
Contents lists available at ScienceDirect

Research Policy

journal homepage: www.elsevier.com/locate/respol

Coherence or flexibility? The paradox of change for developers’ digital
innovation trajectory on open platforms
Sabine Brunswickera,1,⁎, Aaron Schecterb,2
a Research Center for Open Digital Innovation, Purdue University, West Lafayette, IN, United States
bDepartment of Management Information Systems, University of Georgia, Athens, GA, United States

A R T I C L E I N F O

Keywords:
Digital innovation
Digital platform
Paradox of change
Platform architecture
Cumulative innovation
Knowledge translation
Individual innovation trajectory
Dynamics
Relational events

A B S T R A C T

Innovation is a cumulative process in which past knowledge created by others can be both a source for pre-
dictable outcomes and also a barrier to significant change. The recent literature on digital innovation suggests
that open platforms, which encourage their developers to build upon each other's knowledge when innovating
their add-on apps in the periphery, face a related paradox. Developers face the tension of either being coherent
with the past, or flexible to adjust to the future. In this paper, we examine how the trade-off between coherent
and flexible search mechanisms affects the individual developer's choice of innovating a certain app as well as
his or her cumulative impact, i.e., the degree of modifications to the app. We study an open platform in the
multi-disciplinary field of nanotechnology, in which 480 developers perform more than 30,000 problem-solving
actions over a period of 10 years. We use relational event modeling to differentially assess the effect of the
coherent and flexible search strategies. We find that developers are significantly more likely to choose a certain
app that is consistent with both a coherent and flexible strategy. However, a coherent strategy leads to greater
cumulative impact on an app compared to a strategy of being mutually coherent and flexible. Thus, our findings
indicate both a complementary and a contradictory logic in how the tension between coherence and flexibility
unfolds. We make contributions to the recent literature on digital innovation as well as the innovation literature
more broadly. Further, our results inform innovation policy and platform design.

1. Introduction

The established innovation literature has highlighted that innova-
tion is best described as a path-dependent, cumulative problem-solving
process. In this process, innovating actors identify new opportunities
and solve problems through reuse and adaptation of past solutions in-
cluding those developed in other domains (Carlile, 2004; Katila and
Ahuja, 2002; Murray and O’Mahony, 2007; Nelson and Winter, 1977).
The literature manifests in an inter-temporal trade-off: attention to the
past can be a fruitful source for “assembling new trajectories into the
future” (Walsh and Ungson, 1991, p. 72), e.g., because of more pre-
dictable outcomes. However, a focus on the past can also be a barrier
because it slows down change (Carlile, 2004). In this paper, we revisit
this paradox of change in the context of the emerging literature on
digital innovation (Nambisan et al., 2017) which suggests that the rise

of digital platforms (Yoo et al., 2010) transforms how such a paradox of
change unfolds at the individual-level.

On digital platforms,3 innovation is primarily carried out by a het-
erogeneous ecosystem of third-party software developers (Lyytinen
et al., 2015; Parker and Van Alstyne, 2017; Yoo et al., 2010). A platform
offers its developers a stable software-based system – an extensible code
base with a core set of functionalities – which they are invited to extend
with their own software-based applications, or apps for short, also re-
ferred to as extensions or modules (de Reuver et al., 2018; Tiwana,
2015). A digital platform relies on a modular architecture to coordinate
the distributed ecosystem of developers (Baldwin and von Hippel,
2011), with the apps in the periphery decoupled from the platform and
other apps through standardized interfaces (e.g., APIs); i.e., a change in
the app does not affect the core of the platform or another app.

Scholars of digital platforms point out that in order to ensure the

https://doi.org/10.1016/j.respol.2019.03.016
Received 9 December 2017; Received in revised form 25 March 2019; Accepted 25 March 2019

⁎ Corresponding author.
E-mail address: sbrunswi@purdue.edu (S. Brunswicker).

1 https://orcid.org/0000-0001-8631-0955.
2 https://orcid.org/0000-0002-3186-7788.
3 We follow de Reuver et al. (2018) and exclusively focus on digital platforms that have an extensible codebase; we also acknowledge their comment that

infrastructures can be interpreted as complex platforms.

Research Policy xxx (xxxx) xxx–xxx

0048-7333/ © 2019 Elsevier B.V. All rights reserved.

Please cite this article as: Sabine Brunswicker and Aaron Schecter, Research Policy, https://doi.org/10.1016/j.respol.2019.03.016

http://www.sciencedirect.com/science/journal/00487333
https://www.elsevier.com/locate/respol
https://doi.org/10.1016/j.respol.2019.03.016
https://doi.org/10.1016/j.respol.2019.03.016
mailto:sbrunswi@purdue.edu
https://orcid.org/0000-0001-8631-0955
https://orcid.org/0000-0002-3186-7788
https://doi.org/10.1016/j.respol.2019.03.016

platform evolves successfully in response to the diverse and changing
needs of the platform users, it must cultivate its developer ecosystem for
generativity (Wareham et al., 2014; Yoo et al., 2012). The developers
should thus possess a capacity to produce change (Zittrain, 2006, p.
1980) when developing their apps. One way to realize generativity is to
increase the openness of a platform's architecture and put fewer con-
straints on the developers to build on each other and the platform
(Parker and Van Alstyne, 2017, p. 4). Indeed, a range of successful
digital platforms, such as Firefox plugins, Red Hat's JBoss EAP, Thin-
giverse, or YouTube, encourage an open cumulative process in which
developers in the periphery share, reuse, and learn from each other
(Brunswicker et al., in press). We refer to such platforms as open in the
periphery. A quote from Netscape founder and investor Marc Andreessen
in 2007 illustrates the vision of using openness in the periphery to foster
cumulative generativity: “You can in essence have your own open
source software dynamics within your for-profit platform […]. The rate
of evolutionary development that you can result with this approach will
be mind-boggling as it plays out” (in Parker and Van Alstyne, 2017, p.
2). Essentially, open platforms borrow ideas from open source software
(Howison and Crowston, 2014) but even if they aim for the greatest
level of openness, they afford distinct cumulative processes due to the
platform's unique modular architecture. Unlike an open source archi-
tecture, the apps do not have to be nested within a centralized design
hierarchy of a single digital object (Baldwin and Clark, 2000). Instead,
the apps follow their unique internal design rules to afford distinct app
functionalities for specific end-user needs (Yoo et al., 2010). The apps
are only guided but not constrained by the platform's standardized in-
terfaces to use its core functionalities. This hybrid modular archi-
tecture, as Yoo et al. (2010, p. 728) refer to, allows an individual de-
veloper to be relatively independent and take agency in the way he or
she wants to reuse and change the variety of apps available on the
platform.

However, prior literature points out that this individual in-
dependence may create a paradoxical logic of cumulative generativity
in a platform's developer ecosystem, in the sense of a platform-level
paradox of change (Ghazawneh and Henfridsson, 2013; Tilson et al.,
2010; Wareham et al., 2014). On the one hand, highly sequential cu-
mulative processes may indeed trigger change because of the mod-
ularity and openness of the platform architecture, combined with the
unique nature of the digital technologies (Boudreau and Lakhani, 2015;
Brunswicker et al., in press; Um et al., 2013). Existing apps can be
modified, re-interpreted, and refined in a rapid, trial-and-error process
geared toward flexibility and fast adaptation to user needs (Tiwana,
2015). On the other hand, prior literature suggests that such myopic
processes of innovation may lead to undesired output (Boudreau,
2012), rendering some apps useless for platform users and other de-
velopers (Wareham et al., 2014). As such, affording change may con-
tradict the need for predictability and stability by current and future
platform complementors and users (Tilson et al., 2010; Wareham et al.,
2014).

The literature on digital innovation has studied this paradox of
change in the context of cumulative innovation primarily at the plat-
form level. These studies have focused on the properties of the archi-
tecture (Boudreau, 2010, 2012; Tiwana, 2015) namely its modularity
and openness, and the use of control to put bounds on such openness
(Tilson et al., 2010; Wareham et al., 2014). However, not much at-
tention has been paid to understanding the iterative choices and actions
taken by an individual developer in this cumulative innovation process.
We label this sequence of path-dependent actions a search trajectory,
subsuming (1) a successful choice to modify one of the many apps and
(2) the cumulative impact achieved in modifying that app. An individual
developer's temporal trajectory in participating in cumulative innova-
tion might explain how this tension between maintaining stability while
affecting change unfolds bottom-up from the individual-level when
platforms are indeed open.

This paper aims to address this lack of attention at the individual

level in the literature. Namely, we argue that the tensions between
stability and change emerge from an intertemporal trade-off that in-
dividuals face during their digital innovation trajectory – their iterative
processes of searching for and realizing opportunities for cumulative
innovation on the platform. During this evolutionary process, not only
the platform but also an individual developer's knowledge about mul-
tiple heterogeneous apps evolves and becomes traceable. Such knowl-
edge relates to the apps’ technical properties, such as their internal code
structure and the functionalities afforded through them, as well as the
coordination practices and design rules that emerge from code-medi-
ated interactions with multiple app's produced by others (Baldwin and
von Hippel, 2011; de Souza and Redmiles, 2009; Howison and
Crowston, 2014; Nambisan, 2013).

On the one hand, developers might emphasize stability and rely on a
coherent search, a strategy in which they aim to maximize the long-term
history of coordinative knowledge gathered to sustain its value for the
future (Baldwin and Woodard, 2009). On the other hand, developers
might be guided by rapid advancement and agility on the platform
(Boudreau, 2012; Tiwana, 2015), and thus, focus their attention on
recent insights gathered. We refer to such a search strategy that em-
phasizes flexibility as flexible search. These two strategies may create an
individual-level paradox of change (Farjoun, 2010): striving to be co-
herent with the past might prevent developers from remaining open to
ambiguity and new ways of modifying the targeted app (Kallinikos
et al., 2013). Further, developers might be unable to engage in both
strategies mutually since each strategy draws upon distinct co-
ordinative and functional (and semantic) knowledge gathered when
choosing and modifying different apps (Shaft and Vessey, 2006;
Shneiderman and Mayer, 1979). How this intertemporal trade-off af-
fects change throughout a developer's digital innovation trajectory is
not well-understood. As such, we ask: How does the tension between co-
herence and flexibility affect a developer's digital innovation trajectory on
open evolving platforms?

To resolve the paradox of change at the individual-level, we extend
the established stream of literature on innovation problem-solving and
cumulative innovation (Carlile, 2004; Katila and Ahuja, 2002; March,
1991; Nelson and Winter, 1977; Schilling and Green, 2011; Simon,
1955) to the discussion on the paradox of change in a digital innovation
and platform context (e.g., Tilson et al., 2010). We develop a dynamic
theory of an individual developer's innovation trajectory that accounts
for the dynamic, self-reinforcing nature of how these two strategies
(coherence and flexibility) affect a developer's iterative choices and
actions of selecting and modifying an app on an open platform. We
conceptualize this trajectory as a path-dependent search process in
which a developer utilizes their evolving knowledge base about a subset
of heterogenous apps on an open modular platform and the app's in-
ternally distinct functional (including semantic) and coordinative
knowledge foundations.

We choose a very distinct empirical setting of a developer ecosystem
of the open platform, nanoHUB, in the highly multi-disciplinary field of
nanotechnology which is increasingly becoming as pervasive as in-
formation and communication technology (Youtie et al., 2008). We
study an environment in which 480 developers are engaged in a rapid,
cumulative process of digital innovation. The developers utilize the
openness of the platform and engage in cumulative innovation, in
which they sequentially modify each other's apps using the platform's
software development kit Rappture (Zentner et al., 2013). This process
results in more than 700 complementary add-on simulation tools (apps)
that extend the core software system of nanoHUB. Each app aims for
scientific uniqueness and recognition (many citations, users, etc.) and
bundles app-specific domain knowledge. Further, there is no central
hierarchy that coordinates how apps are internally structured. In total,
we consider more than 30,000 unique choices (choosing an app) and
actions (modifying that particular app) and more than 30 million lines
of code contributed. To answer our question about the individual-level
trade-off between coherence and flexibility in digital innovation, we use

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

2

relational event modeling which is a statistical method for analyzing
sequences of interactions (Butts, 2008; Schecter et al., 2018). The unit
of analysis is a single instance of a developer's problem-solving action at
a specific point in time. This focus on singular actions over time allows
us to differentially assess the effects of stability and change as char-
acteristics of a developer's search process at different points of time
during his or her evolutionary process of digital innovation.

We make two important findings: First, we find that developers are
significantly more likely to modify a certain app that is consistent with
their coherent strategy. This effect is stronger if such a choice also
corresponds with a flexible strategy. Second, we find that developers
who select an app through coherent search processes are also able to
make a greater cumulative impact i.e., make greater modifications to an
app. However, if the developer complements coherence with flexibility,
they limit the magnitude of their impact. Thus, our findings indicate
both a complementary and a contradictory logic in how developers try
to resolve the tension between coherence and flexibility. Our findings
suggest the importance of considering the individual developer's stra-
tegies in responding to the paradox of change in theories, empirical
studies, and practices of digital innovation on open platforms, and in-
novation more broadly.

