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A B S T R A C T

Computer-based simulation games provide an environment to train complex problem-solving skills. Yet, it is
largely unknown how the in-game performance of learners varies with different levels of prior knowledge. Based
on theories of complex-skill acquisition (e.g., 4C/ID), we derive four performance aspects that prior knowledge
may affect: (1) systematicity in approach, (2) accuracy in visual attention and motor reactions, (3) speed in
performance, and (4) cognitive load. This study aims to empirically test whether prior knowledge affects these
four aspects of performance in a medical simulation game for resuscitation skills training. Participants were 24
medical professionals (experts, with high prior knowledge) and 22 medical students (novices, with low prior
knowledge). After pre-training, they all played one scenario, during which game-logs and eye-movements were
collected. A cognitive-load questionnaire ensued. During game play, experts demonstrated a more systematic
approach, higher accuracy in visual selection and motor reaction, and a higher performance speed than novices.
Their reported levels of cognitive load were lower. These results indicate that prior knowledge has a substantial
impact on performance in simulation games, opening up the possibility of using our measures for performance
assessment.

1. Introduction

Computer-based simulation games (CBSG) are effective learning
environments for complex skills. As simulations, they approximately
replicate the complexity of real-life situations (Koivisto, Niemi,
Multisilta, & Eriksson, 2017). As computer games, they provide a
package of problems that are causally connected, based on learners'
interaction with the game (Kiili, 2005). In this simulated problem-sol-
ving environment, learners can train specific professional skills in areas
such as aviation, business management, and medicine (Dankbaar et al.,
2016; De Freitas, 2006; Hernández-Lara, Perera-Lluna, & Serradell-
López, 2019). However, CBSGs face a challenge in that the performance
of a learner in the game is difficult to assess via traditional measure-
ments such as achievement tests (Kang, Liu, & Qu, 2017). This chal-
lenge is mainly due to the open-ended nature of CBSGs (Squire, 2008),
which allows for a large number of different behaviors. Therefore, re-
cent research has focused on tracking users' in-game behaviors by
looking at game data such as serious game analytics (Kang et al., 2017;
Loh, Sheng, & Ifenthaler, 2015; Wallner & Kriglstein, 2013). These
studies identified several limitations: Data analysis without involving

educational theoretical principles often fails to fully account for stu-
dents’ performance (Kang et al., 2017), game-logs without translation
into high-level meaningful actions can yield confounding information
(Zhou, Xu, Nesbit, & Winne, 2010), some important factors such as
timing cannot be explained by analyzing sequences of events only
(Clark, Martinez-Garza, Biswas, Luecht, & Sengupta, 2012), and em-
pirical studies about how game data can be informative for perfor-
mance assessment are scarce (Hou, 2015; Kang et al., 2017).

We believe that theories of complex-skill acquisition might help to
develop performance assessments in open-ended game environments.
We view the playing of a CBSG as a problem-solving process in which
domain-specific prior knowledge (DSPK) has an essential role. DSPK
comprises knowledge structures in long-term memory, also known as
cognitive schemas (Bartlett, 1995). Without these schemas, learners
depend on domain-general problem-solving strategies which are in-
efficient and time-consuming and, most importantly, hamper the
schema construction processes (Van Merriënboer, 2013). This means
that playing a CBSG without sufficient DSPK might lead to suboptimal
learning. The goal of this study is to empirically examine the effect of
DSPK on game performance by comparing learners with two distinct
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levels of DSPK: learners with high DSPK (i.e., experts) and learners with
low DSPK (i.e., novices).

Expert-novice differences in the use of problem-solving strategies
have been investigated in multiple studies, suggesting various in-
dicators of these differences (Donovan & Litchfield, 2013; Manning,
Ethell, Donovan, & Crawford, 2006; McLaughlin, Bond, Hughes,
McConnell, & McFadden, 2017). However, these indicators are highly
conditional because problem-solving strategies greatly vary depending
on domains and task environments (Ericsson, Hoffman, Kozbelt, &
Williams, 2018; Liversedge, Gilchrist, & Everling, 2011, Chapter 30). To
make indicators informative to education, they should be developed
within an integral theoretical framework in education, specialized to a
given task environment via careful task analysis, and validated by
empirical studies. Regarding that the task environments of CBSGs are
exceedingly dynamic and the tasks require interactions of performers
with the environment, this study demonstrates how to develop specific
indicators for a CBSG based on complex-skill acquisition theories.

In this introduction, we will first theoretically compare how experts
and novices generate problem solutions, suggesting aspects of problem-
solving performance that are directly affected by the level of DSPK. We
will then discuss how to define indicators of these aspects by decom-
posing the skill structure hierarchically. Finally, we present the hy-
potheses of this study.

