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A B S T R A C T

This paper studies reliable due date quotation for online customer orders in a two-echelon dual-channel supply
chain when there is a threshold on quoted due dates. In this problem, there exist two delivery options for the e-tail
customers with different cost and availability intervals, i.e., directly shipping by the manufacturer or through the
retail store. The manufacturer has the capacity constraint for processing online orders. We adopt an online
optimization perspective and propose algorithms to determine due date quotation coordinated with scheduling
for e-tail customer with the objective of maximizing the total profit of completed orders considering linear due-
date-sensitive revenue function and delivery costs. The approach of “competitive analysis” is performed to
evaluate the proposed algorithms. We provide parametric bounds on the competitive ratio of any arbitrary online
strategy, and investigate the competitive ratio of a specific online algorithm for single-type e-tail channel orders.
Computational experiments illustrate the effectiveness of the proposed algorithms and analysis.
1. Introduction

In this paper, we study the problem of reliable and immediate due
date quotation for online customer orders in a two-echelon dual-channel
supply chain to maximize total profits. For the purposes of this investi-
gation, we have one manufacturer and one retailer as the traditional
channel, and online customers as the e-tail channel. Online customers
place orders with the manufacturer; however, the products may be
delivered to them directly by the manufacturer or through the retail
store. In this problem, we try to maximize the due-date-sensitive profit
function by quoting immediate and reliable due dates to online cus-
tomers while considering capacity constraint and maximum acceptable
lead time for online orders. The profit function decreases linearly as the
quoted due dates increase and we consider single-type e-tail customers.

With the growth of e-business, many manufacturers using a tradi-
tional retail store distribution model are expanding into online (e-tail)
channels to provide more convenient access to products for their cus-
tomers. Firms following this dual-channel strategy are referred to as
“click-and-mortar” companies, which is distinct from their traditional
“brick-and-mortar” counterparts (Chand and Chhajed 1992). Although
dual-channel supply chains may help companies increase their cus-
tomers' awareness and shopping choices, this type of distribution model
affects all business functions and operational decisions. Hill et al. (2002)
introduced four main strategies for click-and-mortar companies. In the
oiemehr), gzhang@uwindsor.ca
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first strategy, firms separate retail and e-tail channels; each channel has
its own warehouse, inventory control and pricing features. Some com-
panies find it difficult to manage the same product in two different
channels; therefore, in the second strategy, they outsource the e-tail
channel—including all the order-fulfilment processes—to a third party.
Drop-shipping is another strategy that some companies apply, in which
the third party just picks, packs and delivers the orders to customers in
the e-tail channel while all the distribution information is available. The
final strategy is called the professional shopper strategy, where cus-
tomers in the e-tail channel order online and then pick up the product(s)
from the retail store. Offering both drop-shipping and professional
shopper strategies for e-tail customers is a common business practice in
many dual-channel supply chains. For example, STAPLES Canada pro-
vides two delivery options for online orders: “Ship to Address” and “Ship
to Store.” “Ship to Store” lets the e-tail customer pick up the order at any
STAPLES store the customer chooses; “Ship to Address” delivers the order
to the customer directly. The advantages of having two delivery options
include reducing shipping costs, increasing the capacity utilization of the
online ordering system, and increasing delivery flexibility for e-tail
customers.

Investigating dual-channel’s impact on a company’s performance is
integrated with several related fields, including warehouse design,
optimal inventory decisions, and pricing with several studies in each field
(Chiang andMonahan 2005, Yue and Liu 2006, Hua et al. 2010, Fan et al.
(G. Zhang), selvare@uwindsor.ca (E. Selvarajah).
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2008). Readers are referred to Niels et al. (2008), Yao et al. (2009), Qi
et al. (2004) and Abdul-Jalbar et al. (2006) for more information. While
growing in popularity, the addition of an e-tail channel is a complex
matter but, at its base, most e-business failures are related to operational
decisions, and one of the main reasons for early e-business failure is
ineffective order fulfilment (Tarn et al. 2003); even a well-designed
dual-channel supply chain is useless when it is not successful in deliv-
ering items as promised. Effective order fulfilment is closely related to
accurate due date quotation, yet—according to Niels et al. (2008) and to
the best of our knowledge—there is no study specifically addressing due
date quotation in dual-channel supply chains. The existing literature
focuses only on due date quotation in a traditional retail or standalone
online channel. in this study, we examine both channels simultaneously,
considering its effects on a more realistic modern retail model.

Accurate due date quotation is considered one of the main perfor-
mance measures alongside cost and quality (Handfield et al. 1999, Stalk
and Hout 1990), however scheduling orders to ensure that they meet a
reasonably speedy due date is not an easy task, particularly in
made-to-order environments when the demand trend is unknown
(Kaminsky and Hochbaum 2004). The challenging part of these problems
lies in the fact that Production capacity constraint makes it impossible to
set ideal due dates, so there is a trade-off between sequencing jobs to
meet the due dates and setting due dates so that sequencing is possible. In
response to the highly competitive retail environment in recent years, the
employment of a dual-channel supply chain is vastly increasing and one
of the most important challenges for these facilities will be to quote and
manage the most efficient due dates to get the competitive advantage in
the market.

There are several studies in literature considering due date manage-
ment when there exist only online customers, not applicable for dual-
channel environments, which are briefly reviewed in the following.
Scheduling coordinated with due date quotation for online orders, was
first introduced by Keskinocak et al. (2001) on a single machine. They
performed competitive analyses for a specific online algorithm to maxi-
mize due-date sensitive revenue. In their problem, it is assumed there is a
threshold on the quoted due dates, and the order will be lost if it is not
processed within a specific time interval. Kaminsky and Lee (2008)
proposed an online heuristic model for the due date quotation problem,
minimizing total quoted due dates, and investigated the conditions of
asymptotical optimality of the suggested algorithm. Zheng et al. (2014)
studied the same problem as Keskinocak et al. (2001) evaluating the
competitive ratio of non-linear revenue functions in both discrete and
continuous time points. Kapuscinski and Tayur (1997), Duenyas (1995)
and Chand and Chhajed (1992) used analytical approaches in due date
setting problems without any constraint on the time interval in which the
due date should be quoted. There exist several studies on due date setting
and sequencing problems, investigating the performance of online al-
gorithms with methods rather than competitive analysis such as simu-
lation, (Baker and Bertrand 1981, Bookbinder and Noor 1985, Weeks
1979, Ragatz and Mabert 1984). Hsu and Sha (2004) studied online
scheduling and due date quotation problems applying an artificial neural
network to minimize costs due to delays, and Chang et al. (2005) pro-
posed a fuzzy modeling method embedded by a genetic algorithm for a
due date assignment problem. Kaminsky and Kaya (2005) studied the
problem of due date quotation and developed three online heuristics to
minimize the total processing time; they then applied a probabilistic
approach to investigate asymptotical optimality of the suggested heu-
ristics. For a comprehensive review on papers related to due date man-
agement, readers are referred to Keskinocak and Tatur (2003) and Cheng
and Gupta (1989).

1.1. Motivation

Having dual-channel supply chains with two delivery options for e-
tail customers is a very common business practice, found in the apparel,
courier and construction industries, for instance. So, our study of the due
2

date setting problem in this business model is motivated by the real-
world applicability of our solutions.

In the examples we examine, a customer is also a company, which is
typical in the industrial supply chain. Consider a company that produces
customized steel rolls for smaller mills (customers) worldwide which, in
turn, manufacture various steel products. The roll producer has several
production lines, however, in general, producing various types of steel
rolls requires similar technology and therefore, processing times are
almost deterministic, and similar for orders within each family of prod-
ucts. This company has two distinct types of customers, requiring two
different delivery and inventory models. One set of customers’ demands
custom orders with different production requirements; thus, no inventory
is kept. These customers can place their customized orders online (e-tail)
requesting their order be shipped directly to them or to a retail store
routinely supplied by the company. The second type of customer is more
predictable, allowing the company to serve its retail channel in specific
cycle times (e.g., every week or so). With more predictable demand (less
demand variation), it is reasonable to apply inventory models with
deterministic demand. In addition, in comparing online orders, we find
the demand for the company’s retail store is relatively high and stable;
thus, the classic cycle inventory model can be implemented for delivering
products to the retail stores.