2. Conceptual development

In the following sections we will develop a theory that explains how
a developer – or a platform complementor – responds to an individual-
level tension between stability and change throughout his or her digital
innovation trajectory. We will first establish the notion of an individual-
level combinatorial search process, translating theoretical assumptions
about innovation search and problem-solving (Carlile, 2004; Carlile and
Rebentisch, 2003; Katila and Ahuja, 2002) to the context of digital
innovation. In particular, we focus on recent literature on platform
architectures and their implications for the innovation process of plat-
form complementors (Boudreau, 2010; Boudreau, 2012; Parker and
Van Alstyne, 2017; Tiwana, 2015). Then, we will introduce the paradox
of stability versus change as an individual-level tension for the platform
complementor building upon Farjoun (2010) and propose a duality in
which coherence – a search strategy for stability, and flexibility – a
strategy driving change, can co-exist. We then develop our hypotheses
to examine the effect of both strategies which Farjoun (2010) refers to
as mechanisms, on the digital innovation trajectory of the developer.

2.1. Foundations: A developer's innovation trajectory as search on open
platforms

Building upon prior work on digital platform complementor stra-
tegies (Parker et al., 2016; Parker and Van Alstyne, 2017) and en-
trepreneurial software development more broadly (Nambisan, 2017),
we conceptualize an individual developer's digital innovation process.
We examine this process through the lens of innovation search and
problem-solving grounded in behavioral theories of design assuming
bounded-rationality of humans (March, 1991; Simon, 1955, 1991a). As
we discuss next, this process can be conceptualized as a highly iterative
search trajectory. Afterwards, we review literature on openness and
modularity as characteristics of a digital platform's architecture (e.g.,
Yoo et al., 2010) that allow a developer to take agency (see Nambisan,
2017, p. 1030; Nambisan et al., 2017, p. 225) and engage in individual-
level cumulative search processes across and within different apps. We
then review how such cumulative processes add to an individual de-
veloper's knowledge base which provides the foundation for his or her
future innovation choices and actions.

2.1.1. Digital innovation trajectory as iterative search process
We argue that a developer's digital innovation process is best re-

presented as a process of search for new solutions to innovation pro-
blems with the goal of sustaining an app's performance over time

(Fleming, 2001). A problem-solving view of innovation is not new in
the literature concerned with the use of digital technologies in a
broader sense (Fong Boh et al., 2007; Lyytinen et al., 2010). Scholars
generally agree that the development of software is a complicated,
uncertain, and cognitively demanding problem-solving task that re-
quires trial-and-error learning and situated search (Howison and
Crowston, 2014, pp. 41–42; Nambisan et al., 2017, p. 228). However,
the platform literature has highlighted the uniqueness of this process on
digital platforms (Boudreau, 2012; de Reuver et al., 2018; Nambisan,
2017).

Empirical studies on platform complementor strategies highlight
that rapid incremental change is a fundamental feature of their app
development efforts in order to cope with such uncertainty (Boudreau,
2012). Complementors of web-browser platforms like Firefox (Tiwana,
2015), or an online game platform like Wii (Boudreau and Jeppesen,
2015), design apps in highly agile and iterative ways to learn rapidly
and produce a variety of different solution approaches. Within a short-
time frame of a few months, the software developer (or the developer
team) makes several sprints to add new functionality or fix a bug. Each
iterative change can be conceived of as a digital artifact of innovation
value, even if atomic in size. Though small in scope, each change might
be highly impactful. For example, a bug in how an app sends requests to
an application programming interface (API) might be fixed by changing
just a few lines of code in the software application (Tiwana, 2015, p.
270). This view of software development suggests that developers make
highly frequent, iterative changes to a certain app, i.e., sequences of
events, each with a tangible outcome: a digital artifact.

2.1.2. Cumulative nature of digital innovation trajectory on open platforms
Recent platform literature (e.g., Boudreau, 2012; Yoo et al., 2012)

suggests that digital platforms seek to create new conditions for fos-
tering what the innovation literature refers to as combinatorial or cu-
mulative innovation – the process of building upon the ideas of others to
create new innovations (Murray and O’Mahony, 2007, p. 1006). An
essential condition for such accumulation to happen is to have an open
platform architecture (Boudreau, 2010; Brunswicker et al., in press; de
Reuver et al., 2018; Parker and Van Alstyne, 2017). Essentially, all
digital platforms are to some extent open if they give access to the
platform's core functionalities via the programming interfaces
(Boudreau, 2010, p. 1851), encouraging recombination of the plat-
form's stable functionality (Eaton et al., 2015; Ghazawneh and
Henfridsson, 2013). Platform literature suggests that such openness is
not at odds with individualistic and competitive interests. The add-on
apps on open platforms may indeed compete for performance (e.g.,
number of downloads, likes, sales, etc.) (Tiwana, 2015), while the in-
dividuals working on the apps are mutually guided by self-interest as
well as collective interests.

Instead of hoping for cumulative processes to happen by chance, or
perhaps by social ties (Lyytinen et al., 2015), platforms purposively
integrate boundary resources like common testing tools, distributed
software repositories and programming environments (e.g., GitHub, M-
Lab). Platforms studied in the literature, like Firefox plug-ins (Tiwana,
2015), WordPress templates (Um et al., 2013), and Thingiverse
(Kyriakou et al., 2017) also encourage the use of open source, creative
commons, or open access (Brunswicker et al., in press; Woodard et al.,
2013) licensing schemes among their complementors.

As discussed in the introduction, the combinatorial processes af-
forded through platform architectures that are open in the periphery
are distinct from open source ones. These architectures create a certain
level of independence for the individual developer to enact cumulative
processes from heterogeneous apps which belong to different design
hierarchies (Yoo et al., 2010, p. 728). The common use of the platform's
core functionality via standardized interfaces (e.g., APIs) creates some
commonality across the apps (Parnas, 1972) making them easier to
engage with. However, these interfaces do not prescribe whether and
how developers design an app's internal technical structure and its

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

3

functionality, i.e., its semantic meaning for the user. It is this hybrid
nature of the modular architecture of an open platform, in particular if
it is open in the periphery that creates an opportunity for an individual
to actually choose whether and how he or she wants to modify a certain
app. This choice unfolds in two distinct search processes within a de-
veloper's innovation trajectory.

On the one hand, developers can engage within the same app.
Developers who search for and innovate the same app will develop a
local, functional (semantic), and coordinative knowledge guided by
what platform literature calls actionable transparency (Baldwin and
von Hippel, 2011, p. 1402). In this process, small atomic innovation
actions become visible through iterative software code contributions.
On the other hand, if platforms are open in the periphery, they also
allow developers the opportunity to build upon each other's solutions
and reuse digital artifacts created by others and to modify them further.
In other words, the openness of the platform offers means for cross-app
search processes across different apps with internally distinct knowl-
edge foundations. Such efforts can happen at any stage of the app's
development process, given the fact that there is no fixed boundary of
when it is complete: The app can be re-programmed, modified, tested,
and transferred at any point of time of the trajectory (Yoo et al., 2010;
Zittrain, 2006). It is these two search processes – within and across apps
– that create opportunities and challenges for individuals to engage in
cumulative innovation and produce generativity.

Fig. 1 illustrates these two search processes in a developer's digital
innovation trajectory which individual developers may pursue if they
participate in cumulative innovation on an open platform. Here, the
developer makes modifications to three different apps over time, fol-
lowing a trajectory of sequential actions. At each step, he or she selects
the app to contribute to and then makes a modification whose impact
(magnitude) depends on the search process. As the developer moves
through their trajectory, they interact with – and learn from – the
contributions made by other developers up to that point.

2.1.3. A developer's knowledge base emerging from a cumulative trajectory
At each iterative step of the digital innovation trajectory, a devel-

oper acquires knowledge about the app he or she is modifying by en-
gaging with its digital content produced by others and themselves. Over
time, this accumulates into what we refer to as an individual knowledge
base (Argote and Epple, 1990; Carlile, 2004; Carlile and Rebentisch,

2003; March, 1991; Walsh and Ungson, 1991), which is a path-de-
pendent function over time (Cohen and Levinthal, 1990, 2000). From a
search perspective, a knowledge base represents a searchable space of
both problem and solution knowledge, as each atomic element used in
the app may represent both a materialized problem as well as a solu-
tion; these elements can then be modified and reinterpreted in new
ways (Kallinikos et al., 2013; Nambisan et al., 2017; Von Hippel and
Von Krogh, 2015). The knowledge base is seen and enacted by the in-
dividual developer in a process of situated search, who as a boundedly
rational actor cannot see, evaluate, and thus modify, all apps on the
platform (Levinthal and March, 1981; Simon, 1955). The knowledge
base is not the same for all developers, given the lack of a central design
rule and the local nature of app-specific knowledge hidden inside
(Carlile, 2004). As bounded rational actors who are guided by past
experiences when solving problems (Simon, 1955), developers utilize
this knowledge base when seeking new opportunities to modify one of
the apps at a particular point of time.

Based on our prior review of the literature on innovation problem-
solving, software development, and open platforms (Baldwin and von
Hippel, 2011; Carlile and Rebentisch, 2003; Kyriakou et al., 2017;
Lyytinen et al., 2010; Parnas, 1972; Shaft and Vessey, 2006),4 we
suggest that an individual accumulates primarily local, within app
knowledge, i.e., digital innovation-related knowledge used inside the
various apps modified over time.

The local within app knowledge can be categorized into two broader
subareas: (1) functional knowledge embedded in the content of the app
(e.g., the functionalities and semantic meaning realized through soft-
ware code) at a certain point in time and also (2) coordination and
structural knowledge (e.g., formal design rules and code architectures
but also informal socially mediated rules and norms) guiding the de-
velopment at a certain point in time (Baldwin and von Hippel, 2011;
Carlile, 2004; Shaft and Vessey, 2006; Shneiderman and Mayer, 1979).
Inside the app, coordination is often more informal, guided through
socially mediated actionable transparency which can create developer
independencies (Lindberg et al., 2016, p. 753). However, even inside
the app, the code structure itself can act as a local coordination me-
chanism since it allows developers to indirectly communicate through

Fig. 1. Developer's digital innovation trajectory.

4 We thank the reviewer's comments for considering the literature on software
engineering more closely.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

4

the realized digital artifacts (Bolici et al., 2016; Malone and Crowston,
1994; Star and Griesemer, 1989). Furthermore, the common use of APIs
across different apps facilitates coordination inside the app via the
platform's global design rules.

Over time, each individual also accumulates a deeper understanding
of local knowledge in a larger number of apps through a digitally, code-
mediated process of designing, reading, and modifying their own and
others’ apps (e.g., code) (Bolici et al., 2016; Kallinikos et al., 2013;
Zhang and Wang, 2009). At the same time, developers iteratively
contribute to different codebases, thus forming a unique set of rela-
tional knowledge across the boundaries of applications (Bolici et al.,
2016, pp. 16–17). Such relationships create an important translational
capacity to translate across functionally diverse apps as well as a co-
ordinative capacity to coordinate across different apps, each with their
own unique structures and rules deeply hidden inside (de Souza and
Redmiles, 2009; Malone and Crowston, 1994). We will discuss next how
developers exercise agency in utilizing this knowledge at different steps
of their digital innovation trajectory, creating a virtuous cycle of path-
dependent and self-reinforcing choices.

2.2. Stability-change as a tension in a developer's digital innovation
trajectory

Building upon this foundation, we now articulate an inter-temporal
tension of stability versus change that a developer faces when searching
for new innovation opportunities on the platform. This tension unfolds
between two distinct strategies which guide the developer's digital in-
novation actions, i.e., selecting and modifying an app when moving
through their trajectory on an open platform (Woodard et al., 2013, p.
538). Such strategies are self-reinforcing search mechanisms that guide
a developer's patterns of action over time (Farjoun, 2010; Henfridsson
and Bygstad, 2013). This tension reflects the micro-level behavioral
foundations of the stability versus change paradox discussed in the
platform literature. However, the platform literature typically con-
ceptualizes this tension in one of two ways: as a property of the plat-
form via its architecture, e.g., its decoupling of apps; or, the socio-
technical interactions and capabilities that define how the actors in-
teract with the platform architecture (Baldwin and Woodard, 2009;
Tilson et al., 2010).

2.2.1. Coherence and flexibility as paradoxical search
The literature on digital platforms, and the broader literature on

innovation and design as a problem-solving process (c.f. Nambisan
et al., 2017), suggests that the platform-level tension of stability versus
change unfolds as an individual-level tension of two strategies: (1) co-
herence and (2) flexibility.
Coherence describes the principle of designing products and software

for the greatest reuse and durability of their parts as they evolve over
time (Baldwin and Clark, 2000; Baldwin and Woodard, 2009). In the
context of an open platform, coherence is equally important for the
individual developer. Thus, we define coherence as a self-reinforcing
search mechanism in which a developer ensures that his or her knowl-
edge base, including the most stable local design rules and norms used
inside and across the apps, is utilized and reused in the most impactful
way for the platform as a whole. Coherence results from the developer's
collective identification with the platform (Wareham et al., 2014, p.
1198). As a result, coherence as a search mechanism guides a developer
to be consistent over time.