1.1. Problem solution generation by experts and novices

Fig. 1 provides a process model that shows how experts and novices
generate problem solutions differently, adopting concepts from the
four-component instructional design (4C/ID) model (Van Merriënboer
& Kirschner, 2018). The process involves two types of knowledge in
long-term memory: domain models (i.e., schemas of how a domain is
organized) at declarative level, and cognitive strategies (i.e., schemas of
how to approach problems in the domain) at procedural level. Assume a
continuum with novices with low DSPK at one extreme and experts
with high DSPK at the other extreme. For novices, since their domain
models are not yet structured, weak methods (i.e., slow and inefficient
general problem-solving strategies such as general search or working
backward) (Newell & Simon, 1972) are the only cognitive strategies
they can use when solving a problem. This leads to inefficient approaches

to the problem, and also to procedures with incorrect cognitive rules at the
level of task performance (i.e., solution generated). For experts, on the
other hand, well-structured domain models are interpreted and trans-
formed into two types of stronger cognitive strategies: knowledge-based
methods (i.e., heuristic strategies) and strong methods (i.e., algorithmic
strategies) (Van Merriënboer, 2013). Knowledge-based methods guide
students to reason within the domain and systematically approach non-
routine aspects of the problem (i.e., systematic approach). When a certain
aspect of the given task is consistently repeated (i.e., routine aspects of
tasks), cognitive if-then rules may be formed as strong methods. These
rules provide algorithmic solutions to routine aspects of the task by
matching conditional information in working memory (i.e., if part) with
a coordinated reaction (i.e., then part), resulting in procedures with
correct cognitive rules at the task performance level. As a function of
extensive practice, the cognitive rules can be strengthened and even-
tually become fully automatized, leading to higher speed in perfor-
mance (Palmeri, 1999).

Additionally, the schemas embodied in long-term memory cause
one more distinction in task performance between experts and novices:
reduced cognitive load resulting from optimized use of working
memory. Problem-solving with weak methods imposes a heavy demand
on cognitive resources in working memory (Sweller, Clark, & Kirschner,
2010), introducing high cognitive load or even cognitive overload
(Sweller, 1988). However, with the availability of knowledge-based
methods, cognitive schemas relevant for problem-solving are stored in
long-term memory and retrieved into working memory as one element.
Moreover, with fully automatized strong methods, cognitive schemas
are activated directly without placing any demand on working memory
resources, which further frees up working memory (Sweller, van
Merriënboer, & Paas, 2019).

Consequently, we derive four constructs that represent aspects of
task performance that are affected by DSPK: (1) systematicity in task
approach (i.e., representation of acquired strategies), (2) accuracy in
applying cognitive if-then rules (i.e., representation of formed cognitive
rules), (3) speed in performance (i.e., representation of the strength of
those rules), and (4) reduced level of cognitive load (i.e., representation
of optimized process).

For example, in emergency medicine, an expert with knowledge and
strategies in the domain would approach an emergency case

Fig. 1. The model of problem solution generation by experts and novices.

J.Y. Lee, et al. Computers in Human Behavior 99 (2019) 268–277

269



systematically by reasoning in terms of priorities of interventions
(systematicity in task approach). As for algorithmic rule-based aspects
of the case (e.g., if the patient's oxygen level decreases, then apply
oxygenation), the expert would perform the rule without errors (accu-
racy in applying cognitive rules). Since the expert has extensively
practiced this rule, speed should be high (speed in performance). In
addition, the expert would experience low cognitive load because
knowledge from long-term memory can be applied directly (reduced
level of cognitive load).

1.2. Skill decomposition

While the four aspects of task performance are applicable to all task
environments, indicators to assess these aspects will be specific to a
particular task environment. Researchers have strongly recommended
that, to assess a certain task performance, constituent skills and their
relationships should be identified in a process of skill decomposition
(Gagne, 1968; Van Merriënboer & Kirschner, 2018). We deem that skill
decomposition allows identification of the indicators of the four con-
structs mentioned above to be precise and theoretically sound.

The domain of this study is a resuscitation procedure, called the
ABCDE method. The five letters ABCDE represent the five phases (i.e.,
Airway, Breathing, Circulation, Disabilities, Exposure) that a task per-
former goes through sequentially to stabilize an acutely ill patient. The
sequence should be rigidly followed, based on the principle “treat first
what kills first”. AbcdeSIM (Erasmus University Medical Center &
VirtualMedSchool, 2012), a CBSG for training the ABCDE method, is
employed as the task environment. We decompose the task and develop
a skill hierarchy by using Lee and Anderson's task analysis method (Lee
& Anderson, 2001) (Fig. 2). In the hierarchy, the task-goal (i.e., stabi-
lization of patient) is gradually divided into three levels: unit-task level,
functional level, and physical level. To achieve the task-goal, unit-tasks
(i.e., the five phases in the ABCDE method) are arranged accordingly.
Each unit-task comprises multiple sub-tasks at the functional level (i.e.,
diagnosis and intervention). Every functional task is linked to in-
dividual activities at the physical level (e.g., look at “VFM”, click “Talk
to nurse”). What one can empirically measure is this physical level only,

while other levels represent cognitive performance.
This hierarchy guides us in the development of the indicators of the

four constructs, by identifying different task levels. For the first con-
struct (systematicity), a systematic approach in the ABCDE principle
can be defined as a high level of adherence to the order of the five
phases at the unit-task level. The challenge of measuring this construct
is that the systematic approach is not directly observable at the physical
level. To see this, note that the knowledge-based methods deal with
non-routine aspects of a task, using the same knowledge differently
based on rules-of-thumb (Van Merriënboer, 2013). An action that is
associated with a certain ABCDE phase can also be taken during other
phases strategically. Thus, an irregular ABCDE sequence observed at the
physical level does not necessarily represent irregular performance at
other levels. Consequently, the indicator of this construct should con-
cern the hidden cognitive performance at the unit-task level, rather
than analyzing the physical level only.

