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a b s t r a c t 

This paper presents a combinatorial problem called a pick-up routing problem with a three-dimensional 

(3D-PRP) loading constraint, clustered backhauls at the operational level, and train loading at the tactical 

level for an intermodal transportation network. A two-phase approach, called clustering first, packing- 

routing second, is proposed for use during the first stage. The clustering of backhauls is carried out using 

the k-means algorithm. A hybrid approach is provided, which combines the packing of orders by first 

solving a 3D loading problem for each cluster using machine learning with a best-fit-first strategy, with 

routing using a genetic algorithm. During the second stage, the train-loading problem is solved using a 

mixed integer programming approach to minimise the total costs by incorporating various cost types, in 

which detention and demurrage costs are taken into account. All solution approaches are computationally 

evaluated on real-world data provided by an international logistics firm and new randomly generated 

instances. Comparisons are carried out using both exact solution methods and heuristic approaches, and 

the proposed approach was shown to be more effective for real-world problems. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent years, intermodal problems related to decisions such

as transport mode selection, vehicle routing (VRP), load planning,

and consolidation have gained substantial attention in the trans-

portation sector. An intermodal network design that ensures good

solutions to multiple decisions is an important challenge. In this

context, most researchers have focused on vehicle-routing prob-

lems and its variants, which are practical issues in the area of in-

termodal transportation. 3D-PRP is a variant of one of the most

discussed vehicle-routing problems concerning practical and the-

oretical importance. Regarding the practical aspect, 3D-PRP has

many real-world applications that are particularly relevant for lo-

gistics companies dealing with distribution and loading issues. 3D-

PRP is of significant value from a theoretical aspect because it in-

cludes two NP-hard problems: the pick-up routing problem and

three-dimensional loading. 

Train transportation plays a key role in intermodal networks,

providing the efficient movement of items. There has recently been

growing interest in shifting the transportation modes from road

to rail. Pre- and post-haulage in the road transportation have a

larger cost per tonne-km ( Bergqvist & Behrends, 2011 ). Rail trans-

port ensures a reduction in external costs ( Janic & Vleugel, 2012 ).
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lthough both 3D-PRP and train loading problems have been sep-

rately discussed, there is a need to coordinate these problems in

he present paper. The combination of different levels is necessary

ecause 3D-PRP is a precondition of a train loading problem. Back-

aul orders are packed during the 3D-PRP stage and the packed

rders are then assigned to trains. 

The present paper addresses the interactions between 3D-PRP

nd a train loading problem for an intermodal transportation net-

ork including road and rail transportation modes. During the first

tage, road transportation is provided for the 3D-PRP, which han-

les the clustering of backhauls by incorporating the latitude and

ongitude of the loading cities using the k-means algorithm, the

icking up of the orders, a feasible loading of the orders, and ve-

icle routing. During the second stage, rail transportation is exam-

ned for the train-loading problem, in which consolidated orders

re assigned to trains with a focus on reducing the penalty and

emurrage costs. 

Our motivation for this paper is derived from the pack-

ng first, routing second approaches proposed by Bortfeldt and

omberger (2013) and Reil, Bortfeldt and Mönch (2018) . We mod-

fied this approach by first using the clustering of backhauls for

 fast computational time, then packing using machine learning

or a feasible loading pattern with four loading dimensions, and fi-

ally applying vehicle routing using a genetic algorithm. The pack-

ng phase also handles four dimensions (length, width, height, and

eight). Therefore, this phase can be called a four-dimensional

https://doi.org/10.1016/j.eswa.2019.06.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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oading problem (4D loading). As the main contribution of this pa-

er, we combine operational and tactical levels of decision making

ith a two-stage approach for considering the picking up of or-

ers from customers in the hinterland, and then loading the orders

nto the vehicles using a 3D bin packing formulation for the oper-

tional and tactical levels to assign these order groups to trains.

he combining of two different levels of decision (operational-

actical) is called a “vertical integration” ( Pishvaee, Farahani & Dul-

aert, 2010 ). Several researchers have provided the benefits of com-

ining different decision levels ( Lerhlaly, Lebbar, Allaoui, Ouazar &

fifi, 2016 ). The combination of levels ensures a bridging of the

ap between academic and real-world problems. In addition, to the

est of our knowledge, this is the first study integrating a genetic

lgorithm and a machine learning approach to solve 3D-PRP. We

rovide a new principle, namely, clustering first, packing-routing

econd for 3D-PRP. We consider various cost variants by incorpo-

ating penalty and demurrage costs for the train loading problem

nd the four loading dimensions, making it more challenging than

he three loading dimensions for a 3D loading problem. A holis-

ic view is presented regarding the cost minimization and util-

ty maximization simultaneously. Finally, we compare exact solu-

ion approaches, open-source coding approaches, and heuristic ap-

roaches on real-world data using an international logistics firm

nd new randomly generated instances. 

The remainder of this paper is organised as follows. The next

ection presents a literature review, and Section 3 describes the

aterials and methods applied. Section 4 presents the proposed

olution approaches. Section 5 presents the computational results.

inally, Section 6 provides some concluding remarks regarding this

tudy. 

. Literature review 

Many published papers related to intermodal transportation are

ased on determining the mode choices ( Bierwirth, Kirschstein &

eisel, 2012; Min, 1991; Serper & Alumur, 2016 ) and a compar-

son of transportation modes ( Barnhart & Ratliff, 1993 ) and load

lanning ( Bauer, Bekta ̧s & Crainic, 2010; Bruns & Knust, 2012 ). The
able 1 

verview of papers dealing with vehicle routing problems with 3D loading constraints. 