As an analogy to coherence, we define flexibility as a search me-
chanism, a self-reinforcing search process which is characterized by
adaptability, guiding a developer's attention toward recent develop-
ment efforts and new knowledge (e.g., new features, new market trends
etc.) (Tiwana et al., 2010, p. 685). Such flexibility is triggered by the
developer's aspiration to correspond with the platform users’ need for
new functionalities and modifications of the apps. As such, it puts less
emphasis on coherence with the past and stabilized patterns of actions

and interactions. It is instead primarily guided by more competitive
interests (Boudreau, 2012; Brunswicker et al., in press).

Prior work on platforms and adaptation more broadly suggests that
a paradox related to processes like digital innovation can be con-
ceptualized as being either a dualism or a duality (Farjoun, 2010; Tilson
et al., 2010; Wareham et al., 2014). A dualism suggests that coherence
and flexibility are conflicting mechanisms, in the sense of an either-or
tradeoff; i.e., they are mutually exclusive (Farjoun, 2010, p. 203). From
this point of view, coherence (and attention to the past) would actually
make it impossible for a developer to also be flexible. Accordingly, a
developer would solely engage in one type of process to achieve a
certain outcome. Instead, we argue that coherence and flexibility can
also unfold as a duality (Farjoun, 2010).

Following Farjoun (2010)’s conceptualization of a duality, a devel-
oper's search strategy can unfold in several ways. First, developers can
enact a coherent strategy as a mechanism for stability, which can lead
to change if conceptualized as an outcome. In our case, a greater change
in outcome represents greater cumulative impact in modifying the app
which the developer chooses at a particular point in time. Second and
even more important, we argue that both mechanisms, coherence and
flexibility, can be utilized together when searching for and choosing an
innovation opportunity. When utilized together, flexibility may either
complement or contradict coherence in affecting a developer's ability to
make impactful actions. The more developers can innovate and refine
the app chosen, the greater their potential cumulative innovation im-
pact. Through a self-reinforcing mechanism, the design strategies create
a virtuous cycle that triggers dynamics and adaptation of developer's
actions over time.

In Fig. 2 we represent the relationships between the search strate-
gies as well as their effect on each choice of a developer. Here, the
coherent strategy directly impacts the choice of app to modify and the
subsequent cumulative impact of that effort. The flexible strategy
moderates the effect of coherent search on both aspects of the outcome.
Then, the realized choice and impact of the modification are subse-
quently incorporated into the developer's knowledge base, and the
process continues.

2.2.2. The effect of coherence on developer's innovation choice and
cumulative impact

A coherent strategy guides a developer to utilize his or her knowl-
edge base with the goal of maximizing its use and reuse as a whole
(Baldwin and Clark, 2004; Baldwin and Woodard, 2009). Thus, when
utilizing his or her knowledge base at a certain point in time, a coherent
developer is guided by the goal of expanding the knowledge base in a
way that remains sufficiently stable as well as compatible with the past.
Therefore, a coherent strategy puts equal weight on both past innova-
tions and recent actions. The objective is to ensure that new knowledge
is transparently related to the most repeatedly seen, read, and modified
knowledge in the past (Lyytinen et al., 2015; Vedres and Stark, 2010).
Coherence relates to both coordinative and functional knowledge

Fig. 2. Theoretical model.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

5

learned inside the various apps used and modified in the past (Baldwin
and von Hippel, 2011; Carlile, 2004; Kyriakou et al., 2017). A coherent
strategy has implications for (1) the developer's successful choice of a
particular app and (2) the cumulative impact of the developer's con-
tribution to that app. We will discuss the implications for the choice of a
particular app first, and argue that the strategy as a self-reinforcing
search mechanism, guides a developer's choice for a new particular app
in a way that achieves coherence with past knowledge.

When engaging in coherent search the developer might consider a
larger number of potential opportunities (Kane and Alavi, 2007; Katila
and Ahuja, 2002; Schilling and Green, 2011), given the attention to be
coherent with the whole history of modifications made as well as the
knowledge gathered throughout this process. Based on our reading of
prior work on open platforms and innovation problem-solving, we
argue that a coherent strategy for choosing a particular app to be
modified is guided by the goal of achieving stability and maximizing
the value of one's coordinative knowledge gathered over time (Baldwin
and von Hippel, 2011; Malone and Crowston, 1994). In simple words, a
developer aims to be in sync across time and build a common set of
vocabularies and rules that allows them to easily coordinate work. In a
digital context, such coordinative knowledge is embedded in the code
itself and emerges from the bottom-up through interactions with the
code produced by other developers over a long history of time
(Lindberg et al., 2016, p. 754). The more frequently a developer has
interacted with the same previous developers, the greater his/her
ability to quickly adjust to variability in the process and changes in the
code. As such, a developer becomes less dependent upon direct, formal
coordination and can instead interpret the code the way it is structured.

There are two distinct processes at work in how coherence might
focus developers’ attention amongst this large opportunity space of
diverse apps. First, coherence might focus attention on apps that de-
velopers have interacted with recently because they build upon norms
and rules established with other developers over a long history of time
(potentially also in another context). Due to iterative code-mediated
interactions with other developers in the past (Bolici et al., 2016;
Lindberg et al., 2016; Shaft and Vessey, 2006), the developer has suf-
ficient knowledge about the rules guiding the development work. He or
she does not need much time to assess whether a modification is pos-
sible. This process shares similarities with the well-studied phenom-
enon of local search (Cyert and March, 1992; Levinthal, 1997; Levinthal
and March, 1981) and deep search (Katila and Ahuja, 2002). However,
such a process bears the risk that a developer might narrow their search
in terms of functional knowledge, instead of diversifying it in a coherent
way.

There is a second opposing process at work that allows a coherent
developer to maximize his or her coordinative knowledge (or hor-
izontally if one looks at Fig. 1). The developer might pay attention to
apps they have rarely or never reused and modified recently but which
use coordinative knowledge that the developer is familiar with. They
can build upon common norms and rules established with the devel-
opers of prior versions of the app. Such diverging processes can emerge if
a developer has established or learned rules and norms used in rarely
modified apps because they have worked before with the authors of the
code inside in a different context. Indeed, despite the lack of direct
communication or social networks, the developer might be very fa-
miliar with the way the code has been structured (e.g., by using a un-
ique style in making commits, through very specific types of commit
messages etc.) (de Souza and Redmiles, 2009; Ducheneaut, 2005). In
other words, coherence can also create diverging interest, away (ver-
tical) from the apps of recent attention (Almirall and Casadesus-
Masanell, 2010). Through this process a developer may also shift to a
different functional knowledge. Such a second process corresponds with
the well familiar concept of distant search (March, 1991). However, this
process of coherence is more controlled and is associated with pre-
dictable outcomes since a developer can reuse and build upon prior
established norms and rules to assess the semantic relatedness and

compatibility of functionally distinct knowledge.
Taking those two processes of local and distant search together,

when seeking coherence, a developer considers the full history of ac-
tions in the past, guided by the goal of maximizing the value of and
stabilizing coordinative knowledge. This triggers an oscillating process
of considering distinct but transparently related functional knowledge
(Carlile, 2004; Shneiderman and Mayer, 1979). Because of the goal to
achieve coherence over time, a developer will choose the app she or he
is most in sync with: one that builds upon the most common, and thus,
cohesive relationships with developers, which are forged when working
across different local apps. Thus, we hypothesize:

H1a: Developers are more likely to choose an app that strongly leverages
their coherent search strategy.

A coherent choice does not necessarily indicate impact, as a cu-
mulative process bears a range of challenges in terms of knowledge
translation (Boudreau, 2010; Carlile, 2004; Fleming, 2001; Katila and
Ahuja, 2002). As argued in the section before, a coherent search ben-
efits from two search processes, deep search within an app, as well as
wide search across the different apps. Over time, through a self-re-
inforcing process, these processes allow a developer to create a capacity
to translate knowledge across the boundaries of different apps (Carlile,
2004). Such a capacity develops in the following way. First, a coherent
developer seeks stability in terms of coordinative knowledge. Over
time, they will develop a deep understanding of the different rules and
norms used in the various apps. Such coordinative knowledge becomes
stable over time. As a result, he or she can use a common vocabulary to
be applied across different applications and their inner source code,
which helps resolve the interdependencies with other developers, and
leads to coordinative flexibility (Lindberg et al., 2016; Tilson et al.,
2010).

Access to a stable knowledge base of rules and norms leads to a
second process: By searching broadly across different apps, a developer
also learns about the different functional knowledge produced. This
allows the developer to also develop semantic coherence over time
(Lyytinen et al., 2015; Schilling and Green, 2011; Shaft and Vessey,
2006). In other words, through repeated interactions, the developers
accumulate a broader and more diverse vocabulary of semantically
related knowledge (e.g., certain functional routines used in the app).
Thus, through the self-reinforcing process described in Fig. 2, a devel-
oper creates a capacity to translate syntactic knowledge (e.g., pro-
gramming languages) as well as semantic knowledge (e.g., certain
functions and objects used inside an app) across different boundaries or
apps (Carlile, 2004, 2002). Thus, when a developer chooses an app that
builds on their stable coordinative knowledge, they have the ability to
make greater cumulative impact. He or she can draw upon a large body
of knowledge and can propose modifications that are unique to the
focal app (Schilling and Green, 2011). Furthermore, developers can also
successfully recognize the differences and relationships between the
various semantic knowledge connected to their own stable coordinative
knowledge (Kellogg et al., 2006). As a result, the developers can also
more deeply engage with the functional knowledge inside the app as
well as other related apps. Accordingly, developers who leverage co-
herent search to modify an app should realize greater cumulative im-
pact (Fleming, 2001).

H1b: Developers are more likely to make a greater cumulative impact on
an app that strongly leverages their coherent search strategy.

2.2.3. The effect of coherence and flexibility on choice and cumulative
impact

In the prior section, we followed Farjoun (2010) and focused on the
duality between stability as a mechanism, conceptualized as coherent
strategy, and change as an outcome, or in our context greater cumu-
lative impact (Farjoun, 2010, p. 206). However, we did not consider the
fact that on a digital platform, a developer is able to be mutually

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

6

coherent and flexible: Both strategies may mutually support each other
in guiding a developer's choice rather than being in conflict with each
other. Digital platforms encourage a developer take agency, because
they are open and have a hybrid, modular architecture (e.g., Yoo et al.,
2010). Further, the nature of digital technologies themselves trigger
flexibility. They can instill a willingness to emphasize the ambiguous
future (Kallinikos et al., 2013) while also maintaining coherence with
the past and maximizing one's coordinative knowledge established with
other cohesively related developers. As a result, developers may mu-
tually act coherently but also somewhat myopically and temporally
decoupled from the past actions (Tiwana et al., 2010, p. 685). Thus, we
next describe how coherence and flexibility can unfold jointly and what
the implications of such a duality between two mechanisms are for
developer outcomes. We first establish the characteristics of flexible
search and its differential effect on choice, and then discuss the duality
of coherence and flexibility as two search processes complementing
each other in affecting choice.

A flexible strategy guides a developer to pay less attention to past
knowledge and established stability in terms of coordinative knowl-
edge. The developer is less attentive to building upon stable norms and
rules learned and nurtured across time when working with different
developers (Baldwin and von Hippel, 2011; Bolici et al., 2016; Carlile,
2004). Flexibility as a strategy guides developers to be proactively
adaptable in order to increase variability (Farjoun, 2010). Such an
emphasis on variability relates to both coordinative as well as func-
tional knowledge.

First, developers using a flexible search strategy are more open to
new coordinative knowledge. Developers shift their attention to apps
that are less stabilized in terms of local norms and the rules used inside
them; i.e., they are open to coordinative ambiguity. Thus, when
searching, they consider apps produced by developers whose ways of
writing code and structuring architectures are rather new (Baldwin and
von Hippel, 2011). From the perspective of the developer, the internal
structure and the coordinative knowledge used to design an app is
hidden away (Parnas, 1972, p. 1056). Essentially, they are willing to
accept developer dependencies; these dependencies require some de-
gree of flexibility in learning new ways of structuring code, given the
novelty of the development context (Lindberg et al., 2016). Second, and
somewhat as a result of that, they also focus their attention on apps
whose functionalities are unfamiliar. In other words, the developer is
more open to ambiguous functionalities and semantic meaning (Kellogg
et al., 2006; Levinthal and March, 1981; Lingo and O’Mahony, 2010).
Thus, a flexible orientation triggers a process of discovery or distant
search that is not controlled as we argued earlier in the context of co-
herence. Such discovery processes are more uncertain both in terms of
coordinative and functional knowledge (Almirall and Casadesus-
Masanell, 2010).

The decision to choose an app when being flexible will be guided by
a developer's coordinative knowledge, given the fact that is easier to
first assess the lexical and structural parts of the code. Engaging with
the functional meaning of an app takes much more time and effort
(Shneiderman and Mayer, 1979, p. 223). Just a quick scan of recent
commit messages made to the code will allow the developer to judge if
he or she has worked on the code of a developer before or not (Bolici
et al., 2016; Ducheneaut, 2005; Howison and Crowston, 2014). Essen-
tially, a developer will be more likely to choose an app which relates to
recent interactions with code from developers they do know but not
sufficiently well to be truly ‘in sync.’