For the second construct (accuracy in applying cognitive rules), we
recall that cognitive rules consist of if and then parts. In CBSGs in
general, the if part emerges as information gathering via visual selec-
tion (i.e., looking at a particular part of the screen), while the then part
corresponds to motor reaction to the task environment (e.g., mouse
clicks or keyboard input). The accuracy in visual selection and motor
reaction might reside at the functional level in the skill hierarchy. This
construct can be directly detected by observing the physical level, be-
cause the strong methods deal with routine aspects of a task, referring
to the same use of same knowledge (Van Merriënboer, 2013).

The third construct, the strength of cognitive rules, is situated in the
connection between the sub-tasks at the functional level. If this con-
nection is strong and stable, certain motor reactions at the end of a
series of cognitive rules will be performed fast. The indicator of the
strength should be the speed of this motor reaction, observed again at
the physical level.

Lastly, the construct of reduced cognitive load originates from well-
structured cognitive schemas. The entire structure of the skill hierarchy
shows how the relevant cognitive schemas in long-term memory are
developed, resulting in optimization of use of working memory. The
degree of optimization can be indicated by the level of cognitive load.

Fig. 2. Skill hierarchy of AbcdeSIM. The task-goal is divided into three levels: unit-task level, functional level, and physical level.
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1.3. Hypotheses

Four hypotheses will be tested in the current study:
H1 (systematicity in approach). Participants with high DSPK (i.e.,

experts) show higher systematicity in approach than participants with
low DSPK (i.e., novices) during performance in the AbcedSIM, de-
monstrating higher level of adherence to the ABCDE phases.

H2 (accuracy in applying cognitive rules). Experts show higher
accuracy in visual selection by allocating more visual attention to cri-
tical diagnosis areas (H2a) and in motor reactions by completing more
interventions (H2b) than novices.

H3 (speed in performance). Experts show higher speed in perfor-
mance by completing interventions faster than novices.

H4 (reduced cognitive load). Experts experience lower cognitive
load than novices.

Table 1 provides an overview of the constructs, hypotheses, and
indicators. Details of indicators are described in the following method
section.

2. Method

2.1. Participants and design

Participants (N=46) were recruited on a voluntary basis from a
medical center in the Netherlands. For the expert group, 24 residents in
their second to fifth (final) year of residency training with an average of
3.1 years of experience in emergency departments (SD=1.6) were
recruited (Md=29 years with a range from 26 to 44; 17 females). For
the novice group, 22 medical students in their second to sixth academic
year who had been taught the basics of emergency medicine but had
received no training were recruited (Md=23 years with a range from
20 to 26; 12 females). A causal-comparative design is adopted with the
level of expertise as the single factor.

2.2. Material and apparatus

2.2.1. AbcdeSIM game set-up
AbcdeSIM is a medical simulation game to train the ABCDE method

for resuscitation. The game starts with a storyline where users meet a
virtual patient in an emergency room. The users are provided with tools
for diagnosis (e.g., stethoscope, penlight) and intervention (e.g., infu-
sion fluids, medication). Human physiology (e.g., respiration, circula-
tion) of the patient is implemented in the game, giving feedback on
user's interventions. A regular adult patient scenario, hemorrhagic
shock due to gastrointestinal bleeding (GIB), was used. GIB is a scenario
where learners should follow the basic ABCDE method, with most
emphasis on the circulation phase. During the experiment, the game
was run on a personal computer (Intel Core i7 2.67 GHz CPU, 1.98 GB
RAM) and presented on a Dell 22 "LCD screen with a resolution of
1650×1080 pixels. Participants used a headset for sound effects and
interaction with the simulation was done via the mouse.

2.2.2. Eye-tracking and game-log recording
The game log data, containing user-input (e.g., tools that participant

used, actions taken), changes in the game (e.g., patient's physiological
changes), and time stamps, were saved in JSON file format (www.json.
org). Participants' eye movements were measured by an SMI RED re-
mote eye-tracker (SensoMotoric Instruments GmbH, Teltow, Germany)
with a sampling rate of 250 Hz. The SMI Experiment Center 3.5 soft-
ware (version 3.2.11, www.smivision.com) was used to implement
calibration, validation, stimulus presentation, and screen recording.
Eye movement data was gathered via SMI iView X software (version
2.7.13).

2.2.3. Cognitive load questionnaire
The NASA Task Load Index (NASA-TLX) (Hart & Staveland, 1988)

was used as a validated self-report questionnaire of cognitive load. It is
a mental workload assessment tool for human-machine interaction
domains such as aviation and aeronautics (Shamo, Dror, & Degani,
1999), healthcare (Weinger et al., 2000), and socio-technical fields
(Grigg, Garrett, & Benson, 2012; Warm, Matthews, & Finomore Jr,
2017). The NASA-TLX provides an overall workload score with six
subscales: mental demand, physical demand, temporal demand, per-
formance, effort, and frustration. Certain wordings of the questionnaire
were adapted to fit the game environment.

