
Accepted Manuscript

Exploring children’s learning experience in constructionism-based coding activities
through design-based research

Sofia Papavlasopoulou, Michail N. Giannakos, Letizia Jaccheri

PII: S0747-5632(19)30018-4

DOI: 10.1016/j.chb.2019.01.008

Reference: CHB 5875

To appear in: Computers in Human Behavior

Received Date: 02 May 2018

Accepted Date: 13 January 2019

Please cite this article as: Sofia Papavlasopoulou, Michail N. Giannakos, Letizia Jaccheri, Exploring
children’s learning experience in constructionism-based coding activities through design-based
research, (2019), doi: 10.1016/j.chb.2019.01.008Computers in Human Behavior

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Exploring children’s learning experience in

constructionism-based coding activities through design-

based research

Sofia Papavlasopoulou* Michail N. Giannakos and Letizia Jaccheri

{spapav, michailg, letizia.jaccheri }@ntnu.no

Department of Computer Science, Norwegian University of Science and Technology

(NTNU), Trondheim, Norway

ABSTRACT

Over the last few years, the integration of coding activities for children in K-12 education has
flourished. In addition, novel technological tools and programming environments have
offered new opportunities and increased the need to design effective learning experiences.
This paper presents a design-based research (DBR) approach conducted over two years,
based on constructionism-based coding experiences for children, following the four stages of
DBR. Three iterations (cycles) were designed and examined in total, with participants aged
8–17 years old, using mixed methods. Over the two years, we conducted workshops in which
students used a block-based programming environment (i.e., Scratch) and collaboratively
created a socially meaningful artifact (i.e., a game). The study identifies nine design
principles that can help us to achieve higher engagement during the coding activity.
Moreover, positive attitudes and high motivation were found to result in the better
management of cognitive load. Our contribution lies in the theoretical grounding of the
results in constructionism and the emerging design principles. In this way, we provide both
theoretical and practical evidence of the value of constructionism-based coding activities.

Keywords: constructionism, coding, computational thinking, engagement, children, design-
based research

*Corresponding author, e-mail: spapav@ntnu.no; Address: Sem Sælands vei 7-9, NO-7491 Trondheim

ACCEPTED MANUSCRIPT

Exploring children’s learning experience in constructionism-
based coding activities through design-based research

Abstract
Over the last few years, the integration of coding activities for children in K-12 education has
flourished. In addition, novel technological tools and programming environments have offered
new opportunities and increased the need to design effective learning experiences. This paper
presents a design-based research (DBR) approach conducted over two years, based on
constructionism-based coding experiences for children, following the four stages of DBR.
Three iterations (cycles) were designed and examined in total, with participants aged 8–17 years
old, using mixed methods. Over the two years, we conducted workshops in which students used
a block-based programming environment (i.e., Scratch) and collaboratively created a socially
meaningful artifact (i.e., a game). The study identifies nine design principles that can help us to
achieve higher engagement during the coding activity. Moreover, positive attitudes and high
motivation were found to result in the better management of cognitive load. Our contribution
lies in the theoretical grounding of the results in constructionism and the emerging design
principles. In this way, we provide both theoretical and practical evidence of the value of
constructionism-based coding activities.

Keywords: constructionism, coding, computational thinking, engagement, children, design-
based research

ACCEPTED MANUSCRIPT

1. Introduction

There is growing evidence supporting the introduction of computer science (CS) and
computational thinking (CT) into K-12 education (Hubwieser, Armoni, Giannakos, &
Mittermeir, 2014); (Horizon, 2015). According to Wing (2006 p.33) “CT represents a
universally applicable attitude and skill set everyone, not just computer scientists, would be
eager to learn and use”. CT involves problem solving, design of systems and understanding
human behavior by employing central concepts of CS (Wing, 2006). Organizations like the
Computer Science Teachers Association (CSTA), Informatics Europe, the Cyber Innovation
Center, and the National Math and Science Initiative have developed standards applied to
coding education (Hubwieser et al., 2015). Increasing interest in learning coding in pedagogical
contexts has also been driven and disseminated by organizations like Code.org and
Codeacademy, which argue for the need to create skills that support future career opportunities
while highlighting the educational advantages that coding offers. CT and coding in education
have become integral parts of the school curricula in many countries. For example, the United
Kingdom has integrated computer programming as a mandatory course starting from primary
school (Jones, 2013), while Denmark promotes digital literacy, focusing on the knowledge
gained from building technologies (Tuhkala, Wagner, Nielsen, Iversen, & Kärkkäinen, 2018).

Pioneered by Seymour Papert (Papert, 1980), computer programming in education has
received a lot of interest from educators and researchers seeking alternative ways of teaching
complex problem-solving skills and providing dynamic learning experiences (Kalelioğlu, 2015;
Lye & Koh, 2014). Nowadays, there are a variety of technological tools and child-friendly
programming environments (Papavlasopoulou, Giannakos, & Jaccheri, 2017b). Many
introductory experiences for K-12 have been designed around the use of block-based
programming environments, such as Scratch, Alice, Blocky, and App Inventor (Zhang, Liu, de
Pablos, & She, 2014); (Fields, Vasudevan, & Kafai, 2015) (Wagner, Gray, Corley, & Wolber,
2013). These environments do not require any special expertise but do require careful thinking
to tell the computer what to do step by step. Papert's (1980) constructionism argues that through
coding, children have an “object-to-think-with”; in the process, they learn about their own
thinking (Guzdial, 2004). Constructionism-based learning activities have been widely studied
in both formal and informal education (Papavlasopoulou, Giannakos, & Jaccheri, 2017a).
Integrating coding into pedagogical contexts in an intuitive and engaging experience enhances
children’s logic, critical thinking, problem-solving, math, and higher-order skills and can
change their attitudes towards computing (Sáez-López, Román-González, & Vázquez-Cano,
2016); (Kafai & Burke, 2015). There are strong arguments for children to learn how to code,
supported by the constructionist approach (Kafai & Burke, 2015) (Gallup, 2015). Children need
to acquire 21st-century skills, empowering themselves with the required competences related
to the digitalization of our society. Learning how to code has become equally valuable as
learning math, reading, and writing (Horizon, October 5, 2015).

Several studies have focused on introducing computational literacy to children in
different ways (Papavlasopoulou, Giannakos, et al., 2017a). Various programmable and
interactive objects exist showing the importance of involving children from a young age in

ACCEPTED MANUSCRIPT

learning coding (Fessakis, Gouli, & Mavroudi, 2013). In addition, environments like LiliPad
Arduino (Buechley, Eisenberg, Catchen, & Crockett, 2008) have been developed to attract more
girls to CS and CT. The combination of physical fabrication and coding has proven valuable
for increasing engagement in programming concepts and practices (Kafai & Vasudevan, 2015),
especially when it incorporates social and creative dimensions of learning (Giannakos &
Jaccheri, 2018). In a study with sixth-grade students in Scotland, Robertson and Howells
(Robertson & Howells, 2008) found that making a game is an authentic learning activity
offering motivation, enthusiasm, and engagement with learning. Therefore, to overcome the
various barriers with learning coding (e.g., difficulty, boredom, confusion, etc.), we need
appropriately designed and engaging coding activities for children.

Constructionism theorizes that learner is seen as an active constructor of knowledge rather
than being a passive recipient of information (Papert, 1993), with making and coding being the
areas that constructionism theory has been widely applied (Kafai & Burke, 2015). Almost three
decades after Papert’s original ideas on constructionism, the idea remains relevant and has
become ubiquitous in how learning theorists and educators aim to empirically ground and
revamp constructionism-based teaching (Kao & Harrell, 2017). Such grounding would result
in methodological advancements and a comprehensive understanding of children’s experience
in constructionism-based making activities. In this paper, we present a design-based research
(DBR) effort comprising three cycles (iterations) conducted over two years. DBR combines
empirical educational research with theory-driven design in learning contexts to understand
how, when, and why educational innovations work in real settings (Collins, 1992). The main
characteristic of DBR is the systematic and iterative cycle of design, exploration, and redesign
(Collective, 2003). Many studies have used DBR in educational contexts (Grover, Pea, &
Cooper, 2015; Parmaxi & Zaphiris, 2015) (Sáez-López et al., 2016); (Parmaxi, Zaphiris, &
Ioannou, 2016) (Schmitz, Klemke, Walhout, & Specht, 2015), emphasizing the need for well-
designed studies characterized by objectivity, reliability, and validity and providing critical
evidence to establish outcomes beneficial for others.

This research aims to contribute to the theoretical notions of constructionism with regard
to the effects of coding activities on children’s learning experience. We designed and evaluated
coding workshops for children (aged 8–17 years old). Both qualitative and quantitative methods
were employed to evaluate our workshops, including interviews, surveys, observations, and
physiological data (eye tracking). The coding activities were designed to impact children’s
learning outcomes, cognition, and social and emotional development. Thus, the overreaching
goal of the study was framed with the following research questions:

 What elements of engagement exist in constructionism-based coding activities?
 What principles can guide us to facilitate constructionism-based learning

environments that support children’s learning experience?

The rest of the paper is structured as follows: the next section provides an overview of
related work on the theoretical framework of constructionism and previous research on similar
coding activities. The third section describes the methodology used, the designed coding
activities in the three cycles, and the data collection and analysis. The fourth section presents
the results based on the theory of constructionism and the main design principles that guided

ACCEPTED MANUSCRIPT

each of the iterations. In the fifth section, we discuss and highlight the design implications,
derived from this intervention research. We conclude with the limitations of our study and
avenues for future work.