In fact, the challenging issue in managing businesses of this type is not
on the manufacturing side but in the coordination of manufacturing and
customer service. When the (online) orders arrive, the Customer Service
Representative (CSR) chooses which orders to accept and quotes a due
date immediately. For more distant due dates, it is common practice to
give price breaks to prevent losing customers who have other options. In
the past, CSRs used to quote due dates without considering the shop floor
status; this led to problems that could be resolved through the coordi-
nation of the customer service and manufacturing sides of the company.
The motivation for producing our model was to support this
coordination.

In this paper, we study the problem of reliable due date quotation in a
two-echelon dual-channel supply chain to maximize total profit. In our
model, there are two options for delivering items to the online customers:
directly from the manufacturer or through the retail store. There is also a
threshold on due dates (i.e., the online order will be lost if the quoted due
date is after the latest acceptable time). The objective function includes
due-date-sensitive revenue function and delivery cost. We consider
single-type e-tail customers and capacity in our analyses, and use
competitive analysis (Borodin and Yaniv 1998) to investigate the per-
formance of the online heuristic algorithms.

This study will make three main contributions to research in this field:
first, to the best of our knowledge, this is the first study of due date
quotation in dual-channel supply chains (e-tail and retail) with two op-
tions for shipping online orders. The efficient completion of online orders
will affect the total profitability and delivery flexibility. Efficient algo-
rithms for due date quotation in dual-channel supply chains can increase
a company’s capacity for dealing with online orders and thus increase the
manufacturer’s/retailer’s profit significantly. Second, we also considered
production capacity constraint for the first time and were able to provide
parametric bounds on the competitive ratio of any arbitrary online
strategy. Third, we investigated the competitive ratio of a specific online
algorithm for single-type e-tail channel orders where its profit was shown
to be at most 2.24 of the optimal algorithm in the worst-case scenario.

The paper is organized as follows: Section 2 explains the problem in
details and Section 2.1 provides the problem notations and mathematical
model. Section 3 characterizes the profit function of both online and
optimal offline algorithms. Section 4 presents a parametric upper bound
and lower bound for the competitive ratio of any arbitrary online algo-
rithm using concave fractional programing. Section 4.1 proposes a spe-
cific online algorithm and investigates its performance for single-type e-
tail customers. A detailed computational experiment is provided in Sec-
tion 5 and, finally, Section 6 concludes with a summary of the insights
from the analysis and suggestions for future research.
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2. Problem definition

In this paper, we study the problem of due date quotation for online
customers in a two-echelon dual-channel supply chain while maximizing
the profit function which contains due-date sensitive revenue and de-
livery costs of accepted online orders. We have one manufacturer and a
retailer as the traditional channel and online customers as the e-tail
channel who are served by the manufacturer. There exist two options for
delivering products to the online customers: shipping directly from the
manufacturer to online customers (available at any time), and delivering
through the retail store (available at specific periods but imposes less cost
to the system).

In our model we have the assumption of unknown demand for the e-
tail channel (i.e., at any time we have no idea about the arrival of future
online orders) and deterministic demand (with fixed profit) for the
traditional channel. This assumption implies that there is an optimal
cycle time ðTÞ for delivering items to the retail store, and thus the option
of delivering items to online customers through the retail store is avail-
able every T-periods. There exists a maximum acceptable lead time ðL0 Þ
for e-tail customers, and if they are offered a due date after their desired
lead time, they will not place the order; in fact, when there is no benefit in
accepting the order, the manufacturer has the option of rejecting the
online order by offering a due date after the desired lead time. The term
due date in this paper refers to the time that the order is shipped to the
customer (i.e., the time the order leaves the manufacturer); thus the
quoted due date for each order may be different from the manufacturer’s
production completion time. Since the delivery option through the retail
store is available at specific periods with less cost, the online order may
be held by the manufacturer after its production is completed in order to
use the most cost-effective delivery method.

We assume that the revenue will decrease linearly if the quoted due
dates for e-tail customers increase (first used by Keskinocak et al. 2001;
review on non-increasing revenue functions can be found in Keskinocak
1997). This linear change in revenue can be found in the courier industry:
when the customer places emergency orders, the revenue decreases
almost linearly based on shipment length/lead time. Another example
can be found in online ordering for some materials in a tool and die room
in an automotive company: the supervisor of the tool and die room orders
materials or parts online for the emergent situation and the order price
would almost linearly increase if the required lead time decreases. In
order to illustrate the revenue in the objective function, let r be the
revenue that is lost for each unit of time if the online order is delayed
before being delivered to the customer, and let l be the time interval
between the order’s arrival time and its quoted due date, then the rev-
enue will be rðL0 � lÞ. It is obvious that in this problem the maximum
revenue one can obtain from each online order is rL, where L ¼ L0 � p and
p is the order production time. In this problem, we quote 100% reliable
due dates to the online customers, i.e., there is no tardiness cost, and all
orders should be delivered by the quoted due dates. We also consider
capacity constraint of processing N online orders at any time by the
manufacturer. We consider a basic model, with single-type e-tail cus-
tomers, i.e., all online orders have unit-length processing time, identical
L

0
, revenue and delivery cost parameters.
2.1. Mathematical model

In this sub-section, we introduce the batch definition in our problem,
then the notations used in the rest of the paper are provided, followed by
the developed mathematical model. Assuming that ∂ is the schedule of
online orders generated by any algorithm, we can divide each schedule
into batches, where each batch contains consecutively-scheduled orders.
Let si be the start time of the batch Bi, and let s0i be the completion time of
the last order in the batch. In batch Bi, the order which is processed at
time si, has also arrived at si and all the accepted orders arriving before si
are processed before, however they may leave the system after si. Batch
3

definition in this paper is different from phase definition in Keskinocak
et al. (2001), as the online orders scheduled in each batch may leave the
system after the batch completion time. This is because in our problem
the quoted due date for e-tail orders is the time that the orders leave the
system, which may be different from their completion time.

If we assume that we have single-type e-tail customers, our problem
of due date quotation for online customers will be reduced to deter-
mining how many online orders should be accepted, how many accepted
orders should be processed, and how many processed orders should be
shipped in each period. We use the following notations:

i Time index, i ¼ 1; 2;…; n.
T Optimal cycle time of shipments to the retail store.
π Set of time indices that are multiples of T, fT; 2T;3T;…g.
ti Time interval between period i and the next period of regular
shipment to the retail store.
r Penalty (or revenue that is lost) for each unit of time that the online
order is delayed before being delivered to the customer.
LMaximum acceptable lead time excluding the order processing time.
c1 Delivery cost per online order shipped through the retail store.
c2 Delivery cost per online order shipped directly from the manu-
facturer (c1 < c2).
N Maximum number of online orders that can be processed at any
time by the manufacturer.
di Number of online orders (e-tail demand) that have arrived in period
i.

σðiÞ ¼
�

1 if i 62 π
0; otherwise

Decision Variables:

qi Number of accepted online orders in period i.
wi Number of accepted online orders shifted from period i to iþ 1
before being processed.
ui Number of online orders processed in period i but not delivered to
the customers.
vi Number of online orders processed in period i and delivered to the
customers.

For a schedule ∂ with n periods, we can define the following mathe-
matical model:Max

Pn
i¼1Ci, where Ci ¼ rLqi � rwi � uiðrti þ c1Þ�

vi½σðiÞðc2 � c1Þþ c1�,

s:t: ui þ vi � N 8i ¼ 1; 2;…; n
qi þ wi�1 � wi ¼ ui þ vi 8i ¼ 1; 2;…; n;
qi � di 8i ¼ 1; 2;…; n

where the first term of the objective function is the maximum possible
revenue one can obtain from any accepted online order. The expression
�rwi � uirti represents the revenue lost for the accepted online orders for
each unit of time they spend in the manufacturer's system before being
delivered. The terms �uiðc1Þ � vi ½σðiÞ ðc2 � c1Þ þ c1� are the delivery
costs of online orders shipped directly by the manufacturer and through
the retail store, respectively. The first set of constraints represents the
capacity restriction. The second set of constraints represent the fact that
at any time, the number of orders produced or delivered should be equal
to the number of accepted orders or to the number of e-tail orders with a
hold on delivery. The last constraints ensure that the number of accepted
online orders at any time is less than the online arrivals (e-tail channel
demand).