2.3. Procedure

Individual sessions were carried out in an eye-tracking laboratory at
Maastricht University. First, participants were asked to sign an in-
formed consent form and fill out a questionnaire about demographics
and experience in emergency medicine. Then, a pre-training was pro-
vided to ensure that the level of game-specific knowledge (i.e., how to
operate the game) was comparable between the expert and novice
groups. After pre-training, additional time for participants to play
around with a test scenario was given, to allow them to familiarize
themselves with the game. When participants expressed their readiness,
the GIB scenario was presented. The eye-tracking system was calibrated
with a 9-point procedure, and validation followed directly. Participants
had to stabilize the virtual patient in a maximum of 15min, shown with
a timer visible on screen during the entire session. As time pressure is
an intrinsic component of cognitive load in medical emergencies, we
controlled for the time pressure by measuring temporal demand that is
one of the six subscales of NASA-TLX. After the scenario, participants
filled out the NASA-TLX. The average time to complete a session was
about 50min.

2.4. Data analysis

For testing H1, H2b, and H3, the data from game-logs was used,
while eye-tracking data was employed for testing H2a and H4. Parsing
of the game-logs was performed using Python. Eye-tracking data of
three experts and two novices were excluded due to low tracking ratio

Table 1
Constructs, hypotheses, and indicators.

Construct Hypothesis Indicators

Systematicity in approach (H1) Experts adhere to the five ABCDE phases more rigidly than
novices

• Hidden Markov model score that measures to what extent the order of
the five phases was kept

Accuracy in visual selection (H2a) Experts allocate more visual attention to critical diagnosis areas
(CDA) than novices

• Proportion of dwell time in CDA

• Proportion of fixation count in CDA

• Proportion of fixation duration in CDA
Accuracy in motor reaction (H2b) Experts complete functional tasks more accurately than novices • Intervention completion score
Speed in performance (H3) Experts complete functional tasks faster • Time on intervention tasks
Cognitive load (H4) Experts' richer and more automated schemas require less

working memory capacity
• Cognitive load questionnaire

• Average fixation duration

• Fixation frequency

• Transition rate
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below 85%. The average tracking ratio after the exclusion was 94.9%.
Outliers for each measure were identified by Tukey boxplots and ex-
cluded. Statistical analysis for each construct was performed in R ver-
sion 3.5.1 (R Development Core Team, 2010).

2.4.1. Systematicity in approach (H1)
We consider Hidden Markov Models (HMM) a suitable method to

develop a score for measuring systematicity in approach, since they can
be used to model hidden state transitions (i.e., phase arrangement at the
unit-task level) based on a sequence of emission states (i.e., arrangement
of motor reactions observed at the physical level) (Baum, Petrie, Soules,
& Weiss, 1970). The probability structure resulting from fitting the
HMM to participant data contains information about the level of the
adherence to the ABCDE sequence in hidden states. We used this
probability structure to compute our score for systematicity in ap-
proach.

To do this, first, we classified the functional tasks of the GIB sce-
nario into each of the ABCDE phases. Then, user-input data relevant to
these functional tasks was extracted from the raw data in the game log
file. The extracted data comprises the emission state sequences of
ABCDE for each participant. A HMM is fitted to the sequences, resulting
in a probability structure with two matrices: a state transition prob-
ability matrix and an emission probability matrix. From these matrices,
we calculated the HMM score by averaging the sum of the diagonal and
upper co-diagonal in the state transition matrix and the diagonal sum of
emission probability matrix (see Appendix for a complete explanation
of the HMM score computation).

2.4.2. Accuracy in visual selection (H2a) and motor reaction (H2b)
Research in visual science reports that, compared to novices, experts

allocate more attention to task-relevant than task-redundant areas
(Gibson, 2014; Haider & Frensch, 1999; Reingold & Sheridan, 2011, p.
528). However, in a real-life simulation such as the AbcdeSIM, areas
with information cannot simply be dichotomized as relevant versus
redundant. Information and game functions are compactly organized
within the limited area of the screen, and the level of relevance gra-
dually differs. Thus, we categorized the reason the screen into four
groups in consultation with a medical professional: critical diagnosis
area with critically relevant information for diagnosis (CDA), non-cri-
tical diagnosis area with information relevant for diagnosis to some
extent but not critical (NDA), intervention area with functions for in-
tervention (IVA), and neutral area with additional functions such as
connecting different information (NA) (Fig. 3). We hypothesized that
experts allocate more attentional resources to CDA than novices, thus
formulating H2a.

All area groups mentioned above comprised areas of interest (AOIs)
forming the basis of the eye-tracking data analysis (Holmqvist et al.,
2011, Chapter 6). Since the appearance and layout of these areas dy-
namically change according to users’ input and activated game func-
tion, we adapted the AOIs accordingly. The raw eye-tracking data was
analyzed by SMI BeGaze 3.6 software. Fixations were identified when
the gaze velocity was less than 40 visual degrees per second, with a
minimum duration of 50ms.

Three eye-movement measures are employed: dwell time (gaze
visiting time for an AOI from entry to exit), fixation count (number of
fixations on an AOI), and fixation duration (time duration when the eye
is relatively still at a position). Each measure is expected to capture
different aspects of attentional resources. Dwell time indicates the time
that a participant spent fixating on an AOI, where constituent metrics
are not decomposed (Orquin & Holmqvist, 2018). Fixation count in-
dicates frequency of reference to the stimulus (Orquin & Loose, 2013),
while longer duration of fixations can mean a deeper cognitive pro-
cessing (Holmqvist et al., 2011, Chapter 11). To make the measures
comparable across participants, relative values for each AOI group were
calculated: the dwell time for each AOI group was divided by total play
time, while the fixation count was divided by total number of fixations
during the entire scenario. The mean fixation duration for each AOI
group was calculated.