2. Related work

2.1. Theoretical framework: Constructionism
Our theoretical grounding is constructionism, which was developed by Papert (Papert,

1997), (Papert, 1980). Constructionism assumes that knowledge is better gained when children
are deeply and actively involved in building their own meaningful constructions. Based on
Piaget’s (1954) theory, which focuses on how mental constructions are formed in someone’s
mind, Papert (Papert, 1980) focuses on explaining how construction is a valuable way to create
mental constructions. The learner discovers their own knowledge, rather than being a passive
receiver. Papert’s constructionism sees the effectiveness of learning as achieved through
making, where learners experience the active construction of visible-to-the-world artifacts.
Computational culture supports the creation of building those artifacts by using digital media
and computer-based technologies (Kafai & Resnick, 2012). The vital aspect of constructionism
is the requirement of “objects-to-think-with” – “objects in which there is an intersection of
cultural presence, embedded knowledge and the possibility for personal identification” (Papert,
1980), p. 11). The role of this object in Papert’s Mindstorms is the “turtle”, a digital animal
within the Logo programming environment that can be controlled and moved by giving the
appropriate commands. The “turtle” acts as a means to think, supporting and promoting a new
way of thinking and learning. In Papert’s (1980, p. 76) words: “the child’s encounter with this
theorem is different in several ways from memorizing its Euclidean counterpart ‘the sum of the
internal angles of a triangle is 180 degrees.’ First (at least in the context of Logo computers),
the Total Turtle Trip Theorem is more powerful: The child can actually use it. Second, it is
more general: It applies to squares and curves as well as to triangles. Third, it is more
intelligible: Its proof is easy to grasp. And it is more personal: You can ‘walk it through,’ and
it is a model for the general habit of relating mathematics to personal knowledge.”

Constructionism is not only valuable for the individual in building knowledge through
experience and engagement in creating artifacts but also for enhancing the social setting (Kafai,
2006). Like in the well-known samba school example, a social setting strengthens the sense of
belonging to a group with a common purpose, where learning becomes important for all and
connections are made under the learning culture (Papert, 1980). In the same line, (Kafai &
Burke, 2015) mention three dimensions of constructionism involved in the process of making
games for learning: personal, social, and cultural. More specifically, “personal” refers to the
learning and the attitudes related to learning, “social” refers to the collaborative aspects in
creating a shared artifact, and “cultural” relates to how gender and race could influence the
activity and the possible cultural aspects that could influence participation.

In the process of making computer games, children plan and manage this complex
development, placing themselves in control of their own leaning and thinking (Kafai & Kafai,
1995). Robertson and Howells (Robertson & Howells, 2008) argue that game design is a

ACCEPTED MANUSCRIPT

powerful learning activity that provides motivation, engagement, and enthusiasm.
Constructionism’s basic idea is that the most effective leaning experiences are those that include
active creation, socially meaningful artifacts, interaction with others, and the use of elements
that support one’s own learning and thinking. Game-making activities not only involve learning
how to use technological tools but also using these tools to discover new ways of thinking. In
such activities, children are introduced to a culture that permits them to become producers of
their own artifacts while building their knowledge in a social context.

2.2. Qualities of constructionism-based coding activities for children
Computer game design and development have been increasingly introduced in both

formal and informal educational settings, supporting everything from programming courses and
STEM educational topics to broader contexts of problem solving and arts (Papavlasopoulou,
Giannakos, et al., 2017a). The various technological tools available nowadays allow us to
support learning activities based on constructionism and provide meaningful learning
experiences for children. In these types of educational activities, children are the protagonists,
as they have control of their own products. Coding activities for children not only relate to CS
but also allow the development of computational competences and higher-order thinking skills
(Grover & Pea, 2013). Children who actively participate in game-making activities enhance,
among others, their problem-solving, critical thinking, CT, and collaborative skills
(Papavlasopoulou, Giannakos, et al., 2017a); (Grover & Pea, 2013).

The benefits of educational activities in which children use technological tools and digital
fabrication to construct their own games are many and vary from learning programming
concepts to behavioral and perceptual changes towards career paths in computing (Sáez-López
et al., 2016) (Kafai & Vasudevan, 2015); (Denner, Werner, & Ortiz, 2012). Making games can
be more beneficial than other project-based activities, supporting learning about storytelling,
artwork, sound, mechanics, and math (Sung & Hwang, 2013). Moreover, children are familiar
with video games from an early age (Granic, Lobel, & Engels, 2014). Visual programming
environments provide opportunities for children to be introduced to programming concepts;
owing to the fun and usefulness of the activity, children are highly motivated and have positive
attitudes towards coding (Sáez-López et al., 2016). Block-based visual programming languages
(like Scratch) have the advantage of using shapes that fit properly only when they make a logical
sequence of orders. This gives relief to users and saves them from much of the heartache
traditionally forced on learners by textual languages (Wilson & Moffat, 2010), p. 70). However,
even advanced text-based programming languages like Java have been used to engage children
aged 9–10 in coding (Esper, Foster, Griswold, Herrera, & Snyder, 2014). A combination of
physical fabrication and coding can engage and enhance children’s competences in
programming concepts (e.g., loops, conditionals, and events) and practices (e.g., remixing,
testing, and debugging) (Kafai & Burke, 2015); (Denner et al., 2012). In addition, digital game
development was found to be beneficial for special education students, increasing their
problem-solving skills through a process of representation, planning, execution, and evaluation
of an artifact (Ruggiero & Green, 2017). Hence, further empirical studies are needed to
investigate the different aspects and advantages of constructionism-based activities.

ACCEPTED MANUSCRIPT

Gender discrepancy in coding has been related to negative educational experiences in
early childhood (Teague, 2002). CS careers still tend to be highly stereotyped, with girls being
less likely to choose this career path. However, studies have found that both girls and boys who
get involved in different kinds of software development practices show a better understanding
of and positive attitudes towards CS (Bonner & Dorneich, 2016); (Eordanidis, Gee, &
Carmichael, 2017); (Robertson, 2013); (Papavlasopoulou, Sharma, Giannakos, & Jaccheri,
2017). Scaffolding examples can help girls’ engagement and confidence when using a
programming environment. Studies specifically focusing on girls have found that game design
experiences intended to enhance computational skills affect their perceptions in seeing
themselves as able to design computer games and encourage them to pursue careers in CS-
related professions (Stewart-Gardiner, Carmichael, Latham, Lozano, & Greene, 2013). In a
study involving middle-school girls creating games, (Denner et al., 2012) found that they were
engaged in the process and demonstrated adequate levels of complex programming activity.
Thus, designing appropriate activities can be a promising approach to attracting and
encouraging girls’ interest in computing.

Generally, the skills gained in these educational contexts go beyond the use of a
technological tool for making a game and CT. For instance, when children negotiate artifact
construction in a supportive environment, they gain a sense of self-efficacy and belief in their
capacities; they learn how to solve a problem, manage difficulties, cope with “failure”, share
resources, and communicate with peers (Chu, Schlegel, Quek, Christy, & Chen, 2017); (Çakır,
Gass, Foster, & Lee, 2017); (Bers, 2012). These practices exist in constructionist learning and
can be applied in subjects like math, language, arts, and others. The value is in the transferable
skills uncovered through the experience of completing a successful project.

In a nutshell, constructionism-based coding activities, particularly when the focus is on
game-making, provide a fruitful learning environment in which children are stimulated to use
a technological tool, affecting their learning experience. Therefore, there is a need to investigate
and get a deep understanding of how we can help learners to acquire knowledge, skills, and
competences in coding in an engaging and meaningful manner.

3. Methodology

3.1. Design Based Research (DBR)
DBR is a systematic but agile methodology widely used in educational contexts (figure

1) (Anderson & Shattuck, 2012) (Wang & Hannafin, 2005); (Reeves, 2006). DBR offers a
strategy to understand learning processes through design, exploration, enactment, evaluation,
and redesign (Anderson, 2005). DBR is a hybrid method, as it is not a replacement of other
methodologies but builds on the use of multiple procedures and methods from both design and
research methodologies (Wang & Hannafin, 2005). The purpose of DBR is to influence real
educative interventions and validate theoretical concepts. The difference between DBR and
formative assessment is that it also has a theoretical goal (Barab & Squire, 2004). Researchers
are actively involved and maintain constant collaboration with participants, other researchers,
and practitioners to manage the research process in real-world settings. Their aim is to

ACCEPTED MANUSCRIPT

implement interventions with refined and improved designs that influence practice. In short,
there are five basic characteristics of DBR: 1) it refines theory and practice, 2) it happens in
real-world settings and is grounded in relevant contexts, 3) it is interactive, iterative, and
flexible, 4) it uses mixed methods in accordance with potential new needs and emerging issues,
and 5) it is contextual, meaning that the research findings are connected with the design process
(Wang & Hannafin, 2005).

Figure 1: The research cycle of DBR (Reeves, 2006)

In our approach, based on all the above, we used constructionism theory and applied the
DBR methodology to guide our iterations. More specifically, our research process used DBR
methodology as it deals with the complexity of real-world educative contexts (in our case
coding workshops) and it is grounded in theory (in our case constructionism theory). In
addition, DBR approach is in line with the needs of our study, allowing a long period of time
with continuous design, evaluation and redesign of our interventions. In this way, we had also
the opportunity to conduct iterative and flexible revisions of the research design applying
research methods from both qualitative and quantitative research. DBR methodology needs a
detailed and comprehensive documentation of the whole process; this action helped the analysis
of our data and especially the retrospective analysis, both to contribute to theory and practice.
For all the four stages of the DBR (figure1), constant collaboration with other researchers,
experts in the field and instructors is required; this was essential aspect of our study in order to
be able to improve the impact of the interventions, understand the learning experience
processes, advance the initial designs and provide theoretical and practical impact extracting
design principles.