Paper Problem characteristics Objective 

Bortfeld (2012) Vehicle routing with 3D 

loading 

Total travel distance 

and total 

computation times 

Bortfeld and Homberger (2013) Packing first, routing 

second 

Total travel distance 

and vehicle numbers

Ruan et al. (2013) Routing first, packing 

second 

Total transportation 

cost 

Gendreau et al. (2008) Routing to check the 

loading 

Total travel distance 

Junqueira, Oliveria, Carravilla 

and Morabito (2013) 

Vehicle routing with 3D 

loading 

Minimum cost delivery

routes 

Ceschia and Schaerf (2013) 3D Packing Empty linear space 

Lacomme et al. (2013) Routing with 3D Packing Total transportation 

cost 

Tao and Wang (2015) Routing that calls the 

loading 

Utilisation rate of 

container 

Tarantilis et al. (2009) Combined routing and 

3D-packing 

Minimum cost set of 

routes 

Zachariadis et al. (2013) Vehicle routing with 

loading arrangement 

Utilisation rate of palle

volume 

Zu et al. (2012) Vehicle routing with 

loading sub problem 

Total transportation 

cost 

Reil et al. (2018) Packing first, routing 

second 

Total travel distance 

Presented study Clustering first, then 

packing and routing 

Total travel distance 

and number of 

vehicles 
ombination of operational and tactical levels of decision-making

elated to intermodal transportation is presented for the first time

n this paper. 3D-PRP and train loading problems have been stud-

ed intensively but independently. Thus, a literature review can be

ivided into two groups: 

.1. Studies related with pick-up routing problems with 3D loading 

onstraints 

VRP with real-world constraints have attracted the attention

f both researchers and practitioners during the last few years.

owever, VRP with clustered backhauls and 3D loading was ad-

ressed by only Bortfeldt, Hahn, Männel and Mönch (2015) and

eil et al. (2018) . In the present article, PRP with clus-

ered backhauls and 3D loading including orientation, stacking,

eight and clustering constraints are considered, suggesting that

hese constraints are more realistic. Papers considering some

f these constraints are summarised in Table 1 . Bortfeld and

omberger (2013) merely considered the orientation, stacking,

nd weight constraints for the problem. Each box has its own

eight, and 90 ° rotations are permitted as well as in this work.

achariadis, Tarantilis and Kiranoudis (2013) designed a vehicle

outing problem under loading constraints, in which 90 ° rotations

re allowed for all boxes. Zu, Qin, Lim and Wang (2012) introduced

 vehicle routing problem with 3D loading constraints imposed

ased on the item fragility, weight, and orientation. Clustered back-

auls, which were considered in the work of Reil et al. (2018) are

lso contribution of this work. Reil et al. (2018) dealt with this

ssue regarding the precedence relationship between clustered

inehauls and backhauls while clustering of backhauls was car-

ied out using the k-means algorithm for a fast computational

ime. Additional constraints such as LIFO, support by Tao and

ang (2015) , load bearing by Ceschia and Schaerf (2013) , fragility

y Lacomme, Toussaint and Duhamel (2013) were presented. We

lso provide a two-stage mathematical model for 3D-PRP (see

ection 3 ). 3D-PRP can be formulated into two stages it includes

wo NP-hard problems as mentioned in Ruan, Zhang, Miao and

hen (2013) . Gendreau, Iori, Laporte and Martello (2008) presented
Orientation Stacking Weight Clustering Solution approach 

X – X – Tabu search 

 

X X X – Two stage heuristic 

X – X – Proposed Heuristic 

– X X – Tabu search 

 X – – – Mathematical modeling 

X – X – Local search heuristic 

X – X – GRASP × ELS algorithm 

X – X – Tabu search 

X – X – Tabu search 

t X – – – Local search heuristics 

X – X – Tabu search 

X X X – Packing first, routing 

second heuristic 

X X X X Clustering first, then 

packing-routing 

heuristics 
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i  
two variants of the problem: one for routing and the other for fea-

sible loading. 

Most commonly, many of the published papers provide heuris-

tic approaches. The algorithm proposed by Gendreau, Iori, La-

porte and Martello (2006) determines the routes using an outer

Tabu search and solves the bin packing with an inner Tabu search.

Tarantilis, Zachariadis and Kiranoudis (2009) presented Tabu search

and a guided local search for routing, six packing heuristics for

loading. A Tabu search for routing and two packing heuristics

for loading were presented by Zu et al. (2012) . The two-stage

heuristic, which is the motivation of our study, was provided by

Bortfeldt and Homberger (2013) and Reil et al. (2018) using pack-

ing first, routing second (P1R2) approaches while we also used the

bin packing solver in order to obtain more optimum and fast pack-

ing plans. 

2.2. Studies related with train freight assignments 

Train freight assignments are a sub-problem of a train plan-

ning problem. A few papers that have solved the freight-to-train

assignment problem are provided herein. In the present paper, a

mixed integer programming approach is used to solve the freight-

to-train assignment problem. In contrast to Xiao, Pachl, Lin and

Wang (2018) , who uses heuristic approach for a block-train as-

signment to determine the train service and travel plans, most of

the literature developed linear integer models. Feo and Gonzales-

elarde (1995) provided an integer- linear programming to as-

sign two trailers to a single wagon, which is a limitation of their

study. Corry and Kozan (2008) also developed a linear integer

problem for a load-planning problem regarding the train length,

load pattern restriction, and handling time. Most commonly, the

overall aim is considered as minimising the loading time, max-

imising the train usage, as mentioned in Bruns and Knust (2012) .

Anghinolfi and Paolucci (2014) evaluated the train loading by tak-

ing into account the distances between containers. However, con-

tainer handling time, weight distribution are also regarded in the

work of Corry and Kozan (2006) . But in reality, it is necessary to

regard the penalty and demurrage costs for real-world conditions.

In this work, the total costs by incorporating various cost types, in

which detention and demurrage costs are taken into account (see

Section 3.2 ). 

3. Materials & methods 

3.1. Problem description 

In this section, we describe the 3D-PRP and train loading prob-

lems in detail. The first stage is based on the idea that orders of

each clustered backhauls are packed using a 3D bin packing for-

mulation and the vehicle routing problem is solved. A simple rep-

resentation is given in Fig. 1 . During the second stage, the packag-
Fig. 1. Clustering of loading ci
ng orders are allocated to the trains when considering real-world

onstraints. 