Visual selection and its associated motor reaction cannot be mat-
ched one-to-one, due to the dynamic characteristic of CBSGs. Thus, the
accuracy in motor reaction was operationalized independently from the
visual selection. We hypothesized experts complete more intervention
tasks than novices, formulating H2b. The intervention completion score
was developed as follows. In consultation with a medical professional,
we selected five intervention tasks that are theoretically essential in the
GIB scenario: oxygen mask application, fluid administration, blood ad-
ministration, blood order, and calling gastroenterologists. We then calcu-
lated the proportion of the intervention completed. This was done by
extracting the corresponding data from the game log files.

2.4.3. Speed in performance (H3)
The relative time to complete the five intervention tasks from H2b

was used as the speed measure. Clicking the game start button was
taken as the start point, with clicking the button for applying one of the
five interventions as the end point for that invention. We assume that
the speed of intervention includes the speed of diagnosis as they are
closely connected and performed simultaneously in emergency medi-
cine. To make the time on each task comparable, z-scores were used.
First, we checked whether the time-on-task per task was normally dis-
tributed. We then transformed each time-on-task into a z-score per task
for each participant.

2.4.4. Cognitive load (H4)
In addition to using the cognitive load questionnaire (i.e., NASA-

TLX) as a subjective rating, we used eye-tracking measurements as an
objective indicator of cognitive load. Several studies have shown that
high cognitive load is related with long fixation durations (Korbach,
Brünken, & Park, 2016; Park, Knörzer, Plass, & Brünken, 2015) and
high fixation frequency (Van Orden, Limbert, Makeig, & Jung, 2001;
Van Orden, Nugent, La Fleur, & Moncho, 1998; Zelinsky, Rao, Hayhoe,
& Ballard, 1997). We also included transition rate (i.e., the movement
from one AOI to another per second) that has been used in several
studies of working memory capacity (Holmqvist et al., 2011, Chapter
12). As cognitive load represents the level of optimization of working
memory, we assume that a robust transition rate might be interpreted
as an active cognitive process with an optimal use of working memory

Fig. 3. Areas of interest (AOI) definition: critical diagnosis area (CDA), non-critical diagnosis area (NDA), intervention area (IVA), and neutral area (NA).
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(i.e., a low level of cognitive load). Average fixation duration and
fixation frequency were calculated over the scenario. Transition was
counted using all individual AOIs from the four AOI groups afore-
mentioned. Then the per-second transition rate was calculated.

3. Results

All measures for each construct were compared between experts and
novices by t-tests for independent samples. When the data is not nor-
mally distributed, Mann-Whitney U test was used instead. MANOVA
was used for comparing multivariate variables. Table 2 provides an
overview of the outcomes of the variables related to all constructs ex-
cept visual selectivity that is specified separately in Table 3.

3.1. Systematicity in approach

Fig. 4 shows the distribution and the boxplot of HMM scores. The
HMM score was significantly different between the two groups with a
large effect size (t(32)=−3.49, p= .001; d=−1.16), indicating that
experts adhered better to the ABCDE sequence than novices. There was
no significant difference between groups in the length of the ABCDE
sequences.

3.2. Accuracy in visual selection and motor reaction

Table 3 demonstrates an overview of outcomes of visual selectivity
measures for each AOI category. A MANOVA was conducted for all
three relative measures of visual selectivity (i.e., dwell time, fixation
count, and fixation duration) for CDA. The MANOVA revealed a

significant difference between experts and novices (F(3,37)= 4.67,
p= .007). Further, separate t-tests on the all three variables showed
significant difference: experts showed higher proportion of dwell time
to total play time with a large effect size (t(38)=−2.62, p= .012;
d=−0.82), higher ratio of fixation count to total fixation counts with
a medium effect size (U=123, p= .023, r=0.35), and longer fixation
duration with a large effect size (t(38)=−2.15, p= .038; d=−0.67)
for CDA. There was no significant difference in other AOI groups, ex-
cept for the experts’ lower proportion of fixation count in IVA (t
(38)= 2.07, p= .045; d=0.65). The intervention completion score
was significantly higher, with a medium effect size, for experts than for
novices (U= 167.5, p= .027; r= 0.33).

3.3. Speed in performance

Experts showed faster unit-task reaction time with a large effect size
(t(40)= 3.77, p= .001; d=1.14). There was no significant difference
in the total time on entire scenario performance (U=348, p= .067;
r=0.27).

3.4. Cognitive load

A MANOVA was conducted for all four measures of cognitive load:
NASA-TLX score, average fixation duration, fixation frequency, and
transition rate. The MANOVA revealed a significant difference between
experts and novices (F(4,36)= 2.68, p= .047) in cognitive load.
However, separate t-tests showed diverged results. The NASA-TLX
scores was lower for experts than novices, with a large effect size (t
(40)= 2.33, p= .025; d=0.70). There was no significant difference

Table 2
Outcomes for systematicity in approach, accuracy in motor reaction, speed in performance, and cognitive load.