3. Preliminaries

In any online algorithm dealing with e-tail customers and unknown
demand, making decisions regarding accepting or rejecting the order and
quoting the due date must be done as soon as the order arrives, even
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though there is no information about the future orders. However, in
offline algorithms, demand information of future orders are available in
advance (demand arrival times or their amounts can be predicted or
known). The performance of online algorithms is mainly evaluated by
comparing the results of online and offline algorithms for specific
instances.

In this Section, we study the mathematical model provided in Sec-
tion 2:1 for both online and offline models. For a given batch with n
periods, let ZðnÞ denote the total profit obtained from an online algo-
rithm and Z*

ðnÞ the maximum profit one can obtain from the arrivals

during the batch. First, we present some remarks and propositions to
illustrate the features of the problem, and then in Lemma 1, we prove
that for a given batch with n periods, the lower bound of ZðnÞ is a linear
combination of variables q and u, where q and u are the column vectors
of n elements: q ¼ ðq1;…; qnÞ, u ¼ ðu1;…; unÞ. Then, in Lemma 2,
considering the offline model for a given batch, an upper bound for the
optimal function of Z*

ðnÞ is provided. These two Lemmas are then used

for computing the bounds of the competitive ratio for any arbitrary
online algorithm. Consider the following remarks and propositions for
any online algorithm:

Remark 1. We know that the purpose of any online algorithm is to
schedule orders as soon as possible to guarantee the available capacity for
future arrivals, as they have no information about the future demand;
therefore, in each period, if wi � 1; it means that some orders were
shifted to be processed in following periods, and, in this case, we should
have used all available capacity in that period, i.e., in online strategies, if
wi � 1 then ui þ vi ¼ N.

Remark 2. In each period if ui > 0; then i 62 π and σðiÞ ¼ 1.

Remark 3. If i 2 π, then ui ¼ 0 and σðiÞ ¼ 0.

Remark 4. vn ¼
Pn

i¼1ðqiÞ � ðn� 1ÞN � un where n is the last period in a
batch.

Proposition 1. If n is the last period in a batch, then
ZðnÞ ¼
Xn
i¼1

rLqi �
Xn
i¼1

rwi �
X
i2Q

N½σðiÞðc2 � c1Þ þ c1� �
Xn
i¼1

ui½rti þ c1�

þ
Xn
i¼1

ðc2uiÞ �
X
i2P

Nc2 �
"Xn

i¼1

ðqiÞ � ðn� 1ÞN
#�
c1
� ¼Xn

i¼1

rLqi �
Xn
i¼1

rqiðn� iÞ þ rNðnðn� 1ÞÞ=2

�
X
i2Q

N½σðiÞðc2 � c1Þ þ c1� �
Xn
i¼1

ui½rti þ c1 � c2� �
X
i2P

Nc2 �
"Xn

i¼1

ðqiÞ � ðn� 1ÞN
#�
c1
�
:

(5)
Xn
i¼1

wi ¼
Xn
i¼1

½ðn� iÞðqiÞ� � Nðnðn� 1ÞÞ=2

Proof: According to the batch definition,wi � 1, for i ¼ 1; 2;…; n� 1 and
wn ¼ 0. Therefore, from Remark 1, we have ui þ vi ¼ N for i ¼ 1;2;…; n�
1, and thus, wi ¼

Pi
j¼1ðqj � NÞ for i ¼ 1;2;…; n� 1 and wn ¼ 0.

Accordingly,
Pn

i¼1wi ¼
Pn

i¼1

Pi
j¼1ðqj � NÞ ¼ Pn

i¼1½ðn� iÞðqiÞ� � Nðnðn�
1ÞÞ=2.□
Lemma 1. Considering any arbitrary online algorithm’s schedule with
single-type e-tail customers and q � 0, the lower bound of the profit function
ZðnÞ for a batch with n periods can be written as r00qþ c

0
uþ K, where q, u, r00

and c
0
are the column vectors of n elements and r00i ¼ rL� rðn� iÞ �

σðnÞðc2 � c1Þ � c1; c00i ¼ �ðr þ hÞti � c1 þ c2 and K ¼ rNðnðn� 1ÞÞ=2þ
ð1� σðnÞÞðNðn� 1Þðc1 � c2ÞÞ.
4

Proof: Assume that we have n periods in batch Bl. According to the batch
definition, wn ¼ 0; and since the equality ui þ vi ¼ N is true for i ¼
1;2; :::; n� 1, we first consider Zðn�1Þ as the profit function of the first n� 1
periods in Bl. Let Q and P be the sets Q ¼ fi jui ¼ 0; i 6¼ ng and P ¼
fi j ui > 0; i 6¼ ng. Then
X
i2Q

Ci ¼
X
i2Q

frLqi � rwi � N½σðiÞðc2 � c1Þ þ c1�g; (1)

X
i2P

Ci ¼
X
i2P

frLqi � rwi � ui½rti þ c1� � ðN � uiÞ ½σðiÞðc2 � c1Þ þ c1�g: (2)

From Remark 2, we have
P
i2P

Ci ¼
P
i2P

frLqi � rwi � ui½rti þ c1� � ðN�
uiÞ ðc2Þg. Therefore,

Zðn�1Þ ¼
X
i2P

Ciþ
X
i2Q

Ci ¼
Xn�1

i¼1

rLqi�
X
i¼1

rwin�1�
X
i2Q

N ½σðiÞðc2� c1Þþ c1��X
i2P

ui½rtiþ c1��
X
i2P

ðN�uiÞ ðc2Þ:

(3)

For i ¼ n, we have two Cases:
Case 1. n 2 π:We have σðnÞ ¼ 0, and from Remark 3, un ¼ 0:, therefore,

Cn ¼ rLqn � vnc1. From Remark 4, we have Cn ¼ rLqn � ½Pn
i¼1ðqiÞ� ðn�

1ÞN�½c1�, therefore,

ZðnÞ ¼ Zðn�1Þ þ Cn ¼ Zðn�1Þ þ rLqn �
"Xn

i¼1

ðqiÞ � ðn� 1ÞN
#�
c1
�

¼
Xn�1

i¼1

rLqi �
Xn�1

i¼1

rwi �
X
i2Q

N ½σðiÞðc2 � c1Þ þ c1� �
X
i2P

ui½rti þ c1�

�
X
i2P

ðN � uiÞ ðc2Þ þ rLqn �
"Xn

i¼1

ðqiÞ � ðn� 1ÞN
#�
c1
�
: (4)

It is clear that we can write
P
i2P

ui½rti þ c1� as
Pn

i¼1ui½rti þ c1�, since if i 2 Q

then ui ¼ 0 and in this Case un ¼ 0. Also note that
Pn�1

i¼1 rwi ¼
Pn

i¼1rwi

because wn ¼ 0. Thus, we can rewrite the Equation (4) as follows:
Let r
0
i ¼ rL� rðn� iÞ, c0i ¼ � rti � c1 þ c2, and Q1 ¼ fi 2 Q&i 2 πg,

Q2 ¼ fi 2 Q&i 62 πg then the total profit function of the batch in Case 1will be

ZðnÞ ¼ r
0
qþ c

0
u� c1q�

��P��Nc2 � ��Q1

��Nc1 � ��Q2

��Nc2 þ rNðnðn� 1ÞÞ=2
þ Nðn� 1Þc1;

(6)

where q, u, r
0
and c

0
are the column vectors of n elements: q ¼ ðq1;…; qnÞ, u ¼

ðu1;…; unÞ, r 0 ¼ ðr 01;…; r
0
nÞ, c

0 ¼ ðc01;…; c
0
nÞ.