The 3D-PRP is defined as follows: 

Carrying units are considered with identical containers or trail-

rs with length L , depth D , height H , and weight W . Each clustered

ackhaul numClusters requires 3D orders with length L , depth D ,

eight H , and weight W . Loading cities are denoted by V = (0,1,…,

 ), and the depot is represented by node 0. The orders are divided

nto two groups: export and import containers. Export contain-

rs, which can be defined as the containers transported from the

ustomers in the hinterland to the depot ( Sterzik & Kopfer, 2013 ),

re considered. Each order is loaded within the loading space. The

oading space and weight of the orders cannot exceed the vehicle

pace and weight. Each order lies in the vehicle orthogonally. Frag-

le orders can be stacked on other fragile orders. Orders that are

on-fragile cannot be loaded on top of fragile orders ( Ruan et al.,

013 ). This limitation is valid for our problem. Each order can be

otated by 90 ° horizontally. Each vehicle starts and completes its

our at the depot. Each clustered backhaul is visited once to pick

p the orders. 

In the present paper, in addition to decisions in terms of 3D-

RP, the assignment of packaging orders to the block trains is con-

idered during the second stage. The considered network, including

oth road and rail transportation, is presented in Fig. 2 . A real-life

pplication is presented to demonstrate the practical value of this

tudy. The aim of this study is to develop effective solutions re-

arding this complex intermodal network concerning its practical

mportance. 

The first stage is dominated by road transportation, in which

rucks are used to pick up orders from the loading cities. The main

im of this stage is to increase the efficiency by reducing the us-

ge costs of the vehicles and achieve a high capacity utilisation of

he load units, such as trailers and containers. Thus, a holistic view

s put forward considering both minimum cost and maximum uti-

ization of carrying units. The second stage is related to rail trans-

ortation, in which block trains are used to transfer the carrying

nits. The purpose of train-load planning is to ensure the efficient

elivery and timely availability of the carrying units with a main

ocus on a reduction of the total cost. In the objective function, the

im is a minimisation of the demurrage, usage and detention costs.

he main constraints considered in this problem are capacity and

ssignment constraints. 

The presented models reflecting practical requirements and the

roposed solution approaches can be used by freight forwarders

nd logistics operators dealing with container delivery and loading.

he proposed models are highly relevant to actual practice when

onsidering both inland and international transportation networks.

.2. Mathematical model approach 

In this section, we start by discussing all problems us-

ng mathematical modelling approaches to find the exact
ties and 3D bin loading. 
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Fig. 2. Intermodal transportation network in presented study. 

s  

b  

g  

a  

i  

p  

a  

d  

u  

o  

b  

c  

t  

p

o

 

t  

c

 

r  

v  

2  

� =  

c  

j  

b  

v  

k

∑

k

 

0  

U

∑
 

∑
 

∑
 

olutions. This mathematical modelling is based on an approach

y Ruan et al. (2013) , in which 3D-PRP can be divided into two

roups, one for pick-up routing and the other for 3D packing. In

ddition, clustering the loading points by incorporating the lat-

tudes and longitudes is our contribution to this particular ap-

roach. We suppose the ( x, y ) coordinates of the loading points,

nd each order i is assigned to k clusters. Before employing the

eveloped k-means algorithm, a random assignment is employed

sing random clusters along the coordinates m kxy , the coordinates

f the points p ixy , the cluster number of point c i , the total num-

er of clusters num , the order numbers assigned to cluster n, the

entroid cntr kxy , the squared distance d ik , and the closest distance

o the cluster, close i The decision variable X ik is an assignment of

oints to clusters. The mathematical formulation is shown below: 

Clustering function: 

bjective = 

1 

n 

n ∑ 

i =1 

num ∑ 

k =1 

∥∥p ixy − c kxy 

∥∥2 
(1) 

In the objective function, the aim is a minimisation of the dis-

ance of the loading points. Thus, each point is assigned to the

losest cluster. 

∗ Stage 1 
A random assignment of the points is as follows: 

c i = uniformint(1, num) 

x ik = c i ∗Stage 2 

The centroids are calculated as follows: 
n k = sum( X ik , 1); 

cntr kxy = p ixy / n 
∗ Stage 3 
∗The points are reassigned as follows: 

d ik = 

∑ n 
i =1 

∑ num 

k =1 ‖ p ixy − c kxy ‖ 2 
close i = d ik 

After formulating the clustering of loading points, a pick-up

outing problem (PRP) is formulated. PRP calls for the routes of

ehicle k with capacity Q k , which visits a set of customers N = (1,

,…, n ). All locations are shown as ( i, j, l ), where i, j, l ε N and i

 j , i � = l. Here, c ij is the distance measured by the generalized

ost. Generalized cost is composed by price between location i and

 (distance multiplied by cost per km) and time (generalized time
etween I and j multiplied by the price parameter of the average

alue of time). p i is the load amount picked up from point i . Given

 identical vehicles, each has a fixed cost F . 

