent about 300 s for the same result. 
 10 11 12 13 14 15 16 17 

4 1 

 3 1 

4 4 1 

1 1 1 5 

1 18 1 
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Fig. 3. Matrix T P for the instance No.35. 
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Algorithm 3 GCACFP. 

procedure GCACFP( ̂ B , E M , E P , track ) 

f 1 sorts cells in a descending order of their corresponding entries in ˆ B ; 

f 2 elects the entity en from C W − k having maximal sw ; in the case of ties, 

all entities having maximal sw are tracked if the number of such entities is 

below the value track , otherwise, first track entities are tracked; 

f 3 
1: ηopt ← current optimal value of the objective function; c opt ← null ; 

2: for each c in C ∗

3: for each enc in c if opos ( enc, en ) next c ; 

4: insert en in c ; 

5: ˆ B , E M , E P , y M , y P ← ASSIGN MEN T ∗ ( ̂ B , E M , E P , y M , y P ) ; 

6: if ( η ( ̂ B ) > ηopt ) then c opt ← c ; ηopt ← η ( ̂ B ) ; 

7: next c 

8: if not c opt = null then insert en in c opt; 

end 

Asterisk in ASSIGNMENT ∗ denotes that only entity en and cell c are processed. 

c  
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Table 9 

Referent instances from literature. 

No. N M N P Source 

1 5 7 King & Nakornchai (1982) 

1 a 5 7 King & Nakornchai (1982) 

2 5 7 Waghodekar & Sahu (1984) 

3 5 18 Seifoddini (1989) 

4 6 8 Kusiak & Cho (1992) 

5 7 11 Kusiak & Chow (1987) 

6 7 11 Boctor (1991) 

7 8 12 Seifoddini & Wolfe (1986) 

8 8 20 Chandrasekharan & Rajagopalan (1986) 

9 8 20 Chandrasekharan & Rajagopalan (1986a) 

10 10 10 Mosier & Taube (1985a) 

11 10 15 Chan & Milner (1982) 

12 14 23 Askin & Subramanian (1987) 

13 14 24 Stanfel (1985) 

14 16 23 McCormick, Schweitzer, & White (1972) 

15 16 30 Srinivasan, Narendran, & Mahadevan (1990) 

16 16 43 King (1980) 

17 18 24 Carrie (1973) 

18 20 20 Mosier & Taube (1985 b) 

19 20 23 Kumar, Kusiak, & Vannelli (1986) 

20 20 35 Carrie (1973) 

21 20 35 Boe & Cheng (1991) 

22 24 40 Chandrasekharan & Rajagopalan (1989) 

23 24 40 Chandrasekharan & Rajagopalan (1989) 

24 24 40 Chandrasekharan & Rajagopalan (1989) 

25 24 40 Chandrasekharan & Rajagopalan (1989) 

26 24 40 Chandrasekharan & Rajagopalan (1989) 

27 23 40 Chandrasekharan & Rajagopalan (1989) 

28 27 27 McCormick et al. (1972) 

29 28 46 Carrie (1973) 

30 30 41 Kumar & Vannelli (1987) 

31 30 50 Stanfel (1985) 

32 30 50 Stanfel (1985) 

33 30 90 King & Nakornchai (1982) 

34 37 53 McCormick et al. (1972) 

35 40 100 Chandrasekharan & Rajagopalan (1987) 
.6.3. Procedure ASSIGNMENT 

Sub-procedure ASSIGNMENT, summarized in Algorithm 2 , forms

ells, C , based on the grouped sets E M , E P and the matrix ˆ B . As

 side effect, a further reduction of FSS can be obtained. For the

larity of presentation, it is assumed that the number of grouped

achines, y M is less than the number of grouped parts, y P . 

lgorithm 2 ASSIGNMENT. 