One might argue that flexibility and coherence cannot be used to-
gether when choosing an app (Wareham et al., 2014). However, we
argue that the two processes may not contradict each another. We posit
that coherence and flexibility complement each other in the way they
guide a developer's choice. New and uncertain knowledge, even though
it might be functionally distinct, is not necessarily disconnected from
one's stable coordinative knowledge and the cohesive knowledge re-
lationships it builds upon. Instead, flexibility just shifts the focus toward

more recent information and interactions, and thus, can complement
coherent search without disrupting. If an app mutually supports co-
herence and flexibility, it implies search with controlled variability
(Wareham et al., 2014). Combining coherence and flexibility creates a
capacity to better cope with the uncertainty associated with a choice to
modify an app (Baldwin and Clark, 2006; Brunswicker et al., in press)
that is functionally and semantically distinct: The developer might feel
more confident that she or he can enact the app's internal knowledge
and start modifying it. Thus, a developer will choose an app that mu-
tually supports both their coherent as well as flexible strategy.

H2a: Developers are more likely to choose an app that corresponds both
with their coherent as well as their flexible strategy.

So far, we have argued that there is a duality in utilizing both
strategies jointly and that this duality facilitates a developer to enact
variability at an acceptable limit of uncertainty. If that is the case, then
how will this duality translate into a developer's cumulative impact?
The effect on outcome can be explained by the self-reinforcing me-
chanism of flexible search which is triggered as a developer moves
through their digital innovation trajectory (see Fig. 2). Flexibility im-
plies that at any point of time, a developer is not primarily focused on
using a stable foundation of coordinative knowledge. This fact has
implications for the translational capacity that the developer develops
over time (Carlile, 2004). As a first step, this implies that the targeted
app's inner structure is difficult to read and interpret, since the devel-
oper has little understanding of the norms and rules that guide the local
innovation process (Baldwin and von Hippel, 2011; Bolici et al., 2016;
de Souza and Redmiles, 2009). In other words, he or she can only su-
perficially but not deeply relate to the way the app is structured in
terms of files, functional calls, and global variables. The internal ar-
chitecture of the app is difficult to understand for the developer since it
is hidden away (Baldwin and Clark, 2000; Baldwin and von Hippel,
2011). This challenge also makes it difficult for the developer to modify
deeper layers of the code inside the app. Further, there are negative
implications for the process of interpreting code (Shaft and Vessey,
2006): structure provides a foundation to build upon and provides in-
sights into the functional meaning of the code (Kellogg et al., 2006).
Essentially, when a developer makes a decision to be flexible they will
lack the translational capacity required to both recognize differences
between functions as well as the meanings produced inside the app
(Carlile, 2004). As a result, they have a limited capacity to make
changes to the main stack of the app. Even though there is some new
coordinative structure in place, it is not sufficiently strong to promote
the interpretation, reuse, and repurposing of the app in a meaningful
way. We thus argue:

H2b: Developers will make a smaller cumulative impact to the app, if the
app was chosen because it corresponds both with a coherent as well as a
flexible strategy.

3. Methods

3.1. Case setting: The nanoHUB platform with a heterogeneous developer
ecosystem

To examine our hypothesis, we chose nanoHUB, a digital platform
for scientific digital innovation in the interdisciplinary field of na-
noscience and nanotechnology (Porter and Youtie, 2009). nanoHUB
was launched as part of the NSF-funded Network of Computational
Nanotechnology at Purdue University (Zentner et al., 2013). The plat-
form brings together more than 300,000 registered members from more
than 170 countries. The tools on the platform are web-based software
programs (web applets) which allow users to conduct simulations or
complex calculations for research and also educational purposes. As a
field, nanotechnology is highly interdisciplinary, combining elements of
electrical engineering, materials science, physics, chemistry, biology,

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

7

and more (Porter and Youtie, 2009). This diversity is reflected in the
array of disciplines that a nanoscience tool may draw upon. For ex-
ample, the domain of nanoelectricity apps includes devices such as
solar cells, nanowires, and nanomagnets. These tools also cover con-
cepts ranging from fundamental science to quantum properties. In
general, the apps on nanoHUB follow that same pattern; they focus on a
unique scientific topic, but also integrate knowledge from a diverse set
of disciplines. For instance, two popular tools, ABACUS (Fig. 3a) and

MOCA (Fig. 3b), allow users to conduct simulations testing the prop-
erties of semiconductors and silicon materials, respectively.

While ABACUS and MOCA cover very different scientific domains,
both are designed and operated in a standardized manner. Developers
used a software development kit, the Rappture Toolkit (McLennan and
Kennell, 2010), for converting a multi-language tool with unique con-
tent in terms of the scientific algorithm used, into a tool with a stan-
dardized interactive graphical interface that can be executed in a web

Fig. 3. Two app interfaces on nanoHUB.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

8

browser. A set of APIs standardizes how input and output of the tools’
simulations are presented graphically. Further all apps are built using a
common versioning and revision control system, Lean Apache Subver-
sion (SVN), that affords actionable transparency by making all iterative
modifications of an app traceable (Baldwin and von Hippel, 2011, p.
1402).

In Fig. 3 we include a snapshot of a user's view of the Rappture
interface. This boundary resource converts code from a variety of lan-
guages, e.g., Python or MATLAB, into a graphical user interface such as
the graphing calculator on the right of Fig. 4. nanoHUB does not pre-
scribe a central open source software (OSS) license scheme but instead
has adopted an open access principle for the tools. The tools can be run
for free on the market place but the software code is not accessible
openly.

In this study we focused on the ecosystem of developers (scientists
and engineers), who design interactive simulation software tools using
the platform's standardized programming interfaces, development
toolkits, and software version control during the period of April 2005 to
September 2014. Our dataset is comprised of 480 developers inter-
acting in 743 apps. We used a versioning and revision control system,
Lean Apache Subversion (SVN), to capture how individual developers
iteratively contribute to a certain app. The SVN log provides access to
commit trace data, the exact time stamp when a developer makes a
unique commit to an app. For a developer to contribute to an app, they
must request access and be approved by the creator of the tool. Once
they are an approved member, they may make changes there or move
to another app.

In total, we observe 35,833 distinct commits made by developers
across an approximately ten year period. On average, developers in-
teracted with the apps 75 times with a standard error of 230 with an
observed range of 1–2137 distinct contributions. These developers on
average contributed to just under 6 apps with a standard error of ap-
proximately 40. For apps, the average number of received commits was
approximately 48 with a standard error of 527. Clearly, our data dis-
plays a strong power-law characteristic, i.e., many developers and apps
have only a few actions, while a select few have a massive number. The
average cycle time, i.e., the time between contributions, was 8.17 days.
On average, just under 4 developers contributed per app with a stan-
dard error of 5. Finally, there was a total of 34,042,356 lines of code

written, with each commit having an average of 950 lines of code with
a standard deviation of 1425.

3.2. Differentiating coherent and flexible processes

For our analysis, we define coherent processes as activities which
encompass the entire event history, while flexible search processes
encompass only more recent events. To ensure that the flexible layer
has a consistent effect across time, we consider a fixed portion of the
prior history. For our analysis, we consider all flexible processes to
include the prior 300 events in the sequence. We select this time frame
for three reasons. First, it is approximately equal to the number of ac-
tions that occur during a one-month period. Second, considering a
larger number of events allows us to avoid serious sparsity concerns;
i.e., there will be enough observations relative to the sample space to
make inferences about patterns. Finally, the average cycle time for an
app is slightly more than eight days. As such, we would expect an active
app to receive three or four contributions in that time period; this vo-
lume would be consistent with prior work suggesting that developers
more readily engage with small layers that are added over time, rather
than large or elaborate sections (Howison and Crowston, 2014). As
robustness checks to ensure that the choice of 300 did not unduly im-
pact our results, we also confirm our findings for other time windows,
including 75, 150, and 1000 events.

It is important to note that the flexible processes are nested within
the coherent ones; if something occurs within the last 300 events, it has
also occurred during the entire history. However, the stable and flexible
need not be equal. For example, a developer who has not been active in
the last two months may exhibit no flexible processes despite stable
processes spanning our observation period. In contrast, a new developer
may have only been involved for the last month; their stable and flex-
ible patterns will be the same during their early stages of participation.
In general, active developers will have both stable and flexible pro-
cesses, and those may unfold in different ways. When we include ex-
planatory variables in a relational event model that draw on both co-
herent and flexible patterns, we are identifying the differential and joint
impact on observed choices and actions (Quintane and Carnabuci,
2016).

Fig. 4. Rappture user interface.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

9

3.3. Model definitions

Our dataset is a series of events (selection of an app), which are
comprised of a developer, an app, number of lines of code (the impact
of the contribution), and a time. Each observation contains information
on 1) the purposeful behaviors of developers and 2) the impact of those
decisions (measured in terms of amount of modifications through new
lines of code added). We refer to these data points as relational events,
which are discrete actions directed from one entity to another at a
specific point in time (Butts, 2008). Relational event models (REMs)
determine the behavioral, cognitive, and contextual factors which
create the propensities for events to occur. Further, our measures for
search processes are derived from the accumulation of relational events
in particular patterns. In order to delineate portions of the event history
which are older versus those which are more recent, we define a fre-
quency matrix for both time scales. We define

= = = < <Y a b t(, ,) 1e s e a r e b t e t: () , () , () as the cumulative frequency of
contribution of developer a to app b during the time interval [t− δ, t].

3.4. Measures

3.4.1. Dependent variables
In our sample, the outcome of interest is the next action in a de-

veloper's trajectory. Each event observation includes a developer's
choice to modify an app and the cumulative impact of the contribution
(the amount of code added). The first component can be thought of as a
binary vector containing every potential developer-app pairing; the
choice which does occur is represented by a 1, and all other potential
choices have a 0 value. This value is indicative of the selection process
carried out by developers. The second component is the natural log of
the lines of code contributed by the developer to the app. We use the
logarithm to account for the skewness of the effort data. A larger value
is indicative of a greater total contribution.

3.4.2. Focal explanatory variables
Our key mechanisms for predicting a developer's selection of an app

and the subsequent contribution to that app are the degrees to which a
developer engages in coherent or flexible search. We compute the re-
lative intensity of search at every observation point and for every de-
veloper-app pair. To compute a score for the extent to which a devel-
oper can leverage their search processes to make a contribution to an
app, we utilize the adjacency matrix Y with δ=300 for flexible pro-
cesses and δ= t for the stable processes, computed up to the current
observation at time t. The strength of the connection of app b to de-
veloper b's knowledge base in time window δ is:

= ×z a b t Y u b t Y a v t Y u v t(, ,) (, ,) (, ,) (, ,)
u D a v P\

In the above expression, ×Y a v t Y u v t(, ,) (, ,)v P represents the
degree to which contributors a and u have worked on the same app v.
The value Yδ(u, b, t) represents the contributions made by u to app b.
Put another way, the explanatory variable is a product of (1) the
amount of overlap between a's prior contributions and those of devel-
oper u, and (2) the depth of u's involvement in app b.

This measure captures a developer's capacity to make a contribution
in two ways. First, a developer is able to search the contributions to all
apps they have contributed to, as well as contributions made by others,
during a given time frame. Accordingly, ×Y a v t Y u v t(, ,) (, ,)v P
will be larger if u is more deeply intertwined with a's contributions
during a longer time period (δ= t) or a shorter one (δ=300). Second,
the more frequently a developer contributes to an app, the greater the
connection that app has with other apps which that developer is in-
volved with (Burt, 2004; Grewal et al., 2006), thus enhancing the de-
veloper's ability to search for new solutions. Combining these two ele-
ments, our independent variable will be larger for a developer-app pair
the more frequently the app has received contributions from individuals
who are closely aligned with the developer's prior contributions. Put
another way, a developer has a stronger connection to an app if they are
able to search for a larger number of relevant solutions over a given time
window.

3.4.3. Controls
Our first control variable is developer tenure, measured as the time

the developer has been active since first interaction. Developer tenure
has been used to represent learning and the effect of experience (Argote
and Epple, 1990; Fong Boh et al., 2007). Similarly, we measure app age,
or the time since the software was first introduced. Lastly, we include a
binary variable indicating if the contributor is a core developer or not.
We classify an individual as core if their prior volume of contribution
ranks in the top ten percent of all developers in the ecosystem. This
score was computed using the cumulative actions in our observation
period.

In addition to the statistics capturing developer and app age, we
include three structural controls based on prior activity, calculated as
both stable and flexible patterns. The first is prior engagement, or the
tendency for one individual to repeatedly contribute to the same app.
The second is developer activity, or the prior volume of contributions
made by the individual. Essentially, this variable captures an out-degree
effect. The third statistic is app popularity, or the volume of contribu-
tions previously made to the tool. Like activity, popularity is effectively
a dynamic in-degree measure. Taken together, these last two statistics
capture the power-law effect by determining the extent to which there

Table 1
Description and formulae of variables.