Case 2. n 62 π: In this Case, σðnÞ ¼ 1 and Cn ¼ rLqn � unðrtn þ c1Þ�
vnc2. From Remark 4, we have Cn ¼ rLqn � unðrtn þ c1Þ� ½Pn

i¼1ðqiÞ� ðn�
1ÞN� un�c2. Therefore,



ZðnÞ ¼ Zðn�1Þ þ Cn ¼ Zðn�1Þ þ rLqn � unðrtn þ c1
�

�
"Xn

i¼1

ðqiÞ � ðn� 1ÞNÞ � un

#
c2 ¼

Xn�1

i¼1

rLqi �
Xn�1

i¼1

rwi �
X
i2Q

N½σðiÞðc2 � c1Þ þ c1��
X
i2P

ui½rti þ c1� þ
X
i2P

ðui � NÞðc2Þ þ rLqn � unðrtn þ c1Þ �
"Xn

i¼1

ðqiÞ � ðn� 1ÞNÞ � un

#
c2:

(7)
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Setting r
0
i ,c

0
i, Q1 and Q2 as in Case 1, then the total profit function of the

batch for Case 2 will be as follows:

ZðnÞ ¼ r
0
qþ c

0
u� c2q� jPjNc2 � jQj1Nc1 � jQ2jNc2 þ rNðnðn� 1ÞÞ=2

þ Nðn� 1Þc2: (8)

Note that ðn� 1Þ ¼ jPj þ jQj1 þ jQ2j and c1 < c2: In either Case 1 or 2,
we can replace the expression ð�jPjNc2 � jQ1jNc1 � jQ2jNc2Þ by ð�jPjNc2 �
jQ1jNc2 � jQ2jNc2Þ and determine the lower bound of ZðnÞ as follows:

ZðnÞ �
�
r
0
qþ c

0
u� c1qþ rNðnðn� 1ÞÞ=2þ Nðn� 1Þðc1 � c2

�
n 2 π

r
0
qþ c

0
u� c2qþ rNðnðn� 1ÞÞ=2 n 62 π:

(9)

Therefore, for a given batch in an arbitrary online algorithm’s schedule, we
have ZðnÞ � r"qþ c0uþ K; where r"i ¼ r 0i � σðnÞðc2 � c1Þ � c1 and K ¼
rNðnðn� 1ÞÞ=2þ ð1� σðnÞÞðNðn� 1Þðc1 � c2ÞÞ rNðnðn� 1ÞÞ=2þ ð1�
σðnÞÞðNðn� 1Þðc1 � c2ÞÞ □
Lemma 2. The maximum profit one can obtain from the online arrivals
during the given batch satisfies Z*

ðnÞ � ðrL� c1Þq0
; where Z*

ðnÞ is the profit of

optimal offline algorithm, q0
i is the number of accepted online orders in period i

by an optimal offline algorithm, and q
0
is the column vectors of n elements:

q0 ¼ ðq0
1; :::; q

0
nÞ:

Proof: Assume that we have n periods in batch Bl: For the periods fi ¼
1; :::; njui ¼ 0g; if i 2 π; delivery cost for each of the online orders in period i
is c1 and if i 62 π; delivery cost is c2; thus considering c1 as the delivery cost for
all orders in these periods fi ¼ 1; :::; njui ¼ 0g does not reduce the profit
function since c2 > c1: For periods fi ¼ 1; :::; njui > 0g; delivery cost is c1;
but we have also the cost rti since i 62 π and ti > 0: Therefore, in this case,
considering c1 as the total delivery and holding cost for each of the online
orders in these periods does not decrease the profit function as well. According
to the batch definition, we know that wi � 1 for i ¼ 1;2; ::::; n� 1 and wn ¼
0; thus rw � 0: Therefore, based on the objective function in Section 2.1, it is
clear that the maximum profit one can make from the online arrivals during a
given batch has the following upper bound, Z*

ðnÞ � ðrL� c1Þq0
: □

4. Competitive analysis

In online optimization problems, online algorithm’s performance is
mainly evaluated via the competitive analysis, i.e., comparing an online
algorithm’s result with the offline model’s optimal solution.

As explained in Section 1.1, the evaluation method used in this paper
is called “competitive analysis” (Borodin and El-Yaniv, 1998). In online
situations, the decision maker has no information about future online
orders but needs to have an algorithm (strategy) to determine due dates
as soon as the orders arrive. In the competitive analysis method, the
decision maker will evaluate the performance of a selected strategy by
comparing the outcome with the result of a situation where he/she
already has the order’s information in advance and could find the
optimal plan (optimal offline algorithm). The result of that optimal plan
is compared with the result of the online strategy by determining the
competitive ratio: the gap between the result of the online strategy with
the result of optimal offline algorithm).

For the problem in this paper, all the information about the online
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orders is available in advance to determine the optimal offline algorithms
to obtain maximum possible profit. Given an instance I; let ZðIÞ denote
the total profit obtained by using an online algorithm, and Z*

ðIÞ denote the

maximum profit obtained by an optimal offline algorithm. For maximi-
zation problems, the online algorithm is called ρ� competitive if Z*

ðIÞ �
ρZðIÞ þ b where ρ � 1; and b is a constant. We define the competitive

ratio as ρ ¼ suρ
�Z*

ðIÞ
ZðIÞ

�
for ZðIÞ > 0: Determining the bounds of the

competitive ratio ðρÞ is the main challenge in online optimization
problems.

According to the batch definition provided in Section 2.1, any
schedule of orders generated by an online algorithm can be divided into
batches. Therefore, if we investigate the competitive ratio of a given
batch, we can generalize the results to determine the competitive per-
formance of the online algorithm generating that batch. In this Section,
we first investigate the competitive ratio of any arbitrary online algorithm
and then for a specific online strategy; the parametric bounds of the
competitive ratio are, thus, provided.

4.1. Competitive ratio of any arbitrary online algorithm

We review the concave fractional programming (Proposition 2)
which is used in Lemma 3 to prove an upper bound for the competitive
ratio of any arbitrary online algorithm. The lower bound for the
competitive ratio is also provided in Lemma 4.

Proposition 2. Concave Fractional Programming. If x 2 C; C⊂Rn is a
convex set, f is a concave and non-negative function on C; and g is a positive

and convex function on C; then the optimization problemmax
x2C

f ðxÞ
gðxÞ is equivalent

to the following problem:

minλ
s:t:�rf ðxÞ þ λrgðxÞ ¼ 0

�f ðxÞ þ λgðxÞ � 0
x 2 C
λ � 0

:

Proof: The proposition’s proof and more general results on concave
fractional programming can be found in Avriel and Diewert (1988).

In Lemma 3, we provide a parametric upper bound for the competitive
ratio of any online algorithm using concave fractional programming.

Lemma 3. For an arbitrary online algorithm with single-type e-tail cus-

tomers, if a finite competitive ratio exists, it satisfies ρ � ðrL�c1Þ
nrþr0min�c2�r

2
; where

r
0
min ¼ min

i
frL� rðn� iÞg:

Proof: According to the competitive analysis description, the competitive

ratio is defined as ρ ¼ suρ
�Z*

ðIÞ
ZðIÞ

�
for a given instance I: To find ρ; we can solve

the optimization problem of max
Z*
ðIÞ

ZðIÞ
: According to Lemma 1, for each batch

with n periods, ZðnÞ � r"qþ c
0
uþ K; where c

0
is a column vector of n elements

and c
0
i ¼ �rti � c1 þ c2: Note that 8i; if c0i � 0; then ui � 0; and if c

0
i < 0;

the option of delivering items through the retail store is not cost-effective in any
situation, so ui ¼ 0; therefore, c'u � 0 and we have ZðnÞ � r"qþ K: Also
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based on Lemma 2, for each batch, we have Z*
ðnÞ � ðrL� c1Þq0

: Then it is

obvious that the inequality of
Z*
ðnÞ

ZðnÞ
� ðrL�c1Þq0

r"qþK is satisfied and thus

ρ � max
	

ðrL�c1Þq0
r"qþK



:

