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a b s t r a c t 

Task offloading plays a critical role in cloud networked multi-robot systems for leveraging computation 

support from cloud infrastructure and benefiting greatly from the well-developed cloud network facili- 

ties. However, considering the delay constraint, the extra costs of data transmission and remote compu- 

tation, it is not trivial to make optimized offloading decisions. In particular, task offloading for robots is 

more complex due to their on-demand mobility and network connectivity that significantly influence the 

robot–cloud communication links. Moreover, for multi-robot systems, a suitable balance of workload be- 

tween local network (robot–robot) and global cloud (robot–cloud) is also required, so as to attain proper 

utilization of resources. Therefore, it is essential to establish more comprehensive offloading schemes for 

modeling systems that can handle these higher level of complications. With that view, this paper aims 

to develop a novel multi-layer decision-making scheme for task offloading which jointly considers the 

following four aspects: (i) selection of task for offloading, (ii) selection of robot to offload a task, (iii) se- 

lection of location to offload/perform task, (iv) selection of access point for offloaded task. An integrated 

framework for cloud networked multi-robot systems is presented to enable our task offloading scheme 

where the primary robot can aid from additional local robots to improve the offloading process. In par- 

ticular, we consider a warehouse scenario with 36 cell workspace where a 40 node taskflow is motivated 

from a “parcel sorting and distribution” application, to be completed by the primary robot. The offloading 

decision for each task is formulated as part of a joint optimization problem and it is solved by develop- 

ing a multi-layer genetic algorithm scheme that takes into account motion, network connectivity and 

local sharing for its offloading decisions. We evaluate the results of the scheme via comparison with two 

validated benchmarks. The outcome highlights a significant improvement in overall system performance 

due to joint involvement of motion (path planning), connectivity (bandwidth estimation) and robot–robot 

communication (local offloading) that facilitates energy-efficient offloading to cloud, faster completion of 

tasks and better utilization of available resources. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The widespread innovation in robotic technology and subse-

uent increase in their computing capabilities are enabling their

sage in different areas of modern society. Especially, in the indus-

rial realm, the technical advancement in wireless network tech-
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ology [1] , Internet of Things (IoT) [2] and artificial intelligence

ave given rise to more progressive networked robotic applica-

ions that moves beyond their traditional deployment in produc-

ion lines and deals with new challenges of industrial applications

uch as negotiation based decision-making, dynamic environmen-

al disruptions, human–machine interaction and more personalized

onsumption demands etc. To combat all the complexity and diver-

ity that it brings, significant hardware and software advancements

re required for the robotic infrastructure. Unfortunately, there are

till several limitation in the ways a robot hardware can actually

e used or upgraded due to economical and functional constraints.

s for the software advancements, this is where “cloud networked
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robotics” has made its mark. The introduction of cloud networked

multi-robot system has merged the two ever-progressing domains

of networked robotics and cloud computing. The added feature of

cloud implies less dependence on human input and more support

from ubiquitous resources [3] (i.e., computation, storage, crowd-

sourcing etc.). Therefore, most cloud aided multi-robot applica-

tions now-a-days generally operate with cooperative control that

adopts decentralized approach to avoid a single point of failure

and perform tasks with reduced energy consumption with lesser

time/delay. 

Prime examples of multi-robot in Industry 4.0 applications

include: material handling [4] , assembly line [5] , warehouse

maintenance, cooperative navigation [6] etc. All these applications

require automated robot coordination as well as distributed com-

puting, which matches the scope of the fourth industrial revolution

(i.e., Industry 4.0). The integration of cloud network adds another

dimension in this context that has the potential of contributing

in task completion and making the performance smoother. But it

takes place at the expense of complicating the decision-making

process, as a proper balance of workload is required between the

cloud infrastructure and the heterogeneous robotic units. More

specifically, in industrial sector, most of the industrial applica-

tions now-a-days have demand for automated and customized

services that can deal with personalized consumption demands.

This calls for more dynamic applications with sophisticated capa-

bilities that can deal with computation-heavy task requests and

utilize its resources to the fullest. Hence the implementation of

cloud networked multi-robot system presents itself as the perfect

fit. One of the most common and well-studied industrial robotic

applications is “Warehouse Logistics” where customized ordered

parcels are traditionally sorted and distributed with the help of

human labor and support from heavy machineries. For smart

factories though, the inclusion of interactive cloud-aided robots

with advanced communication technology produces a shift in the

modes of applications from carrying out repetitive tasks towards

performing dynamic tasks that requires robots to solve complex

multi-objective problems, thus playing a pivotal role in design and

management of smart warehouses. 

There have been numerous studies for multi-robot platforms on

the design of automatic warehouses [7] , its multi-robot functions

(e.g., task assignment [8] , coordination, path planning [6] , speed

improvement) as well as its various range of applications (such as

disaster management [9] , automated order processing [10] , assem-

bly cell control [11] etc.). As for cloud networked robot systems,

some notable studies have focused on manufacturing applications

[4] , maintenance related tasks [12] and computer vision. In recent

past, several studies have emphasized on cloud–robot collaborative

aspects of industrial applications including cloud-assisted negoti-

ation technique with industrial robots [13] , localization through

deep learning with cloud support [14] and development of novel

green software evaluation model for energy minimization [15] .

However, cloud-aided automated robotic approaches for ware-

house logistics and studies related to that are few and far between

[4] . Some conceptual work by Bonkenburg has suggested the pos-

sible ways where robots can be used in the environment of smart

warehouses [16] . Our work is partially motivated by this concept,

where we consider a warehouse application for automated parcel

sorting and distribution. However, the emphasis on our work

is on the integrated framework for task offloading that enables

communication between the robotic network and cloud for the

offloading based decision-making, proper allocation of tasks and

transfer of information among resources. This motivates our for-

mulation of a joint optimization problem where task offloading

decisions are presented as an allocation problem, to be solved by

a novel genetic algorithm (GA) based multi-layer decision-making

scheme. 
For Multi-Robot Task Allocation (MRTA) optimization prob-

ems, the notable current studies center on various algorithms

e.g., heuristic [17] , timed automata model [18] , market based ap-

roach, swarm intelligence [19] , task-grouped improved static al-

ocation algorithm, decentralized approach [20] etc.) that perform

uccessfully in solving optimization problems. However, all these

pproaches mostly focus on one single variable (task/robot/path

lanning/ allocation) to tackle the problem. In order to keep up

ith the rapid increase in technology and handle more complex

ystems, the progressive approach is to prepare more rigid and

omprehensive techniques with interdependent parameters, which

eads us to our work where we have considered four variables

task offloading, robot selection for offloading, path selection and

ccess point selection) as part of a multi-layer decision-making set.

Firstly, task offloading is one of the major benefits of cloud

omputing where computation-heavy and resource hungry tasks

re migrated to a remote yet powerful cloud server for execution

21] . Since the ubiquitous resources of cloud can be rapidly pro-

isioned and released with minimal service provider interaction

r management effort, therefore cloud computing allows energy-

onstraint robot to offload a portion of the computation to cloud in

rder to potentially reduce execution time and energy. The key de-

ision here is to identify the appropriate tasks to offload, as it may

epend on the constraints as well as the type of tasks and objec-

ive of the application. In addition to that, the task offloading deci-

ions are also heavily influenced by two critical factors that impact

he robot’s communication with the cloud. They are: mobility and

andwidth. 

The mobility of the robot relates to the path it selects for move-

ent. The term “path planning” has numerous meanings depend-

ng on which field it is used. In robotics, path planning concerns

ith the problem as how to move a robot between multiple points

22] . This involves motion-planning, trajectory mapping and plan-

ing under uncertain environments. Through path planning, the

obot can find a route from the beginning to the destination in

rder to meet certain evaluation criteria; while avoiding static as

ell as dynamic obstacles. This creates opportunities for dynamic

nd complex robotic operations that includes motion-aware move-

ent and target oriented decision-making. The access point (AP)

election on the other hand, directly relates to the concept of

andwidth assessment. The proliferation of wireless access tech-

ologies offers users the possibility to choose among multiple net-

orks based on the available bandwidth [23] . Users can gain the

est connectivity (bandwidth) based on their selection of AP. How-

ver, complexity arises because bandwidth is dependent on sev-

ral parameters such as location, availability and number of users,

hich makes the process intricate. 