1: procedure ASSIGNMENT ( ̂ B , E M , E P , y M , y P ) 

2: i, k ← max (sw 

P 
i,k 

| sw 

P 
i,k 

> 0 , i � = k ) ; 

3: if ( i is not null) 

4: for j = 1 to y M 

5: q = b k,j ; b k,j = b i,j ; b i,j = q 

6: next j 

7: go to 2; 

8: end if 

9: i, k ← max ( sw i,k | sw i,k > 0); 

10: if ( ( i is not null) and ( sw i,k ∈ sw 

P ) 

11: for j = 1 to y M 

12: b j,k = b j,k + b j,i ; y 
p = y P − 1; 

13: concatenate (en P 
k 
, en P 

i 
) in E P 

14: next j 

15: go to 11; 

16: else if ( ( i is not null) 

17: for j = 1 to y P 

18: b k,j = b k,j + b i,j ; y 
M = y M − 1; 

19: concatenate (en M 
k 

, en M 
i 
) in E M 

20: next j 

21: go to 11; 

22: end if ; 

23: end 

First (lines 2–8), the group of parts having maximal successor

eight, sw 

P 
i,k 

is determined. If this weight has a positive value,

olumns i and k are switched in B . The procedure continues un-

il all potential group parts are assigned to dominator cells. 

Next, additional groupings based on successors weights are per-

ormed (lines 9–22). The groups of parts are concatenated in the

oop 11–14 while the groups of machines are concatenated in the

oop 17–20. 

.7. Improvement heuristic GCACPF 

Procedure GCACFP, presented as Algorithm 3 , is a construc-

ive heuristic based on the GCA, proposed in Danilovic & Ilic

2016) which, using the local search, directs the solution to a global

ptimum. Due to the modular structure of the new algorithm, the
hoice of improvement heuristic can be adjusted to the production

nvironment of the specific problem and the problem instances.

n the new hybrid algorithm GCA is used for two reasons. First,

he constructive character of this heuristic is ideal for a parallel

rograming and second, the forbidden groupings are easily imple-

ented. 

Constructive search techniques work by constructing a solu-

ion step by step, evaluating that solution for feasibility and objec-

ive function. Insertion based constructive heuristics typically have

ommon structures, comprising of the initialization phase and the

oop in the insertion phase. 

For the partitioning problems, ˆ B holds data regarding the ini-

ial cell partition. In the initialization phase, the function f 1 ( ̂  B )

orts the cells, according to their corresponding entries in 

ˆ B . The
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insertion phase has w -1 iterations, where, at the beginning of the

k -th iteration, all cells are divided into two subsequences: the se-

quence of already processed cells, C ∗ and the sequence of w – k

unprocessed cells, C w - k . At each iteration k of the insertion phase,

two types of selections are performed: a selection f 2 ( k, C n − k ) of

the entity en from C w − k and the selection f 3 ( C 
∗, k, en ) of the cell

from C ∗ where en should be inserted. If there is no entity that

meets the criterion, en remains in the current cell. After each im-

provement of the objective function value, the procedure restarts

from the beginning. 

In the GCACFP version of the GCA, the algorithm keeps all par-

tial partitions that result in current optimal value of the objective

function. The only input parameter, defined by the manager is an

integer, track , equal to the upper limit of the number of the simul-

taneously tracked partitions. This definition also allows a trivial ap-

plication of a parallel programming, because the individuals in the

initial population can be treated completely independently of each

other. According to the generalized form of GCA, the precise defi-

nition of GCACFP requires only a definition of functions f 1 , f 2 and

f 3 which are very simple for CFP: 

6. Computational results 

All relevant CFP algorithms have been tested on 35 instances

which can be downloaded from http://mauricio.resende.info/data/

cell-formation/ . The instance sizes and their sources are presented

in Table 9 . Due to the inconsistency between the original published

source for the test problems and data that has been published,
Table 10 

Comparison between CPLEX, BGEPS, ILS and CFOPT. 