Variable Description Formula

Node control variables
Core member The developer is a core contributor =x a b t a(, ,) 1{ is core}CORE
Developer tenure The length of time a developer has been active =

=
+x a b t t t(, ,) | min |TEN

e s e a
e

: ()
App age The length of time a app has been active =

=
+x a b t t t(, ,) | min |AGE

e r e b
e

: ()

Structural control variables
Prior engagement The volume of contributions made by the developer to that specific app =x a b t(, ,)ENG

Y a b t

k P Y a k t
(, ,)

(, ,)

Developer activity The volume of contributions made by the developer =x a b t(, ,)ACT
k P Y a k t

i D j P Y i j t
(, ,)

(, ,)

App popularity The volume of contributions made to the app =x a b t(, ,)POP
l D Y l b t

i D j P Y i j t
(, ,)

(, ,)

Explanatory variables
Coherent search The degree to which a developer can search for relevant solutions for an app over a longer time period. xST(a, b, t)= zδ(a, b, t), δ= t
Flexible search The degree to which a developer can search for relevant solutions for an app over a shorter time period. xFL(a, b, t)= zδ(a, b, t), δ=300

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

10

is preferential attachment or a propensity for the rich to get richer in
the network (Johnson et al., 2014). We summarize the formulae and
descriptions for our measures in Table 1.

3.5. Analytical approach

To test our hypotheses, we conduct relational event analysis on the
observed actions (Butts, 2008; Schecter et al., 2018). This technique
allows us to determine the impact of the defined measures on the
likelihood for a problem-solving action to occur. We use OLS regression
to assess the effects of these measures on the cumulative impact of
contribution, conditional on the action taking place. For more details
and mathematical derivation of the method, please see the Online
Supplementary Material.

4. Results

In Table 2 we provide summary statistics and inter-correlations for
the variables in both stages of our analysis. Given the large number of
potential events, we only describe the measures for the 35,833 observed
actions.

Next, in Table 3 we present the results of our relational event
models.

Model 1 is a baseline model which includes all covariates and
structural controls. From this model we find that there is a positive
relationship between app age, developer tenure, and a developer's
status as a core member on the likelihood of a developer making a

contribution to an app. In other words, overall there is a tendency for
more experienced core members to contribute more frequently, and
they are more likely to contribute to older apps. Considering the
structural controls, we see that there is a positive and significant re-
lationship between developer activity, app popularity, and engagement
on the likelihood of a link occurring. This result implies that developers
who have been active in the past are the most likely to initiate an action
in the future. Further, apps which were popular in the past tend to
receive more contributions in the future. Additionally, there is an in-
ertia effect, where developers continue to contribute to the same apps
they have worked on previously.

In Model 2 we introduce our two key explanatory variables to de-
termine the effect of both search processes, coherent and flexible
search, on the likelihood of a developer's choice. We first note that the
introduction of these terms significantly improves the model fit (de-
viance reduction= 1.38× 1012, p < 0.001). Our first explanatory
variable, coherent search, has a positive and significant relationship
with event frequency (θ=1.29, p < 0.001). This finding indicates that
developers are more likely to choose an app the more they can leverage
coherent search. Our second explanatory variable, flexible search, also
has a positive and significant relationship with event frequency
(θ=0.88, p < 0.001). This finding indicates that developers are more
likely to contribute to an app that leverages their flexible search pro-
cesses, in addition to the impact of their coherent search behavior.
Taken together, these results imply that a developer's likelihood of
choosing a software app is jointly positively affected by coherent and
flexible search patterns.

Next, we analyze the cumulative impact of different search strate-
gies, measured as the number of lines of code integrated. We use OLS
regression on the natural logarithm of volume. The results are pre-
sented in Table 4.

Model 3 is a baseline model in which we determine the impact of
the control variables on developer impact. We first observe that de-
veloper tenure and status as a core member have a positive and sig-
nificant relationship with contribution magnitude, while app age has a
negative and significant relationship. In other words, more experienced
developers tend to be more impactful in modifying the app chosen at a
point of time. Further, apps attract smaller contributions as they age.
For our structural controls, we first find that stable activity has a ne-
gative relationship with magnitude while flexible activity has a positive
relationship. Second, we find that app popularity as a stable process has
a positive relationship with cumulative impact, while popularity as a
flexible process has a negative relationship. Finally, developer en-
gagement with an app has an overall positive relationship with mag-
nitude. In sum, developers will more be impactful if they have been
active recently, contribute to an app that is not currently popular, and
contribute to familiar apps.

Moving to Model 4, we introduce our two explanatory variables
based on coherent and flexible search to explain the cumulative impact
(magnitude) of contribution. We first note that Model 4 is a significant

Table 2
Descriptive statistics and inter-correlations of key study variables.

Mean SD 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. Cum. impact (Log) 5.27 2.18
2. Developer tenure 0.41 0.33 0.57
3. App Age 0.29 0.26 −0.02 0.09
4. Activity (S) 0.46 0.46 0.65 0.78 −0.06
5. Activity (F) 0.54 0.43 0.65 0.65 −0.13 0.90
6. Popularity (S) 0.28 0.30 0.38 0.15 0.48 0.11 0.07
7. Popularity (F) 0.44 0.35 0.52 0.16 −0.03 0.27 0.40 0.42
8. Engagement (S) 0.23 0.29 0.74 0.34 0.10 0.51 0.48 0.58 0.46
9. Engagement (F) 0.39 0.35 0.64 0.24 −0.14 0.43 0.60 0.21 0.82 0.54
10. Coherent search 0.69 0.27 0.76 0.77 0.00 0.86 0.80 0.31 0.37 0.58 0.46
11. Flexible search 0.60 0.39 0.50 0.54 −0.12 0.78 0.84 0.05 0.33 0.39 0.46 0.74

Notes: N=35,833 events. S= stable, F=flexible. All values greater than |0.02| significant at p < 0.05 level.

Table 3
Results of relational event models predicting choice.

Variable Model 1 Model 2

θ SE θ SE

Control variables
Developer tenure 2.54 (0.33)*** 2.54 (0.32)***

App age 4.05 (0.30)*** 4.11 (0.31)***

Core member 3.15 (0.26)*** 3.03 (0.25)***

Activity (S) 0.88 (0.05)*** 0.78 (0.04)***

Activity (F) 0.90 (0.08)*** 0.79 (0.04)***

Popularity (S) 0.56 (0.11)*** 0.47 (0.11)***

Popularity (F) 0.94 (0.18)*** 0.87 (0.15)***

Engagement (S) 0.97 (0.01)*** 0.92 (0.01)***

Engagement (F) 0.99 (0.06)*** 0.93 (0.02)***

Explanatory variables
Coherent search 1.29 (0.25)***

Flexible search 0.88 (0.05)***

Residual deviance 3.48× 1012 2.12×1012

Deviance reduction 1.38×1012***

Notes: N=35,833 events (12,779,481,120 potential). S= stable, F=flexible.
Significance codes: *p < 0.05, **p < 0.01, ***p < 0.001.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

11

improvement over Model 3 (ΔR2= 0.03, p < 0.001), indicating a
better fit to the data. We find that when a developer leverages a co-
herent search process to select an app, they tend to contribute sig-
nificantly more code (β=3.44, p < 0.001). Conversely, when a de-
veloper leverages flexible search process in addition to coherent search,
they tend to contribute significantly less (β=−0.92, p < 0.001).
Thus, developers make greater changes when relying on coherent
search process, while flexible search processes tend to culminate in
more incremental change.

We conduct three robustness checks to validate our modeling
choices. First, we varied the time window used to determine the
threshold for stable vs. flexible. We used windows of 75, 150, and 1000
events to represent one week, two weeks, and three months approxi-
mately. We found results consistent with those reported, both in the
relational event model and in the OLS regressions. Additionally, we fit
the models to 100 subsets of the event-stream to determine if the
parameter values would vary significantly across different segments of
the data. On average, the parameters from these subsequences mirrored
the overall findings, albeit with greater variance. Finally, we varied the
threshold for inclusion in the core between 80% and 95% of total code
contributed, both in terms of volume and frequency. Our results were
consistent across these values.

5. Discussion

Our research was triggered by the recent quest in the digital in-
novation literature to study the temporal trajectories unfolding on di-
gital platforms (Nambisan et al., 2017). Specifically, we took up the
challenge to deepen our understanding of the paradox of change (Tilson
et al., 2010) that digital platforms face when they devolve control and
engage their complementors in an open, cumulative process of rapid,
incremental innovation (Boudreau, 2012; Parker and Van Alstyne,
2017). In response to the need for novel, temporally oriented theo-
rizing, we develop an individual-level theory and empirical model. This
model reflects the trade-off between stability and change at the plat-
form level, as a tension which unfolds during an individual developer's
digital innovation trajectory.

The unique contribution of this individual-level theory is the con-
cept of a dynamically unfolding intertemporal tension of coherence
with the past versus flexibility to engage with an uncertain future that
developers face when searching for opportunities to make an innovative
contribution to an app on their platform. In our theory we delineate two

distinct search strategies – coherent and flexible – as self-reinforcing
search mechanisms (Farjoun, 2010; Henfridsson and Bygstad, 2013)
that guide a developer's choice of modifying one of the many diverse
apps, and the cumulative impact of their contribution. These search
mechanisms are guided by an individual-level and dynamically evol-
ving knowledge base which reflects an individual's process of accu-
mulating knowledge when modifying and engaging with digital arti-
facts (e.g., source code, code components, APIs). The knowledge base
consists of coordinative knowledge learned and created during iterative
code-mediated interactions with design rules used in other apps. Fur-
ther, it also includes functional knowledge since developers mentally
engage with the functions and the semantic meanings of apps produced
by other developers.

Our statistical model reveals how at the individual-level, coherence
– in the sense of seeking stability in coordinative knowledge structures
learned through code-mediated interactions with multiple app's pro-
duced by others – and change – as the flexibility to engage with more
unfamiliar and thus also ambiguous knowledge used in other apps – are
not exclusive, in the sense of dualism (Farjoun, 2010). Instead, they can
mutually support each other in the form of a duality. We find that a
coherent strategy as a mechanism, can lead to change when con-
ceptualized as an outcome, i.e., greater cumulative impact in modifying
the app a developer has chosen. Coherence does not hamper a devel-
oper to explore new meanings and reinterpret an app. On the contrary,
it affords a stable coordinative foundation to build upon. However,
when examining the duality of using both mechanisms jointly, we find
that flexibility can create complementary and also contradictory forces
in terms of choice and cumulative impact. Developers are more likely to
choose an app that responds to their coherent as well as their flexible
strategy. However, when doing so, developers reduce their ability to
make significant cumulative impact, because they choose apps that are
not sufficiently aligned with their coordinative (e.g., design rules) as
well as functional (e.g., semantic meaning) knowledge. These two
findings make significant theoretical and practical contributions, which
we will discuss next.

5.1. Theoretical contributions

With our results, we contribute to two streams of literature: the
literature on digital innovation (Nambisan, 2017; Nambisan et al.,
2017; Yoo et al., 2010), in particular on digital platforms (Boudreau,
2012; Boudreau and Lakhani, 2015; Tiwana, 2015), and also the
broader literature on innovation problem-solving and knowledge
creation (Carlile, 2004, 2002; Carlile and Rebentisch, 2003; Katila and
Ahuja, 2002). Furthermore, we also contribute with a new method –
relational event modeling. We will next discuss our theoretical con-
tributions before briefly pointing to our methodological contribution.

The first area we contribute to is concerned with the role of the
technical architectures of digital platforms as a source for generativity
and evolvability (de Reuver et al., 2018; Tiwana et al., 2010; Yoo et al.,
2012), as well as a means to exercise control (Baldwin and Clark, 2006;
Boudreau, 2010; Parker and Van Alstyne, 2017). This literature is
deeply rooted in the theories on nearly decomposable systems (Parnas,
1972; Simon, 1991b). It generally asserts that two properties of the
platform architecture – its hybrid modularity as well as its openness –
combined with unique characteristics of digital technologies (such as
re-programmability, transferability, traceability, and re-combinability)
constitute how the stability-change trade-off is resolved at the platform
level (Boudreau, 2010; Tiwana, 2015; Yoo et al., 2010). The general
conclusion drawn is that platforms need to be modular and offer stable
interfaces (e.g., APIs) for their complementors to reuse the platform's
core functionality (Almirall and Casadesus-Masanell, 2010; Baldwin
and Clark, 2000; Um et al., 2013; Yoo et al., 2010). Stability in the
interfaces, the logic goes, only loosely couples the complementor with
the core, offering them the flexibility and autonomy needed to engage
in fast, incremental experimentation (Tiwana, 2015). Second, it is

Table 4
Results of OLS regressions on cumulative impact.