We conducted three cycles (iterations) over two years, evaluating and refining our coding
workshops with children. We applied theoretically and pedagogically aligned tasks to
investigate their effectiveness on children’s learning engagement, overall learning experience,
and collaboration while developing an artifact (a game in our approach).

The main aspects of this study were: 1) the design of the coding workshops to facilitate
children’s use of the programming tool and to introduce them to coding, 2) the researchers
working in close collaboration with the participants and assistants who ran the workshops, 3)
the use of different methods to evaluate the effectiveness of our approach to increase the
sustainability and scalability of this program, 4) grounding our findings in theory, and 5)
identifying general design principles for future similar activities.

ACCEPTED MANUSCRIPT

3.2. Description of the workshops
The participants’ goal was to create an artifact, which in our case was a game using the

Scratch programming tool. Students worked in teams for the development of the artifact.
Teaching assistants, specifically trained, led the process and assisted students in achieving their
goals.

Regarding the process of construction in the workshops, the most influential to our
pedagogical approach was what Resnick calls the “kindergarten approach to learning”, with a
spiral cycle of imagine, create, play, share, and reflect – a process that is repeated over and over
(Resnick, 2007). Children imagine what they want to do and then create a project with their
ideas, play/interact with their own creations, share their creations with others, and reflect on
their experiences, leading to new ideas and projects. Adapting Resnick’s spiral, ours also started
with “inspire” to characterize the warming-up and inspiring activities that kicked off the
children’s creativity. In addition, to characterize the coding process and the use of the Scratch
tool specifically, we focused on constantly experimenting and iterating: the children developed
their artifacts gradually by trying new elements, using different concepts, and revising them
(figure 2).

Figure 2: Description of the three DBR cycles

3.2.1. Cycles 1 and 2
As described by ANONYMOUS, we designed and implemented a coding activity in

conjunction with an initiative organized at ANONYMOUS named ANONYMOUS (meaning

ACCEPTED MANUSCRIPT

“the path towards coding”). The workshop activities were based on the constructionist
approach, as one of the main principles of this is learning by making. The workshop was
conducted in a largely informal setting, as an out-of-school activity, and lasted for four hours
in total. Various student groups, in the range 8–17 years old, were invited to ANONYMOUS’s
specially designed rooms for creative purposes to interact with digital robots and to create
games using Scratch and the Arduino hardware platform. Specifically, Arduino was attached
to the digital robots to connect them with the computer. At that point, an extension of Scratch
called Scratch for Arduino (S4A) provided the extra blocks needed to control the robots. The
Scratch programming language uses colorful blocks grouped into categories (motion, looks,
sound, pen, control, sensing, operators, and variables), with which children can develop stories,
games, and any type of animation. In general, the children who attended the workshop worked
collaboratively in triads or dyads (depending on the number of children). The workshop was
designed for children without (or with minimum) previous experience in coding. The design of
the activity (interacting with robots and creating games), and the use of Scratch programming
language (suitable for all ages) provided flexibility and allowed the successful implementation
of the workshop with participants from 8-17 years old students. Each of the workshops, had a
specific age group of students, carefully selected regarding the age, with age range not more
than 3 years. During the workshop, student assistants were responsible for supporting each team
as needed. Approximately one assistant observed and helped one or two teams. Three
researchers were also present throughout the intervention, focusing on observing, writing notes,
and taking care of the overall execution of the workshop. The workshop had two main sections
(figure 3).

Interacting with the robots: In the first section, the children interacted with digital
robots made by an artist (using recycling materials). The different robots were placed next to
the computers (one for each team). When the children entered the room, one assistant welcomed
them, told them to be seated, and briefly presented an overview of the workshop. The assistants
then advised the children to pay attention to the paper tutorial and the worksheets placed on the
desks (one for each student). First, the children filled in the worksheet to answer questions
regarding the exact places and numbers of sensors and lights on the robots. The tutorial
contained instructions with examples and pictures, similar to the robots they were using. The
examples had little text and more images and described exactly how the children could interact
with the robots. The children accomplished a series of simple loops that controlled the robots
and made them react to the environment with visual effects (such as turning on a light when
sensors detected that the light was below a certain threshold). Children could touch and play
with the robots but not change any parts of them. Although the duration of the session was
different for each team, it lasted between 45 minutes and 1.5 hours and ended with a break
before the next session.

Creating games using Scratch: This session focused on the creative implementation of
simple game development concepts using Scratch. All children took another paper-based
tutorial containing examples and visualizations to help them to ideate their own games. The
tutorial comprised simple text explanations and included basic CT concepts and possible loops
that the children were supposed to use in their own games. First, the assistants advised the
children to concentrate on understanding the idea of the game, to discuss it with their team

ACCEPTED MANUSCRIPT

members, and to create a draft storyboard. The children then developed their own games by
collaboratively designing and coding using Scratch. To accelerate the children’s progress, they
were given existing game characters and easy loops. While the children worked on their
projects, help was provided whenever they asked for it, and complex programming concepts
were introduced on an individual level according to the relevance to their project. Children
created their games step by step by iteratively testing and coding them. After completing the
games, all teams reflected on and played each other’s games. This section lasted approximately
three hours.

Figure 3: Example of an interactive robot (left), children collaborating on game creation (middle), and example of a created
game (right)

3.2.2. Cycle 3
We designed and implemented a two-day workshop in conjunction with the local library

of ANONYMOUS. The workshop activities focused on coding including artistic elements and
were based on the constructionist approach. The call for participation was made to middle-
school girls of the ANONYNOUS region during the autumn 2017 school break. Previous
experience was not a prerequisite for the girls’ participation. The activities of each day were
conducted in an informal setting and lasted for approximately five hours, including breaks.
Female instructors, with previous experience in similar activities (also involved in
ANONYMOUS), facilitated the workshop and were responsible for supporting the girls during
the process. During the workshop, the girls had to create storyboards based on solving particular
environmental problems and then, based on their stories, create games using the Scratch
programming language (figure 4). For the development of the storyboards, the girls could use
different types of materials, like ribbons, colored cardboard, stickers, drawing pencils, etc., as
provided by the library. The girls worked collaboratively in teams of two or three (depending
on the number of participants). Two researchers were present for the whole duration of the
workshop, assisting when needed for the smooth execution of the activities, including the data
collection. The workshop is described below, based on the two days of activities.

First day of the workshop: On the first day, we introduced the basic skills of coding and
other non-technical aspects of game development, like storyboard creation. The workshop
started with a story from a book, based on a woman with children and everyday problems, who
was also a mentor and a superhero helping people to succeed with their technology projects.
The girls were inspired and were informed that they had to think of their own characters who
needed to save the world from environmental issues of their choosing. Then, in order to give

ACCEPTED MANUSCRIPT

an introduction to coding, the instructors presented an example of a functional game with
Scratch on a relevant environmental topic. Then, the girls were asked to individually complete
basic coding exercises using Scratch. At the end of the first day, the teams prepared and
presented their storyboards with three different scenes on paper/cardboard, including the title,
theme, character, plot, conflict, and solution.

Second day of the workshop: Starting the second day of the workshop, the girls had to
update, if they wanted, their storyboards and finalize them. Then, the rest of the day was
dedicated to their game creation using Scratch. The girls completed a paper-based tutorial,
created by the instructors, with simple text explanations and examples of basic CT concepts
and possible loops that the girls were supposed to use in their own games, all based on Scratch.
During the creation of their games, the girls had to use their storyboards exactly and “transfer”
their ideas into games using Scratch. At any time, the girls could ask for help from the
instructors, who even introduced complicated programming concepts, if it was necessary for
their games. The girls created their games step by step and continuously testing and coding
them. At the end of the day, all teams prepared presentations of their games and everyone played
each other’s games.

Figure 4: Girls participating in the workshop (left), creation of the storyboard (middle), and game created using Scratch (right)

3.3. Sampling
All the participants of the three cycles were students from ANONYMOUS region. The

first two cycles took place at ANONYMOUS in specially designed rooms, and the last cycle
took place in the local library. The data related to the three cycles were collected after receiving
permission from the Data Protection Official for Research, ANONYMOUS, following all the
regulations and recommendations for research with children. When the participants had been
selected, a researcher contacted their teachers and parents in order to obtain the necessary
consent from both the child and the legal guardian for the data collection. Their participation in
the research project was voluntary and they could drop out at any time, with no consequences
on their participation in the workshop.

3.3.1. Participants of cycle 1
Children from 3rd to 12th grade (aged 8–17 years old) participated in the coding activity.

The activity took place during autumn 2016 with a sample of 12 girls (mean age: 12.64, SD:
2.838) and 32 boys (mean age: 12.35, SD: 2.773). Five workshops took place over two weeks,
following the coding activity described in the previous section.

ACCEPTED MANUSCRIPT

3.3.2. Participants of cycle 2
In autumn 2017, children from 8th to 10th grade (aged 13–16 years old) participated in

the coding activity. The sample consisted of 105 participants in total, 69 boys and 36 girls (mean
age: 14.55, SD: 0.650). ANONYMOUS workshops were conducted every Friday for six weeks.

3.3.3 Participants of cycle 3
The sample of the third study consisted of eight girls from 6th to 10th grade (aged 10–14

years old) (mean age: 12.135, SD: 1.389). Girls participated in the two-day workshop during
autumn 2017, following all the activities of the workshop described in the previous section at
the local library.