No. N M N P CPLEX BGEPS 

Max. Sol. CPU Solution 

1 5 7 – – 75 

1a 5 7 82.35 0.33 –

2 5 7 69.57 0.35 69.57 

3 5 18 79.59 0.47 80.85 

4 6 8 76.92 0.37 79.17 

5 7 11 60.87 1.67 60.87 

6 7 11 70.83 1.17 70.83 

7 8 12 69.44 1.69 69.44 

8 8 20 85.25 2 85.25 

9 8 20 58.72 5.03 58.72 

10 10 10 75 1.82 75 

11 10 15 92 1.72 92 

12 14 24 72.06 78.11 74.24 

13 14 24 71.83 103.68 72.86 

14 16 24 53.26 101,783.88 53.33 

15 16 30 69.53 752.01 69.92 

16 16 43 57.23 – 58.04 

17 18 24 57.73 14,909.77 57.73 

18 20 20 39.66 – –

19 20 23 50.81 869,103 50.80 

20 20 35 77.91 144.63 79.37 

21 20 35 55.49 – 58.79 

22 24 40 100 108.58 100 

23 24 40 85.11 496.95 85.10 

24 24 40 73.51 6556.99 73.50 

25 24 40 47.95 – 53.28 

26 24 40 39.39 – –

27 24 40 41.84 – –

28 27 27 50.57 – –

29 28 46 35.68 – –

30 30 41 59.7 – 63.04 

31 30 50 49.69 – 59.77 

32 30 50 41.42 – –

33 36 90 43.77 – –

34 37 53 57.47 – –

35 40 100 84.03 1572,184.5 84.03 
eported values of the objective function may differ by a small

mount. For example, instance No.1 a is a different instance from

o.1, but in certain papers referenced to the same source. Brusco

2015) has prepared a supplement associated with his manuscript

hat contains precise data for each problem, as well as FORTRAN

ource codes for his heuristic. In his paper, the best published re-

ults for all instances are obtained with slight deviations for in-

tances 15, 27 and 31, due to a data discrepancy among some ver-

ions of this problem used in the literature. 

The new algorithm was coded in C# and implemented on a lap-

op computer with Intel Core 2 Duo CPU T6600, 2.2 GHz, 6 GB of

nstalled memory, running Microsoft Windows 7. The results ob-

ained for each of the problems are compared with the best-known

esults reported for the same problems, by using the 19 methods

arked with asterix in Table 1 . 

For the CPU time comparison, the logical choice was to com-

are our results with the procedure reporting the best results. Due

o the associated supplement in (Brusco, An iterated local search

euristic for cell formation, 2015) and the fact that the reported

esults in this article are the best ones published yet, an objec-

ive efficacy comparison could be implemented. Brusco’s FORTRAN

ource code was translated to C# and such obtained values for

omputation time were the object of comparison. 