Variable Model 3 Model 4

β SE β SE

Control variables
Intercept 2.73 (0.01)*** 1.71 (0.02)***

Developer tenure 2.02 (0.03)*** 1.12 (0.03)***

App age −1.13 (0.03)*** −0.74 (0.03)***

Core member 0.84 (0.02)*** 0.62 (0.02)***

Activity (S) −0.19 (0.04)*** −0.84 (0.04)***

Activity (F) 0.28 (0.04)*** 0.56 (0.04)***

Popularity (S) 0.23 (0.03)*** −0.33 (0.03)***

Popularity (F) −0.39 (0.04)*** −0.31 (0.03)***

Engagement (S) 3.31 (0.03)*** 3.04 (0.03)***

Engagement (F) 1.79 (0.04)*** 1.66 (0.04)***

Explanatory variables
Coherent search 3.44 (0.05)
Flexible search −0.92 (0.03)

Adjusted R2 0.75 0.78
ΔR2 0.03***

Notes: N=35,833 events. S= stable, F=flexible. Significance codes:
*p < 0.05, **p < 0.01, ***p < 0.001.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

12

argued that platforms should not be too open as too much openness
leads to coordination challenges among the different parties as well as
lower incentives for developers to contribute (Boudreau, 2010;
Eisenmann et al., 2009; Parker and Van Alstyne, 2017). It is these two
architectural properties of stable interfaces that trigger path-dependent
processes. These, combined with the unique property of digital tech-
nologies, allow developers – diverse in skills, motives, and experiences
– to collectively reprogram the digital artifacts, making meaningful
tweaks and enabling continual reinterpretations, expansions, and re-
finement of products and services (Yoo et al., 2010, p. 4). These theories
suggest that the tension between stability and evolvability can be re-
solved through architectural choices: Stability through stable interfaces
as well as a certain level of openness, and the implicit assumption that
developers can easily keep up with rapid developments and are always
highly flexible and open to ambiguity rather than focused on the past
(Almirall and Casadesus-Masanell, 2010).

Within this literature we specifically question that decoupling (as a
means of creating stable technical foundations and limited openness)
the architecture to build upon is the only way to create a duality of
stability and evolvability (e.g., Baldwin and Clark, 2000; Tiwana,
2015). Instead, we offer an alternative explanation. Our study shows
that the unique hybrid modular architecture (e.g., Yoo et al., 2010)
makes complete decoupling impossible, but instead affords an in-
dividual-level degree of independence and agency to shape the paradox
of change. Thus, how the paradox is resolved is constituted by the
search mechanisms that guide how a developer utilizes knowledge ac-
cumulated from modifying multiple distinct apps, each having their
own design hierarchy. These search mechanisms guide individual de-
velopers when making a choice and also their capacity to respond to
challenges in coordinating and translating across apps (Almirall and
Casadesus-Masanell, 2010; Baldwin and Clark, 2000). Put another way,
it is not the degree of technical decoupling in the platform's architecture
but the developers’ strategy to be coherent with the past that allows
them to resolve the paradox of change and realize generativity within
bounds (Wareham et al., 2014). Coherence does not stagnate change
but supports choices in which a developer can build upon deeply de-
veloped coordinative and translational capacities that lead to impactful
cumulative innovation over time.

Furthermore, our individual-level theory provides an alternative
explanation for why prior studies (e.g., Boudreau, 2010; Boudreau and
Jeppesen, 2015) suggest that platforms may lack generativity if they are
open. We show that on an open platform that allows its developers to
actually build upon each other's module, platforms may not evolve
because they support the wrong choices by fostering individuals to pay
more attention to recent events. Such emphasis on flexibility may not
translate into cumulative impact: If developers are emphasizing flex-
ibility, they might make the wrong choice. This strategy does not ne-
cessarily translate into the desired outcome, thus, putting the platform's
evolvability as a whole at risk.

Further, we contribute to the digital innovation literature by ex-
ploring the tension between stability versus evolvability from a dia-
lectic and socio-dynamical view of platform governance and control
(e.g., Eaton et al., 2015; Wareham et al., 2014). This literature gen-
erally concludes stability and change can indeed mutually support each
other, in a sense of mutually enabling forces (Farjoun, 2010; Tilson
et al., 2010). Whether such a duality is realized is a question of the
generative responses and self-reinforcing mechanisms that guide the
dialectic processes between the different actors within the ecosystem.
Further, the socio-technical configurations between the actors (e.g., the
software developers), the technical components (e.g., the apps designed
by the developers, and also software tools offered by the platform all
shape the expression of the duality. Boundary resources such as APIs
but also social regulations play an important part in this dialectic and
socio-material processes (Eaton et al., 2015; Ghazawneh and
Henfridsson, 2013; Haken, 1977; Henfridsson and Bygstad, 2013).
However, these dialectic processes take place at the collective level and

supersede any one individual (Henfridsson and Bygstad, 2013). Our
theory takes this literature a step further. It partially explains the un-
derlying individual actions and interactions with digital artifacts that
lead to a duality of stability and change. As we show, these individual
interactions can only be partially explained through boundary re-
sources (e.g., in our case the Rappture toolkit and joined code re-
positories). Instead, such resources may actually create negative out-
comes if they guide an individual's attention too much toward recent
events, preventing them from being sufficiently coherent with the past
or developing the capacity to coordinate and translate across different
apps.

In addition, this work also contributes to the broader literature on
innovation problem-solving and the debate of whether past knowledge
is a source or a barrier of innovation (Carlile, 2004, 2002; Carlile and
Rebentisch, 2003; Cohen and Levinthal, 2000; Dosi and Nelson, 2010;
Fleming, 2001; Katila and Ahuja, 2002; Murray and O’Mahony, 2007;
Schilling and Green, 2011). There is one particular theoretical con-
troversy that we attend to: This work has discussed whether depth of
search among past knowledge (drawing deeply upon old own knowl-
edge) and scope of search among external new knowledge (searching
widely among external sources) contradict or complement in each other
in affecting future innovation activities (Katila and Ahuja, 2002;
Schilling and Green, 2011). Our conceptualization of two self-reinfor-
cing mechanisms, coherence and flexibility, guiding an individual's
search across an evolving knowledge base provides a new perspective
toward this trade-off discussion. In a collective setting such as an open
platform, search among one's past knowledge is externally connected,
and individuals search deeply and widely with respect to different time
horizons. Thus, a new trade-off emerges, namely the tension between
coherence and flexibility. Our model shows that this trade-off unfolds
differently in terms of an individual's search choice and the cumulative
impact of that choice.

Another contribution of this research is the introduction of rela-
tional event modeling (REM) to the field of digital innovation, and
innovation in a broader sense. So far, this modeling technique has
primarily been used in the context of social communication, primarily
outside of the field of innovation (Butts and Marcum, 2017; Quintane
and Carnabuci, 2016; Schecter et al., 2018). Our model considers the
digital artifact as a node in the connected knowledge base, and our
modeling technique teases out with greater granularity how innovation
patterns unfold over time, when innovation problem-solving is not
primarily performed through talk but through modifications of code
and other digital artifacts (Foss et al., 2016; Howison and Crowston,
2014).

5.2. Practical implications

Beyond the theoretical contribution, this study raises a number of
implications for policy and management. In particular, our study is
relevant to policy makers in the public or private sector who would like
to spur scientific discovery. New knowledge is generated when ideas
from diverse disciplines are brought together; nanoscience is just one
such example that is particularly interdisciplinary. However, for sci-
entific discovery to occur, scientists need to be facilitated to transfer
and translate knowledge across disciplinary boundaries. A digital
platform can encourage such translation to happen by fostering an
open, cumulative process through its boundary resources. Digital
technologies and computing power afford scientists the ability to ex-
plore others’ solutions, thus, accelerating the process of discovery
through reuse and recombination. Our analysis of nanoHUB demon-
strated that while strategies which mutually emphasize flexibility and
coherence may shape choice, a developer's cumulative impact can be
maximized by primarily leveraging coherent search strategies that
emphasize both the past and recent knowledge.

From a more practical perspective, our results are particularly re-
levant for platform sponsors, like NCN at Purdue University which

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

13

manages nanoHUB. Platform sponsors may incorporate our findings
when revisiting the architecture as well as the regulations they use on
their platforms in order to encourage cumulative generativity.
Developers’ ability to exercise agency is due in large part to the de-
veloper resources of the nanoHUB platform (e.g., the Rappture toolkit
or distributed programming environments). These resources create
some developer independence and allow developers to learn from and
modify each other's knowledge (Howison and Crowston, 2014;
Nambisan et al., 2017) despite the uniqueness of apps internally. Ac-
cordingly, other platforms which would like to encourage cumulative
generativity should ensure that the resources on the platform (e.g.,
shared code repositories, workspaces, search functions, workflows,
rankings) make the apps easily accessible and observable. At the same
time, platform designers should be cognizant of the differential impact
of coherent and flexible search on cumulative impact and ensure that
the resources on their platforms support these strategies in line with
their desired level of change on the platform.

Further, this study also can be used to inform the individual plat-
form complementor when revisiting their own strategies for designing
an app. Our findings indicate that developers tend to be drawn to recent
developments and trendy topics when selecting apps to work on.
However, this pursuit of a trendy target comes at the detriment of cu-
mulative impact. Given that result, we encourage developers to become
more aware of their own behavioral tendencies and consider what their
goals are.

5.3. Future research

Our research model prompts a number of directions for future re-
search on digital innovation and in particular digital platforms. We
discuss these directions for the two research streams that we contribute
to: 1) the literature on platform architectures (Baldwin and Clark, 2000;
Boudreau, 2010; Brunswicker et al., in press; Parnas, 1972; Tiwana
et al., 2010; Tiwana, 2015; Yoo et al., 2010) and 2) the literature on
platform governance. We take a dialectic and socio-dynamic view to
resolve the tension between stability and change (Eaton et al., 2015;
Ghazawneh and Henfridsson, 2013; Tilson et al., 2010; Wareham et al.,
2014).

We propose two suggestions for future research on platform archi-
tectures. First, we suggest that recent advances on modular systems
theory for platform architectures (Tiwana et al., 2010; Tiwana, 2015;
Um et al., 2013; Yoo et al., 2010) – deeply rooted in work on nearly
decomposable systems – should incorporate our findings to advance our
understanding of the duality of stability and evolvability. Specifically,
we suggest that scholars should examine the interplay between (1)
loose coupling (or interdependence), (2) openness in the periphery, and
(3) the individual's agency in participating in the cumulative process of
innovation. Indeed, we argue that on open platforms that foster re-
combination across modules, decoupling of the modules and the plat-
form core via stable interfaces (API) is not the only source for a duality
between stability and evolvability (Baldwin and von Hippel, 2011;
Nambisan, 2002; Tiwana, 2015). If there is a great degree of decou-
pling, information is effectively hidden within the boundaries of an app
(Parnas, 1972), putting a burden on the developer to search and
translate knowledge across apps. We show that it depends on the de-
veloper's search mechanism whether they can establish the capacity to
translate across module boundaries (Bolici et al., 2016; Carlile, 2004).
On the other hand, ecosystems with more tightly coupled apps force a
certain degree of coordination amongst developers to resolve inter-
dependencies (Bolici et al., 2016; Howison and Crowston, 2014;
Lindberg et al., 2016). Thus, we argue that additional research is
needed to determine the interplay between different degrees of de-
coupling among the apps in the periphery, their internal coupling, and
the developer's search strategies in order to advance future theories on
hybrid modularity in digital platforms.

Second, we suggest that existing theories about the openness of a

platform's architecture (Boudreau, 2010; Boudreau and Jeppesen,
2015; Eisenmann et al., 2009; Parker and Van Alstyne, 2017), primarily
with a focus on competitive incentives, may fall short in accounting for
the fact that individual-level behavioral mechanisms drive choice.
Thus, we suggest that dominant theories used (such as multi-sided
markets, network effects, and intellectual property rights economics)
(Boudreau and Lakhani, 2015; Katz and Shapiro, 1994; Parker and Van
Alstyne, 2005) are insufficient to describe the search process which
drives individual choices on a platform. In addition, there is a serious
need to also study the variability in incentives with a greater level of
detail, given the fact that platforms increasingly rely on complementors
that are guided by other incentives than just competitive ones. For
example, intrinsic factors such as prestige or fun (Boudreau, 2010;
Boudreau and Jeppesen, 2015), self-interest (Baldwin and von Hippel,
2011), or a collaborative focus (Boudreau and Jeppesen, 2015) could
all influence the search processes taking place on an open platform,
encouraging complementors to reuse and recombine. Integrating these
perspectives into our model would offer alternative explanations for the
behavior we observe and could potentially moderate the effectiveness
of different search processes. For instance, a platform that offers in-
centives for significant innovations may lead developers to search more
deeply across the apps in the ecosystem.

As a final direction of future research, we propose an examination of
how platform owners deploy boundary resources to control (or pro-
mote) platform outcomes (Eaton et al., 2015; Ghazawneh and
Henfridsson, 2013). For instance, the platform owner could introduce a
new API, allowing developers to make use of a new functionality across
multiple independent apps. On the other hand, the platform owner
could introduce boundary resources specifically geared toward im-
proving and remixing individual apps at the periphery. Because these
boundary resources afford very different capabilities, we would an-
ticipate that developers would behave differently in response
(Ghazawneh and Henfridsson, 2013). As such, a fruitful direction for
future research would investigate the effects of various types of
boundary resources on developer search processes.