3.4. Data collection
Following the DBR methodology described by (Reeves, 2006), our study involved four

stages (table 1). In stage 1, we conducted a critical literature review to identify theoretical and
practical problems in constructionism-based coding activities. Then, in the second stage, after
discussions with instructors and with experts in human–computer interaction (HCI) and
technology-enhanced learning (TEL), we developed the design of the intervention based on
constructionism. Stage 3 involved the testing and refinement of the iterative cycles in practice.
Qualitative and quantitative data were collected during the three cycles using various
instruments, including pre and post knowledge acquisition tests, attitudinal questionnaires, eye-
tracking data, semi-structured interviews, field notes from observations, instructors’ reflections,
and the artifacts constructed by the children in different phases of the process. All data focused
on exploring the children’s learning experience in our coding workshops and guided us to the
improvement of the design of the next iteration. The fourth stage of DBR is the development
of design principles that intend to provide feasible solutions with respect to the theoretical goals.
This final stage contains all the reflections from the previous stages, including notes of the
design issues that emerged from the analysis of the results at each iteration.

Table 1: Description of the different DBR stages

Stage Data collection method Participants Purpose

Analysis Literature review Researchers
HCI experts
TEL experts
Instructors

Analyze and identify
problems and gaps in
constructionism-based
coding activities

Development Literature review
Discussions
Focus groups

Researchers
HCI experts
TEL experts
Instructors

Identify the theoretical
framework
Design the
interventions

ACCEPTED MANUSCRIPT

Iterative cycles of
testing and refinement
in practice

Iteration 1
Eye tracking
Attitudinal questionnaire
Knowledge acquisition test
(pre and post)
Artifact collection
Instructors’ reflections

Iterations 2 and 3
Semi-structured interviews
Field notes from
observations
Artifact collection
Instructors’ reflections

Iteration 1
44 children aged 8–
17 years old
Instructors

Iteration 2
105 children aged
13–16 years old
Instructors

Iteration 3
8 girls aged 10–14
years old
Instructors

Get a comprehensive
view of students’
learning experience
Design elements for the
next iteration

Development of design
principles

Focus groups
Discussions
Reflections and notes from
all cycles

Researchers
HCI experts
TEL experts
Instructors

Identify the prominent
design principles

3.5. Data analysis
In the DBR methodology, all stages, from the analysis to the development of design

principles, include interactive and iterative formative evaluations. From the beginning of the
cycles’ implementation, starting with the design, to the execution and evaluation of each
workshop, the researchers and instructors were in constant collaboration. Their involvement
throughout the project allowed them to gain valuable knowledge and competence in the analysis
and interpretation of the data gathered in each cycle. All data collected from the three cycles
were respectively analyzed according to their type. For example, quantitative data were
analyzed using one-way analysis of variance (ANOVA) and Pearson correlation coefficient
among other; while qualitative data were analyzed based on Saldaña (2015). All data were
compared and cross-checked for triangulation. For this paper, the qualitative analysis was
manually conducted by the researchers using both inductive and deductive approaches, based
on (Saldaña, 2015) (Mayring, 2014).

During the two years of the project, after the end of each iteration (cycle), the researchers
and instructors participated in focus groups discussing and revealing all the growing ideas
emerged from the outcomes of the iteration. All ideas were connected to the results of the
respective iteration, representing the codes for our qualitative analysis for this study. In order
to synthesize the ideas and formulate themes, we focused mainly on the students’ engagement
in the coding activities. The students’ engagement included interaction with the instructor and
the learning tool and interaction with other students in the creation of an artifact. In our
approach, we adopt the term “academic engagement” (Turner, Christensen, Kackar-Cam,
Trucano, & Fulmer, 2014) to describe how the students were involved in and put effort into
learning, understanding, and collaborating with their peers. Engagement during educational
activities has many aspects and is connected with other theoretical constructs, like motivation

ACCEPTED MANUSCRIPT

and self-regulation (Henrie, Halverson, & Graham, 2015). According to (Fredricks,
Blumenfeld, & Paris, 2004), there are three types of engagement: behavioral, emotional, and
cognitive, which are interrelated within the individual. “Behavioral engagement” refers to
participation, involvement, and attention, among others. “Emotional engagement” refers to the
learner’s feelings, like frustration or interest, expressions of positive effects, and social
connection. “Cognitive engagement” refers to the learner’s investment in understanding what
they have been taught, their efforts related to the mind, their strategy use, and their self-
regulatory and meta-cognitive behaviors.

Each idea was connected with one of the three types of engagement, depending on its
content. For example, ideas representing children’s cognitive processes, like the use of different
gaze patterns during the coding activity, were placed under cognitive engagement.
Respectively, we followed the same procedure to place, if possible, all ideas under the
appropriate type of engagement, which also allowed us to see possible interconnections.
Consequently, the most prominent themes emerged. It was an iterative process, with constant
refinement and reflection on the ideas and themes during the three cycles. This helped us not
only to see the connections and make decisions for the design but also to identify the most
important theoretical aspects in our studies. The final step of the analysis, after removing similar
themes, involved categorization to identify the most important findings. The categories were
interpreted according to Papert’s (1980) theoretical framework, with the agreement of the
instructors and the HCI and TEL experts (figure 5).

In the next section, we present the findings for the first cycle, showing the important
contributions based on the theoretical framework of Papert’s constructionism. Then, for cycles
2 and 3, we first present the key findings emerging from the respective previous cycle related
to the design of the activities and then the important contributions based on the theoretical
framework.

Figure 5: Data analysis process

ACCEPTED MANUSCRIPT

4. Iterative design cycles, theoretical findings, and design elements
For each of the three cycles, we present the most prominent results as linked to Papert’s

constructionism. Therefore, there is no detailed representation of the results, as they were
respectively analyzed according to their type during the process. However, when needed, there
is a reference to the findings related to the data collection method in order to help the proper
explanation of the specific outcome.

4.1. Cycle 1
Two theoretical ideas emerged from this cycle:

1) Learning to learn (different coding approaches result in different learning gain):
According to Papert (Papert, 1980), in a constructionist learning environment, the child is able
to construct their own knowledge and build on what they already know. In our workshop, the
students produced socially meaningful and engaging artifacts: games. The findings from this
study (cycle 1) showed that depending on their age, the students used different gaze patterns in
the coding process, had different approaches to coding, and had different learning gain from
the activity.

The younger students (kids) focused on the appearance of their games’ characters, while
the older ones (teens) had more-structured coding behavior. This was evident in the proportion
of time that the kids and teens spent in specific areas of interest (based on eye tracking) in the
Scratch programming environment and the transitions between them. The teens presented more
“hypothesis-testing” behavior during their efforts in making the games and could shift their
attention to the more-“meaningful” parts of the Scratch screen. By “the meaningful parts of the
screen”, we mean specific areas of interest in the Scratch interface that indicate the main areas
of attention in coding: scripts, output, and commands. In addition, the teens were able to
collaborate better than the kids were (had higher similarity gaze). The teens had a higher level
of shared understanding and could communicate better during the coding activity. This
confirms the teens’ attitude towards helping each other more, contrasting with the kids, who
wanted to have greater individual control. Eventually, “by deliberately learning to imitate
mechanical thinking, the learner becomes able to articulate what mechanical thinking is and
what it is not. The exercise can lead to greater confidence about the ability to choose a cognitive
style that suits the problem” and “what is most important in this is that through these
experiences these children would be serving their apprenticeships as epistemologists, that is to
say learning to think articulately about thinking” (Papert, 1980). Children’s coding processes
represent their way of “thinking mechanically” and adopting the educational advantage of this
way of deliberately thinking. Using a simple description of the process, trying to create/make a
game is a way to combine appropriate orders and create programs to tell the computer what to
do, step by step. This process includes logic, math, problem-solving, and critical thinking skills.
In order for children to achieve their goals in such environments, they should find the
appropriate cognitive style that will support them in the coding process of creating a shared
artifact. This shows the importance of having appropriate tools and instructions for each age
group. Different age groups differently organize their thinking and consequently their coding,

ACCEPTED MANUSCRIPT

so the way they approach the process of creating an artifact can be instrumental to their learning
and the successful completion of the artifact. This notion is in accordance with Papert, as he
presents a resemblance with juggling: “It always takes time to learn necessary component
skills. What can be eliminated are wasteful and inefficient methods. Learning enough juggling
skill to keep three balls going takes many hours when the learner follows a poor learning
strategy. When a good one is adopted the time is greatly reduced, often to as little as twenty or
thirty minutes” (Papert, 1980). Finding the appropriate methods to help children of different
age groups will result in efficient and effective learning processes.

2) Cognitive effort and affective engagement: Positive attitudes and motivation are
important to cognitive learning. There is a relation between children’s attitudes and their
cognitive processes while coding. Highly motivated children with positive attitudes have the
ability to handle cognitive load and better manage the construction of their artifacts. This idea
appeared in our findings from the measures used to examine cognition through the eye-tracking
data and the relation with attitudes of perceived learning (seen as confidence, the degree that
children indicate their performance), intention to perform coding again, and excitement. The
children who were highly engaged and motivated during the construction of the artifact
exhibited gaze behavior that showed lower cognitive overload. Papert (1980) describes the
notion of “bricolage”, which represents a qualitative way of organizing and planning when
problem solving by constantly experimenting until finalizing the artifact. Effort and difficulty
are prominent during the whole coding process and require motivational goals and
determination from a child to commit themselves to the learning. This is an expected notion, as
“You can’t learn bread-and-butter (basic) skills if you come to them with fear and the
anticipation of hating them” (Papert, 1980). The design of the coding activity of our workshop
had an overall cognitive load that could become overwhelming for children, especially those
who are novices to coding. From the complexity of the task, children might reach a point of
feeling overloaded, which can lead to a critical condition where, without the proper pleasant
and motivating environment, the learning experience can fail. It is not a surprising result that
the children with more difficulties and cognitive load had lower scores in their attitudes.