Since task offloading is dependent on communication with the

loud, it requires Internet availability. Depending on the location

f robot and the selection of AP, a robot can gain access to the

vailable bandwidth, which in turn may impact the offloading

rocess of the robot. In this way, it is quite clear that task of-

oading, path planning and AP selection are interdependent that

llows robot to plan their path and select the communication

ink while accommodating the offloading decisions. This leads

s to our current work which is motivated from Rahman et al.,

24,25] , where all three parameters were considered as part of a

-layer joint optimization for a single robot application. Here the

oncept of a motion and connectivity aware offloading for a single

obot was presented by integrating three key optimal decisions

e.g., offloading, task location and AP selection) for each task that

mprove system performance by optimally offloading tasks to the

loud. Contrary to that work, our approach in this work is for

 multi-robot application. In addition to motion and connectiv-

ty, we simultaneously focus on two additional key issues: (i)

ocal resource sharing (robot–robot), (ii) offloading to the cloud
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Fig. 1. Framework for task offloading in cloud networked multi-robot systems. 
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robot–cloud). The added feature of local sharing among the multi-

obots has the potential of further minimizing the system energy

y distributing the principle robot’s workload to other available

obots either for computational support or help with offloading to

he cloud. Therefore our method in this paper considers four layers

e.g., task offloading, robot selection for offloading, task location

nd AP selection) of decision-making for each task. We believe, by

tilizing the other available robots from the multi-robot systems,

he offloading process can be further fastened which can lead

o successful task completion with lesser consumption of energy

s well as enhancement of the system performance. A thorough

imulation has been run later in the paper and the results between

he two above mentioned methods have been compared in order

o highlight the benefits of our approach. 

The application we consider for simulation in this work is

ased on a warehouse parcel sorting and distribution process, for

hich we have presented an application taskflow (DAG) detailing

ll the steps. We also formulated a four-layer joint optimization

roblem with the objective of minimizing the overall robot energy.

e then implemented an evolutionary GA based scheme with

 novel 4-layer chromosome/solution for minimizing the overall

ystem energy by identifying the following key decisions: (i)

hich task to allocate to robot and which task to offload to the

loud, (ii) which robot would offload the task to the cloud, (iii)

hich location to complete a task and (iv) which access point (AP)

o select for offloading a particular task. The simulation results

uggest that the implementation of our GA based scheme helps

dentify near-optimal solutions and in-turn improves the overall

ystem performance for cloud networked multi-robot applications.

he contribution of this paper is listed as follows: 

• To present an integrated framework for task offloading in cloud

networked multi-robot systems. 

• To formulate a joint-optimization problem based on the ware-

house parcel sorting and distribution application with a novel

4-layer variable (task offloading, robot selection for offloading,

path planning, AP selection) to minimize energy. 

• To develop a multi-layer genetic algorithm (GA) based decision-

making scheme for task offloading in order to solve the joint

optimization problem. 

• To compare the results of our approach with two validated

benchmarks [24] and show the benefits of cloud based task of-

floading via multiple robots on overall system performance. 

The rest of the paper is prepared as follows. Section 2 describes

ur integrated framework for task offloading in a cloud networked

ulti-robot system. This leads to the description of our task of-

oading scheme in multi-robot systems that considers motion and

onnectivity as part of its decision-making. Later in Section 3 , we

resent a cast study for an automated warehouse parcel sorting

nd distribution application. This leads us to our problem formula-

ion for joint optimization in the next section and the development

f our 4-layer GA based decision-making scheme for task offload-

ng in Section 5 . Finally, thorough simulation is run to analyze and

ompare the results of the decision-making scheme with respect to

wo validated benchmarks before finishing the paper in Section 7 . 

. An integrated framework for robotic task offloading 

In this section, we present the components of an integrated

ramework for robots task offloading. Now-a-days, the integration

f machine learning in IoT enabled sensors and computation sup-

ort from the cloud infrastructure has empowered multi-robot sys-

ems to provide on-demand service for a vast range of automated

ndustrial applications [26] with increased efficiency for environ-

ental monitoring, upgraded supply chains, reduced waste, more
afety and improved speed of smart factory environment. This mo-

ivates our four-tier task offloading framework for cloud networked

ulti-robot system ( Fig. 1 ). The components are: (i) physical layer

onsisting of robots and sensors, (ii) network layer with APs, (iii)

loud infrastructure, and (iv) supervisory control center overview-

ng the application. Given the autonomous nature of the applica-

ion, robots independently perform task related actions and are

ereby the core component. As part of this framework, robots and

ensors can communicate with each other and the cloud by shar-

ng a common set of knowledge/information and negotiating ac-

ording to a common set of rules. Thus it results in a highly smart

nd flexible framework that is self- organized and reconfigurable

n nature. More details on components of the framework is given

s follows: 

.1. Physical layer 

The industrial physical layer consists of two components: wire-

ess sensor network and robotic agents. The wireless sensor net-

ork (WSN) consists of low-cost and limited-energy smart sensor

evices embedded in machines that can communicate with each

ther and collect as well as analyze raw data necessary for appli-

ation specific tasks. The sensors provide directive information to

he robot through cloud by using APs. Based on that, several ana-

ytical computation is done and task is assigned to robots for visit-

ng locations and performing tasks that are allocated to them. Here

achine learning in sensors help them to identify key situations

uch as suggest modifications or requirements for actions that can

e performed by robots. 

The robots are the critical element that can perform actu-

tion and help complete the tasks. Depending on the type of

pplication, the robots possesses the ability to share its work-

oad with the cloud by offloading to the cloud for additional

upport. Robots may also get guidance provided by the super-

isory control center through the cloud. Based on all of that,

asks are shared between robotic and cloud resources. As robots

ossess the distinctive attribute of mobility, they can plan their

oute in accordance and hence choose the suitable communi-

ation platform to access the cloud while moving. As a result,

t gains the best available bandwidth for offloading tasks to

loud. Thus robots offloading with motion and connectivity

s part of its decision-making can help improve communica-

ion with the cloud. Finally, robots can also form their own

ocal ad-hoc network to communicate and share information

mong each other as well as assist with sending tasks to cloud.
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Fig. 2. Task offloading process with collective consideration for motion, connectiv- 

ity and local sharing. 
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Thus the framework allows robots to utilize its surrounding

local resources (available robots) and cloud based resources (vir-

tual machine) to share workload as part of a fluid communication

model with cloud. In the context of our work, there is a pri-

mary robot in-charge of the application and may incorporate other

available robots to aid with offloading, thus making it multi-robots.

2.2. Network layer 

The industrial network layer consists of access points (AP) that

enable the robotic and sensor network to communicate with each

other. It also bridges the gap between cloud services and the physi-

cal layer components for data collection and uploading. In this con-

text the AP is defined as a smart device with Internet capabilities

that helps robot access the infrastructure of the cloud. As there are

multiple APs, therefore the robots can gain different stream rates

for communication depending on its location and choice of AP, in

accordance with protocol IEEE 802.11 WLANs. It means, the band-

width received by a robot may vary depending on the location it

offloads tasks from or the robot that is offloading or the AP it is

selecting. Thus the tangible network layer enables the in-tangible

information to flow freely by integrating the physical components

and information entities. More details about the communication

bandwidth for task offloading is provided later in the paper. 

2.3. Cloud infrastructure layer 

Cloud infrastructure refers to hardware and software compo-

nents such as servers, storage and virtualization software that are

needed to support the computing requirements of the application.

It includes an abstraction layer that virtualizes resources and

logically presents them to users through application program

interfaces and API-enabled command-line or graphical interfaces.