Decision Variables 

U ik : Upper limit of load amount picked up from point 

i with vehicle k ( unit ) 

X i jk = 

{
1 , i f v ehicle k goes to point j f rom point i 
0 , otherwise 

z ik = 

{
1 , i f vehicle k picks up from point i 
0 , otherwise 

y k = 

{
1 , i f vehicle k is used 

0 , otherwise 

min z = 

K ∑ 

k =1 

I ∑ 

i =1 

J ∑ 

j=1 

c i j∗X i jk + 

K ∑ 

k =1 

F ∗ y k 

I 
 

i =0 

X ilk = 

J ∑ 

j=0 

X l jk l = 1 , . . . , n ; k = 1 , . . . , K; l � = i ; i � = j (1) 

K ∑ 

i =1 

J ∑ 

j=0 

X i jk = 1 i = 0 , . . . .., n ; i � = j (2)

 ≤ U ik ≤ Q k i = 1 , . . . , n ; k j = 1 , . . . , K (3)

 jk ≥ U ik + p j ∗ z jk −
(
1 − X i jk 

)
∗ Q k Q k i = 1 , . . . , n ;

j = 1 , . . . , n ; k = 1 , . . . , K (4) 

J 
 

j=1 

X 0 jk ≤ y k k = 1 , . . . , K (5)

J 
 

j=1 

X j0 k ≤ y k k = 1 , . . . , K (6)

J 
 

j=0 

X i jk = z jk i = 1 , . . . , n ; k = 1 , . . . , K; i � = j (7)
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I ∑ 

i =1 

z ik ∗ p i ≤ Q k k = 1 , . . . K (8)

J ∑ 

i, j∈ U 
X i jk = W − 1 k = 1 , . . . , K (9)

X i jk , z ik , y k ε ( 0 , 1 ) , U ik ≥ 0 (10)

The objective function minimises the total travel cost and num-

ber of vehicles. Constraint (1) is a flow conservation; when a vehi-

cle arrives at a node, it must travel from that node to another one.

Constraint (2) ensures that each node is visited once. Constraint (3)

ensures that the upper limit of the pick-up amount cannot exceed

the vehicle capacity. Constraint (4) balances the pick-up amount

transferred from one node to another. Constraints (5) and (6) en-

sure that vehicles start and end at the depot. Constraint (7) ensures

that the vehicle picks up from a point if the vehicle goes to that

point. Constraint (8) ensures that the picked-up amounts cannot

exceed the vehicle capacity. Constraint (9) is a sub-tour constraint.

Constraint (10) is a non-negativity constraint in which the decision

variables should be greater than or equal to zero. A binary variable

can only take on a value of zero or one. 

Before formulating the 3D loading problem, we discuss the

indices and parameters. The notation is based on that by

Chen, Lee and Shen (1995) . Let P order (1,…, P ), where K is a set of

available carrying units (1,…, K ). Each order has a loading space l p ,

w p , h p , and each carrying unit has a loading space L k , W k , H k . The

utilisation cost and capacity of the carrying units k are C k and Q k . 

Decision variables: 

o kp : Assignment of orders to the carrying units 

a pr = 

{
1 , i f order p is le f t of order r 
0 , otherwise 

b pr = 

{
1 , i f order p is right of order r 
0 , otherwise 

c pr = 

{
1 , i f or der p is f r ont of or der r 
0 , otherwise 

d pr = 

{
1 , i f order p is behind of order r 
0 , otherwise 

e pr = 

{
1 , i f order p is on of order r 
0 , otherwise 

f pr = 

{
1 , i f ord er p is und er of order r 
0 , otherwise 

x p : Coordinate x of order p ( p = 1 , . . . , P ) , 

y p : Coordinate y of order p ( p = 1 , . . . , P ) , 

z p : Coordinate z of order p ( p = 1 , . . . , P ) , 

min z = 

K ∑ 

k =1 

P ∑ 

p=1 

o kp ∗C k 

x p + l p ≤ x r + ( 1 − a pr ) .M ∀ p, r p < r (1)

x r + l r ≤ x p + ( 1 − b pr ) .M ∀ p, r p < r (2)

y p + w p ≤ y r + ( 1 − c pr ) .M ∀ p, r p < r (3)

y r + w r ≤ y p + ( 1 − d pr ) .M ∀ p, r p < r (4)

z p + h p ≤ z r + ( 1 − e pr ) .M ∀ p, r p < r (5)
 r + h r ≤ z p + ( 1 − f pr ) .M ∀ p, r p < r (6)

 pr + b pr + c pr + d pr + e pr + f pr ≥ o kp + o kr − 1 ∀ p, r p < r (7)

 p + l p ≤ L k + 

(
1 − o kp 

)
.M ∀ p, β (8)

 p + w p ≤ W k + 

(
1 − o kp 

)
.M ∀ p, β (9)

 p + h p ≤ H k + 

(
1 − o kp 

)
.M ∀ p, β (10)

x p , y p, z p ≥ 0 , a pr , b pr , c pr , d pr , e pr , f pr , o kp , ε ( 0 , 1 ) (11)

The objective function minimises the utilisation cost of the car-

ying units. Constraints (1)–(6) provide the order locations consid-

ring the x, y, z coordinates. Constraint (7) ensures that two orders

n a carrying unit must be only one of the directions described

bove. Constraints (8)–(10) ensure that the loading spaces of the

rders cannot exceed the loading spaces of the carrying units. Con-

traint (11) is the non-negativity constraint in which decision vari-

bles should be greater than or equal to zero. A binary variable can

nly take on a value of zero or 1. 

In the train-loading problem, let us consider a set of trains

 i = 1,…, I ) and a set of carrying units ( j = 1,…, J ). Before their as-

ignments to the trains, the carrying units are assumed to be trans-

erred from a ship. Thus, the shipping day ship with tolerance num

s incorporated into the model. Train capacity b i must not be ex-

eeded. Each train has g i working days and tr i departure days that

ust be respected. The train usage cost is f ij when the carrying

nits are assigned to the trains. An extra cost is defined by the de-

ention cost p j and demurrage cost cst when the due date d j is not

nsured. The other parameter is the utilisation a ij . 