By the batch definition, we know that
Pn

i¼1q � ðn� 1ÞN þ 1i and let
r 'min ¼ min

i
fr 'ig: From Lemma 1, we have

ZðnÞ �
��

r 'min�c1Þððn�1ÞNþ1ÞþrNðnðn�1ÞÞ=2þNðn�1Þðc1�c2
�
n2π�

r 'min�c2Þððn�1ÞNþ1ÞþrNðnðn�1ÞÞ=2 n 62π:

(10)

As Nðn�1Þðc1�c2Þ�c1ððn�1ÞNþ1Þ��c2ððn�1ÞNþ1Þ; therefore,
ZðnÞ � ðr 'min�c2Þððn�1ÞNþ1Þþ rNðnðn�1ÞÞ=2: By rearranging the
inequality we have,

ZðnÞ � ðn� 1ÞN
�
r'min � c2 þ nr

2

�
þ �r'min � c2

�
� Nrn2

2
þ n
	
Nr'min � Nc2 � Nr

2



þ Nc2 � r'minðN � 1Þ � c2: (11)

Note that
Pn

i¼1q
0
i �

Pn
i¼1qi; and considering the batch definition, the

maximum possible number of orders accepted from arrivals during the batch
can be at most NL number of orders more than the accepted orders by any
online algorithm, i.e.,

Pn
i¼1q

0
i �

Pn
i¼1qi þ NL: Also we know thatPn

i¼1qi � nN: Therefore,
Pn

i¼1q
0
i �

Pn
i¼1qi þ NL � Nnþ NL; and Z*

ðnÞ �
ðrL� c1Þq' � ðrL� c1ÞðNnþ NLÞ: Based on Proposition 2, optimization

problem
	
ρ � max

	
ðrL�c1Þq'
r"qþK




; can be written as the following dual model if

Z*
ðnÞ and ZðnÞ are concave and convex functions, respectively.

minλ
s:t:�rZ*

ðnÞ þ λrZðnÞ ¼ 0
�Z*

ðnÞ þ λZðnÞ � 0
λ � 0

Note that d2
dn2 ðZ*

ðnÞÞ ¼ 0 and d2
dn2 ðZðnÞÞ ¼ Nr (the corresponding conditions

are satisfied). Therefore, if a finite ratio ρ exists, i.e., there would be a feasible

solution for the above dual model, and we have ρ � λ ¼ rZ*ðnÞ
rZðnÞ

¼
NðrL�c1Þ

NnrþNr0min�Nc2�Nr
2
¼ ðrL�c1Þ

nrþr0min�c2�r
2
: □

In Lemma 4, we provide a parametric lower bound for the competitive
ratio of any arbitrary online algorithm.

Lemma 4. For any arbitrary online algorithm with single-type e-tail cus-

tomers, the lower bound of the competitive ratio is ρ � ðLþ1Þ=2�L=k2
1�1=k2

� 1:5� 1
k2

where k2 ¼ rL
c2
and k2 � L � 2:

Proof: To find the lower bound of the competitive ratio for any online al-
gorithm,we adapt the rule that at any time, the adversary knows all the actions
of the online algorithm and provides the worst possible arrivals of e-tail
customer orders as an input to maximize the competitive ratio. Based on this
rule, at any time, if the algorithm decides to accept even one of the online
arrivals for processing at time t; we will have NL number of new online arrivals
in each period afterwards until period t: At any time, if the algorithm decides to
reserve the capacity for period t by rejecting the available orders and using
future arrivals for period t; there would be no more online arrivals afterwards.
Note that if the algorithm decides to accept all the NL possible orders, it implies
that r � c2 (which is the worst case and is considered in this Lemma),
otherwise, at any time only the number of orders that guarantees the profit-
ability will be accepted.

Assume that in each T-period, the last x orders have the option of delivery

through the retail store, and we know that their delivery cost is c
0
i ¼

�
r
��

i
N


þ

c1 for i ¼ 1; ::::; x where
�

i
N


is the greatest integer which is less than i

N : This
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cost is replaced by c1 for all x orders in the online profit function, where c1 �
min
i
ðc0iÞ and is replaced by c

0
for all x orders in the optimal offline profit

function, where c
0 ¼ max

i
ðc0iÞ ¼ �r�xNþ c1:

If at t ¼ 0; the online algorithm decides to reserve the capacity for
time t � 1 by rejecting the available e-tail orders and using new arrivals.
Based on the adversary rule, there would be no more arrivals after t ¼ 0;

and, thus, the batch length is n ¼ 1: In this case, the online profit is ZðnÞ �

NrL�
�
1
T


x
�
c1
�� 	N �

�
1
T


x


c2:However, the maximum profit one can

gain from the arrivals during the batch period (arrivals at t ¼ 0) is Z*
ðnÞ ¼	

NLðLþ1Þ
2



r �

�
L
T


xc

0 �
	
NL�

�
L
T


x


c2: At t ¼ 0; the maximum possible

orders that the offline algorithm can accept is NL: Therefore, the revenue

gained from these accepted orders is NLþ N
�
L� 1

�þ :::þ N
�
1
� ¼

NLðLþ1Þ
2 : In this case, the length of consecutively-scheduled orders will be

L:
�
L
T


x determines the number of orders that have been delivered

through the retail store in each T-period and
	
NL�

�
L
T


x


are the rest of

accepted orders shipped directly to the online customers.
If the batch ends at t � 1; it is clear that in this case, batch length is

n ¼ t þ 1 and the maximum revenue one can gain from online algorithm
is NrLþ NtðrÞðL� 1Þ; where NrL is for the first period and NtðrÞðL� 1Þ
denotes the maximum possible revenue for the next t periods. Therefore,

ZðnÞ ¼ NrL� Nc2 þ Nt
�
r
�
L� 1

�� c2
�þ �1þt

T


x
�
c2 � c1

�
: For this case,

the maximum number of orders that the offline algorithm can accept
from the arrivals during the batch length is NðtÞ þ NL: In the first t pe-
riods that we have arrivals the revenue will be Nrt; and in the last period
that we have any arrivals we will accept the maximum number which is

NL; where its revenue will be NLþ N
�
L� 1

�þ :::þ N
�
1
� ¼ NLðLþ1Þ

2 : So,

the partial schedule has t þ L periods and the maximum possible profit

one can gain is Z*
ðnÞ ¼

	
NLðLþ1Þ

2



r� NLc2 þ Nt

�
Lr� c2

�þ �Lþt
T


x
�
c2 � c

0�
:

It is clear that when t and N increase, the ratio Z*
ðnÞ=ZðnÞ increases, and

when T increases, the ratio will decrease. Therefore, the minimum ratio
occurs when t ¼ 0; N ¼ 1 and T equals to infinity. Thus, the lower bound

of the competitive ratio for any online algorithm is
Z*
ðnÞ

ZðnÞ
� rLðLþ1Þ=2�Lc2

rL�c2
: Let

c1 � k1 ¼ rL and c2 � k2 ¼ rL; where k1 > k2 > 1; then
Z*
ðnÞ

ZðnÞ
� ðLþ1Þ=2�L=k2

1�1=k2
:

Note that we assumed that if the algorithm decides to accept orders at
any time, all the possible NL arrivals may be accepted; therefore, we

should have r � c2: Thus, r � rL
k2
; k2 � L: In this situation,

Z*
ðnÞ

ZðnÞ
has the

minimum amount at L ¼ 2; and
Z*
ðnÞ

ZðnÞ
� ð3Þþ2�2=k2

1�1=k2
� 1:5� 1

k2
where k2 �

L � 2: □
4.2. Due date quotation for customers (DQC) algorithm

In this section, we introduce a specific online algorithm for single-
type e-tail customers, called the Due Date Quotation (DQC), and we
investigate its corresponding competitive ratio. Select 0 < α < 1: Among
the orders that arrive at time t; the ones that yield at least αðrL� c1Þ
profit are accepted, and others will be rejected. The accepted orders will
be scheduled at the earliest possible position. Note that ðrL� c1Þ repre-
sents the maximum possible profit yield from any accepted order, which
includes the maximum possible revenue ðrLÞ and the minimum delivery
cost ðc1Þ gained from delivery through the retail store without holding



Table 1
Competitive ratio of DQC Algorithm

L Case1 Case2 Case 3

ρmx ρmx ρmx

2 1:001 2:00128 1:990304
3 1:05722 1:955236 1:954316
4 1:066855 1:897095 1:896957
5 1:202256 1:857932 1:860584
6 1:307815 1:820385 1:818566
10 1:570692 1:743365 1:750954
50 2:060528 1:637027 1:64149
100 2:150173 1:625775 1:626146
500 2:228154 1:618276 1:613276
1000 2:238121 1:611491 1:6121
10000 2:247761 1:617716 1:617945

Figure 1. Upper and Lower bound of ρ (Case 2).
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the order. We need to find the optimal figure so that the worst perfor-
mance (competitive rate is smallest) is best. In fact, in this algorithm, an
online order is accepted if a certain fraction of maximum profit is guar-
anteed and the rest of the arrived orders are rejected to keep the capacity
for later orders that may yield more profit. The main idea of this algo-
rithm is taken from that presented by Equation (6) for the problem of
revenue maximization; however, there exist influential differences in
details and assumptions.