The organization of cloud typically consists of virtual machines

(VM) with shared power that provide functionality needed to

execute the entire high-density operating systems and requires

massive computational capacity to handle unpredictable and

complex user (robot) demands. Some of the notable cloud service

providers are: Mendix, Google App Engine, Amazon Web Services

etc. In the context of our work, cloud services mainly refer to

the VMs that virtualize computing resources as the back-end

components and perform on-demand computational support

(for offloaded task), data storage (data collected from sensors),

analytics (decision-making, verification) to aid local robots. 

2.4. Supervisory control layer 

The supervisory control layer allows networked robots to be

guided/monitored by humans remotely through the cloud infras-

tructure. Here the information collected from sensors and action

reports performed by robots are passed on to cloud and made

available for users to monitor through control terminals. As a

result, physical layer can communicate with users/engineers in

remote locations when required. In addition, possible big data

analytics can also provide various statistical results to the users for

the purpose of supervisory control and the users can verify/adjust

system configuration accordingly. In large industrial operations,

this two-way communication allows remote engineers to monitor

the robots and maintain the performance of applications. 

Based on our framework, we propose a task offloading scheme

that collectively considers aspects of motion and connectivity for

its offloading decision-making in a cloud networked multi-robot

application (as seen in Fig. 2 ). It exploits the inter-relation between

offloading, path planning, network bandwidth and local robot–

robot (R–R) sharing. As mobile robots can move on demand, it can

go to intended locations and perform action-based tasks. Due to
nclusion of cloud, robot can gain computation support for analyt-

cal tasks. In case of offloading, mobile robots also has the oppor-

unity of choosing locations to offload tasks. Since different loca-

ions have different stream rate (bit rate) to the APs, the selection

f AP and the choice of location interdependently influence the

vailable bandwidth for robot’s cloud based communication. In this

ay, task offloading to the cloud for robotic agents is heavily de-

endent on its decision-making that considers motion and connec-

ivity issues. Moreover for multi-robot systems, there is an added

imension of local robot–robot communication, which makes the

rocess more complicated, but trades off in terms of better offload-

ng through support from local robots. Hence, offloading scheme

or cloud networked multi-robot system is divided into two types

epending on the respective decision of offloading for each task. 

• Cloud based task offloading (robot–cloud) 

Depending on the allocation, when a task is selected to be of-

oaded to the cloud, the robot needs to communicate with cloud

nfrastructure via network layer APs ( Fig. 2 ). In such cases, the fol-

owing decisions are considered: a) which task to offload, b) which

obot to offload, c) which location to offload from, d) which access

oint to select for offloading. 

• Local task offloading (robot–robot) 

Local task offloading can occur in two scenarios. When a task is

ffloaded to the cloud, the choice of a separate robot (other than

he primary robot) from previous tasks enables local offloading

robot–robot). The secondary robot collects task related informa-

ion from the primary robot and then transfers that to cloud. This

ay happen when the primary robot has parallel tasks to com-

lete or the secondary robot is in a better location to offload to

he cloud. As for the case when tasks are not offloaded, they take

lace on-board of a fix robot or are locally offloaded to another

obot. This also requires primary robots to share information with

he other robots after one task is finished. As robots can form lo-

al networks in an ad-hoc manner, therefore the robots use this

o transfer information to nearby other available robots (within

ange) for task completion. Here primary robot is in-charge of the

ecision-making ( Fig. 2 ), which may include: a) which task to take
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Fig. 3. Floor schematic of a smart warehouse environment. 
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lace on a robot, b) which robot to complete the task, c) weather to

ocally offload task to another robot. 

. A use case for our framework: warehouse management 

Following first 3 revolutions of “Mechanization”, “Mass Produc-

ion” and “Digitization”, industrial sector is currently going through

 fourth revolution in which emerging autonomous technologies

re transforming traditional factories into smart factories for Indus-

ry 4.0 [27] applications. The impact of such advancement is being

eflected in the warehouse applications as well, where more oper-

tions are now moving towards running with automation support.

ccording to recent reports, around 15% of current warehouses are

echanized. Even though 5% of the warehouses are automated,

ost of them are typically mechanized environment that still em-

loy people in key functions. It suggests that there is room for

mplementation of automated components i.e. , robotic agents. In

act, employment of robots in the warehouse management can be

raced back to early 90s, where the approach initially started with

eleoperation and later upgraded to automation. Having evolved

ith time, it has now reached the age of cloud networked robotics,
here cloud computing in robotic applications has made signifi-

ant mark in the industrial realm by enhancing operations of the

obots via on-demand computation and storage support. 

Through current efforts of IoT in smart warehouses with the in-

lusion of cloud-enabled robots, opportunity for innovation arises

hrough the integration of networked robotic systems, IoT enabled

ensors and the cloud infrastructure for intelligent perception

nd on-demand shared resources [26] . Such implementation has

esulted in several automated warehouse applications for material

andling including conveyers, sorters, goods to picker solution and

ther mechanized equipment that has potential to improve the

roductivity of existing workforce [16] . In this context of our appli-

ation, a pool of wireless sensors are deployed in static warehouse

achineries (e.g., goods packing, labeling etc.) for data collection

nd environmental monitoring in order to develop a common

perating picture (COP). These sensors are complemented by sev-

ral dynamic robots that move on-demand to perform object pick

p, delivery and drop-off. The integration of these cyber physical

ystems and wireless sensors enable proper communication over

etworks for data sharing and automated processing of operations

hat start from production line all the way to delivery. Since the
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design and operation in industrial operations involve numerous

varieties of decision-making [28] , therefore the inclusion of cloud

computing makes an integrated framework of networked robots,

sensors and cloud that can reconcile conventional warehouse

problems and perform applications in a semi-automated manner

with minimal human supervisory oversight, increased efficiency

and more safety and speed. 

In this paper, we present a “parcel sorting and distribution ap-

plication ” in an automated warehouse environment ( Fig. 3 ). Being

automated in nature, the application deals with 5 major steps that

require the primary mobile robot to complete set of tasks neces-

sary to carry out a parcel for delivery. For our multi-robot system,

we incorporate the principle/primary robot to complete the major

actuation-based tasks through interactions with different types of

agents each with a specific job to help with such as unloading ob-

jects from trucks, co-packing, picking orders, checking inventory or

shipping goods. As for the supporting robots, they provide analyt-

ical and computation support while completing their own set of

application related activities. Through this multi-robot communi-

cation, the principle robot can transfer tasks locally (robot–robot)

to other available robots and complete them on-board. Alterna-

tively, it can also get help from the supporting robots regarding

offloading a task to cloud for utilizing its ubiquitous resources. In

this way, the other available robots in this shared framework can

work as a hub to provide assistance for local or cloud based of-

floading of tasks (if required), whereas the principle robot carry

out fundamental aspects of the warehouse management applica-

tion as well as necessary decision-making. As seen in Fig. 4 , the

complete warehouse based application can be divided into four

major steps that involves the primary robot visiting five different

locations ( Fig. 5 b). 

3.1. Parcel request generation phase (stage 1) 

As the warehouse distribution and sorting centers are equipped

with sensors, therefore the complete application will be coordi-

nated through advanced warehouse management systems. Each

machineries will be equipped with sensors to track inventory

movements and progress orders with a high degree of accuracy.

As part of it, whenever a new order is set to be sorted and deliv-

ered, information regarding its location and target will be sent to

the principle robot ( R 1 ), which in this case is a Fetch and Freight

robot ( Fig. 3 ), provided by Fetch Robotics [16] . Its primary robot,

called Fetch, can extend its torso to reach pickup points while a

small secondary robot, called Freight, helpfully holds the tote that

Fetch will pick items into. Each Fetch robot can have several of

these smaller Freight robots supporting the picking process. More-

over, due to their size they can smoothly move around and collect

objects throughout the warehouse and hence been chosen as our

principle multi-functioning robot. As a parcel sorting request for a

new order is generated, robot gets the location and plans its path

from current location ( P 1 ) to go to the given area ( P 2 ) for collecting

the parcel. 