Construct Measure Expert Novice t (U) df p d (r) 95%CI

M SD M SD

Systematicity in approach (H1) HMM score 0.79 0.06 0.71 0.08 −3.49 32 .001b −1.16 -.13,-.03
Accuracy in motor reaction (H2b) Intervention completion scorea (%) 83.3 19.3 69.1 22.9 167.5 .027b 0.33
Speed in performance (H3) Time on intervention tasks (z-score) 0.09 0.46 0.65 0.53 3.77 40 .001b 1.14 .26,.87

Total time on scenarioa (s) 619 172 714 180 348 .067 0.27
Cognitive load (H4) NASA-TLX score 42.88 12.66 52.94 16.18 2.33 40 .025b 0.70 1.35,18.77

Average fixation duration (ms) 229.6 45.0 223.0 55.5 −0.41 36 .682 −0.13 −38.97,25.80
Fixation frequency (s−1) 2.90 0.40 2.87 0.29 −0.30 36 .763 −0.10 -.26,.19
Transition rate (s−1) 0.49 0.10 0.39 0.11 −3.09 39 .004b −0.97 -.17,-.04

Note. aDue to non-normal distribution, Mann-Whitney U test was used. U-value and r were calculated instead of t-value and Cohen's d.
bp < .05.

Table 3
Visual selectivity for different AOI groups.

AOI group Measure Expert Novice t (U) df p d (r) 95%CI

M SD M SD

CDA Dwell time (%) 0.32 0.10 0.24 0.09 −2.62 38 .012b −0.82 -.14, −.02
Fixation counta (%) 0.39 0.11 0.31 0.08 123 .023b

Fixation duration (ms) 420.0 148.7 328.6 123.2 −2.15 38 .038b −0.67 −177.6, −5.35
NDA Dwell time 0.09 0.03 0.07 0.03 −1.91 38 .063 −0.60 -.04, .00

Fixation count 0.13 0.04 0.11 0.04 −1.84 37 .073 −0.58 -.05, −.00
Fixation duration 174.3 73.0 133.0 69.1 −1.86 39 .070 −0.58 −86.19, 3.61

IVA Dwell time 0.19 0.06 0.24 0.09 1.72 32 .095 0.55 -.01, .09
Fixation count 0.27 0.08 0.31 0.07 2.07 38 .045b 0.65 .00, .10
Fixation duration 269.4 90.7 225.6 80.7 −1.64 39 .110 −0.51 −98.99, 10.39

NA Dwell time 0.10 0.01 0.09 0.04 −0.97 25 .339 −0.30 -.03, .01
Fixation count 0.12 0.03 0.12 0.03 −0.21 38 .830 −0.07 .02, .02
Fixation duration 222.9 60.6 224.7 71.5 0.09 37 .932 0.03 −40.24, 43.83

Note. Critical diagnosis area (CDA), non-critical diagnosis area (NDA), intervention area (IVA), and neutral area (NA). Each measure was calculated as relative values:
dwell time divided by total play time, fixation count divided by total fixation counts, and fixation duration divided by fixation duration averaged over the scenario.

a Due to low normality, Mann-Whitney U test was used. U-value and r were calculated instead of t-value and Cohen's d.
b p < .05.
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between experts and novices in average fixation duration (t
(36)=−0.41, p= .682) and fixation count ratio (t(36)=−0.30,
p= .763). Experts showed higher transition rate than novices, with a
large effect size (t(39)=−3.09, p= .004; d=−0.97). Convergence
between the NASA-TLX score and each eye-tracking measurement was
examined via the Pearson correlation coefficient (Table 4). Transition
rate displayed a negative correlation with the NASA-TLX scores (r
(39)=−0.39, p= .012) (Fig. 5), while other eye-tracking measures
were correlated between themselves.

4. Discussion

This study aimed to empirically determine whether the level of
domain-specific prior knowledge (DSPK) affects performance in a
computer-based simulation game (CBSG). In the introduction, we ar-
gued that, to assess this performance, certain constructs should be de-
veloped by taking theories of complex-skill acquisition as a starting
point. We suggest four theoretical aspects of problem-solving perfor-
mance to represent the level of DSPK, and defined indicators of these
aspects based on a skill hierarchy, which resulted in four hypotheses. To
confirm these hypotheses, game-logs and eye-tracking data were col-
lected and analyzed, using the methods corresponding to each aspect.

Hypothesis 1 stated that participants with high DSPK (i.e., experts)
show higher systematicity in their approach during performance in a
CBSG than participants with low DSPK (i.e., novices). The results of this
study support this hypothesis. Systematicity for the AbcdeSIM task
environment was defined as a high level of adherence of the ABCDE
sequence at unit-task level, while flexibly adjusting task performance at
physical level. According to the result from the HMM, the experts
showed a higher level of adherence than novices to the ABCDE se-
quence at a hidden level. Additionally, the length of the ABCDE se-
quences at the physical level did not show significant difference be-
tween experts and novices. This implies that the important difference
between experts and novices resides in the inner structure of the task
performance, rather than the amount of physical action.

Hypothesis 2 concerns the accuracy in applying cognitive rules,
stating that experts show the availability of more accurate cognitive
rules. We decomposed the cognitive rules into two parts specific to
CBSG environments: visual input of information from the environment
(i.e., if part) and motor reactions to the environment (i.e., then part).
Therefore, the hypothesis consisted of two sub-hypotheses: Experts
show higher accuracy in both visual selection (H2a) and motor reaction
(H2b) than novices.