Lemma 5. The competitive ratio of online algorithm (DQC) is at most�
1� 1

k1

�
α

�
1� 1

k1

�
þ1

T

�
1
k2
� 1

k1

� ; where α satisfies the following Equation:

	
2α" � 1þ 1

L þ 2
Lk1

� 2α"
k1
�
�

1
k2
� 1

k1

�2

ð1� α"Þ2 þ ð1�3α"Þ

L � 2
Lk2

þ 2
Lk1

¼ ðrL� c1Þ
αðrL� c1Þ þ 1

T ðc2 � c1Þ ;where α
"

¼ α
	
1� 1

k1



þ 1
k2
:

(12)

Proof: The proof of this Lemma is provided in the Appendix.

Corollary 1. In Lemma 5, we assumed we have the option of holding the
completed orders to be delivered through the retail store, which implies that
c2 > r þ c1: However, we may have two other cases: ðc2 > r&c2 < r þ c1Þ
and ðc2 < r; i:e:; k2 > LÞ; where holding the completed item is not profitable,
and completed orders may be delivered through the retail store only if their
completion time is set at π: For these two cases, Z*

ðnÞ in Lemma 5 changes to

Z*
ðnÞ � NrL2

2

	
2α" � 1þ 1

L þ 2
Lk1

� 2α"
k1



þ nNðrL� c1Þ; and we have Z*

ðnÞ �
�
1� 1

k1

�
α

�
1� 1

k1

�
þ1

T

�
1
k2
� 1

k1

�ZðnÞ where α is obtained from the equation

�
2α"�1þ1

Lþ 2
Lk1

�2α"
k1

�
ð1�α"Þ2þð1�3α" Þ

L � 2
Lk2

þ 2
Lk1

¼ ðrL�c1Þ
αðrL�c1Þþ1

T ðc2�c1Þ :

Corollary 2. Note that based on the results obtained from Lemma 3, the

upper bound of the competitive ratio for any arbitrary online algorithm is ρ �

ðrL�c1Þ
nrþr 'min�c2�r

2
: In DQC, r 0min ¼ α"rL; thus ρ � ðrL�c1Þ

nrþα"rL�c2�r
2
¼

�
1� 1

k1

�
n
Lþα

�
1� 1

k1

�
þ 1

k2
� 1

k2
� 1

2L

¼
�
1� 1

k1

�
ðnL� 1

2LÞþα

�
1� 1

k1

� ; and it is clear that ρ � 1
α : Therefore, results of both Lemmas 5

and 3 satisfy the inequality of Z*
ðnÞ � 1

αZðnÞ for the DQC online algorithm.

5. Experimental results

In order to evaluate the competitive performance of the proposed
algorithm, we define three different cases: 1) c2 > r þ c1; 2) c2 > r&c2 <

r þ c1 and 3) c2 < r; i:e:; k2 > L: We investigate the performance of the
DQC algorithm by providing computational experiments on the upper
bound of its competitive ratio (Lemma 5 and Corollary 1). Note that we
may use different scenarios for each case, and, in each scenario, the
maximum possible ratio is reported as the upper bound of the ratio
considered for our performance evaluation. For all three cases, we noted
that by increasing k1 while other parameters are fixed, the ratio of the
DQC algorithm increases, thus the maximum value for the ratio occurs
with the delivery cost c1 is minimized. In addition, by increasing T; the
competitive ratio decreases (α increases) implying that the maximum
ratio occurs when T has the minimum amount. This result also satisfies
the argument in Lemma 4, which denoted that the minimum ratio for any
online algorithm occurs when T goes to infinity. For each case, the
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competitive ratio is calculated for different amounts of L and k2; while k1
and T are set to be 10,000 and 2, respectively. (Note that T ¼ 1 is not
considered for this problem, as it eliminates the second option of direct
delivery and k1 ¼ 10000 was examined and proved large enough for the
analysis).

The results are provided in Table 1. For Case 1, we have c2 > r þ c1
which means 1

k2
> 1

k1
þ 1

L ; thus for a specific L; the parameter k2 should be

within 1 < k2 < Lk1
Lþk1

: In Cases 2 and 3, for a specific L; we have k2 > Lk1
Lþk1

and k2 > L; respectively. In Case 1, the minimum amount of k2 is set to be
1.01 and in Cases 2 and 3, the maximum amount of k2 is set to be 10,000.
For all the Cases, the maximum ratio ðρmxÞ is obtained from all possible
amounts of k2 for a specific L:As shown in Table 1, L is changing from 2 to
10,000 and the maximum amount of the competitive ratios for Cases 1, 2
and 3 is at most 2.247761, 2.00128 and 1.990304 respectively. We can
claim that the competitive ratio of the DQC algorithm is at most
2.247761, considering all different Cases. This result illustrates that
following the DQC algorithm for accepting/rejecting the online arrivals is
at most 2.24 worse when compared to the optimal situation if we had all
the information in advance. Note that by increasing L; the competitive
ratio in Cases 2 and 3 converges to 1.618, which is the number Keski-
nocak et al. (2001) reported as the competitive ratio of their problem
(which is a special scenario of our problem in these two Cases). In their
problem, the manufacturer is assumed to be a single machine and they
consider only maximizing revenue in an e-tail channel, i.e., ðc1 ¼ c2 ¼
0Þ:

In order to evaluate the performance of bounds provided in Lemmas 3
and 4 for Cases 2 and 3 of the data sets, the gap between the upper and
lower bounds of the DQC’s competitive ratio is presented in Figures 1 and
2. In these figures, k1 and T are set as mentioned above, and for each L
and its corresponding k2 amounts, the maximum upper bound value and
the minimum lower bound value is reported.

In Figure 1, it is shown that if Case 2 ðc2 > rÞ is the situation, the
upper bound of the competitive ratio, in the worst case, is 2.003. In this
case, also, both upper and lower bounds of the competitive ratio
converge to 1.618. Figure 2 illustrates that if Case 3 ðc2 < r; i:e:; k2 > LÞ is
the situation, the upper bound of the competitive ratio, in the worst case,
is 1.999. In this case, also, both the upper and lower bounds of the
competitive ratio converge to 1.618.



Figure 2. Upper and Lower bound of ρ (Case 3).

N. Nekoiemehr et al. International Journal of Production Economics xxx (2018) 1–10
The results of investigating all the different Cases illustrate that in the
worst-case situation, the competitive ratio of the DQC algorithm is 2.24,
meaning that the objective function (profit) of this algorithm in deter-
mining the due date and accepting/rejecting online orders, is 2.24 worse
than the result of the optimal algorithm that knows the online orders in
advance.