3.2. Pickup and co-packaging phase (stage 2) 

As the robot is reaching the location ( P 2 ) of the shelves, a mo-

bile piece picking robot called Magazino [16] is placed in that area.

Magazino, a German startup company, uses 3D cameras for iden-

tifying objects and implements a well-defined grasping technique

for collecting objects from the shelves. Thus the object is picked

and kept in a convenient location. The update is then provided

to the principle robot through wireless sensor networks, so that

the robot can detect object and pick it up. The next portion of the

application involves co-packaging and customization for parcel ac-

cording to individual needs of the customer. In comparison to more
raditional/manual procedures, here the robot carries the parcel to

he co-packaging center ( P 3 ) where the well-known robot Baxter

rom Rethink Robotics [16] can complete the necessary steps of

ackaging. During these applications, a lot of information and an-

lytical tasks are happening in parallel. That is why local or cloud

ased offloading may be required for more efficient performance

f the system. 

.3. Package collection phase (stage 3) 

After the parcel is customized and co-packaged, it is ready for

elivery. At that point, the parcels are put on conveyer belt to be

ent to the collection center. As updated information is provided

o the principle robot ( R 1 ), it moves to the collection point (P 4 )

o pick up the prepared parcel. While moving the robot needs to

lan its path and communicate with the collection center to pro-

ide update to the main center. This creates the opportunities to

ass on heavy computational tasks to nearby supporting robots for

ocal computation or for assistance with offloading to the cloud. 

.4. Drop-off for delivery phase (stage 4) 

As the robot reaches the collection point, it detects the pre-

ared parcel. It uses its own technology to pick up the parcel. Then

t updates the main center and additionally creates an order for the

elivery robots from Starship technologies [29] to be prepared for

ncoming parcel. Then the robot delivers the objects in the drop-off

oint ( P 5 ) to be collected by delivery robot. 

As seen from the application details, it involves the principle

obot to visit 5 locations ( P 1 -P 5 ) and perform computation-heavy

asks to complete the action. Also, due to the nature of the ap-

lication, it is time constrained, which is why additional support

rom cloud and other available robots may improve the perfor-

ance. Therefore other available robots in this cloud networked

ulti-robot application can help with the communication and local

nalytical support. For the purpose of simulation later in the pa-

er, we have considered the warehouse environment (from Fig. 3 )

here the principle robot is Fetch and Freight robot R 1 and the

wo supporting robots are: Knightscope ( R 3 ) from Knightscope Inc.

30] and Tug Robot ( R 2 ) from Aethon [31] . Through joint collab-

ration of cloud and multi-robot resources, parcel distribution and

orting process in a smart warehouse is run autonomously to make

arcel ready for delivery, starting from distribution to the eventual

rop-off. 

. Problem formulation 

.1. System model 

Our system modeling for task offloading considers motion and

onnectivity as part of its decision-making. Therefore, it integrates

 critical factors in its problem formulation to find the opti-

al/near optimal decisions. 

.1.1. Task graph and cloud based task offloading 

The 40 node task graph ( Fig. 5 a) in this paper is derived from

he proposed parcel sorting and distribution application graph in

ig. 4 . The 40 node task graph is defined by a direct acyclic graph

DAG) and presented as a tuple D = ( T , K ) . Here each node is con-

idered as a task and known as T = { v j , j = 1 : t} and t = | T | . We

lso assume, K = { k i, j = v i , v j } and k = | K| , where K implies a set

f edges and refers to the communication cost from node v i to

 j . More precisely, the term t i denotes a task i in the task graph

here its execution time is dependent on the computation of v i 
th 

ask with input data d i . All the task nodes are indicated by Tasks

 ………t . We assume that the nodes on the same level of the DAG
1 T 
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Fig. 4. Details of an automated parcel sorting and distribution application in smart warehouse. 
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e.g., Tasks 4, 5 and 6) are independent of each other and lim-

ted by the “dependency of precedence”. As a result, a task can

tart only after all its preceding tasks on the previous level have

een completed. Finally, highlighted tasks ( P 1 − P 5 ) represent the

ocation constraints of certain tasks for robot R 1 and helps iden-

ify starting point of different stages of the operation. These tasks

re considered as “unoffloadable” and constrained to the primary

obot. 

In implementing our offloading approach, our goal is to find the

ptimal set of decisions and perform suitable offloading in order

o complete the task flow within the provided constraints. Since

he cloud based offloading is dependent on the proper trade-off

etween robot and cloud VM, therefore the offloading decision in

his context points to proper allocation between all the available
 n  
eterogeneous resources. In this context, these available resources

re represented by the robots ( R 1 , R 2 , R 3 ) and cloud VM. 

.1.2. Robot–robot communication and local offloading 

In addition to the cloud based offloading, robot–robot commu-

ication also creates gateway for offloading in cloud networked

ulti-robot systems. As each robot can communicate with the

ther available robots, therefore they create an ad-hoc cloud,

hich enables the robots to “locally offload” tasks to other avail-

ble robotic agents. The set R indicate a group of robots that

re part of the application, where R r ∈ R , ∀ { i = 1 : n } . Here R i 
enotes the selected robot and n indicates the total number of

obots available. Based on that, the available robots can commu-

icate with each other. Depending on the type of decision-making,
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Fig. 5. Visual representation of taskflow, location constraints and workspace. 
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the robots in this context can locally offload tasks in two scenar-

ios, (i) to offload to another robot for computation support, (ii) to

offload to another robot that is used as a hub for further offload-

ing to cloud VM. Either ways the available robots can support the

principle robot to reduce workload and improve performance. 

For local communication though, we present a popular com-

munication model [32] , where the communication parameters (en-

ergy/time) are considered based on the distance between the

robots. For a threshold distance of l 0 , if the distance ( l ′ ) between

two robots is less than l 0 , then “free space” channel model is con-

sidered. Hence the communication energy and time is derived as:

E LO ( t i ) = 

(
e base + ε f s . l 

′ 2 
)

× d ( t i ) : l ′ < l 0 (1)

T LO ( t i ) = 

(
e base + ε f s . l 

′ 2 
)

× d ( t i ) 

P LO 

: l ′ < l 0 (2)

here e base is the baseline energy consumption for operating the

transmitter radio for local communication. As mentioned, for l ′ < l 0 
the transmission energy consumption is assumed to be “free

space” channel model and hence presented by ɛ fs . l 
′ 2 . As for P LO , it

is known as the processing power of for robot ( R i ) local offloading,

whereas d ( t i ) is the amount/size of information being offloaded.

However, when the distance ( l ′ ) is greater than the threshold, then

it considers the “multipath fading” channel model for communica-
ion and the transmission energy consumption is ɛ mf . l 
′ 4 . Therefore,

he overall energy and time calculation for local offloading is: 

 LO ( t i ) = 

(
e base + ε m f . l 

′ 4 
)

× d ( t i ) : l 
′ ≥ l 0 (3)

 LO ( t i ) = 

(
e base + ε m f . l 

′ 4 
)

× d ( t i ) 

P LO ( R i ) 
: l ′ ≥ l 0 (4)

The communication parameters and the resulting calculation

or local offloading is done based on the locations of the robots

ith respect to each other and therefore is subjected to the

ecision-making. More details about the performance parameters

s provided later in the paper. 

.1.3. Workspace and path planning 

Our application workspace in Fig. 5 c is derived from

ig. 3 , which depicts a warehouse environment. The warehouse

orkspace is represented by a grid, sized m × n . Each cell in the

rid points to a uniform cell location. As the robots can move

hrough each cell, it eventually maps out a path plan for robot

ovement. In the context of our work, the grid-based model is

hosen as our workspace because of its ease with calculation of

istances, representation of obstacles and scalability with respect

o condition changes. 