Table 10 presents a comparison between ILS and CFOPT. Data

or two exact algorithms, CPLEX ( Elbenani & Ferland, 2012 ) and

GEPS, Pinheiro et al. (2016) are reported as a reference. For cer-

ain instances (3, 4, 12 – 16, 18, 20, 21, and 25 - 34) the efficacy

btained by the exact algorithms is below the best values. This is
ILS CFOPT 

CPU Avg. Sol. CPU Solution CPU 

– – – 75 0 

0.01 82.35 0.2 82.35 0 

0.01 69.57 0.3 69.57 0 

0.03 80.85 0.6 80.85 0 

0.01 79.17 0.6 79.17 0 

0.01 60.87 1.8 60.87 0 

0.06 70.83 1.7 70.83 0 

0.03 69.44 2.8 69.44 0 

0.04 85.25 2.8 85.25 0 

4.94 58.72 2.2 58.72 0 

0.01 75 4.5 75 0 

0.02 92 2.6 92 0 

0.09 74.24 22.4 74.24 0 

0.11 72.86 22.4 72.86 0 

144.91 53.85 40.3 53.85 0 

0.54 69.93 25 70.76 0 

125.62 58.04 80.9 58.04 0.05 

42.32 57.73 55.9 57.73 0 

– 43.97 32.9 43.97 0 

1771.99 50.81 41.20 50.81 0 

305.48 78.88 35.50 79.38 0 

14.55 58.6 41.80 58.79 0 

0.15 100 52.80 100 0 

0.44 85.11 58.00 85.11 0.04 

0.78 73.51 65.30 73.51 0.05 

48,743.9 53.29 150.90 53.29 0.16 

– 48.95 183.10 48.95 0.18 

– 46.58 169.30 47.26 0.21 

– 54.82 37.60 54.82 0.02 

– 47.85 247.60 47.85 0.9 

41.53 63.31 340.70 63.31 1.1 

2622.06 59.77 295.80 60.12 1.14 

– 50.84 399.20 50.84 0.19 

– 48.29 740.90 48.29 0.35 

– 61.36 48.20 61.36 0.02 

18.22 84.03 384.10 84.03 0.09 

http://mauricio.resende.info/data/cell-formation/
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Table 11 

Comparison between 19 methods and CFOPT. 

No. GA EA ES HGGA SACF HGA GAA HHA EnGGA WFA HGDE ACO SA SAYLL GRASP GAVNS ILS CFPAS GLCA CFOPT 

1 73.68 73.68 73.68 73.68 75 73.68 – 75 – 75 

1a 82.35 82.35 82.35 82.35 82.35 82.35 – 82.35 82.35 

2 62.50 62.50 60.87 69.57 69.57 69.57 69.57 69.57 69.57 62.50 69.57 69.57 69.57 69.57 62.50 69.57 69.57 69.57 69.57 69.57 

3 77.36 79.59 79.59 79.59 79.59 79.59 79.59 79.59 79.59 79.59 79.59 79.59 80.85 79.59 79.59 80.85 80.85 80.85 79.84 80.85 

4 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92 79.17 76.92 76.92 79.17 79.17 79.17 76.92 79.17 

5 50.00 53.13 53.13 60.87 60.87 58.62 60.87 60.87 60.87 53.13 60.87 60.87 60.00 60.87 53.13 60.87 60.87 60.87 60.87 60.87 

6 70.37 70.37 70.37 70.83 70.83 70.37 70.83 70.83 70.83 70.37 70.83 70.83 70.83 70.83 70.37 70.83 70.83 70.83 70.83 70.83 

7 68.29 68.29 69.44 68.30 69.44 68.29 69.44 69.44 69.44 69.44 68.29 69.44 69.44 69.44 69.44 69.44 

8 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 85.25 

9 55.91 58.72 58.72 58.72 58.41 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 58.72 

10 72.79 70.59 70.59 75.00 75.00 70.59 75.00 75.00 70.59 75.00 75.00 75.00 75.00 70.59 75.00 75 75 75 75 

11 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92 92 92 92 

12 69.86 69.34 72.06 70.83 69.86 72.06 72.06 74.24 72.06 69.86 71.83 74.24 74.24 73.53 74.24 

13 63.48 69.33 69.24 71.83 71.21 70.51 71.83 71.83 69.33 71.83 71.83 72.86 71.83 69.33 72.86 72.86 72.86 71.83 72.86 

14 52.58 51.96 52.75 51.96 53.26 51.96 53.41 52.75 53.33 53.26 51.96 53.33 53.85 53.33 53.33 53.85 

15 67.83 67.83 68.99 67.83 68.99 67.83 68.99 68.99 69.92 68.99 67.83 69.92 69.93 69.92 70.76 

16 54.86 54.86 57.53 52.44 54.86 56.13 56.38 57.53 55.90 57.53 57.53 57.98 57.53 56.52 57.42 58.04 57.96 57.31 58.04 

17 54.46 54.46 57.73 54.95 57.73 54.46 57.73 57.73 57.73 57.73 54.46 57.73 57.73 57.73 57.73 57.73 