4.2. Cycle 2
The key findings, as design elements, that emerged from cycle 1 and guided the

refinement of the design of cycle 2 are described below.

Structured assistance, pleasant environment, and revised learning materials to:

a. guide students to focus on structured coding behavior

Students should put a lot of effort and thinking into learning the necessary component
skills, and they should be cognitively supported during the coding activity. As shown in the
results of the eye-tracking data, those who shifted their attention to the meaningful parts of the
screen (such as commands and output) had better learning gain, based on their knowledge
acquisition tests. Therefore, the design of the activity should support students efficiently to
ensure that they can take appropriate actions and know where to pay attention when they code
to have an effective approach that is suitable for the task.

b. avoid cognitive overload

ACCEPTED MANUSCRIPT

Students can become easily overwhelmed in the process of creating an artifact, especially
when they are new to coding. By using the “bricolage” style, in which they are constantly
experimenting, students can feel overloaded as they seek to find the appropriate commands in
the tool, manage different tasks, and make decisions during the activity. Consequently,
supporting students when needed and providing relevant learning materials can reduce their
cognitive load and provide a scaffold for managing their learning and thinking.

c. keep the participants motivated

Students’ positive attitudes are related to their cognitive load, as represented by their eye
movements, based on the results from cycle 1. Highly motivated students with positive attitudes
have better management of cognitive load. Hence, providing a pleasant environment that
enhances students’ enthusiasm for and engagement with learning will help students to have a
fruitful experience.

d. enhance collaboration within the teams

As students collaborate in teams to create a shared artifact, social interaction in learning
during the coding activity is not something we can overlook, as it also unfolds team dynamics.
Teams with better collaboration (higher gaze similarity) had higher team average learning gain,
as calculated by the knowledge acquisition tests. It is important to encourage collaboration and
good communication among team members so that they can benefit from each other’s help.

In this cycle, the duration of the workshop for all groups of students was the same, as an
out-of-school one-day activity. The results were based on the qualitative analysis of the
interviews, observations, and evaluations of the students’ artifacts. The children were able to
express exactly their struggles and ways of thinking during the artifact creation, allowing us to
detect the exact behavior of the children as they expressed it to reflect their cognitive processes
(noticing debugging behavior and specific difficulties). Triangulation of the data helped us to
validate our findings. The implementation of the ANONYMOUS coding workshop took place
over two years, with few differences in the design of the activity but with differences in the
research design, evidence descriptions, and results of the different instruments used for data
collection.

Two theoretical ideas emerged from this cycle:

1) Social aspect of creating an artifact: The “social” dimension refers to the role of
collaboration in the coding activity. Children worked in teams of three (or two, depending on
the total number of participants) to create a shared artifact. Collaboration and social interaction
for a common goal have many benefits, including interacting with others, examining different
perspectives, expressing understandings, and interpreting things differently. During the coding
activity, the children were encouraged to work collaboratively to create a shared artifact that
was meaningful for their peers too. The process also offered the opportunity to all participants
to play each other’s games and reflect on them. Collaboration was primarily examined between
the members of the groups but also among the different teams. From the observations and
interviews, the help they got from other team members was important. Half of the children
expressed the highest level of satisfaction with the collaborative process in their team, while
72% showed high levels regarding being able to develop skills from the other members of the

ACCEPTED MANUSCRIPT

team. This interaction, which shows collaboration and help among the teams, had various
aspects, from practical (what command they should use in Scratch to accomplish a task) to ideas
for their games. This finding was confirmed from the artifact analysis: teams who were sitting
close to one another had similarities in the programming concepts they used, as well as in their
main game ideas (such as a maze or jumping on platforms). In addition, through the different
versions of the artifacts, we observed that elements changed based on other teams’ suggestions.

“When we didn’t find anything, we looked at another group and saw how they
did it”

For the team members, the construction of the artifact was not an individual task: it was
a social interaction with a shared goal to create a game. The results showed that, most of the
time, collaboration was efficient. The children acknowledged and expressed how valuable it
was that they were working together to complete their artifacts.

“If I had my own project, I would probably not find anything”

“It is easier to code with someone than to code by yourself; if I had been alone, I
wouldn’t have managed to do the same”

“We both came up with ideas and equally contributed to the design and coding
parts”

“I coded more, while they contributed with ideas on what should be incorporated.
We were all important members of the team”

An important aspect of the good collaboration was the fact that the team members knew
each other from before and/or had done other projects together.

“We knew each other, and we felt pretty safe around each other. We could discuss
and agree easily on what had to be done”

Nevertheless, there were some indications of bad collaboration that caused frustration.
This was mainly caused from having a “bad leader” in the group who wanted control. This was
expressed from both sides.

“It was maybe that I took too much control. I should have let my partner decide
a bit more”

“He didn’t let me finish my task; he just wanted to have the control back”

Papert’s (Papert, 1980) notion of the importance of social norms and interaction in
learning is reflected in his research on samba schools: “These are not schools as we know them;
they are social clubs with memberships that may range from a few hundred to many
thousands”. The construction of games and other artifacts is not an isolated action but happens
in a social context.

This resonates with Papert’s (Papert, 1980) notion of social interaction: “Although the
work at the computer is usually private it increases the children’s desire for interaction. These
children want to get together with others engaged in similar activities because they have a lot
to talk about. And what they have to say to one another is not limited to talking about their
products: Logo is designed to make it easy to tell about the process of making them”.

ACCEPTED MANUSCRIPT

2) Powerful thinking (or learning about thinking): Papert (Papert, 1980) argues that
children are able to recognize the different procedures in code, understand when the code does
not run as expected, use debugging strategies, and act intentionally to improve the code. For
the construction of their artifacts during the coding activity, the children worked with
programming concepts and practices to successfully complete their task. Making a game
requires deep engagement and strategy use to successfully manage the completion of the task.
The children iteratively organized and documented their code. As described by Papert (1980,
p. 28) regarding the Logo environment: “teaching the Turtle to act or to ‘think’ can lead one
to reflect on one’s own actions and thinking. And as children move on, they program the
computer to make more complex decisions and find themselves engaged in reflecting on more
complex aspects of their own thinking.”

For the construction of the artifacts, the children had the opportunity to plan, problem
solve, code, debug, collaborate, communicate, and reflect on their coding experience using
Scratch. The participants realized that this was an iterative process, and for some it appeared to
be difficult and challenging. Some found it fun to try out the different blocks, discovering the
different functionalities. Whatever they made seemed to be suitable for their code; at the same
time, the need to add a new function changed everything and triggered a new thinking and
debugging process.

“The hardest thing was to put the different pieces of code together and make them
work as one game”

“It was very challenging when we started to change different things to see what
happened with the other code”

The most prominent difficulties related to movement, jumping, the use of loops, and
hiding/showing different sprites. These actions were the main problems that the children had to
deal with from the beginning of their game creation and defined their thinking processes. This
was also indicated by the artifact analysis of the first versions of their games. In order to make
a character move and jump in Scratch, you often have to have an event block with a conditional
combined with motion blocks for moving the sprite x steps or to place it in a certain y- or x-
coordinate in a chosen direction. Observations showed that movement and jumping were the
most common reasons the children asked for help, indicating that it was hard for them to
articulate their knowledge about conditionals (if _ then; repeat until; and when key is pressed,
do this), direction, and the coordinate system to achieve an appropriate order of blocks.

Coding in Scratch enables children to articulate their thoughts and watch the outcomes of
their own decisions.

“If you did something, the result wasn’t always what you expected”

After the initial trials with coding, by being more and more engaged in the process, the
children had the opportunity to clarify their thinking and interpret the immediate feedback,
acting accordingly.

“Before, I didn’t understand that things wouldn’t happen if you didn’t explicitly
give instructions”

ACCEPTED MANUSCRIPT

“The ideas and code come really fast when you realize what kind of options you
have”

4.3. Cycle 3
The key findings, as design elements, that emerged from cycle 2 and guided the

refinement of the design of cycle 3 are described below:

a. Allow an adequate amount of time for engagement during the workshop

The analysis of the interview data revealed that the time the students had to complete the
tasks was an important issue for them, as the allocated time was limited. More precisely, at the
beginning of the activity, they spent a lot of time trying to familiarize themselves with the tool
and the tasks and to bond with team members, especially in teams where they did not know
each other from before. Giving additional time for social engagement between the team
members will allow students to build common understanding and be more creative.

b. Provide a specific theme for the game creation

As mentioned earlier, the students spent a lot of time at the beginning of the workshop.
One of the time-consuming actions was to decide the theme of the game. Time management is
very important in such workshops: on the one hand, students need to have the freedom to decide
their own themes; on the other hand, it is critical to have an adequate amount of time for the
follow-up tasks. Therefore, having a specific theme for the game creation that is sufficiently
broad, inspiring, and meaningful will give them the freedom to be creative but at the same time
will prevent them from “getting lost.” In addition, it will give a meaningful social and personal
context to the learning process, foster their interest, and create a common ground for all teams.

c. Inspire the participants with an example of a female game hero and a demonstration
of a similar game by female assistants (as role models)

From cycle 2, focusing on the analysis of the data collected from the teams consisting
only of girls, it is evident that stereotypes exist. Most of them expressed that they had not tried
coding before and did not know what to create, as they thought game creation was only for
“geeks.” In their eyes, only boys like video games. To encourage interest and get the girls
inspired and engaged, a storyboard and a game were used as examples, with the main character
a heroine who had powers that could “solve problems”.

d. Focus on the design part of the game in a structured way (i.e. spend sufficient time
on creating the storyboard first and having a presentation on it)

The results from the data from cycle 2 (interviews, observations, and game versions)
showed that the teams who followed a more-structured approach (creating a draft storyboard
with their idea before starting coding) were able to successfully manage and finish on time, as
well as being less overwhelmed. Moreover, based on the different versions of the collected
games, these students had a greater capacity to develop their initial ideas (designed in the
storyboards), and this resulted in higher-quality games (more complete/advanced).

e. Introduce coding individually

ACCEPTED MANUSCRIPT

The students participating in the workshop did not have the same experience with coding.
This approach was geared towards helping the participants individually to familiarize
themselves with the tool (in our case, Scratch), gain insights on what they could create, and
develop basic skills. Having a common ground of basic knowledge among the team members
will make everyone engaged and active. Thus, it is very important to have some individual
activities at the beginning that prevent students with experience from dominating their teams,
which could disengage novices.