As mentioned, each cell is represented by, L = (X, Y) , where

 = { x = 1 : m } , Y = { y = 1 : n } and ∀L ∈ [ 1 : l ] . In the context of
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ur work, this results in a 36 cell warehouse workspace with ad-

itional characteristics listed as follows: 

(i) Each cell L is a location the robot can choose for a given

task. The whole workspace is characterized by orderly num-

bered grids, and the size of the grids determines how many

cells there are. 

(ii) Certain cells are considered as obstacles and therefore are

off-limits to all the robots. These obstacles are directly

adopted from warehouse environment ( Fig. 3 ) and presented

here as O l . 

(iii) The application also considers the task constraints of certain

robot, meaning selected tasks are allocated to pre-defined

robots as well as fixed locations (e.g., getting parcel from a

fixed warehouse shelf). These tasks are presented as T i, l =
i, l; where task i is constrained to location l . The robots

are aware of these constraints at the time of operation and

hence move accordingly. 

(iv) Finally, the application taskflow ( Fig. 5 a) is integrated with

the workspace in the form of starting point P 1 and finish

point P 4 . This helps robot to identify the task constraints

with respect to locations as well as get a clear idea of the

task sequence. 

One of the key parameters for offloading decision-making is the

hoice of location for each task. In this context the relative pa-

ameter that helps identify these decisions are the distance val-

es between cells that calculates the overall distance the robot

overs. As movement also results in added energy, hence lesser

ovement (unless necessary) is priority for the robot in order to

ave energy. Therefore the accurate distance between cells in this

rid workspace is calculated using a modified A-star method [33] .

his process uses the distance between current location and target.

hen it moves to the cell with the smallest distance and evaluates

ells by combining the distance cost to that cell h ( l ) and the dis-

ance cost to get from that cell to target g ( l ). For each successor

ell we calculate the total cost, f (l) = g(l) + h (l) and the cell with

he smallest f ( l ) is selected as successor. Using a thorough search of

he complete workspace, shortest distance is found between start-

ng and destination point. As mentioned, path planning influences

ffloading decisions. And it is important to get the accurate dis-

ance cost and path between any two points in the grid. Hence

-star method is used to calculate the distance f ( l ) a, b between any

wo points a ( x 1 , y 1 ) & b ( x 2 , y 2 ). Eventually It is used to gain the

otal distance coverage for robot movement D total where the tasks

re part of the movement set m ( t ). 

 total ( R r ) = 

∑ 

t i ∈ m ( t ) 

f ( l ) a,b (5) 

Using these cost values, we find movement energy and time,

hich is then used during calculation of optimal offloading and

ovement decisions. More details of these calculations are pre-

ented during the formulation. 

.1.4. Access point selection and bandwidth estimation 

One of the key benefits of cloud networked robotics is the on-

emand movement capability of robot that can be utilized to gain

etter bandwidth. As discussed in [34] , bandwidth plays an impor-

ant role in task offloading and system performance. In this work,

e further explore that issue by adding access point selection as a

ecision that impacts the resulting bandwidth. For AP selection, it

an be broadly classified into two categories. First one being “on-

ine AP selection” where the choice of AP is made during the on-

ine phase, based on relatively stable features and selection criteria

earing physical or statistical meanings [35] . However, it tends to

onsume high energy usage as well as perform poorly for com-

lex scenarios such as ours. In comparison, the second category of
offline AP selection” method is more suitable for our work. Here

ll APs are defined by their score function and availability. Based

n those, the most suitable solution is selected as the choice of

P. For an unstructured problem set like ours, the offline approach

uits the GA based scheme by reducing the level of complexity and

ompensating for the dynamic nature of the rest of the implemen-

ation of our algorithm. 

In order to implement the latter approach, the workspace is

etup with several APs in different locations for connecting to the

loud via the Internet. However, the robot have to share the WiFi

etwork with other regular users. Depending on the path planning

nd its eventual location, the robot will have the option of con-

ecting to one of multiple APs. As mentioned, here we implement

he offline approach and provide a communication model to setup

ur workspace with variable APs and number of users. Depend-

ng on the choice of AP, the robot can get different bandwidth at

ifferent locations. Hence the choice of AP becomes a priority. As

he WiFi network is shared with other users, each AP has certain

sers associated with them. Hence, the robot has to estimate the

fair-share bandwidth” of a given location for communication re-

uirements. Given the size of application workspace, the complete

rea is covered by at least one AP and hence the robots are always

ithin the coverage of Internet connectivity. Moreover, the number

f users associated with each AP for the duration of the application

re considered fixed, since the application time period is relatively

mall and hence less sensitive to dynamic changes. 

Let’s define an AP by α and total sets of AP as A . The bit

ate function is presented by b ( · , · ) as b : ( L × A ) → B . Here

( l, α) ε B is bit rate at which each robot can individually transmit

ata from location l ∈ L with AP α ∈ A , where A = {1…… α}. We

onsider B to be the set of bit rates available with the technology

eing used. Given that set, the individual bit rate r will depend on

he location and the AP. The further the robot is from a given AP,

he lower the value of r will be. This bit rate value is known to the

obot for any given location during the task operation. Since each

ccess point is shared by number of users, the bandwidth at any

iven location is shared among the number of users as well. There-

ore the robot’s ( R r ) throughput/bandwidth β at location l can be

stimated according to protocol IEEE 802.11 WLANs [36] as: 

( l, α) = 

( 

b ( l, α) 
−1 + 

∑ 

u ∈ U α
c u 

−1 

) −1 

(6) 

In (6) , the term U α( t ) denote the set of users, excluding robot

 r , that are associated with AP α. And c u signifies the cumula-

ive bit rate for the set of users with respect to a given AP α.

ince, each AP is shared by multiple users and all WiFi users use

ame packet size, therefore the resulting throughput β( l, α) is the

fair-share” bandwidth the robot receives at location l if it selects

P α. Throughput equation in (6) can be presented in more details

o improve accuracy, but in the current form it already captures

he essential features of the packet scheduling for 802.11 MAC in

he simplest possible way. Therefore no further information is pro-

ided. As all the robots are aware of the total users set N α and bit

ates c u for each AP α, therefore they can calculate the bandwidth

t given locations (with respect to association with suitable APs).

ased on that, AP selection is integrated with robot’s path plan,

ocal R–R offloading and R–C offloading, so that robots can gain

ccess to better throughput for faster communication with cloud

nd improved system performance. 

.2. Cost functions 

Two types of factors are considered for calculation of energy

nd latency cost functions, (i) fixed parameters: task input, robot

nd cloud VM processing power; (ii) variable parameters: local



20 A. Rahman, J. Jin and A. Rahman et al. / Computer Networks 160 (2019) 11–32 

Table 1 

Notation. 

Notation Description 

E total Overall robotic energy consumption for taskflow execution 

T total Overall taskflow completion time/ latency 

T limit Overall time limit for taskflow completion 

E R r Energy consumption of robot R r 
E limit ( R r ) Energy limit of robot R r 
D total ( R r ) Total distance covered by the robot 

N ( t i ) Number of instructions for task t i 
β( l , α) Bandwidth (kbps) at location l with AP α

v ( t ) A task set for WSN communication 

P i ( R r ) Robot R r processing power for sending instruction to cloud 

P u ( R r ) Robot R r processing power for uploading data to cloud 

P r ( R r ) Robot R r processing power for on-board computation 

P cc ( R r ) Robot R r processing power during cloud computation 

P mov ( R r ) Robot R r processing power during robot movement 

P d ( R r ) Robot R r processing power for WSN communication 

P LO ( R r ) Robot R r processing power for local offloading 

m ( t ) A task set for robot movement 

v ( R r ) Robot R r movement velocity 

H r ( R r ) Robot R r transfer rate for WSN communication 

S R r Clock speed of robot R r processor 

S c Clock speed of virtual machine on cloud 

d ( t i ) Uploaded data for the completion of task t i 
d d ( t i ) Transferred data with WSN for task t i 
BPI ( R r ) Bits per instruction for robot R r 
CPI ( R r ) Average number of clock cycles per instruction for robot R r 
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offload, cloud based offloading, bandwidth and movement. Table 1

lists notations for calculation of energy and latency cost func-

tions, based on task assignments. Our goal is to identify optimal

offloading decisions with collective consideration of motion and

connectivity in a cloud networked multi-robot application that

results in minimum robot energy. 