Decision Variables 

w i : Demurrage ( day ) 

x ij = 

{
1 , if i trains is assigned to j carrying units 
0 , otherwise 

s j : Detention ( day ) 

in z = 

I ∑ 

i =1 

f i j ∗ X i j + 

J ∑ 

j=1 

s j ∗ p j + 

I ∑ 

i =1 

w i ∗ cst (1)

I 
 

i =1 

X i j = 1 ( j = 1 , . . . J ) (2)

J 
 

j=1 

x i j ∗ai j ≤ b i i = 1 , . . . .., I (3)

 i = 

J ∑ 

j=1 

x i j ∗ ( ship + num − t r i ) i = 1 , . . . .., I (4)

 i ≤ d j + s j + 

(
1 − x i j 

)
∗ M i = 1 , . . . .., I ; j = 1 , . . . ..J (5)

 i j , u i ε ( 0 , 1 ) , s j w i ≥ 0 (6)

The objective function (1) minimises the usage cost of the car-

ying units, the detention cost, and the demurrage cost. Constraint

2) is an assignment constraint that ensures that each carrying unit

ust be assigned to one train. Constraint (3) ensures that train ca-

acity cannot be exceed. Constraint (4) corresponds to the demur-

age cost. Constraint (5) ensures that the number of train trans-

ortation days cannot exceed the total travel days of the carrying
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Fig. 3. Pseudo-code of k-means clustering. 
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Algorithm 1 Procedure of generalised 3D bin packing algorithm. 

Inputs: Clustered orders from k-means clustering algorithm 

Outputs: Order positions into the vehicles 

#- bpp_solver: output: packing solution 

#-sn 

# sn bpp_solution packing solution < list > 

# it item < data.table > 

# oid: order id < integer > 

# sku: stock keeping unit as it id < character > 

# tid: ticket id - a unique id within oid < integer > 

# otid: order id x ticket id - a unique identifier indicates that it with the same 

tid can be packed into one bin < character > 

# - bid: bn id < integer > 

# - x, y, z it position in bid bin < numeric > 

# - l, d, h it scale along x, y, z < numeric > 

# - w it weight < numeric > 

# - bn bins < data.table > 

# - id bn id < character > 

# - l bn length limit along x-coordinate < numeric > 

# - d bn depth limit along y-coordinate < numeric > 

# - h bn height limit along z-coordinate < numeric > 

# - w bn weight limit along w - a separate single dimension < numeric > 

sn < - gbp::bpp_solver(it = it, bn = bn) 
nits assigned to the train. Constraint (6) is a non-negativity con-

traint in which the decision variables should be greater than or

qual to zero. A binary variable can only take on a value of zero

r 1. 

. Proposed solution approaches 

As previously mentioned, 3D-PRP is one of the most well-

nown NP-hard problems. Computational complexity of the prob-

em is examined. The complexity of the total decision variables

s calculated 2 n 2 k + 3 nk + 2 k and the complexity of the total con-

traints is calculated 2 n 2 k + 3 nk + 2 k for PRP. The complexity of the

otal decision variables is calculated 12 n 2 + 2 kp + 3 p and the com-

lexity of the total constraints is calculated 6 n 2 + n 2 k + 3 kp for 3D.

eal-world data including 103 nodes ( n ), 20 vehicles ( k ) and 4 4 4 4

rders ( p ) cannot be solved by exact algorithmic approaches within

 reasonable amount of time. Therefore, we present heuristics,

eta-heuristics, and machine learning approaches to solve these

roblems. In the present paper, the clustering of the loading points

s solved using the k-means algorithm; the 3D bin packing problem

s dealt with using machine learning with a best-fit-first strategy,

hich is considered more effective than other packing solutions

 Yang & Mu, 2018 ); and routing section is addressed using a ge-

etic algorithm. A heuristic approach developed to integrate these

hree methods is presented to solve the combinatorial problem. 

.1. K-means clustering algorithm 

K-means clustering ensures the assignments of n objects into k

lusters, where the initial cluster number is assigned before the al-

orithm starts. Fig. 3 shows a representation of k-means clustering.

he clustering starts with an initial cluster number, numClusters , or

he use of the k-means algorithm to choose the initial cluster num-

er. The next step is the computation of the distances between the

bjects p i and the cluster center c k . The assignment of each object

o the clusters with the closest centroid then proceeds. The step is

epeated until the maximum number of iterations is reached. 

K-means uses the squared Euclidean distances given by: 

inimise sum = 

n ∑ 

i =1 

distance ( p i − c k ) 

The pseudo-code of k-means is depicted in Fig. 3 . Dataset N, the

nitial k clusters, cluster centroids, and the cluster label are repre-

ented as A, B , B , and C , respectively. 
i 
Lastly, we produce a DataforR list of cluster solutions including

id (order codes), sku (clusters), and loading spaces (l,d,h,w ) for a

D packing phase. 

.2. Machine learning for 3D bin packing 

In this subsection, the orders of each cluster are packed in a

orresponding carrying unit. A 3D problem for each carrying unit

in is defined based on the length l , weight w , depth d , and height

 , and the set of orders it is defined by the length l , weight w ,

epth d , and height h. Initially, orders it are loaded into the same

arrying unit bin. A list of loading positions is generated in de-

cending order of l, d, h , and w , respectively. The aim of this order

s to load larger orders first. At the beginning of the heuristics, the

oading place of the carrying unit (0, 0, 0) is available. Orders are

oaded without any constraint violations until all orders are packed

nto carrying units. Then, orders are loaded into a carrying unit

sing best-fit-first heuristics. Given the orders and carrying units,

he solver searches for the optimum packing plans to minimise the

umber of vehicles and maximise the volume utilisation. The load-

ng process is as follows ( Algorithm 1 ): 



380 E. Göçmen and R. Erol / Expert Systems With Applications 135 (2019) 374–387 

Fig. 4. Swap operator representation. 
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4.3. Vehicle routing using genetic algorithm 

The genetic algorithm (GA) used for the vehicle routing prob-

lem provides specific procedures. Firstly, we produce an initial

population, which includes chromosomes in a random manner.

Secondly, each population member is evaluated, and the first gen-

eration is found. Thirdly, we initialise some genetic algorithm op-

erators to obtain better generations. Various mutation operators

such as flip, swap, and slide are selected to mix the routes. Using

a swap operator, I and J locations are chosen, and their positions

are swapped (Bestroute (k, [I J]) = Bestroute (k, [J I])). Fig. 4 shows

the swap representation, where City_2 and City_8 positions are

swapped. 