One theoretical idea emerged from this cycle:

1) Use of powerful ideas: “Powerful ideas”, as described by Papert (Papert, 1980), are
central concepts of learning and should be a necessary part of constructionist activities. A
“powerful idea” must be both personally and epistemologically useful, giving the opportunity
to organize a way of thinking, appropriate each time for the specific task, building on previously
gained skills and knowledge. Learners need to be highly explorative before they gain expertise;
therefore, the task they are required to do needs to be engaging enough in order to commit them
to the learning process. In his book Mindstorms, Papert shows the importance of powerfulness
and the powerful nature of children’s use of computers as tools and the Logo programming
language, as well all the powerful ideas that emerge from children’s engagement with
computer-based activities.

What is important is to make a powerful idea part of intuitive thinking (Papert, 1980). In
the design of the activity in the third cycle, “powerful” was a quality gained from the girls, as
they were allowed to closely engage with the creation of the artifacts in multiple stages, using
Scratch. This process brought the learners in touch with some powerful general ideas, for
example planning an exciting project, using programming instructions, debugging, and
designing, to mention a few.

The girls had an experience outside of the classroom in a local library, collaborating with
girls of a similar age but with varied interests and background knowledge, which was in contrast
with a single classroom experience. The duration of the workshop was critical not only for
learning purposes but also because it allowed the participants to bond and exchange interests
and gave them the proper amount of time to interact, negotiate, learn from each other, and
finally achieve the goal of the creation of the artifact. In addition, by having a concrete context
for the game (create a game that reflects an environmental issue) and a tool (Scratch) embedded
in a meaningful environment, they could see the project’s relevance to their lives.

“It was so fun and exciting to make a game for saving the world with Scratch and
with new friends, who taught me so much about computers”

The girls gradually discovered the Scratch tool and how they could use it. As they became
more engaged in the process and saw their artifact become a reality, they enhanced their feelings
of self-achievement and self-confidence. They found themselves confronting difficulties and
learning things that they did not know about game design. The use of Scratch gave them new
possibilities and made them “walk it through” and relate their personal knowledge to thinking
effectively and happily to achieve the artifact construction.

“I thought it was much harder to make a game, but I could understand how to use

ACCEPTED MANUSCRIPT

it and at the end we managed to do everything we wanted”

“…some things were difficult, but we tried and made things happen”

“…we find out how things worked, and many times we had to go back and change
stuff”

“I am so proud of what I did today… When you design a game in a storyboard,
you don’t think about using a timer, but with Scratch you can… you can do everything
you can think of”

5. Discussion
The intended outcomes of this DBR were twofold: 1) to ground the main findings of

interventions conducted over two years in constructionism, and 2) to identify reusable design
principles that can inform coding activities for children and pedagogical tasks. In this study, we
aimed to investigate children’s learning experience as they constructed their own knowledge
by using a digital programming tool (Scratch) and collaboratively creating socially meaningful
artifacts: games.

Analysis of the different data collected from the various instruments over the two-year
intervention helped us to explore the effectiveness of our coding workshops on children’s
engagement. We focused on how they enhanced participants’ knowledge of basic programming
concepts, their coding behavior, their social interaction and collaboration, and how they
perceived their coding experience as a whole when introduced to coding.

It is important to have appropriate educational designs aiming to promote active learning
with the support of constructionism. Including components like a balance of individual and
social involvement and the use of a visual programming language, all employed under the
common goal of creating an artifact, fosters children’s deeper transferable CT skills, which are
vital for our society’s information revolution. Engaging children in a learning environment that
embraces creative design, problem solving, collaboration, and communication strengthens their
sense of competence and confidence, their compassion for others, and their moral character
(Bers, 2010). Together with achieving a significant improvement in students’ understanding of
computational knowledge, like programming concepts and practices, it is essential to create
high levels of motivation, fun, and commitment as part of an efficient pedagogical design, as
reflected in our study.

5.1 Engagement in constructionism-based coding activities
Below we summarize the main characteristics of student engagement, as shown in our

DBR approach and according to constructionism.

The students indicated that they were cognitively engaged during the workshops; they
managed to adopt deliberative thinking and to understand and imitate mechanical thinking
while coding. In order to achieve this, they had to use an appropriate cognitive strategy (e.g., a
“hypothesis-testing” gaze pattern, as shown by the eye-tracking data) to approach the task and

ACCEPTED MANUSCRIPT

achieve some level of self-regulation (Papavlasopoulou, Sharma, Giannakos & Jaccheri, 2017).
There are different ways to approach a problem, and it takes time to learn the necessary skills.
In our workshops, we used a visual programming tool (Scratch); one of the strengths of such
tools is that computational practices become less cognitively challenging (Kelleher & Pausch,
2005), so students can focus on problem solving and creative thinking (Lin & Liu, 2012). Even
with the use of such tools, during the coding process, cognitive load can be critical, as students
use the “bricolage” style by constantly experimenting and trying different patterns. Instructors
can help students to manage their learning and thinking and to adopt an effective approach to
coding. This is not a new practice, as previous studies with Logo have used precise instructions
for computational practices such as testing and debugging (Fay & Mayer, 1994) (Carver &
Mayer, 1988).

Cognitive effort, as shown in our study, is also linked with students’ behavioral and
emotional engagement because positive attitudes have an effect on their load management.
Students should be persistent, put effort in, and deal with difficulties; therefore, having positive
attitudes and keeping themselves motivated result in better management of their cognitive load
(Papavlasopoulou, Sharma & Giannakos 2018). In the same vein, Robertson and Howells
(2008) argue that the game design experience is a powerful learning environment that supports
motivation, engagement, and enthusiasm. Using a visual programming environment, students
can be introduced to programming concepts in a fun and useful way through a design activity,
making them highly motivated and positive towards coding (Giannakos & Jaccheri, 2018)
(Sáez-López et al., 2016).

Social engagement is important as students work in front of the computer and reflect on
their progress as a team, sharing the same goal to successfully create an artifact. Working as a
team, in our workshops, the students built a group identity and at the same time engaged in
social comparison with their peers. Students, especially novices to coding, usually have
difficulties with simple coding actions, from relating different commands together to
completing more-advanced actions, like debugging; collaboration helped the students in this
study to confront those difficulties. In a similar study with girls creating games, good
collaboration in debugging resulted in the girls being more persistent when coding on their own,
without help from the instructors (Denner, 2007). In the present study, helping each other and
sharing their challenges and successes were critical for our students, nurturing social
engagement and avoiding a sense of isolation. Collaboration and reflection lead to better
learning and powerful thinking. Reflection relates to their own learning experience or reflecting
on their peer’s code and actions. Previous studies have shown that students performed better
when they were working in pair programming (Lye & Koh, 2014) (Werner, Denner, Campe, &
Kawamoto, 2012); in a game-making study, when taking into account peers’ recommendations
and spending time applying these changes, girls produced higher-quality games (Robertson,
2012). Over time, the students in our workshops were able to understand more about coding
and became more behaviorally and emotionally engaged. They were able to reflect on the more-
complex aspects of their own thinking accordingly by making decisions and controlling the
outcomes. Students who are actively part of game-making activities strengthen their problem-
solving, critical thinking, and CT skills (Grover & Pea, 2013). During construction, students
have to investigate different strategies, negotiate and make decisions about possible solutions,

ACCEPTED MANUSCRIPT

confront problems, and organize their thoughts and actions (Bers, Flannery, Kazakoff, &
Sullivan, 2014).

One of the core aspects of a learning activity is the fact that the problem should be
meaningful to the learners. In our case, they constructed shared artifacts that mattered to them.
Different studies have used problems like designing games (Denner & Werner, 2007) or stories
(Burke, 2012). A “powerful idea” must be both personally and epistemologically useful to
ensure engagement. The students in our workshops saw themselves gaining a powerful quality
by organizing a new way of thinking, building on their previous knowledge and skills.
Nowadays, significant value is placed on transferable skills related to digital technology, as
they are vital for children’s role in the digital world and should be enhanced through activities
that are connected to their lives (Iversen, Smith, & Dindler, 2018). In constructionist learning,
students deal with difficulties, learn step by step to solve problems, develop belief in their skills,
and share ideas with peers (Çakır et al., 2017); (Chu et al., 2017). In our study, this was
confirmed: the students increased their sense of achievement, self-confidence, and self-efficacy.
At the end of the workshops, the students felt competent and proud of their achievements. After
the workshop, compared to the boys, the girls expressed lower self-efficacy (a belief in one’s
capacity to succeed in tasks), possibly due to the fact that most of them did not have any
previous experience with coding. A sense of self-efficacy is important and should be enhanced,
as it is related to cognitive strategies, effort, and persistence in learning environments (Bandura,
1997).