4.2.1. Robotic energy calculation 

E total = 

| T | ∑ 

i =1 

I t i . L t i . E R ( t i , r, l ) ︸ ︷︷ ︸ 
On −board 

+ 

| T | ∑ 

i =1 

¬ I t i . R t i . L t i . A t i . E C ( t i , r, l, α)︸ ︷︷ ︸
Cloud 

(7)

The total energy E total consists of energy from all tasks parti-

tioned into on-board, local offload and cloud allocation, as seen in

(7) . I t i denotes the offloading decisions and ¬ is the NOT opera-

tor, signifying the tasks that are offloaded to cloud. L t i is the un-

known variable that indicates the location for each task, whereas

A t i 
indicate the selection of AP for offloaded tasks. Finally, the

term R t i means selection of robot for offloaded tasks, which sig-

nifies whether the task is offloaded to cloud from on-board of a

given robot or the task is transferred to a nearby robot for further

offloading to the cloud. 

As mentioned, the total energy is summation of all the tasks

that are divided into two parts. Tasks performed on-board are de-

noted by E R ( t i , r, l ), which indicates they are dependent on the se-

lection of task, robot (local offload) and location. As for the tasks

that are taking place on cloud VM, they are identified by E C ( t i ,

r , l , α), which means it is additionally dependent on the selection of

AP as well for cloud based offloading. Eq. (7) can be further elabo-

rated as seen in Eqs. (8) and (9) : 

E R ( t i , r, l ) ︸ ︷︷ ︸ 
On −board 

= E MOV ︸ ︷︷ ︸ 
Mov ement 

+ E W SN ︸ ︷︷ ︸ 
Wieless 

Sensor 

+ E LO ︸︷︷︸ 
Local 
of f load 

+ E RC ︸︷︷︸ 
Local 

Computation 

(8)

E C ( t i , r, l, α) ︸ ︷︷ ︸ 
Cloud 

= E MOV ︸ ︷︷ ︸ 
Mov ement 

+ E W SN ︸ ︷︷ ︸ 
Wieless 

Sensor 

+ E U ︸︷︷︸ 
Data 
U pload 

+ E I ︸︷︷︸ 
Sending 
Inst ruct ion 

+ E CC ︸︷︷︸ 
Cloud 

Computation 

(9)
Depending on the selections of I t i , R t i , L t i and A t i 
, we cal-

ulate robots energy and task completion time. For tasks tak-

ng place on robot, the parameters include the movement energy

 Mov ( t i , l ), data collection E WSN ( t i , l ), computation energy E RC ( t i )

nd local offloading energy E LO ( t i ). As seen from the components

f the equation, it is dependent on location and the choice of

obot. 

 LO ( t i ) = 

⎧ ⎨ 

⎩ 

(
e base + ε f s . l 

′ 2 
)

× d ( t i ) : l ′ < l 0 (
e base + ε m f . l 

′ 4 
)

× d ( t i ) : l 
′ ≥ l 0 

(10)

 RC ( t i ) = P r ( R r ) × CP I ( R r ) × N ( t i ) 

S R r 
(11)

Here E LO ( t i ) is energy for locally offloaded tasks. Depending on

obots distance among each other, it either follows “free channel”

odel (when l ′ < l 0 ) or “multipath fading” (when l ′ > l 0 ). As for on-

oard computation energy, it is denoted by E RC , which is reliant on

ask and is calculated for the performing robot. 

 I ( t i ) = P i ( R r ) × BP I ( R r ) × N ( t i ) 

β( l, α) 
(12)

 U ( t i ) = P u ( R r ) × d ( t i ) 

β( l, α) 
(13)

 CC ( t i ) = P cc ( R r ) × CP I ( R r ) × N ( t i ) 

S c 
(14)

Even for tasks that take place on cloud, there is still energy con-

umed by robot. This is expressed by E C ( t i ). It generally consists

f the energy to upload data E U ( t i ), energy to send instructions to

loud E I ( t i ) and finally energy consumed for running background

perations in robot processor during cloud computation E cc ( t i ). All

hese parameters are either dependent on location, AP selections

r choice of robot. In some cases, it is reliant on more than one

arameters or all three, as seen from equations. Table 1 explains

he rest of the parameters. 

 Mov ( t i , l ) = 

∑ 

t i ∈ m ( t ) 

P mov ( R r ) × l a,b 

v ( R r ) 
(15)

 W SN ( t i ) = 

∑ 

t i ∈ v ( t ) 
P d ( R r ) × d d ( t i ) 

H r ( R r ) 
(16)

Finally E Mov ( t i , l ) indicates the movement energy to go to

articular location for offloading, where a key parameter is robot

elocity v ( R r ) that is different for each robot. Based on that, total

ovement energy/time for each robot is calculated in addition

o total distance D total . On the other hand, energy E WSN ( t i , l ) is

ssued to describe energy consumption of data collection from

SN. Given the scale of the operation, WSN communication

ower P d ( R r ) and data transfer rate H r ( R r ) for each robot is

qual. 

.2.2. Time calculation 

The time calculation is not additive as in the case of robot en-

rgy calculation. Since the whole taskflow is divided into a num-

er of levels ( ℵ total ), task completion time is calculated level-wise.

or each level of tasks ( ℵ t ), maximum time is calculated for tasks

eing completed locally and on-board. This is used to find the to-

al time from that level and eventually for the whole taskflow.As

or the rest, time calculation uses the exact same communication

odel for offloading, as mentioned in the previous section for en-

rgy consumption. 



A. Rahman, J. Jin and A. Rahman et al. / Computer Networks 160 (2019) 11–32 21 

T
 

t i , r, 

T︸
 

t i ) 

 

( R r ) 
:

 ( t i ) 

O ( R r ) 

 

T︸  

×
β︷︷ 

 Inst r

 

 

c  

c  

s

4

 

f  

r  

c  

c  

w  

t  

a

 

 

 

 

 

 

 

 

 

o  

d  

c

 

t

s

5

 

t  

t  

t  

l  

m  

a  

a  

o  

A  

e  

b  

u  

a

 

t  

o  

l  

i  

m  

s  

r  

f  

t  

a  

c  

o  

m  

i  

m  

m  

l  

a  

w  

a

 

m

b  

p  

s  

c  

P  

f  

t  

E  

t  

f  
 total = 

ℵ total ∑ 

1 

max 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

| ℵ t | ∑ 

i =1 

I t i . L t i . T R ( t i , r, l ) ︸ ︷︷ ︸ 
On −board 

+ 

| ℵ t | ∑ 

i =1 

¬ I t i . R t i . L t i . A t i . T C (︸ ︷︷ 
Cloud 

 R ( t i , r, l ) 
 ︷︷ ︸ 

Local 

= 

∑ 

t i ∈ m ( t ) 

l a,b 

v ( R r ) ︸ ︷︷ ︸ 
Mov ement 

+ 

∑ 

t i ∈ v ( t ) 

d d ( t i ) 

T r ( R r ) ︸ ︷︷ ︸ 
W SN 

+ 

⎧ ⎨ 

⎩ 

(
e base + ε f s . l 

′ 2 
)

× d (
P LO(

e base + ε m f . l 
′ 4 
)

× d
P L︸ ︷︷ 

Local of f load

 C ( t i , r, l, α) 
 ︷︷ ︸ 

Cloud 

= 

∑ 

t i ∈ m ( t ) 

l a,b 

v ( R r ) ︸ ︷︷ ︸ 
Mov ement 

+ 

∑ 

t i ∈ v ( t ) 

d d ( t i ) 

T r ( R r ) ︸ ︷︷ ︸ 
W SN 

+ 

d ( t i ) 

β( l, α) ︸ ︷︷ ︸ 
Data U pload 

+ BP I ( R r )︸ 
Sending

The processor speed for cloud VM is S c , much larger than pro-

essing speed S R r of each robot. Thus, cost functions for robot and

loud VM task completion time is used to calculate the overall re-

ults for T total . 