With a flip operator, I and J locations are chosen, and their po-

sitions are flipped (Bestroute (k, [I J]) = Bestroute (k, J: −1: I). With

a slide operator, I and J locations are chosen, and their positions

are slid (Bestroute (k, [I J]) = Bestroute (k, [I + 1: J I]). This process

is repeated to optimise the objective function. The pseudocode for

the GA is as follows ( Algorithm 2 ): 

Algorithm 2 Pseudocode for genetic algorithm. 

Input: popSize, numIter, Pmutation 

Output: optRoute, minDist 

//InıtializePopulation of routes randomly with a function random() 

for k : = 2 to popSize do 

if ( k = 1) then 

- An initial population pop randomly 

- Current best solution is pbest from pop 

else 

Initialise the population popSize with pbest 

end if 

//GA 

While (max iteration has not been reached) do 

For I: = 1 to popSize do 

- Selection of best route p2 from popSize 

-Reduce the total distance of p2 

-Best solution pbest = p2 

- Perform mutation on the best route to get three new routes 

End for 

Evaluate solution pbest with evaluate function 

If minDist < globalMin Then Updata the best solution pbest end if 

OptRoute- BestSolution 

End while 

4.4. General layout of the proposed approach 

Our proposed approach integrates a k-means algorithm, ma-

chine learning, and a GA. K-means applies clustering heuristics to

produce the initial clusters for the 3D loading phase. We obtain

a dataset including clusters for the loading points. The 3D loading

problem using machine-learning best-first-fit heuristics is then dis-

cussed. Finally, the routing phase is addressed using a GA. A gen-

eral layout of the three different types of algorithms applied for

3D-PRP is as follows: 
// First stage: Clustering 

//cluster locations with k-means clustering algorithm: 

for each city (pick-up location) do 

if (customer is a backhaul) then 

-find the k-nearest neighbours by latitude and longitude 

- store the result clusters dataforR 

end if 

end for 

//Second stage: Packing 

// Use clusters dataforR 

for i: = 1 to numclusters do 

solve 3D bin packing instance given by length l, depth d, height h, and 

vehicle ids; 

store 3D packing plan ‘Result.txt’ 

endfor 

//Third stage: Routing 

// Use the data processed by R 

Initialise the population 

While iteration < = itermax do 

Iteration = iteration + 1 

Evaluate each population member 

Find the best individuals in the population 

Perform mutation operators to find new individuals 

Evaluate the fitness of new individuals and place them 

. Computational results 

To solve the real-world data for 3D-PRP, the hybrid algorith-

ic approach was executed on a computer with an Intel 3.6 GHz

PU with 16 GB of RAM. As previously mentioned, 3D-PRP is one

f the most well-known NP-hard problems. Exact algorithmic ap-

roaches cannot solve real-world problems that include a large

ataset within a reasonable amount of time. Thus, small-sized

est instances including customer sets, vehicles with correspond-

ng orders, and medium-sized test instances are generated. We di-

ide 3D-PRP into two groups: 3D and PRP. Based on mathemati-

al models, namely, the commercial optimisation solver GAMS and

pen Door Logistics software, both the 3D and PRP problems are

olved. Meta-heuristics and machine learning approaches solve a

eal-world instance containing 4 4 4 4 orders and newly generated

edium test instances containing 994 orders. We compare the per-

ormances of the exact method (two-stage approach), open-source

oding, and the proposed approach (first clustering, then packing-

outing). 

.1. Results of the exact algorithmic and open source software for 

mall-sized instances 

We start by presenting the results for small-sized instances re-

ated to 3D-PRP. The results were obtained using both open-source

oding and a mixed integer programming (mip) approach. We fo-

us on the total travel distance, number of vehicles for routing

ection, and the loading positions for the loading section. Firstly,

y means of the proposed k-means algorithm, 20 loading points

f the orders are clustered, and eight clusters (orders) are formed.

ext, the orders are loaded onto the vehicles with 3D loading con-

traints. Finally, the optimal routes for vehicles are obtained. The

omputing time for an instance is 0 s for clustering, approximately

4 s for routing, and 60 s for loading. Fig. 5 shows the positions
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Fig. 5. Positions of the orders into the vehicles. 

Fig. 6. Routes created using open-source coding approach. 

Table 2 

Routes and pick-up quantities obtained from GAMS 

commercial solver. 

Routes 

Truck Depot-Afyon-Ankara-depot 

Truck Depot-Adana-Aksaray-Bursa-depot 

Truck Depot-Balıkesir-Denizli-Antalya-depot 

Picked up quantities (unit) 

Cities/vehicles Truck 1 Truck 2 Truck 3 

Adana 2 

Afyon 10 

Aksaray 7 

Ankara 4 

Antalya 10 

Balıkesir 1 

Bursa 10 

Denizli 6 
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Table 3 

Comparison of exact solution approach and ODL for routing 

sub-problem. 

Instances Exact method ODL 

nv ttd nv ttd 

1 1 2908 1 0.2 

2 2 4325 2 3 

3 3 4407 3 22 

4 4 5065 4 33 
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isually. The orders are located based on their x, y, z coordinates.

hus, the optimum location planning is obtained. 

We can see from Table 2 that the starting point for each vehi-

le is a depot. Note that we make sure that each truck is formed

y incorporating the capacity and number of orders. In addition,

he order locations are also important when determining the truck

outes. 

The results from open-source coding are similar to the results

y the mip solver. The pick-up routing problem is solved using the

pen-source coded program Open Door Logistics (ODL). Given the

ehicle numbers, the addresses and pick-up quantities are input for

he system, and the routes are then generated. We can see from
ig. 6 that the open-source software applies 3D-PRP using similar

v and ttd with the mip solver. 