One of the main concerns for companies with an e-tail channel is
determining the best strategy for accepting/rejecting orders and, more
importantly, determining the gap between their strategy and the optimal
situation for maximizing profit. In this study, we showed that following
the DQC algorithm for acceptance/rejection of e-tail customers, (where
an online order is accepted only if a certain fraction of maximum profit is
guaranteed, while all others are rejected in order to keep the capacity for
later orders that may yield more profit) the profit gained is (in the worst
case) 1

α less than the maximum possible profit by selecting any αbetween
0 and 1. Also, by selecting the α as in Lemma 5, the profit gap between
actual and optimal situations can be calculated using different cost pa-
rameters of the company, and is at most 2.24 of the optimal profit.
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6. Conclusions

With the growth of e-business, many companies are adopting a dual-
channel strategy, adding online (e-tail) channels to traditional retail
channels to providemore convenient access to products. However, even a
well-designed dual-channel supply chain is useless when it does not
successfully deliver items as promised. One of the most important chal-
lenges for these facilities is to quote and manage the most efficient due
dates to get the competitive advantage in the market. In this paper, we
studied reliable due date quotation in two-echelon, dual-channel supply
chains while there is an availability interval for online customers. We
applied competitive analysis to this problem while maximizing the total
profit. The profit function consists of linear due-date-sensitive revenue
and delivery costs. In our analyses, we considered capacity constraint and
two delivery options for e-tail customers with different costs and avail-
ability intervals. We provided parametric bounds on the competitive
ratio of any arbitrary online strategy, and investigated the competitive
ratio of a specific online algorithm for single-type e-tail channel orders.
Computational experiments illustrate the effectiveness of the proposed
analysis. Future research can consider different types of orders with
different processing times and cost parameters. In order to analyze these
types of problems, asymptotic probabilistic analysis of the model and
heuristics can be helpful.
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Appendix

Proof: For the batch Bl with n periods, let ZðnÞ be the profit obtained from the DQC algorithm and Z*
ðnÞ the maximum possible profit one can gain from

the arrivals during the batch. Note that all the orders accepted by algorithm DQC yield at least αðrL� c1Þ profit. Assume R is the revenue obtained from
an order accepted by DQC, and in the worst case it is delivered directly to the customer, then R� c2 � αðrL� c1Þ: Let α0 ¼ c2�αc1

rL , then R � αrLþ α
0
rL;

and any order accepted by algorithm DQC yields at least α"rL revenue where α" ¼ αþ α
0 and 0 < α" < 1: Note that for determining the bounds of the

competitive ratio, wemust consider the worst-case situation. First assume that n � �ð1� α"ÞL�þ 1, then the revenue we can get from the DQC algorithm
is at least

ZðnÞ � rN
	
LðLþ 1Þ

2
� bα"Lcðbα"Lc þ 1Þ

2



þ �n� ��1� α"ÞL�� 1

�
α"rLN � nNc2 þ

jn
T

k
Nðc2 � c1Þ

� rN
	
LðLþ 1Þ

2
� α"Lðα"Lþ 1Þ

2



þ �n� �1� α"

�
L� 1

�
α"rLN � nNc2 þ

�n
T
� 1
�
Nðc2 � c1Þ: (13)

In the worst-case situation, we assume all the orders scheduled in the first bð1� α"ÞLc þ 1 periods have arrived at t ¼ 1; therefore, the revenue the

DQC algorithm can gain from these orders will be rN
	

LðLþ1Þ
2 � bα"Lcðbα"Lcþ1Þ

2



� rN

	
LðLþ1Þ

2 � α"Lðα"Lþ1Þ
2



, which is the first term in the right-hand side of

Equation (13). α"rL is the minimum revenue the DQC algorithm can get from the remaining periods ðn� bð1� α"ÞLc � 1ÞÞ in batch Bl; thus we have ðn�
ð1� α"ÞL� 1ÞÞα"rLN, as well. The expression �nNc2 þ

j
n
T

k
N
�
c2 � c1

�
denotes the maximum delivery costs for all the orders scheduled in the batch,

where we know that
j
n
T

k
� n

T � 1; and therefore,
j
n
T

k
Nðc2 � c1Þ is replaced by

�
n
T � 1

�
Nðc2 � c1Þ in Equation (13). Without loss of generality, let c1 �

k1 ¼ rL and c2 � k2 ¼ rL where k1 > k2 > 1; then �Nðc2 � c1Þ in Equation (13) can be replaced by NrL2
2

	
�2
Lk2

þ 2
Lk1



. By rearranging Equation (13), we

have

ZðnÞ � NrL2

2

	�
1� α"

�2 þ ð1� 3α"Þ
L

� 2
Lk2

þ 2
Lk1



þ nNrα"L� nNc2 þ n

T
Nðc2 � c1Þ: (14)

Note that α"rL ¼ αrLþ c2 � αc1; therefore, the term nNrα"L� nNc2 in Equation (14) is equal to nNαðrL� c1Þ, and we have

ZðnÞ � NrL2

2

	�
1� α"

�2 þ ð1� 3α"Þ
L

� 2
Lk2

þ 2
Lk1



þ nNαðrL� c1Þ þ n

T
Nðc2 � c1Þ: (15)

The maximum profit we can obtain from the arrivals during the batch Bl (for the considered worst-case situation) is as follows
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Z*
ðnÞ � ðn� ��1� α"ÞL�ÞÞNrLþ Nr

LðL� 1Þ
2

� nNc1 �
�
α"L
�
Nc1 � rN

ln
T

m
ð1þ 2þ :::þ xÞ: (16)
	 


Considering batch definition, capacity constraint N, and the worst-case situation mentioned above, there would be no arrivals during the last
bð1� α"ÞLc periods of batch Bl. The first term in the right-hand side of Equation (16) shows that all the orders arriving in periods 1;2; :::; n� bð1� α"ÞLc
can obtain the maximum amount of revenue which is rL, and the second term denotes that the maximum possible revenue one can get from the arrivals

during the last bð1� α"ÞLc periods of the batch is Nr
	

LðL�1Þ
2



. The last period in the batch when we could have any arrivals is the period

ðn� bð1� α"ÞLcÞth, and—to obtain maximum possible revenue—we assume the maximum number of orders we can accept ðNLÞ has arrived in that

period. Therefore, the maximum possible revenue for the arrivals during the last bð1� α"ÞLc periods is Nr
	
L� 1



þ Nr

	
L� 2



þ :::þ Nr

	
1



¼

Nr
	

LðL�1Þ
2



. The terms nNc1 and bα"LcNc1 are also the minimum delivery costs for all arrivals during the batch time. Some of the orders delivered

through the retail store may have been held after their completion time, and it is obvious that their holding time would be rN
l
n
T

m
ð1þ 2þ :::þ xÞ, where

x ¼ c2�c1
r ¼

	
1
k2
� 1

k1



L.

Note that � �α"L�Nc1 � ð1� α"LÞ


Nc1 ¼ NrL2

2

	
2
Lk1

� 2α"
k1



, and � rN

l
n
T

m
xðxþ1Þ

2 � � rN x2
2 ¼ � NrL2

2

	
1
k2
� 1

k1


2

. By rearranging Equation (16), we have

Z*
ðnÞ �

NrL2

2

 
2α" � 1þ 1

L
þ 2
Lk1

� 2α"

k1
�
	
1
k2

� 1
k1


2
!

þ nNðrL� c1Þ: (17)

Considering the right-hand side of Equations (15) and (17), If we set

	
2α" � 1þ 1

L þ 2
Lk1

� 2α"
k1
�
�

1
k2
� 1

k1

�2

ð1� α"Þ2 þ ð1�3α"Þ

L � 2
Lk2

þ 2
Lk1

¼ ðrL� c1Þ
αðrL� c1Þ þ 1

Tðc2 � c1
� (18)

We have Z*
ðnÞ �

	
ðrL�c1Þ

αðrL�c1Þþ1
Tðc2�c1Þ



ZðnÞ: Note that ðrL�c1Þ

αðrL�c1Þþ1
T ðc2�c1Þ

¼
�
1� 1

k1

�
α

�
1� 1
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�
þ1
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1
k2
� 1
k1

�, then Z*
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@

�
1� 1
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�
α

�
1� 1
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�
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�
1
k2
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�
1
AZðnÞ, where α is obtained from the

quadratic Equation (19). By replacing α" ¼ αþ c2�αc1
rL ¼ α

	
1� 1

k1



þ 1

k2
in Equation (18), we have

α2ðaÞ þ αðbÞ þ ðcÞ ¼ 0;

a ¼
	
1� 1
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3

� 2
	
1� 1
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2
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2

;
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;

c ¼
	
1� 1
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þ 1
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� 5
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1� 1
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1� 1
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1
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:

(19)

It is obvious that 1
k2
� 1

k1
� 0, then

�
1� 1

k1

�
α

�
1� 1

k1

�
þ1
T

�
1
k2
� 1
k1

� � 1
α, and Z*

ðnÞ � 1
αZðnÞ, where α is obtained from Equation (19).