.3. Joint optimization problem 

This paper addresses a four-fold problem. Based on the problem

ormulation for the proposed application, the objective is for the

obot to find the optimal decisions for cloud based offloading, lo-

al offloading, path planning and AP selection altogether within the

onstraints imposed, thus providing task offloading for cloud net-

orked multi-robot system with collective consideration for mo-

ion and connectivity in decision-making. Let the following vari-

bles indicate their respective decisions for each task. 

(i) I t i = Offloading decision for each task. Here I t i ( = r ) indicates

task is executed on robot R r ∈ R , ∀ { r = 1 : n } . And I t i ( =
0) is specifies that task t i is offloaded to cloud VM. For our

formulation, total number of robots n = 3. So, possible task

allocations decisions on-board of robot are R 1 , R 2 , R 3 . 

(ii) R t i = Selection of robot R r for offloading a task t i to the cloud,

where R t i 
ε I t i = 0 . This decision is for identifying which

robot will offload the task to cloud. 

(iii) L t i = Location for each task where the set consists of total l

values ( L = 1…l ). For our formulation, l = 36. 

(iv) A t i 
= Selected AP for offloaded task, where AP set has total

α values ( A = 1…α). In our problem, α = 4. 

Based on the application scenario and problem formulation, the

bjective is to minimize overall energy ( E total ) consumption in or-

er to meet the time constraint ( T Deadline ) and individual energy

onstraint ( E R limit 
) of each robot ( E R r ). 

Find: { I t i }, { R t i }, { L t i }, { A t i 
}, ∀ T = { v j , j = 1 : t} , and t = | T |

o minimize: E total 

 . t . : T total ≤ T Deadline and E R r ≤ E limit ( R r ) 

. GA based multi-layer decision-making scheme 

Genetic algorithms (GAs) derive their name from the fact that

hey are loosely based on models drawn from the area of popula-

ion genetics. It is an adaptive heuristic search algorithm based on

he evolutionary ideas of natural selection that represents an intel-
l, α) ︸ 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

(17) 

 l ′ < l 0 

: l ′ ≥ l 0 ︸ 
+ CP I ( R i ) ×

N ( t i ) 

S R r ︸ ︷︷ ︸ 
Local Computation 

(18) 

N ( t i ) 

( l, α) ︸ 
uct ion 

+ CP I ( R r ) × N ( t i ) 

S c ︸ ︷︷ ︸ 
C loud C omputation 

(19)

igent exploitation of random searches in order to determine opti-

al solutions. By exploiting intelligently, weak and unfit species

re extinct while stronger genes are passed on to the next gener-

tion via process of reproduction [37] . Traditionally, GA is used to

btain optimized solutions from a number of candidate solutions.

lthough randomized, GAs are by no means random; instead they

xploit historical information to direct the search into the region of

etter performance within the search space. Therefore GA is widely

sed in various field due to its global acceptability, high efficiency

s well as its impressive stability [38] . 

For evolutionary robotics, GA is a machine learning approach

hat has been traditionally used to optimize the control policy

f a robot [39] . It is implemented in applications to rapidly

ocate “satisficing” solutions when sufficient a priori knowledge

s unavailable. Previously, path planning, cloud based offloading,

ulti-robot coordination or AP selection have been individually

tudied as examples of classical machine learning problems that

equire adaptive learning without significant domain knowledge

or finding solutions. However, with rapid increase in technology,

he complexity of handling dynamic and multifunctioning systems

re exponentially increasing because of factors such as: dependen-

ies among parameters, difficulty to map, interconnections etc. In

rder to avoid situations where certain aspects of development

ay become “intractable” due to constant progress and evolution

n response to progressive conditions and demands, it is of ut-

ost importance to prepare more comprehensive techniques for

odeling systems in order to deal with dynamic changes and high

evel of complications. Therefore, more interdependent parameters

re integrated to formulate and solve joint optimization problems

here the algorithm is trained to be more rigid and driven towards

n area of optimal result with high probability in an efficient way. 

The heuristic approach of GA works efficiently for large scale

ulti-objective optimization problems, because it approximates 

rute force without enumerating all the elements, thereby by-

asses performance issues specific to exhaustive search [40] which

uits the NP-complete problem set in this work. More specifi-

ally, GA has several advantages over the evolutionary techniques.

rimarily, meta-heuristic approaches such as GA searches parallel

rom a population of possible points. Therefore, it can avoid being

rapped in local optimal solution unlike many traditional methods.

specially, when the problem size is big and unstructured, tradi-

ional algorithms are insufficient in terms of computation latency

or finding solution. In comparison to them, GA performs much
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Fig. 6. Steps of GA based multi-layer decision-making scheme. 
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faster and generally trades-off in terms of solution accuracy (which

is near-optimal). GA also works on the chromosome, which is the

encoded version of the potential solution’s parameter, rather than

the parameter themselves. Therefore in case of problem sets with

high number of parameters, GA has better chance of finding so-

lution. Moreover, GA uses probabilistic selection rules, rather than

deterministic selection. Hence, GA’s chromosome gives users the

power to inculcate the spirit of the problem into GA solution, thus

giving meaningful direction to GA in its search for the optima,

without having to worry about feasibility. 

A clear distinction with other evolutionary algorithms such as

particle swarm optimization (PSO) [41] , bee optimization [42] , ant

colony optimization [43] is found with regards to joint optimiza-

tion. GA is initially a discrete technique that is suitable for com-

binatorial problems like ours. In contrast, PSO/bee/ant algorithms

tend to be continuous methods that may perform less efficiently

for combinatorial problems. GA technique also has a higher vari-

ability of increasing probability to find better results, due to im-

plementation of steps such as crossover and mutation (discussed

later in the paper), which makes the population more diverse and

thus more immune from getting stuck in a local optima. In the-

ory the diversity also aids the algorithm to be faster in reaching

close to the global optima since it can allow the algorithm to ex-

plore the solution space much faster. Another key advantage of GA

can be found in cases when the objective function is not smooth,

rather noisy or stochastic. In situations such as this, the derivative

methods don’t always hold up in performance. Since GA doesn’t

require any information about the structure of objective function

in advance, it has high probability of dealing with uncertainty and

producing better results. Finally, GA can effectively deal with dy-

namic scenarios since it is more adaptable and has fewer built-in

assumptions that can potentially constrain the problem set from

finding optimal/near optimal solutions. Given the overall benefits

of GA and the scope of our application, a GA based scheme has

been developed in this work. 

The proposed GA-based multi-layer decision-making scheme

identifies the following four key decisions: (a) which task to

offload to cloud, (b) which robot to offload to cloud, (c) which

location to complete the task, (d) which AP to select for offloading.

The objective is to solve the joint optimization problem and

identify these key decisions in order to minimize E total . This joint

optimization exploits the benefits from each of the individual

elements and considers all four symbiotic parameters (cloud based

offloading, robot–robot sharing, path planning and AP selection)

jointly as part of the solution and hence simultaneously explores
he search space for optimized and cost-efficient result, which

ould be reflective of the system performance. In order to im-

lement genetic algorithm based scheme, we need to follow six

egulatory steps (as shown in Fig. 6 ). 

.1. Novel four-layer chromosome encoding 

The genetic algorithm (GA) scheme initiates by randomly gen-

rating a primary population (P), consisting of individuals whose

enetic material represents sample points in the solution space.

hese individuals are a collective unit of novel 4-layer solution

nown as chromosomes. Here each layer points to a separate sets

f decisions. These decisions are selected from the possible options

n the search space and are presented in the following order: (i) of-

oading decisions, (ii) robot selection for offloaded tasks, (iii) loca-

ion selection for each task, and iv) selected AP for the offloaded

asks. Therefore, P = [ I t 1 I t 2 .. I t i .. I t T ] [ R t 1 R t 2 .. R t i .. R t T ] [ L t 1 L t 2 .. L t i .. L t T ]

 A t 1 A t 2 .. A t i 
.. A t T ]. An example of the decision set can be given as:

 1 = [1] [ ✗ ] [13] [ ✗ ], which suggest task 1 is completed on robot R 1
t cell 13 in the workspace. As a result, no offloading is required

y any robot, hence no AP is selected. Another example of decision

et is: I 2 = [0] [3] [8] [2]. It indicates that the task is completed on

loud VM (0), while it is offloaded to the cloud by robot R 3 from

ell 8 in the workspace through AP 3. 