5.4. Limitations

There are a few limitations to our study that are worth noting. First,
our measure of an individual's knowledge base captures the contribu-
tions made to software the individual is associated with. However,
while the developer is exposed to that information, we cannot de-
termine how they actually interpret that knowledge and use it to inform
future behavior. Thus, we can only comment on the observed trends in
behavior, not direct motivations and cognitive processes and choices
(Quintane and Carnabuci, 2016). Future work could strengthen our
arguments by surveying individuals who engage in digital innovation
work or designing controlled experiments that elicit choices to assess
their intentions and also reasoning behind certain actions.

A second limitation stems from the bimodal nature of our network
data. Namely, the relationships in the data exist between developers
and apps, not between developers. We assume that the technical ar-
chitecture of software itself, the code, and the digitally mediated pro-
cesses of collaborative programming using software version control
systems like SVN or GitHub reflect developer interactions and embed
not only explicit (e.g., the actual software code or a commit message)
but also implicit norms of how digital work is done. However, it is
possible that the developers are coordinating through some unobserved
channels such as mailing lists or social media. Future work may extend
our theorizing through other kinds of developer interactions.

Finally, our data was collected from software tools on the scientific
platform nanoHUB (Brunswicker et al., 2017; Madhavan et al., 2013).
Though we expect this ecosystem to have many characteristics of other
digital platforms, there are nevertheless aspects of nanoHUB which
make it a unique context. For example, nanoHUB attracts only a certain
type of developer: those with specialized skills and also career interests.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

14

Further, even though industry partners participate in nanoHUB, the
simulation tools are primarily used for research or educational pur-
poses. Thus, the apps on the nanoHUB platform represent a very dis-
tinct form of digital innovation, a scientific digital innovation. Our
study could be strengthened by replicating our findings in other digital
innovation settings, such as developer communities of platforms for
mobile apps, music or gaming.

6. Conclusions

As digital platforms become more pervasive, it has become in-
creasingly important to understand how innovative add-on apps are
created on them, giving rise to the lack of a central norm or hierarchy
that coordinates how individuals engage in the iterative sequential
process that such platforms afford. Our findings underscore the in-
herent tensions that the individual developer is exposed to: balancing a
desire for coherence with a need for flexibility and the implications of
this tension for outcomes on digital platforms. In light of our results,
this study points out that architecting platforms is indeed a challenging
task that requires the consideration of the tensions that emerge at the
individual-level and the dynamics they create. We hope that others
follow us in studying the paradox of change in digital innovation with
greater granularity given the temporally and collectively more inter-
twined processes that digital technologies afford.

Acknowledgments

The first author collected the trace data of simulation tool devel-
opers on nanoHUB.org as Co-PI of the NSF grant #1255781. She would
like to thank her team of Research Center for Open Digital Innovation
(RCODI) and the leadership team of the Network for Computational
Nanotechnology (NCN) at Purdue University for their support during
this process.

The authors would also like to thank to the three anonymous re-
viewers and the special issue editor for their constructive comments and
excellent guidance throughout the review process.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.respol.2019.03.016.

References

Almirall, E., Casadesus-Masanell, R., 2010. Open versus closed innovation: a model of
discovery and divergence. Acad. Manage. Rev. 35, 27–47.

Argote, L., Epple, D., 1990. Learning curves in manufacturing. Science 247, 920.
Baldwin, C., Clark, K., 2006. The architecture of participation: does code architecture

mitigate free riding in the open source development model? Manage. Sci. 52,
1116–1127. https://doi.org/10.1287/mnsc.1060.0546.

Baldwin, C., Clark, K.B., 2004. Modularity in Design of Complex Engineering Systems.
Baldwin, C., Clark, K.B., 2000. The Power of Modularity. MIT Press, Cambridge, MA.
Baldwin, C., von Hippel, E., 2011. Modeling a paradigm shift: from producer innovation

to user and open collaborative innovation. Organ. Sci. 22, 1399–1417. https://doi.
org/10.1287/orsc.1100.0618.

Baldwin, C., Woodard, C.J., 2009. The architecture of platforms: a unified view.
Platforms, Markets and Innovation. Edward Elgar Publishing, pp. 19–44.

Bolici, F., Howison, J., Crowston, K., 2016. Stigmergic coordination in FLOSS develop-
ment teams: integrating explicit and implicit mechanisms. Cogn. Syst. Res. 38, 14–22.
https://doi.org/10.1016/j.cogsys.2015.12.003.

Boudreau, K.J., 2012. Let a thousand flowers bloom? An early look at large numbers of
software app developers and patterns of innovation. Organ. Sci. 23, 1409–1427.
https://doi.org/10.1287/orsc.1110.0678.

Boudreau, K.J., 2010. Open platform strategies and innovation: granting access vs. de-
volving control. Manage. Sci. 56, 1849–1872. https://doi.org/10.1287/mnsc.1100.
1215.

Boudreau, K.J., Jeppesen, L.B., 2015. Unpaid crowd complementors: the platform net-
work effect mirage. Strateg. Manag. J. 36, 1761–1777. https://doi.org/10.1002/smj.
2324.

Boudreau, K.J., Lakhani, K.R., 2015. “Open” disclosure of innovations, incentives and
follow-on reuse: theory on processes of cumulative innovation and a field experiment
in computational biology. Res. Policy 44, 4–19. https://doi.org/10.1016/j.respol.

2014.08.001.
Brunswicker, S., Almirall, E., Majchrzak, A., in press. Optimizing and Satisficing: the

interplay between platform architecture and developers' design strategies on platform
performance. MIS Q. https://misq.org/skin/frontend/default/misq/pdf/Abstracts/
13561_RA_BrunswickerAbstract.pdf.

Brunswicker, S., Matei, S.A., Zentner, M., Zentner, L., Klimeck, G., 2017. Creating impact
in the digital space: digital practice dependency in communities of digital scientific
innovations. Scientometrics 110, 417–426. https://doi.org/10.1007/s11192-016-
2106-z.

Burt, R.S., 2004. Structural holes and good ideas. Am. J. Sociol. 110, 349–399. https://
doi.org/10.1086/421787.

Butts, C.T., 2008. A relational event framework for social action. Sociol. Methodol. 38,
155–200.

Butts, C.T., Marcum, C.S., 2017. A relational event approach to modeling behavioral
dynamics. Group Processes. Springer International Publishing, pp. 51–92.

Carlile, P.R., 2004. Transferring, translating, and transforming: an integrative framework
for managing knowledge across boundaries. Organ. Sci. 15, 555–568. https://doi.
org/10.1287/orsc.1040.0094.

Carlile, P.R., 2002. A pragmatic view of knowledge and boundaries: boundary objects in
new product development. Organ. Sci. 13, 442–455. https://doi.org/10.1287/orsc.
13.4.442.2953.

Carlile, P.R., Rebentisch, E.S., 2003. Into the black box: the knowledge transformation
cycle. Manage. Sci. 49, 1180–1195. https://doi.org/10.1287/mnsc.49.9.1180.16564.

Cohen, W.M., Levinthal, D.A., 2000. Chapter 3 – Absorptive capacity: a new perspective
on learning and innovation. In: Cross, R.L., Israelit, S.B. (Eds.), Strategic Learning in a
Knowledge Economy. Butterworth-Heinemann, Boston, pp. 39–67. https://doi.org/
10.1016/B978-0-7506-7223-8.50005-8. Reprinted with permission © 1990 by
Cornell University (2000).

Cohen, W.M., Levinthal, D.A., 1990. Absorptive capacity: a new perspective on learning
and innovation. Adm. Sci. Q. 35, 128–152. https://doi.org/10.2307/2393553.

Cyert, R., March, J.G., 1992. A Behavioral Theory of the Firm. Blackwell Publishers Ltd,
Oxford.

de Reuver, M., Sorensen, C., Basole, R., 2018. The digital platform: a research agenda. J.
Inform. Technol. 33 (2), 124–135. https://doi.org/10.1057/s41265-016-0033-3.

de Souza, C.R.B., Redmiles, D.F., 2009. On the roles of APIs in the coordination of col-
laborative software development. Comput. Supported Coop. Work 18, 445. https://
doi.org/10.1007/s10606-009-9101-3.

Dosi, G., Nelson, R.R., 2010. Chapter 3 – Technical change and industrial dynamics as
evolutionary processes. In: In: Hall, B.H., Rosenberg, N. (Eds.), Handbook of the
Economics of Innovation, vol. 1. North-Holland, pp. 51–127. https://doi.org/10.
1016/S0169-7218(10)01003-8.

Ducheneaut, N., 2005. Socialization in an open source software community: a socio-
technical analysis. Comput. Supported Coop. Work 14 (4), 323–368.

Eaton, B., Elaluf-Calderwood, S., Sorensen, C., Yoo, Y., 2015. Distributed tuning of
boundary resources: the case of Apple's iOS service system. MIS Q. 39, 217–243.

Eisenmann, T.R., Parker, G., Van Alstyne, M.W., 2009. Opening platforms: how when and
why? In: Gawer, A., Cusumano, M.A. (Eds.), Platforms, Markets, and Innovation.
Edward Elgar, Cheltenham, pp. 131–162.

Farjoun, M., 2010. Beyond dualism: stability and change as duality. Acad. Manage. Rev.
35, 202–225.

Fleming, L., 2001. Recombinant uncertainty in technological search. Manage. Sci. 47,
117–132. https://doi.org/10.1287/mnsc.47.1.117.10671.

Fong Boh, W., Slaughter, S.A., Espinosa, J.A., 2007. Learning from experience in software
development: a multilevel analysis. Manage. Sci. 53, 1315–1331.

Foss, N.J., Frederiksen, L., Rullani, F., 2016. Problem-formulation and problem-solving in
self-organized communities: how modes of communication shape project behaviors
in the free open-source software community. Strateg. Manag. J. 37, 2589–2610.
https://doi.org/10.1002/smj.2439.

Ghazawneh, A., Henfridsson, O., 2013. Balancing platform control and external con-
tribution in third-party development: the boundary resources model. Inform. Syst. J.
23, 173–192. https://doi.org/10.1111/j.1365-2575.2012.00406.x.

Grewal, R., Lilien, G.L., Mallapragada, G., 2006. Location, location, location: how net-
work embeddedness affects project success in open source systems. Manage. Sci. 52,
1043–1056.

Haken, H., 1977. Synergetics, An Introduction. Springer-Verlag, Berlin.
Henfridsson, O., Bygstad, B., 2013. The generative mechanisms of digital infrastructure

evolution. MIS Q. 37, 907–932.
Howison, J., Crowston, K., 2014. Collaboration through open superposition: a theory of

the open source way. MIS Q. 38, 29–50.
Johnson, S.L., Faraj, S., Kudaravalli, S., 2014. Emergence of power laws in online com-

munities: the role of social mechanisms and preferential attachment. MIS Q. 38,
795–808.

Kallinikos, J., Aaltonen, A., Marton, A., 2013. The ambivalent ontology of digital artifacts.
MIS Q. 37, 357–370.

Kane, G.C., Alavi, M., 2007. Information technology and organizational learning: an in-
vestigation of exploration and exploitation processes. Organ. Sci. 18, 796–812.

Katila, R., Ahuja, G., 2002. Something old, something new: a longitudinal study of search
behavior and new product introduction. Acad. Manage. J. 45, 1183–1194. https://
doi.org/10.2307/3069433.

Katz, M.L., Shapiro, C., 1994. Systems competition and network effects. J. Econ. Perspect.
8, 93–115.

Kellogg, K.C., Orlikowski, W.J., Yates, J., 2006. Life in the trading zone: structuring co-
ordination across boundaries in postbureaucratic organizations. Organ. Sci. 17 (1),
22–44.