18 34.16 42.94 42.96 43.18 41.04 43.45 42.94 43.26 42.96 43.45 43.45 43.97 43.45 42.96 43.18 43.97 43.76 42.55 43.97 

19 39.02 49.65 49.65 50.81 50.81 49.65 50.81 49.61 50.81 50.81 50.81 50.81 49.65 50.81 50.81 50.73 50.81 50.81 

20 66.30 76.22 76.14 77.91 78.40 76.14 77.91 78.40 77.91 76.54 77.91 77.91 79.38 77.91 76.54 77.78 78.88 79.38 77.91 79.38 

21 4 4.4 4 58.07 58.06 57.98 56.04 58.38 57.61 57.98 58.15 57.98 57.98 58.79 57.98 58.15 57.61 58.6 58.7 57.98 58.79 

22 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 100 100 100 100 

23 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11 

24 73.03 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 73.51 

25 37.62 51.88 51.85 53.29 52.44 52.50 52.87 53.29 53.29 51.97 53.29 53.29 53.29 53.29 51.97 53.27 53.29 53.29 53.29 53.29 

26 34.76 46.69 46.50 48.95 47.13 46.84 48.95 48.63 48.95 47.37 48.95 48.95 48.57 48.95 47.37 46.66 48.95 48.79 48.95 

27 34.06 44.75 44.85 47.26 44.64 44.85 47.26 46.15 46.58 44.87 47.26 47.26 46.00 47.26 44.87 47.16 46.58 46.26 47.26 

28 54.27 54.27 54.02 54.31 54.82 54.27 54.82 54.82 54.82 54.27 54.31 54.82 54.82 54.82 

29 44.37 43.85 46.91 46.43 46.06 47.08 47.68 47.23 46.06 46.06 47.85 47.53 47.85 

30 40.96 58.11 57.69 63.31 62.42 60.74 62.59 63.31 59.52 63.31 63.31 62.86 63.31 59.52 63.04 63.31 62.94 62.95 63.31 

31 48.28 59.21 59.43 59.77 60.12 59.66 60.12 60.12 60.00 59.77 59.77 59.66 59.77 60.00 60.12 59.77 59.77 59.44 60.12 

32 37.55 50.48 50.51 50.83 50.51 50.51 50.83 50.83 50.51 50.83 50.55 50.83 50.51 50.68 50.84 50.83 50.84 

33 42.12 41.71 46.35 44.67 46.15 47.11 47.93 47.14 45.93 46.03 48.29 47.93 48.29 

34 56.42 56.14 60.64 59.60 60.64 59.85 60.64 60.64 61.16 60.64 59.85 60.57 61.31 61.16 59.48 61.36 

35 83.90 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 84.03 
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xplained by the fact that the exact algorithms could not produce

esiduals. 

For all tested instances, CFOPT has obtained best values for the

bjective function. Comparing to ILS, better results are obtained for

o15, No20, No21, No27 and No31. Due to the possible deviations

f No15, No27 and No31, the general conclusion can be derived

hat both algorithms have produced best known results yet. This

s an expected result, since the 30-year period of testing on these

nstances consequently implies that the obtained results are also

he optimal ones. 

Comparison of CPU times, however, confirms the main hypothe-

is in the work: efficacy improvements with CFOPT are respectable.

or 27 instances the optimal solution was obtained, almost in-

tantly, without application of the GCACFP. The GCACFP was ap-

lied on seven (16, 25, 26, 27, 29, 30 and 31) ill-structured in-

tances. Even for these instances, the time savings are greater than

n order of magnitude. On the largest instances CFOPFT is: 

– No.33, 138 times faster, 

– No.34, 3068 times faster, 

– No.35, 933 times faster. 

The detailed information related to the execution of CFOPT on

hese three instances is presented in the examples: 

– for No.33 and No.34 on pages 18 and 19 and Table 6 ; 

– for No.35 on pages 21 and 22 and Table 8 . 