The computing time is approximately 34 s for the mip solver,

hereas the computing time is approximately 22 s for ODL. Fig. 7

hows a map including three routes of orders. We can conclude

hat the optimum routes under the vehicle capacity distances are

enerated using ODL. 

Table 3 shows that a comparison of both methods when con-

idering computing times (ct) is fair because the nv and ttd values

nd routes are similar. Fig. 8 shows comparisons of GAMS and ODL,

n which the computing times increase when the number of orders

s increased. We can also observe that the ODL heuristics becomes

aster for routing the vehicles. 

.2. Results of proposed solution approach for medium data 

There are no other real-world data or test instances for our

roblem, and a randomly generated test instance is implemented

n addition to the given case study. The parameters are created
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Fig. 7. Map result of routes created using open-source coding approach. 

Fig. 8. Comparison of computing times for GAMS and ODL. 

Table 4 

Random generation parameters for medium-sized test in- 

stances. 

Parameters Values 

Order latitude UNIF(10) + 35 

Order longitude UNIF(10) + 27 

Package quantity Rand(10) 

Weight UNIF(90 0 0) + 10 0 0 

Volume UNIF(29) + 1 

Width Rand([60 120]) 

Height Rand([50 250]) 

Depth Rand([50 200]) 

Vehicle weight Rand([20,0 0 0 30,0 0 0]) 

Width Rand([2 3]) 

Height Rand([2 3]) 

Length Rand([10 13]) 
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through a uniform distribution in MATLAB, as shown in Table 4 .

The order latitude, longitude, weight, and volume values are cre-

ated using a uniform distribution. The other parameters are ran-

domly created. All parameters are created when considering real-

world data. 

The results were obtained from employing the proposed ap-

proach (clustering first, then packing-routing) on a medium test

instance. The results demonstrate that 12 carrying units ( nv ) are

used, and the total travel distance ( ttd ) is 25.3225 km. In addi-

tion, the orders in the same cluster are placed into the same vehi-

cle. These are compared with the values obtained using the exact

method and the GA heuristics. However, it is fair to compare the

running times because the data size is different. We also demon-

strate in Fig. 9 the order positions when loaded into Vehicle 1 for

Cluster 1. Considering the loading coordinates, 29 orders have been
ocated onto Vehicle 1. There are no violations regarding the load-

ng spaces. 

Fig. 10 shows the routes of the carrying units loaded onto the

rucks. Vehicle 1 for Cluster 1 travels to the order locations accord-

ng to the latitudes and longitudes. 

.3. Results of the proposed solution approach for larger data 

In this subsection, we present the computational results ob-

ained for 3D-PRP. The vehicle numbers, order numbers, and po-

itions of the orders for all clusters are described in this section.

ur results show that four clusters are formed, in which all orders

re located by considering the x, y, z coordinates. For instance, in

luster 1, all orders are loaded onto four types of carrying units.

e can see from Table 8 that the number of vehicles ( nv ) and to-

al travel distance ( ttd ) are larger when compared to the medium

est instance. We also demonstrate the order positions loaded onto

ehicle 1 for Cluster 1 in Fig. 10 . Considering the loading coordi-

ates, 31 orders were located on Vehicle 1. We report the clus-

ering performance over two instances. The packing results were

trongly improved by the clustering heuristics. Improvements of up

o 60% and 45% are possible for nv and ttd . We can also see that

he GA heuristics become faster for the input processed through

achine learning. 

Fig. 12 shows the routes of the carrying units loaded onto the

rucks. Vehicle 1 for Cluster 1 travels to the order locations accord-

ng to the latitudes and longitudes. 

.4. Experiment design 

The design of the experiments was applied to justify the model

ehaviours under various conditions for the 3D-PRP results. A fac-

orial design is provided, and the results are presented in Table 5 .
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Fig. 9. Positions of orders loaded onto Vehicle 1 for Cluster 1. 

Fig. 10. Optimal route of Vehicle 1 for Cluster 1 for medium data. 

Fig. 11. Order positions loaded onto Vehicle 1 for Cluster 1. 
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Fig. 12. Optimal route of Vehicle 1 for Cluster 1. 

Fig. 13. Effects of number of nodes and periods on the objective value and solution time for 3D-PRP. 

Table 5 

Two-stage 3D-PRP results. 

N K PRP objective value 3D loading objective value Total objective value Solution time 

16 3 259,686 4900 264,586 35 

12 6 3415,200 7520 3422,720 18,567 

8 3 3322,100 4500 3326,600 15,345 

16 3 568,935 45,670 614,605 67 

16 6 2485,700 3400 2489,100 45,467 

4 6 1657,643 5400 1663,043 654 

8 6 456,345 23,300 479,645 125 

12 3 2215,200 4670 2219,870 12,430 

8 3 836,595 4556 841,151 3456 

12 3 2067,895 12,200 2080,095 7890 

16 6 3659,874 48,900 3708,774 4356 

4 3 562,569 3400 565,969 8 

4 3 1564,569 3500 1568,069 15 

8 6 3574,569 7800 3582,369 45,453 

12 6 3658,945 12,300 3671,245 45,400 

4 6 1688,945 5600 1694,545 250 
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Fig. 14. Interactions between number of nodes and periods on the objective value and solution time for 3D-PRP. 

Fig. 15. Sensitivity analysis regarding the effects of parameters on the objective function. 
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he number of nodes, including four levels (4, 8, 12, and 16), and

eriods, including two vehicles (3, 6), were chosen as factors. Thus,

 4 × 2 type factorial design was obtained. Two replications were

pplied for each experiment. The response variables were chosen

s the total objective value involving the PRP and 3D loading val-

es and the solution time. 

The main effects plot in Fig. 13 shows the effects of the num-

ers of nodes and vehicles in the problem. The objective value in-

reases with an increasing number of nodes and periods until the

umber of nodes is 16. The solution time is affected based on the

ncreasing number of periods. The results of the solution time are

imilar to those of the objective value. 
Interactions of the numbers of nodes and periods on the prob-

em are demonstrated in Fig. 14 . The objective function is not sig-

ificantly affected with eight and four nodes. However, for 16 and

2 nodes, the number of periods affects the objective value. How-

ver, the solution time is not significantly affected when the num-

er of nodes is less than 16. 