Kyriakou, H., Nickerson, J.V., Sabnis, G., 2017. Knowledge resuse for customization:
metamodels in an open design community for 3D printing. MIS Q. 41, 315–332.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

15

https://doi.org/10.1016/j.respol.2019.03.016
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0005
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0005
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0010
https://doi.org/10.1287/mnsc.1060.0546
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0020
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0025
https://doi.org/10.1287/orsc.1100.0618
https://doi.org/10.1287/orsc.1100.0618
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0035
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0035
https://doi.org/10.1016/j.cogsys.2015.12.003
https://doi.org/10.1287/orsc.1110.0678
https://doi.org/10.1287/mnsc.1100.1215
https://doi.org/10.1287/mnsc.1100.1215
https://doi.org/10.1002/smj.2324
https://doi.org/10.1002/smj.2324
https://doi.org/10.1016/j.respol.2014.08.001
https://doi.org/10.1016/j.respol.2014.08.001
https://misq.org/skin/frontend/default/misq/pdf/Abstracts/13561_RA_BrunswickerAbstract.pdf
https://misq.org/skin/frontend/default/misq/pdf/Abstracts/13561_RA_BrunswickerAbstract.pdf
https://doi.org/10.1007/s11192-016-2106-z
https://doi.org/10.1007/s11192-016-2106-z
https://doi.org/10.1086/421787
https://doi.org/10.1086/421787
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0080
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0080
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0085
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0085
https://doi.org/10.1287/orsc.1040.0094
https://doi.org/10.1287/orsc.1040.0094
https://doi.org/10.1287/orsc.13.4.442.2953
https://doi.org/10.1287/orsc.13.4.442.2953
https://doi.org/10.1287/mnsc.49.9.1180.16564
https://doi.org/10.1016/B978-0-7506-7223-8.50005-8
https://doi.org/10.1016/B978-0-7506-7223-8.50005-8
https://doi.org/10.1016/B978-0-7506-7223-8.50005-8
https://doi.org/10.2307/2393553
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0115
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0115
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1007/s10606-009-9101-3
https://doi.org/10.1016/S0169-7218(10)01003-8
https://doi.org/10.1016/S0169-7218(10)01003-8
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0135
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0135
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0140
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0140
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0145
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0145
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0145
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0150
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0150
https://doi.org/10.1287/mnsc.47.1.117.10671
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0160
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0160
https://doi.org/10.1002/smj.2439
https://doi.org/10.1111/j.1365-2575.2012.00406.x
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0175
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0175
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0175
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0180
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0185
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0185
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0190
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0190
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0195
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0195
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0195
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0200
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0200
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0205
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0205
https://doi.org/10.2307/3069433
https://doi.org/10.2307/3069433
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0215
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0215
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0220
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0220
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0220
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0225
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0225

Levinthal, D., 1997. Adaptation on rugged landscapes. Manage. Sci. 43, 934–950.
Levinthal, D., March, J.G., 1981. A model of adaptive organizational search. J. Econ.

Behav. Organ. 2, 307–333. https://doi.org/10.1016/0167-2681(81)90012-3.
Lindberg, A., Berente, N., Gaskin, J., Lyytinen, K., 2016. Coordinating interdependencies

in online communities: a study of an open source software project. Inform. Syst. Res.
27, 751–772. https://doi.org/10.1287/isre.2016.0673.

Lingo, E.L., O’Mahony, S., 2010. Nexus work: brokerage on creative projects. Adm. Sci. Q.
55 (1), 47–81.

Lyytinen, K., Rose, G., Yoo, Y., 2010. Learning routines and disruptive technological
change: hyper-learning in seven software development organizations during internet
adoption. Inform. Technol. People 23, 165–192. https://doi.org/10.1108/
09593841011052156.

Lyytinen, K., Yoo, Y., Boland, R.J., 2015. Digital product innovation within four classes of
innovation networks. Inform. Syst. J. 26, 47–75. https://doi.org/10.1111/isj.12093.

Madhavan, K., Zentner, M., Klimeck, G., 2013. Learning and research in the cloud. Nat.
Nanotechnol. 8 (11), 786–789. https://doi.org/10.1038/nnano.2013.231.

Malone, T.W., Crowston, K., 1994. The interdisciplinary study of coordination. ACM
Comput. Surv. 26, 87–119. https://doi.org/10.1145/174666.174668.

March, J.G., 1991. Exploration and exploitation in organizational learning. Organ. Sci. 2,
71–87. https://doi.org/10.1287/orsc.2.1.71.

McLennan, M., Kennell, R., 2010. HUBzero: a platform for dissemination and collabora-
tion in computational science and engineering. Comput. Sci. Eng. 12, 48–52.

Murray, F., O’Mahony, S., 2007. Exploring the foundations of cumulative innovation:
implications for organization science. Organ. Sci. 18, 1006–1021.

Nambisan, S., 2017. Digital entrepreneurship: toward a digital technology perspective of
entrepreneurship. Entrep. Theory Pract. 41, 1029–1055. https://doi.org/10.1111/
etap.12254.

Nambisan, S., 2013. Information technology and product/service innovation: a brief as-
sessment and some suggestions for future research. J. Assoc. Inform. Syst. 14,
215–226.

Nambisan, S., 2002. Complementary product integration by high-technology new ven-
tures: the role of initial technology strategy. Manage. Sci. 48, 382–398.

Nambisan, S., Lyytinen, K., Majchrzak, A., Song, M., 2017. Digital innovation manage-
ment: reinventing innovation management research in a digital world. MIS Q. 41,
223–238. https://doi.org/10.25300/MISQ/2017/41:1.03.

Nelson, R.R., Winter, S.G., 1977. In search of useful theory of innovation. Res. Policy 6,
36–76.

Parker, G., Van Alstyne, M., 2017. Innovation, openness, and platform control. Manage.
Sci. 64 (7), 3015–3032. https://doi.org/10.1287/mnsc.2017.2757.

Parker, G., Van Alstyne, M., Choudary, S.P., 2016. Platform Revolution. W.W. Norton and
Company, New York.

Parker, G.G., Van Alstyne, M.W., 2005. Two-sided network effects: a theory of informa-
tion product design. Manage. Sci. 51, 1494–1504. https://doi.org/10.1287/mnsc.
1050.0400.

Parnas, D.L., 1972. On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058. https://doi.org/10.1145/361598.361623.

Porter, A.L., Youtie, J., 2009. How interdisciplinary is nanotechnology? J. Nanopart. Res.
11, 1023–1041.

Quintane, E., Carnabuci, G., 2016. How do brokers broker? Tertius gaudens, tertius
iungens, and the temporality of structural holes. Organ. Sci. 27, 1343–1360. https://
doi.org/10.1287/orsc.2016.1091.

Schecter, A., Pilny, A., Leung, A., Poole, M.S., Contractor, N., 2018. Step by step: cap-
turing the dynamics of work team process through relational event sequences. J.
Organ. Behav. 39 (9), 1163–1181. https://doi.org/10.1002/job.2247.

Schilling, M.A., Green, E., 2011. Recombinant search and breakthrough idea generation:

an analysis of high impact papers in the social sciences. Res. Policy 40, 1321–1331.
https://doi.org/10.1016/j.respol.2011.06.009.

Shaft, T.M., Vessey, I., 2006. The role of cognitive fit in the relationship between software
comprehension and modification. MIS Q. 30, 29–55. https://doi.org/10.2307/
25148716.

Shneiderman, B., Mayer, R., 1979. Syntactic/semantic interactions in programmer be-
havior: a model and experimental results. Int. J. Comput. Inform. Sci. 8 (3), 219–238.

Simon, H.A., 1991a. Bounded rationality and organizational learning. Organ. Sci. 2,
125–134.

Simon, H.A., 1991b. The architecture of complexity, Facets of Systems Science.
International Federation for Systems Research International Series on Systems
Science and Engineering. Springer US, pp. 457–476.

Simon, H.A., 1955. A behavioral model of rational choice. Q. J. Econ. 69, 99–118.
https://doi.org/10.2307/1884852.

Star, S.L., Griesemer, J.R., 1989. Institutional ecology, ‘translations’ and boundary ob-
jects: amateurs and professionals in Berkeley's Museum of Vertebrate Zoology,
1907–39. Soc. Stud. Sci. 19, 387–420. https://doi.org/10.1177/
030631289019003001.

Tilson, D., Lyytinen, K., Sørensen, C., 2010. Digital infrastructures: the missing IS research
agenda. Inform. Syst. Res. 21, 748–759. https://doi.org/10.1287/isre.1100.0318.

Tiwana, A., 2015. Evolutionary competition in platform ecosystems. Inform. Syst. Res. 26,
266–281. https://doi.org/10.1287/isre.2015.0573.

Tiwana, A., Konsynski, B., Bush, A.A., 2010. Research commentary—platform evolution:
coevolution of platform architecture, governance, and environmental dynamics.
Inform. Syst. Res. 21, 675–687. https://doi.org/10.1287/isre.1100.0323.

Um, S., Yoo, Y., Wattal, S., Kulathinal, R., Zhang, B., 2013. The architecture of gen-
erativity in a digital ecosystem: a network biology perspective. ICIS 2013
Proceedings.

Vedres, B., Stark, D., 2010. Structural folds: generative disruption in overlapping groups.
Am. J. Sociol. 115 (4), 1150–1190.

Von Hippel, E., Von Krogh, G., 2015. Crossroads—Identifying viable “need–solution
pairs”: Problem solving without problem formulation. Organ. Sci. 27 (1), 207–221.

Walsh, J.P., Ungson, G.R., 1991. Organizational memory. Acad. Manage. Rev. 16, 57–91.
https://doi.org/10.5465/amr.1991.4278992.

Wareham, J., Fox, P.B., Cano Giner, J.L., 2014. Technology ecosystem governance.
Organ. Sci. 25, 1195–1215. https://doi.org/10.1287/orsc.2014.0895.

Woodard, C.J., Ramasubbu, N., Tschang, F.T., Sambamurthy, V., 2013. Design capital and
design moves: the logic of digital business strategy. MIS Q. 37, 537–564.

Yoo, Y., Boland, R.J., Lyytinen, K., Majchrzak, A., 2012. Organizing for innovation in the
digitized world. Organ. Sci. 23, 1398–1408.

Yoo, Y., Henfridsson, O., Lyytinen, K., 2010. Research commentary—the new organizing
logic of digital innovation: an agenda for Information Systems Research. Inform. Syst.
Res. 21, 724–735. https://doi.org/10.1287/isre.1100.0322.

Youtie, J., Iacopetta, M., Graham, S., 2008. Assessing the nature of nanotechnology: can
we uncover an emerging general purpose technology? J. Technol. Transf. 33,
315–329. https://doi.org/10.1007/s10961-007-9030-6.

Zentner, L., Zentner, M., Farnsworth, V., McLennan, M., Madhavan, K., Klimeck, G., 2013.
nanoHUB.org: Experiences and Challenges in Software Sustainability for a Large
Scientific Community. ArXiv13091805 Cs.

Zhang, J., Wang, H., 2009. An exploration of the relations between external re-
presentations and working memory. PLOS ONE 4, e6513. https://doi.org/10.1371/
journal.pone.0006513.

Zittrain, J.L., 2006. The generative internet. Harv. Law Rev. 119, 1974–2040. https://doi.
org/10.2307/4093608.

S. Brunswicker and A. Schecter Research Policy xxx (xxxx) xxx–xxx

16

http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0230
https://doi.org/10.1016/0167-2681(81)90012-3
https://doi.org/10.1287/isre.2016.0673
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0245
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0245
https://doi.org/10.1108/09593841011052156
https://doi.org/10.1108/09593841011052156
https://doi.org/10.1111/isj.12093
https://doi.org/10.1038/nnano.2013.231
https://doi.org/10.1145/174666.174668
https://doi.org/10.1287/orsc.2.1.71
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0275
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0275
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0280
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0280
https://doi.org/10.1111/etap.12254
https://doi.org/10.1111/etap.12254
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0290
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0290
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0290
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0295
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0295
https://doi.org/10.25300/MISQ/2017/41:1.03
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0305
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0305
https://doi.org/10.1287/mnsc.2017.2757
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0315
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0315
https://doi.org/10.1287/mnsc.1050.0400
https://doi.org/10.1287/mnsc.1050.0400
https://doi.org/10.1145/361598.361623
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0330
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0330
https://doi.org/10.1287/orsc.2016.1091
https://doi.org/10.1287/orsc.2016.1091
https://doi.org/10.1002/job.2247
https://doi.org/10.1016/j.respol.2011.06.009
https://doi.org/10.2307/25148716
https://doi.org/10.2307/25148716
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0355
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0355
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0360
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0360
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0365
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0365
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0365
https://doi.org/10.2307/1884852
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1287/isre.1100.0318
https://doi.org/10.1287/isre.2015.0573
https://doi.org/10.1287/isre.1100.0323
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0395
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0395
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0395
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0400
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0400
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0405
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0405
https://doi.org/10.5465/amr.1991.4278992
https://doi.org/10.1287/orsc.2014.0895
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0420
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0420
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0425
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0425
https://doi.org/10.1287/isre.1100.0322
https://doi.org/10.1007/s10961-007-9030-6
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0440
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0440
http://refhub.elsevier.com/S0048-7333(19)30079-4/sbref0440
https://doi.org/10.1371/journal.pone.0006513
https://doi.org/10.1371/journal.pone.0006513
https://doi.org/10.2307/4093608
https://doi.org/10.2307/4093608

	Coherence or flexibility? The paradox of change for developers’ digital innovation trajectory on open platforms
	Introduction
	Conceptual development
	Foundations: A developer's innovation trajectory as search on open platforms
	Digital innovation trajectory as iterative search process
	Cumulative nature of digital innovation trajectory on open platforms
	A developer's knowledge base emerging from a cumulative trajectory

	Stability-change as a tension in a developer's digital innovation trajectory
	Coherence and flexibility as paradoxical search
	The effect of coherence on developer's innovation choice and cumulative impact
	The effect of coherence and flexibility on choice and cumulative impact

	Methods
	Case setting: The nanoHUB platform with a heterogeneous developer ecosystem
	Differentiating coherent and flexible processes
	Model definitions
	Measures
	Dependent variables
	Focal explanatory variables
	Controls

	Analytical approach

	Results
	Discussion
	Theoretical contributions
	Practical implications
	Future research
	Limitations

	Conclusions
	Acknowledgments
	Supplementary data
	References