H2a was confirmed, showing that experts have higher accuracy in
visual selection of areas with critical information. This construct was
operationalized as the ratio of allocation of visual attentional resources
to critical diagnosis areas (CDA). All three eye-tracking metrics that
were used (i.e. dwell time, fixation count, and fixation duration) in-
dicated a higher allocation to CDA for experts. We observed no sig-
nificant difference in other AOI groups (i.e., NDA, IVA, and NA), except
the fixation count in IVA. Interestingly, for the areas with intervention
functions (IVA), experts showed lower fixation counts compared to
novices. Regarding that high number of fixation counts indicate fre-
quent reference to the stimulus (Orquin & Loose, 2013), this result
suggests that novices search more frequently for what to execute (i.e.,
intervention) in the absence of an accurate diagnosis. This also can be
interpreted as novices using weak methods such as general search (Gick,
1986) and working backward (Larkin, McDermott, Simon, & Simon,
1980). As a result of critical information collected via effective

Fig. 4. Results of HMM score. The histogram on the left shows the distribution of HMM scores of experts (dark bars) and novices (light bars). The boxplot on the right
depicts medians and quartiles of each group.

Table 4
Correlation between cognitive load measures.

Variable 1 2 3

1. NASA-TLX
2. Average fixation duration -.14

[-.43, .18]
3. Fixation frequency -.15 .39a

[-.44, .17] [.09, .62]
4. Transition rate -.39a .34a .64b

[-.62, −.09] [.03, .58] [.41, .79]

Note. Values in square bracket indicate the 95% confidence interval for each
correlation.

a p < .05.
b p < .01.

Fig. 5. Scatter plot of NASA-TLX scores and transition rate.
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information gathering strategies, experts reacted to the environment
more accurately. They achieved higher intervention scores, which
supports H2b. Thus, Hypothesis 2 was largely confirmed: Compared to
novices, experts allocate more visual attentional resources to critical
information, followed by more appropriate motor reactions.

With regard to H3 which concerns speed in performance, the results
confirmed H3 by demonstrating higher speed in performing specific
unit-tasks that are most essential for the designated scenario. On the
other hand, one might note as well that the total play time on the entire
scenario showed no significant difference between experts and novices.
Although experts perform tasks faster than novices in general, we as-
sume that the time on the entire task is not an applicable indicator of
expertise in certain tasks. In this study, experts seem to complete the
essential interventions faster, then repeatedly perform reassessment (i.e.,
monitoring the effect of applying the ABCDE procedure and controlling
the process), resulting in a similar length of overall performance time
between experts and novices. The reassessment is one of the essential
parts of the ABCDE method, trained throughout the traineeship of
emergency medicine, which is often overlooked by novices. We suggest
that the use of time on entire task as an indicator of expertise should be
considered carefully through analyzing given tasks.

Lastly, Hypothesis 4 pertained to the lower level of cognitive load
for experts compared to novices. This was supported in that experts
reported lower cognitive load in a subjective rating scale (NASA-TLX),
which was correlated with high transition rate. While subjective rating
scales are a well validated measure of cognitive load, the interpretation
of transition rates has been inconsistent in the literature. A robust
transition rate can be related with optimal use of working memory
(Epelboim & Suppes, 2001; Miall & Tchalenko, 2001) or better in-
tegration between different information sources (Bartels & Marshall,
2006; Johnson & Mayer, 2012; Schmidt-Weigand, Kohnert, & Glowalla,
2010), which is on the same line with our interpretation. On the other
hand, a high transition rate could also be connected to difficulties in
integrating information sources (Holsanova, Holmberg, & Holmqvist,
2009), inefficient visual problem-solving strategies (Van Meeuwen
et al., 2014), or extraneous cognitive load caused by seductive details in
multimedia learning (Korbach, Brünken, & Park, 2017).

We presume that these different interpretations stem from differ-
ences in characteristics of visual stimuli which are highly task-depen-
dent. When a task presents static stimuli with fixed information (e.g.,
static texts or figures), shifting eye-gazes between AOIs might indicate a
stagnation within the same information. In this case, AOIs with in-
formation that has already been processed become irrelevant areas that
does not require revisits (Van Meeuwen et al., 2014). On the other
hand, when a task provides dynamically changing pieces of informa-
tion, shifts between AOIs signifies rather a different kind of process, a
vigorous progress in gathering new information. Especially in medical
simulations, monitoring patients’ physiological changes and reacting
upon them constantly (i.e., reassessment) is a major part in problem-
solving, which can be facilitated by optimal use of working memory.
Our result accords with the results of a previous study in ultrasound
simulation (Aldekhyl, Cavalcanti, & Naismith, 2018), which also used a
medical simulation task. Furthermore, this dynamic aspect of medical
simulation tasks seems to reduce the sensitivity of fixation duration and
fixation count during the overall task performance in measuring cog-
nitive load, due to the fluctuation of these measures. Further research is
needed on using eye-tracking to measure cognitive load in different task
environments.