The detailed examples on functioning CFOPT are also given 

– for No.22 on page 14 and Table 4 , 
– for No.11 on pages 19 and 20 and Table 7a , b , c . a
The way instances No.2, No.3, No.4, No.9 and No.34 are, almost

nstantly processed using CFOPT is described on the page 17. 

Table 11 presents the comparison of the objective function for

5 test instances, obtained by applying 19 best published methods

nd CFOPT. Best results are bolded. 

The comparison of the results in Tables 10 and 11 impose an

nambiguous and simple conclusion: CFOPT is, on the set of tested

nstances, the best published algorithm for the CFP. For each in-

tance the best result is obtained with a huge time-savings. 

. Conclusions 

Unlike all compared CFP studies which, by default, represent an

pplication of some metaheuristic to the clustering of machines

nd parts, this study considers the CFP from a completely differ-

nt view. The proposed approach attempts to explore the essence

f the problem and, based on the specifies of the problem, defines

he procedures that guide the search toward the global optimum.

FP is a typical example of the problem which is convenient for

his approach. The paper investigates and establishes procedures to

emove the parts of FSS from the search. This was resulted in the

onstruction of a new hybrid algorithm CFOPT for the CFP. Before

he evaluation of this algorithm the target was achieved; a very

imple ways to narrow FSS are defined which so far did not re-

eive any attention in the literature. The evaluation was carried

ut in the spirit of the recent evaluations of algorithms; all in-

tances that are used in the literature are applied, and the results

re compared to the best published results for the target group of

lgorithms. 
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The main contribution of this paper is a simple and efficient

method to improve the efficacy of the procedures for an important

problem in the field of production planning, the CFP. The presented

approach combines several advantages over known solutions for

the same problem: 

- CFOPT is the best algorithm, related to the known algorithms

for the same problem; 

- Enormous time saving of the approach enables improvement of

the quality of the results for any given instance; 

- The proposed set of different reductions works well for all pos-

sible types of instances (well-structured and ill-structured; high

and low density; …). 

- Instead or after the execution of GCACFP, any improvement

heuristic for CFP could be applied. This is a simple way to im-

prove any heuristic for CFP; 

- The algorithm does not implement any random diversification

search, so it doesn’t need any statistical analysis for its evalua-

tion; 

- Matrix B completely replaces matrix A for all necessary calcu-

lations. It can be adapted for more complex problems for CMS

design and different objective functions; 

- The reduction procedures scan the given instance and provides,

at the managers’ disposal, a set of useful information that can

help them in the process optimization. 
.1. Future research 

Modularity of the new algorithm routes different directions of

he future research: 

1. The degree of usefulness of an expert system in a real produc-

tion environment depends on the degree of alignment between

the problem model and the real requirements. It is necessary to

analyze the application of this approach in various production

environments for different models of the problem. 

2. Definition of new, better bounds for the Threshold and the

Threshold1, which would further narrow the search of a FSS. 

3. Definition of complex, similarity and dissimilarity measures and

their implementation in the iterations of the algorithm. 

4. Design of improvement heuristics that better fits the problem. 

5. Implementation of algorithm for multi-criteria optimization CFP

problems. 

6. The construction of new, “more difficult” instances for evalua-

tion of CFP algorithms is a prerequisite for objective evaluation

of the results related to this problem 
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A

alysis of the steps of the hybrid algorithm. Through the Windows of 

t d values through the execution of the algorithm. Here we present the 

e are copied from the Window of the Application interface through the 

e

ppendix 1 

A new Application is developed in C# as the utility for the an

he application, it is possible to track all important parameters an

xecution of the steps of CFOPT on the instance No.14. All results 

xecution of the algorithm. 

Input processing routes: 

Incidence matrix: 
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Global parameters: 

Exact reductions: 
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Matrix B: 
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Similarity matrix for machines: 

Similarity matrix for parts: 
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Reduction matrix through the iterations: 
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End of Loop; Dissimilarity matrix for machines: 

Dissimilarity matrix for parts: 
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