5.2 Principles to facilitate constructionism-based learning environments that
support children’s learning experience

In summary, we identified the following nine principles emerging from our DBR study,
which shed light on best practices in the design of coding activities for children based on
constructionism. The principles emerged represent the knowledge gained from the two years of
interventions and the comparative and retrospective analysis of the outcomes based also on the
literature:

1) Social interaction: Collaboration between team members is a vital part of coding
activities. It is essential to enhance this and to ensure that there is a sense of equality of effort,
involvement, and participation between team members and among teams.

2) Appropriate design according to age: Different age groups (teens and kids) need
different approaches and designs in order to engage with a coding activity. The instruction
should consider the characteristics of each age group. One example is to promote a focus on
functionality rather than graphics from the beginning of the activity to aid younger participants.
Instructors should ensure that children receive guidelines on where to focus their attention when
they code (such as commands and output in Scratch).

3) Duration of the activity: According to constructionism (Papert, 1980), when having
children use technological tools, duration is key for them to become personally, intellectually,
and emotionally involved. Workshops with longer hours can enable children to learn strategies,
gain technological skills, make connections with their own practices, and engage with coding,
helping to increase their knowledge.

ACCEPTED MANUSCRIPT

4) Relevance of the activity and meaningful content: Offering a supportive theme for the
artifact creation process, in which participants can meaningfully participate in real-life settings,
is a key factor supporting the psychological and sociocultural elements for effective learning.
Children become engaged and actively involved in the process of artifact creation when it is
meaningful for them and related to a real-life context.

5) Physical and digital artifacts: The results of the present study showed that the inclusion
of physical tasks was engaging and enabled the participants to enhance their skills. The initial
task of designing and drawing in the traditional way (using pen and paper, as well as other
tangible materials) immediately put players into action and created a physical and emotional
peak in the process.

6) Children’s attitudes and motivation: The learning process should be supported by
providing tasks that encourage children to reflect, motivate them to collaborate, and give them
meaningful reasons to complete their artifacts. In this vein, Papert (1980, p. 42) highlighted a
resemblance with juggling: “in a learning environment with the proper emotional and
intellectual support, the ‘uncoordinated’ can learn circus arts like juggling and those with ‘no
head for figures’ learn not only that they can do mathematics but that they can enjoy it as well.”

7) Cognitive overload: Coding activities for children can have a high cognitive load,
which affects their performance and overall experience with the tasks. Proper organization and
integration of the learning materials, with a coherent representation and instruction of the
related digital tools, tasks, and activities, are required to avoid unnecessary streams of
information and cognitive overload.

8) Appropriate tasks: To effectively implement a coding workshop, the tasks should make
the children both interested and able to learn. The process should afford participants the
opportunity to apply aspects of problem solving, coding, debugging, collaborating, planning,
communicating, and reflecting on their work. The tasks should support children’s and
instructors’ ability to work through the process of creating an artifact and benefit from an
appropriate sequence of tasks that allows the maximum use of their abilities. The proposed
tasks are: 1) a warm-up activity and an inspiring introduction, 2) explore/design, 3)
construct/create the digital artifact, and 4) evaluate / get feedback from peers, all alongside
collaborating with team members and receiving support from assistants/instructors.

9) Meaningful framework for the involvement of the instructors: In the construction of an
artifact, children are not alone: practitioners (e.g., teachers and assistants) and anyone else who
is responsible for the learning task are also involved. Therefore, they should strive to create
more-articulate and -honest teaching relationships. Working with digital tools allows the
teacher and the learner to share a common goal by trying to get the computer to do what they
want and trying to understand what it does. As they create the artifact and encounter “bugs”,
children engage in conversations and develop the appropriate language to ask for help when
they need it. As each artifact process is unique, new situations might occur that neither the
teacher nor the learner has faced before. So, the teacher should be dynamically involved in the
creation and the discussions that occur. In that way, there is an opportunity to find new ways to
explain and show in real time the concepts needed to the children. As noted by Papert (Papert,

ACCEPTED MANUSCRIPT

1980): “sharing the problem and the experience of solving it allows a child to learn from an
adult not ‘by doing what teacher says’ but ‘by doing what teacher does.’”

6. Limitations
This study had some limitations. First, our workshops were designed for children who

had no previous experience of coding. The participants were randomly selected; therefore, the
sample was not consistent in terms of the children’s prior knowledge and interaction with
coding. Even though we had an indication in our data collection to measure the children’s
previous knowledge, we could have used other methods to be more accurate. Second, the factors
that might affect children’s self-perceptions are much more complex than we might assume.
Third, although the participants of the third cycle were committed for the two days’ workshop
and gave us high quality data, the sample is not large; this is due to unexpected matters from
the participants’ side prior to the scheduled dates of the workshop. In addition, the age range of
the students in the study is big (8-17), maybe, focusing on a smaller range would have given a
different perspective. Demographic variables and other characteristics (cognitive and
motivational) that distinguish them from the rest of the population could have confounded the
findings. Artifacts like games might be imperfect examples of what children learn, especially
when they receive help during the process. Despite the fact that we observed the teams and
made notes on the help they received, we might have underestimated or overestimated their
understanding of programming concepts.

In addition, limitations due to the types of data collection methods and instruments used
apply in our case. One limitation related to the eye tracking: the young age of the participants,
their enthusiasm during the activities, and the fact that eye trackers are designed for adults made
it difficult to gather good-quality data. Moreover, this project used Scratch as a programming
environment for the development of the artifact: another technological tool might have had a
different impact on the children’s experience. Our choice was based on our literature review
and the acknowledged benefits of this programming environment, which has been widely used
over the last few years. Although we tried to apply all aspects of the DBR methodology in our
study, showing the relationship between theory and practice (of the artifact construction
activity), there were still some limitations. The data were extensive and comprehensive,
requiring extended time for collection and analysis; consequently, because time and resources
were limited, some data might have been discarded or received less attention. Lastly, we defined
in detail the setting of our study and how theory was linked with the context; by default, this
has a bias, as it presents our own understanding of contextualizing the theory.

7. Future work
Future research should further explore gender differences. Although the main focus of

our study was not to investigate gender differences in the process of creating an artifact, we
found that girls like to make different type games from boys, in terms of both content
(story/purpose of the game) and elements (colors and main character), and tend to handle the
process slightly differently. In addition, future plans should include conducting our coding
workshops in school settings to explore their effects under a traditional teaching approach.
Among other aspects, researchers could explore the correlations with students’ performance in
the form of grades. Finally, in terms of theory, it would be interesting to see more studies in the

ACCEPTED MANUSCRIPT

area that ground their findings in constructionism. This would bring together researchers in the
same area to build a common ground regarding outcomes.

References:

Anderson, T. (2005). Design-based research and its application to a call centre innovation in
distance education. Canadian Journal of Learning and Technology/La revue
canadienne de l’apprentissage et de la technologie, 31(2).

Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in
education research? Educational Researcher, 41(1), 16-25.

Bandura, A. (1997). Self-efficacy: The exercise of control: Macmillan.
Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The

Journal of the learning sciences, 13(1), 1-14.
Bers, M. U. (2010). Beyond computer literacy: Supporting youth's positive development

through technology. New Directions for Student Leadership, 2010(128), 13-23.
Bers, M. U. (2012). Designing digital experiences for positive youth development: From

playpen to playground: Oxford University Press.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking

and tinkering: Exploration of an early childhood robotics curriculum. Computers &
Education, 72, 145-157.

Bonner, D., & Dorneich, M. (2016). Developing game-based learning requirements to
increase female middle school students interest in computer science. Paper presented
at the Proceedings of the human factors and ergonomics society annual meeting.

Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A. (2008). The LilyPad Arduino: using
computational textiles to investigate engagement, aesthetics, and diversity in computer
science education. Paper presented at the Proceedings of the SIGCHI conference on
Human factors in computing systems.

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the
middle school classroom. Journal of Media Literacy Education, 4(2), 121-135.

Çakır, N. A., Gass, A., Foster, A., & Lee, F. J. (2017). Development of a game-design
workshop to promote young girls' interest towards computing through identity
exploration. Computers & Education, 108, 115-130.

Carver, S., & Mayer, R. (1988). Learning and transfer of debugging skills: Applying task
analysis to curriculum design and assessment. Teaching and Learning Computer
Programming: Multiple Research Perspectives. RE Mayer. Hillsdale, NJ, Lawrence
Erlbaum Associates, 259-297.

Chu, S. L., Schlegel, R., Quek, F., Christy, A., & Chen, K. (2017). 'I Make, Therefore I Am':
The Effects of Curriculum-Aligned Making on Children's Self-Identity. Paper
presented at the Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems.

Collective, D.-B. R. (2003). Design-based research: An emerging paradigm for educational
inquiry. Educational Researcher, 32(1), 5-8.

Collins, A. (1992). Toward a design science of education. In New directions in educational
technology (pp. 15-22): Springer.

Denner, J. (2007). The Girls Creating Games Program: An innovative approach to integrating
technology into middle school. Meridian: A Middle School Computer Technologies
Journal, 1(10).

Denner, J., & Werner, L. (2007). Computer programming in middle school: How pairs
respond to challenges. Journal of Educational Computing Research, 37(2), 131-150.

ACCEPTED MANUSCRIPT

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls:
Can they be used to measure understanding of computer science concepts? Computers
& Education, 58(1), 240-249. doi:10.1016/j.compedu.2011.08.006

Eordanidis, S., Gee, E., & Carmichael, G. (2017). The effectiveness of pairing analog and
digital games to teach computer science principles to female youth. Journal of
Computing Sciences in colleges, 32(3), 12-19.

Esper, S., Foster, S. R., Griswold, W. G., Herrera, C., & Snyder, W. (2014). CodeSpells:
bridging educational language features with industry-standard languages. Paper
presented at the Proceedings of the 14th Koli Calling International Conference on
Computing Education Research.