The results of this study have several implications for indicator
development in CBSGs. First of all, multiple aspects of performance
should be considered as a whole within an integrated theoretical fra-
mework when determining constructs to assess performance.
Researchers in education have argued that a well-designed performance
assessment should combine all aspects of performance in a global
manner, rather than using a simple checklist (Cunnington, Neville, &
Norman, 1996; Dankbaar et al., 2014). We suggest that the same

principle should be applied to the performance assessment in CBSGs.
This is the most important reason to use complex-skill acquisition
theories as a driving force, because it facilitates considering different
aspects of tasks (e.g., non-routine and routine) in an integrated theo-
retical framework. Secondly, since constructs are abstract and con-
ceptualized broadly, they should be operationalized to concrete in-
dicators that are fully designated to a specific task. This should be done
through a task analysis in consultation with domain experts, also driven
by educational theories. For instance, systematicity in approach is one
of the broad concepts we explored in this study, which was problematic
to operationalize. Thus, we robustly applied theories in complex-skill
acquisition and the relevant domain (i.e., the ABCDE method), to define
the indicator of systematicity. Thirdly, this study opens the potential of
combining eye-tracking data with game-log to quantify performance in
CBSGs. Since most of CBSGs depend on visual stimuli, eye-tracking can
be an important source to obtain a complete account of certain aspects
of performance. In this study, we have found two indicators from eye-
tracking (i.e., visual selection and cognitive load) that can possibly be
used in CBSGs. Future research is needed to apply these findings to
assessment and the development of support in CBSGs (e.g., student
modelling to adaptively support individuals).

The insights from this study can help educators to assess students'
performance in CBSGs and provide scaffolding to students with a low
level of DSPK. For instance, they might focus on the different aspects in
students' performance, then adjust the level of scaffolding to enhance
each aspect. When the systematicity in approach is not high enough,
instructors might stimulate the student to construct domain-specific
knowledge and strategies (e.g., advise them to consult learning re-
sources with relevant information). When a student concentrates on
reactions only without sufficient information gathering, they can guide
the student to pay more attention to information gathering as a sound
foundation for taking actions in the game. Additionally, when the stu-
dent's cognitive load is high, extra support could be given to manage
the load. This can be done either by reducing the cognitive load itself
(e.g., providing pauses during the game or presenting less complex
scenarios), or facilitate self-regulation of students to manage their own
cognitive load (Sweller et al., 2019).

Several limitations of this study need to be mentioned. Firstly, our
findings might not be generalizable to other CBSG environments since
the indicators were specialized for a specific task. Future research
should follow to examine how our methods can be applied in other
CBSG environments. Secondly, the participants in the expert group
were composed of residents, rather than medical doctors. In this study,
we selected medical students as novices and residents as experts, in
order to form comparable groups. Although it led to a better controlled
experimental setup, including a wider range of expertise levels could
have yielded more informative results. Thirdly, although one could well
argue that eye-hand coordination in performing cognitive rules is an-
other aspect of performance, it was not explored in this study. We ra-
ther analyzed visual selection and motor reaction separately based on
our assumption that those two cannot be matched one-to-one in a dy-
namic environment of a CBSG. However, investigating eye-hand co-
ordination as an aspect of performance via non-linear analysis should
be an intriguing topic for future study.

In conclusion, this study has demonstrated the development of
performance assessment that can be used in a highly dynamic game
environment. This was accomplished by starting from theories of
complex-skill acquisition, identifying constructs for assessment and
valid indicators. We believe empirical investigation for reliable in-
dicators in CBSGs can be seen as a problem-solving process itself. As in
problem-solving by experts, the research should be driven by a certain
knowledge structure (e.g., educational theories) to avoid an inefficient
process and suboptimal solutions. Educational theories and empirical
experiment are in a reciprocal relationship, where one cannot stand
alone without the other.
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Appendix. The HMM score computation

We start computing the HMM score by first extracting the ABCDE
phases of the subsequent observed actions from the log file. Next, a
HMM is fitted to this sequence using an EM algorithm, as provided by
the R package hmm.discnp (Rabiner, 1989; Turner, 2018). The HMM is
set to have 5 inner states (actual phases) and 5 emission values (ob-
served actions). Since fitting an HMM using a single observed sequence
is strongly dependent on the starting condition, we initialize the HMM
with a transition matrix with most probability mass concentrated on the
diagonal and upper co-diagonal, and an emission probability matrix
with most probability mass concentrated on the diagonal.

The resulting probability structure after fitting to the observed se-
quence contains information on the adherence to the ABCDE order. In
the transition probability matrix, the total probability on “forbidden”
transitions (e.g., jump from A to E) show how much is deviated from the
order. The probability on “forbidden” emissions (e.g., an action for B in
phase D) in the emission probability matrix shows how often actions are
taken in a wrong phase. From this obtained probability structure, we
compute a score: the total probability on legal transitions plus the total
probability on legal emissions, divided by 2. This score ranges between
0 and 1.

Consequently, the HMM score increases when a performer keeps to
the ABCDE phases in order, while the score decreases when the per-
formance deviates from the order. For instance, in case of an ideal
performer, the hidden sequence follows the ABCDE phases in a com-
plete order (e.g., A-A-A-A-A-B-B-B-C-C-C-C-D-D-D-D-D-E-E-E-E-E). The
HMM score for this example is 1.0. In the case of a less ideal performer,
the sequence may deviate from the complete order (e.g., A-A-A-B-E-C-
C-E-D-B-C-A-C-B-D-C-E-C-D-E-D-A-E-E), signifying that this performer
jumped around the phases using less ideal rules. The HMM score for this
example is 0.792.
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