.5. Comparison of the methods with different instances 

The methods used in these instances were compared based on

he number of vehicles ( nv ) and the total travel distance ( ttd ),

s shown in Table 6 . There are no other real-world data or test



386 E. Göçmen and R. Erol / Expert Systems With Applications 135 (2019) 374–387 

Table 6 

Comparison of mathematical modelling, the proposed approach, and open-source coding approach. 

Two-stage approach Proposed approach (First cluster, then packing-routing) Open-source coding 

Instances nv ttd nv ttd nv ttd 

Small data 3 4407 3 4407 

Medium data 12 25.3225 

Larger data 14 47.2043 

Table 7 

Train assignments. 

Trains Detention Assignment of Vehicle 1 Assignment of Vehicle 2 Assignment of Vehicle 3 Assignment of Vehicle 8 

Trieste-Koln 0.515 X X X 

Trieste-Ludwigshafen 0.322 X 
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instances for our realistically sized instance. Thus, it is fair to com-

pare the results of real-world and generated medium-sized in-

stances. We can conclude that nv and ttd increase based on the or-

der size, and clustering the backhauls ensures less travel distance.

The results are as follows: ttd is 4407 km for small data, approxi-

mately 25 km for medium data, and approximately 47 km for larger

data, and Nv is 3 for small data, 12 for medium data, and 14 for

larger data. 

5.6. Results of the train assignment problem 

As mentioned above, the intermodal transport network pro-

posed in the present study consists of road and rail transporta-

tion modes. The first stage of the intermodal transport network

focuses on road transportation. The results of this stage are dis-

cussed Sections 5.1 –5.3 , and the output of the 3D-loading is the

input of the train assignment problem. The carrying units (trail-

ers or containers) of orders packed with 3D loading constraints

are optionally assigned to the block trains for two different train

stations. The carrying units are transferred by Roros in Turkey to

Trieste, and then from Trieste to Koln or Ludwigshafen. Vehicle 1

is assigned to Trieste-Ludwigshafen, and the other vehicles are as-

signed to Trieste-Koln. The results are shown in Table 7 . 

Our results indicate that the proposed exact approach can solve

realistic instances within a reasonable amount of time. We can

conclude that the demurrage and detention affect the delays for

Vehicles 2, 3, and 8. Orders are delivered to the customers with

delays of 1, 2, and 3 days. We analysed the performance of the al-

gorithm based on a sensitivity analysis, as shown in Fig. 15 (a, b, c).

We can see from these figures that the objective function is mostly

sensitive to the usage costs of the trains, and the demurrage and

detention costs are negligible. Thus, it is not surprising to obtain

an increase in the total cost when the usage costs of the trains are

added. 

6. Conclusion 

In this study, we considered intermodal network problems

combining pick-up routing problems with three-dimensional (3D-

PRP) loading constraints, clustered backhauls at the operational

level, and train loading at a tactical level. To the best of our knowl-

edge, the first cluster, then packing-routing described herein is the

first of this type of approach. A main challenge is the proposed

solution method in which four expert systems are employed to

solve the combinatorial problems. Four small-sized instances are

solved to optimality using GAMS and ODL. An open-source cod-

ing approach was compared with the exact solution method. The

results show that ODL heuristics can solve the routing problem

within seconds. To solve realistic-sized instances, we proposed hy-

brid meta-heuristics including k-means heuristics for clustering, a
achine learning approach for 3D loading, and a GA for PRP. We

roposed a new mathematical formulation for the train loading,

hich considers demurrage and detention costs. 

This paper also presented both academic and practical impli-

ations. Regarding the academic aspects, the paper provided a

ew approach, called first cluster then packing-routing for 3D-

RP, which is of significant value from a theoretical aspect because

t includes two NP-hard problems: the pick-up routing problem

nd 3D loading. In addition, this is first time a machine learning

pproach for a 3D loading problem has been provided. Regard-

ng the practical aspects, freight forwarders and decision makers

hould develop effective solutions for more complex intermodal

etworks. 3D-PRP plays a key role in real-world distribution lo-

istics in which a container delivery of large items and loading is

mportant. 3D-PRP has many transportation applications with in-

ermodal means of transportation, including road, rail, and marine

etworks. 

This paper has a limitation considering only road and rail

ransportation modes used between Turkey and European cus-

omers. To generalise the results, other regions can be added to

he network to compare all alternative solutions. In addition, back-

aul items were considered for this paper. This paper can be ex-

ended by considering both linehaul and backhaul items. Sepa-

ate compartments can be assigned for these items using the vari-

ble neighbourhood search from Bortfeldt et al. (2015) . The ap-

lication of clustering first, packing-routing second is based on

he assumption that the k-means clustering is used to cluster

he backhaul customers using the Euclidean distance. However,

ortfeldt and Homberger (2013) consider customer combinations

ith a high-volume utilisation. Customer combinations that avoid

acking losses, long travel distances can be used for future stud-

es. For future research, pick-up routing with 3D loading can be

xtended under various constraints such as the time-window con-

ept and delivery options to obtain more realistic solutions. The

roposed load-planning models can be extended by incorporating

he fleet size, empty container repositioning, and fleet expansion

ecisions. Furthermore, exact fuzzy-based exact approaches from

on Westarp and Schinas (2016) that can handle the uncertainty

f transport demands, transit times, freight capacities, and cost pa-

ameters may also be incorporated as a future study. During the

rain loading stage, consolidated orders are shipped using ro-ro.

n this paper, the marine environment of ro-ro (waves, wind, and

torm) and the ro-ro speed are negligible. However, considering

hese conditions is highly relevant to actual practice. 
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