Fay, A. L., & Mayer, R. E. (1994). Benefits of teaching design skills before teaching logo
computer programming: Evidence for syntax-independent learning. Journal of
Educational Computing Research, 11(3), 187-210.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old
kindergarten children in a computer programming environment: A case study.
Computers & Education, 63, 87-97. doi:10.1016/j.compedu.2012.11.016

Fields, D., Vasudevan, V., & Kafai, Y. B. (2015). The programmers’ collective: fostering
participatory culture by making music videos in a high school Scratch coding
workshop. Interactive Learning Environments, 23(5), 613-633.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of
the concept, state of the evidence. Review of educational research, 74(1), 59-109.

Gallup, G. a. (2015). Searching for computer science: Access and barriers in U.S. K–12
education. .

Giannakos, M. N., & Jaccheri, L. (2018). From players to makers: An empirical examination
of factors that affect creative game development. International Journal of Child-
Computer Interaction.

Granic, I., Lobel, A., & Engels, R. C. (2014). The benefits of playing video games. American
psychologist, 69(1), 66.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State of the
Field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer science education,
25(2), 199-237.

Guzdial, M. (2004). Programming environments for novices. Computer science education
research, 2004, 127-154.

Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in
technology-mediated learning: A review. Computers & Education, 90, 36-53.

Horizon, M. (October 5, 2015). Horizon Media study reveals Americans prioritize STEM
subjects over the arts; science is “cool,” coding is new literacy. PR Newswire. .
Retrieved from http://www.prnewswire.com/news-releases/horizon-mediastudy-
reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-
new-literacy-300154137.html.

Hubwieser, P., Armoni, M., Giannakos, M. N., & Mittermeir, R. T. (2014). Perspectives and
visions of computer science education in primary and secondary (K-12) Schools. ACM
Transactions on Computing Education (TOCE), 14(2), 7.

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., . . .
Jasute, E. (2015). A global snapshot of computer science education in K-12 schools.
Paper presented at the Proceedings of the 2015 ITiCSE on Working Group Reports.

http://www.prnewswire.com/news-releases/horizon-mediastudy-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.prnewswire.com/news-releases/horizon-mediastudy-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
http://www.prnewswire.com/news-releases/horizon-mediastudy-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html

ACCEPTED MANUSCRIPT

Iversen, O. S., Smith, R. C., & Dindler, C. (2018). From Computational Thinking to
Computational Empowerment: A 21st Century PD Agenda. Paper presented at the
Participatory Design Conference.

Jones, S. P. (2013). Computing at school in the UK. http://research.microsoft.com/en-
us/um/people/simonpj/papers/cas/computingatschoolcacm.pdf.

Kafai, Y. B. (2006). Playing and making games for learning: Instructionist and constructionist
perspectives for game studies. Games and culture, 1(1), 36-40.

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of
making games for learning. Educational psychologist, 50(4), 313-334.
doi:10.1080/00461520.2015.1124022

Kafai, Y. B., & Kafai, Y. B. (1995). Minds in play: Computer game design as a context for
children's learning: Routledge.

Kafai, Y. B., & Resnick, M. (2012). Introduction. In Constructionism in practice (pp. 13-20):
Routledge.

Kafai, Y. B., & Vasudevan, V. (2015). Constructionist gaming beyond the screen: Middle
school students' crafting and computing of touchpads, board games, and controllers.
Paper presented at the Proceedings of the Workshop in Primary and Secondary
Computing Education.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code.
org. Computers in Human Behavior, 52, 200-210.

Kao, D., & Harrell, D. F. (2017). MazeStar: a platform for studying virtual identity and
computer science education. Paper presented at the Proceedings of the 12th
International Conference on the Foundations of Digital Games.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83-137.

Lin, J. M.-C., & Liu, S.-F. (2012). An investigation into parent-child collaboration in learning
computer programming. Journal of Educational Technology & Society, 15(1).

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51-61.

Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and
software solution.

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017a). Empirical studies on the
Maker Movement, a promising approach to learning: A literature review.
Entertainment Computing, 18, 57-78. doi:10.1016/j.entcom.2016.09.002

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017b). Reviewing the affordances of
tangible programming languages: Implications for design and practice. Paper
presented at the Global Engineering Education Conference (EDUCON), 2017 IEEE.

Papavlasopoulou, S., Sharma, K., Giannakos, M., & Jaccheri, L. (2017). Using Eye-Tracking
to Unveil Differences Between Kids and Teens in Coding Activities. Paper presented at
the Proceedings of the 2017 Conference on Interaction Design and Children.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas: Basic Books, Inc.
Papert, S. (1993). The children's machine: Rethinking school in the age of the computer:

ERIC.
Papert, S. (1997). Why School Reform is Impossible (with Commentary on O'Shea's and

Koschmann's Reviews of" The Children's Machine"). In: JSTOR.
Parmaxi, A., & Zaphiris, P. (2015). Developing a framework for social technologies in

learning via design-based research. Educational Media International, 52(1), 33-46.

http://research.microsoft.com/en-

ACCEPTED MANUSCRIPT

Parmaxi, A., Zaphiris, P., & Ioannou, A. (2016). Enacting artifact-based activities for social
technologies in language learning using a design-based research approach. Computers
in Human Behavior, 63, 556-567.

Reeves, T. (2006). Design research from a technology perspective. In Educational design
research (pp. 64-78): Routledge.

Resnick, M. (2007). All I really need to know (about creative thinking) I learned (by studying
how children learn) in kindergarten. Paper presented at the Proceedings of the 6th
ACM SIGCHI conference on Creativity & cognition.

Robertson, J. (2012). Making games in the classroom: Benefits and gender concerns.
Computers & Education, 59(2), 385-398. doi:10.1016/j.compedu.2011.12.020

Robertson, J. (2013). The influence of a game-making project on male and female learners’
attitudes to computing. Computer science education, 23(1), 58-83.

Robertson, J., & Howells, C. (2008). Computer game design: Opportunities for successful
learning. Computers & Education, 50(2), 559-578.

Ruggiero, D., & Green, L. (2017). Problem solving through digital game design: A
quantitative content analysis. Computers in Human Behavior, 73, 28-37.

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case
study using “Scratch” in five schools. Computers & Education, 97, 129-141.
doi:10.1016/j.compedu.2016.03.003

Saldaña, J. (2015). The coding manual for qualitative researchers: Sage.
Schmitz, B., Klemke, R., Walhout, J., & Specht, M. (2015). Attuning a mobile simulation

game for school children using a design-based research approach. Computers &
Education, 81, 35-48.

Stewart-Gardiner, C., Carmichael, G., Latham, J., Lozano, N., & Greene, J. L. (2013).
Influencing middle school girls to study computer science through educational
computer games. Journal of Computing Sciences in colleges, 28(6), 90-97.

Sung, H.-Y., & Hwang, G.-J. (2013). A collaborative game-based learning approach to
improving students' learning performance in science courses. Computers & Education,
63, 43-51.

Teague, J. (2002). Women in computing: What brings them to it, what keeps them in it? ACM
SIGCSE Bulletin, 34(2), 147-158.

Tuhkala, A., Wagner, M.-L., Nielsen, N., Iversen, O. S., & Kärkkäinen, T. (2018).
Technology Comprehension: Scaling Making into a National Discipline. Paper
presented at the Proceedings of the Conference on Creativity and Making in
Education.

Turner, J. C., Christensen, A., Kackar-Cam, H. Z., Trucano, M., & Fulmer, S. M. (2014).
Enhancing students’ engagement: Report of a 3-year intervention with middle school
teachers. American Educational Research Journal, 51(6), 1195-1226.

Wagner, A., Gray, J., Corley, J., & Wolber, D. (2013). Using app inventor in a K-12 summer
camp. Paper presented at the Proceeding of the 44th ACM technical symposium on
Computer science education.

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced
learning environments. Educational Technology Research and Development, 53(4), 5-
23.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance
assessment: measuring computational thinking in middle school. Paper presented at
the Proceedings of the 43rd ACM technical symposium on Computer Science
Education.

ACCEPTED MANUSCRIPT

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren
to programming. Proceedings of the 22nd Annual Psychology of Programming
Interest Group (Universidad Carlos III de Madrid, Leganés, Spain.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
Zhang, J. X., Liu, L., de Pablos, P. O., & She, J. (2014). The auxiliary role of information

technology in teaching: Enhancing programming course using Alice. International
Journal of Engineering Education, 30(3), 560-565.

ACCEPTED MANUSCRIPT

Acknowledgements The authors would like to express their gratitude to all of the children,
teachers and parents for volunteering their time. Our very special thanks go to Kshitij Sharma,
Uyen Dan Nguyen, Kristin Susanne Karlsen, Ioannis Leftheriotis, Amanda Jørgine Haug, Lidia
Luque Fernandez, An Nguyen, Ton Mangmee, Marjeris Sofia Romero, Eline Stenwig and
Kristoffer Venæs Monsen. The project has been recommended by the Data Protection Official
for Research, Norwegian Social Science Data Services (NSD), following all the regulations and
recommendations for research with children.

This work was funded by the Norwegian Research Council under the projects FUTURE
LEARNING (number: 255129/H20), CoMnPlay Science (number: 787476/H20) and by
NOKUT under the Centre for Excellent IT Education (Excited) (number: 16/02049).

ACCEPTED MANUSCRIPT

Highlights:

 Design-based research approach to investigate constructionism-based coding
activities for children

 Identify elements of children’s engagement in constructionism-based coding activities
 Theoretical grounding of the findings on constructionism theory
 Instructional design principles to facilitate constructionism-based coding activities for

children