Note that if n <
�ð1� α"ÞL�þ 1, then the online algorithm will accept all possible arrivals during the batch length and schedule them in non-

decreasing order of their arrival times, because any arrival during the
�ð1� α"ÞL�þ 1 periods yield at least α"rL revenue. It can be simply shown

that the online algorithm in this case, gives an optimal solution, i.e.,
Pn

i¼1q
0
i ¼

Pn
i¼1qi and Z*

ðnÞ ¼ ZðnÞ. □
References

Abdul-Jalbar, B., Gutierrez, J., Sicilia, J., 2006. Single cycle policies for the one-
warehouse N-retailer inventory/distribution system. Omega 34, 196–208.
9

Avriel, M., Diewert, W.D., Schaible, S., Zang, I., 1988. Generalized Concavity. Society for
Industrial & Applied Mathematics.

Baker, K.R., Bertrand, J.W.M., 1981. A comparison of due-date selection rules. AIIE Trans.
13 (2), 123–131.

http://refhub.elsevier.com/S0925-5273(18)30179-8/sref1
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref1
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref1
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref2
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref2
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref2
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref3
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref3
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref3


N. Nekoiemehr et al. International Journal of Production Economics xxx (2018) 1–10
Bookbinder, J.H., Noor, A.I., 1985. Setting job-shop due-dates with service-level
constraints. J. Oper. Res. Soc. 36 (11), 1017–1026.

Borodin, A., El-Yaniv, R., 1998. Online Computation and Competitive Analysis.
Cambridge University Press, U.K.

Chand, S., Chhajed, D., 1992. A single machine model for determination of optimal due
dates and sequence. Oper. Res. 40 (3), 596–602.

Chang, P., Hieh, J., Liao, T.W., 2005. Evolving fuzzy rules for due date assignment
problem in semiconductor manufacturing factory. J. Intell. Manuf. 16 (4–5),
549–557.

Cheng, T.C.E., Gupta, M.C., 1989. Survey of scheduling research involving due date
determination decisions. Eur. J. Oper. Res. 38, 156–166.

Chiang, W., Monahan, G., 2005. Managing inventories in a two-echelon dual-channel
supply chain. Eur. J. Oper. Res. 162, 325–341.

Duenyas, I., 1995. Single facility due date setting with multiple customer classes. Manag.
Sci. 41 (4), 608–619.

Fan, M., Jain, A., Moinzadeh, K., 2008. A supply chain model with direct and retail
channels. Eur. J. Oper. Res. 187, 691–718.

Handfield, R., Ernest, B., Nichols, L., 1999. Introduction to Supply Chain Management.
Prentice Hall, NJ.

Hill, A., Collier, D., Froehle, C., Goodale, J., Metters, R., Verma, R., 2002. Research
opportunities in service process design. Oper. Manag. 20, 189–202.

Hsu, S.Y., Sha, D.Y., 2004. Due date assignment using artificial neural networks under
different shop floor control strategies. Int. J. Prod. Res. 42 (9), 1727–1745.

Hua, G., Wang, S., Cheng, T.C.E., 2010. Price and lead time decisions in dual-channel
supply chains. Eur. J. Oper. Res. 205, 113–126.

Kaminsky, P., Kaya, O., 2005. Centralized versus decentralized scheduling and due date
quotation in a make-to-order supply chain. In: Proceedings of the 2005 M&SOM
Conference, IL, USA, pp. 149–159.

Kaminsky, P., Lee, Z.H., 2008. Effective on-line algorithms for reliable due date quotation
and large-scale scheduling. J. Sched. 11 (3), 187–204.
10
Kaminsky, P., Hochbaum, D., 2004. Due date quotation models and algorithms. In:
Leung, J.Y. (Ed.), Handbook on Scheduling Algorithms, Methods and Models.
Chapman Hall/CRC, London.

Keskinocak, P., 1997. Satisfying Customer Due Dates Effectively. Ph.D. thesis. GSIA,
Carnegie Mellon University, Pittsburgh, PA.

Keskinocak, P., Ravi, R., Tayur, S., 2001. Scheduling and reliable lead-time quotation for
orders with availability intervals and lead-time sensitive revenues. Manag. Sci. 47
(2), 264–279.

Keskinocak, P., Tayur, S., 2003. Due date management policies. Handbook of
Quantitative Supply Chain Analysis.

Kapuscinski, R., Tayur, S., 1997. 100% a Reliable Quoted lead Times. GSIA Working
Paper. Carnegie Mellon University, Pittsburgh, PA.

Niels, A.H., Agatz, M., Fleischmann, Jo A.E.E., van Nunen, 2008. E-fulfillment and multi-
channel distribution-A review. Eur. J. Oper. Res. 187 (2), 339–356.

Qi, X., Bard, J.F., Yu, G., 2004. Supply chain coordination with demand disruptions.
Omega 32, 300–312.

Ragatz, G.L., Mabert, V.A., 1984. A simulation analysis of due date assignment rules.
Oper. Manag. 5 (1), 27–39.

Stalk, J.G., Hout, T.H., 1990. Competing against Time. The Free Press, New York.
Tarn, J., Razi, M.M., Wen, H.J., Perez, J.r, 2003. A. E-fulfillment: the strategy and

operational requirements. Logist. Inf. Manag. 16, 350–362.
Weeks, J.K., 1979. A simulation study of predictable due-dates. Manag. Sci. 25 (4),

363–373.
Yao, D., Yue, X., Mukhopadhyay, S.K., Wang, Z., 2009. Strategic inventory deployment

for retail and e-tail stores. Omega 37, 646–658.
Yue, X., Liu, J., 2006. Demand forecast sharing in a dual-channel supply chain. Eur. J.

Oper. Res. 174, 646–667.
Zheng, F., Xu, Y., Zhang, W.E., 2014. Online scheduling with immediate and reliable lead-

time quotation. J. Sched. 17, 225–236.

http://refhub.elsevier.com/S0925-5273(18)30179-8/sref4
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref4
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref4
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref5
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref5
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref6
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref6
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref6
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref7
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref7
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref7
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref7
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref7
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref8
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref8
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref8
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref9
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref9
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref9
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref10
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref10
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref10
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref11
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref11
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref11
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref12
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref12
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref13
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref13
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref13
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref14
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref14
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref14
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref15
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref15
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref15
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref16
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref16
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref16
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref16
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref16
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref17
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref17
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref17
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref18
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref18
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref18
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref19
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref19
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref20
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref20
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref20
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref20
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref21
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref21
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref22
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref22
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref23
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref23
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref23
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref24
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref24
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref24
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref25
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref25
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref25
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref26
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref27
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref27
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref27
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref28
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref28
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref28
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref29
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref29
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref29
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref30
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref30
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref30
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref31
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref31
http://refhub.elsevier.com/S0925-5273(18)30179-8/sref31

	Due date quotation in a dual-channel supply chain
	1. Introduction
	1.1. Motivation

	2. Problem definition
	2.1. Mathematical model

	3. Preliminaries
	4. Competitive analysis
	4.1. Competitive ratio of any arbitrary online algorithm
	4.2. Due date quotation for customers (DQC) algorithm

	5. Experimental results
	6. Conclusions
	Acknowledgement
	AppendixAcknowledgement
	References