In addition to that, tasks are further divided into two groups.

he tasks that are constrained to any fixed location/allocation (con-

trained to robot), are considered as unoffloadable, whereas the

est of the tasks are offloadable. The unoffloadable tasks, their

xed allocations and locations are indicated in Fig. 4 . In order to

onsider the unoffloadable tasks, the encoded chromosome in this

ection is further modified by fixing the constrained tasks to their

xed location ( L t i ) and allocation ( I t i = 1 for robot R 1 ). In terms of

A scheme, this would save unnecessary latency during the later

hase by not allowing this particular bits to be changed. Hence

hese solutions will remain fixed. As for practical reason, this pro-

ides real-world context where certain tasks such as data collec-

ion, parcel pickup, parcel delivery etc. tend to be in fixed location

r fixed to certain robots. Therefore the constraints can be added

n this scheme to compensate for those scenarios. 

.2. Fitness (parameter) calculation and evaluation 

In this stage, each individual/solution in the population is

valuated by invoking the fitness function f to measure the
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Fig. 7. Pseudo-code for robotic energy, time and distance calculation. 
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uality of the solution in the search space. For the given prob-

em, the fitness is considered as f = E total . Since the objective

s to minimize energy, hence the term “lower energy” indi-

ates “higher fitness” in this context. Similarly “best fitness”

lso designates the solution that results in the “lowest value”.

n order to get fitness value, the calculation of critical perfor-

ance parameters i.e. , energy ( E total ), time/delay ( T total ), distance

 D total ), individual energy ( E R r ) and individual robot distance

overage ( D R r ) are done using Eqs. (1) –(19) . As taskflow is di-

ided into several levels, a breadth-fast search is performed to

dentify their task dependencies and to divide them into groups

or level-wise calculation. A detailed pseudo-code in Fig. 7 ex-

lains the step by step calculation for fitness score and other

erformance parameters. 
.2.1. Calculation of E total (fitness) & E R r 
From the proposed allocation in the encoded chromosome,

evel-wise calculation is done to get the values of robot energy

or tasks offloaded to cloud E C ( t i , l ) and tasks completed on robot

 R ( t i , l ). Since energy values are additive, hence the resulting en-

rgy E total from the corresponding level is collected and added to

he overall values. Thus, energy from all the levels adds up to ulti-

ately get the final updated value of total energy E total . 

Another important parameter is the individual energy con-

umption of each robot E R r . Based on the selection of robot for

ocal task completion or local offloading, energy is consumed for

asks as seen in the calculation. For each consumption, energy cost

orresponding to a task is added to the selected robot R r . In this

ay, for each task, energy values may be added to corresponding
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robots (based on task allocation) and total energy consumption by

each robot E R r can be calculated. 

5.2.2. Calculation of T total 

Since the tasks on the same level happen in parallel, total time

for tasks is not directly additive. Therefore, slight modification is

required to compensate for parallel tasks. Tasks from each level

are further divided into two types based on allocations (0 or R r )

and put them into two different lists. Total time for tasks on

cloud and on robots are calculated separately. A simple comparison

is then performed between the cumulative time values (for each

level) to see which takes longer. Here the higher value between

the two is considered as the actual latency/time cost from that

DAG level. Similar to the previous process, values from each level

is then added to overall results to get the total task completion

time T total . 

5.2.3. Calculation of D total & D R r 

Distance is calculated according to the fourth layer of the chro-

mosome, which is location decisions ( L t i ). For every task, that is

part of set m(t) , distance cost between the corresponding points

for each robot is calculated (via A-star method). Based on the allo-

cation (robot or cloud), the distance value is calculated sequentially

for each level and distance values are added either for either cloud

or robot based allocation D total ( R r ). These values are then added to

overall values in order to ultimately gain the total distance covered

by the robots D total . In addition to that, for each distance cost, the

values are also added to the corresponding individual robots ( R r ).

In this way, individual distance coverage D R r for each robot is also

calculated. 

5.3. Selection phase 

After the fitness calculation stage, the mating pool is filled in

iteratively from the current generation. From then on, two chro-

mosomes are randomly selected in each pass and the individual

with higher fitness (i.e. low energy) is finalized to fill the mating

pool. The process is repeated until the mating pool is completely

filled in. We also adopted elitism by keeping the historical best so-

lution in the mating pool. Thus the next generation is produced by

selecting individuals with higher fitness via the selection probabil-

ities to produce offspring via genetic operators. 

In addition to that, infeasible solutions are also dealt with dur-

ing this stage. Here these solutions are given very low fitness score,

which results in really high energy values. Therefore these solu-

tions can never be picked up for the mating pool (since their fit-

ness will be always inferior to feasible answers) and the solution

will remain accurate. 

5.4. Crossover phase 

The strategy employed by crossover is to construct new

individuals from existing high-performance individuals by recom-

bining subcomponents. Here two selected chromosomes from

the previous phase “reproduce” in crossover section and produce

“offsprings”. For this phase, the “uniform crossover” process is

considered as it uses a fixed mixing ratio between two parents.

This process allows parent chromosomes to contribute in the gene

level rather than the segment level. During this stage, individual

bits in the string are compared between their two parents. And,

all the bits are swapped with a fixed probability. 

As mentioned, infeasible solutions are removed by giving them

low fitness scores in order to avoid degradation of GA performance.

However, if any such solution is still produced at crossover, it

would be eliminated at fitness calculation or mating pool gener-

ation stage of the following pass of GA. 
.5. Mutation phase 

At the end of selection and crossover, there is now a new pop-

lation full of possible solutions (decision set). However, the chro-

osomes may become too similar to each other in some cases. At

his point, the mutation operator updates these individuals by in-

ependently modifying one or more of the gene values of an exist-

ng individual. More specifically, a portion of new individuals have

ome of their bits flipped with low probability (0.5) by the opera-

or. This is done intentionally, so as to ensure proper diversity and

ossibility of finding global optimum in search-space. Further jus-

ification for this choice is provided later in the manuscript. 

Similar to “crossover” section, the infeasible results are given

ow fitness scores so as to avoid the quality of results becoming

oorer. As for the constrained elements (fixed allocation and loca-

ion of task) in the chromosome, they are also dealt with in this

ection. For that purpose, the chromosome is further modified at

he end of this stage to compensate for the constrained tasks by

orcefully changing the elements to their fixed allocation and lo-

ation. After that, we obtain a new population of individuals and

ame process is continued. 

.6. Self-stopping criteria 

A self-stopping criteria is embedded so that the process doesn’t

voke unnecessary latency or processing power. Since our GA

cheme provides the “lowest energy” (best fitness score) after each

eneration, it will only stop when there is no change in best fitness

core for a prefixed (determined by user) number of generations.

t that point, GA is terminated immediately and result is consid-

red as near-optimal. Further details are later provided to explain

ur reasoning behind the choice. 

. Simulation results and analysis 

We ran extensive simulations and analyze the different aspects

f our GA scheme for multi-robot with cloud (GAMRC) approach,

hich are: decision-making, fitness score, offloading, AP usage,

obot’s usage and path planning. Based on that, we assess the qual-

ty of the algorithm and its effectiveness in the context of the ap-

lication. We further determine the performance of our scheme by

omparing our findings with GA scheme for a single cloud-aided

obot (GASRC) from Rahman et.al., in [24] and [25] where mobility-

riven and communication-aware task offloading was performed in

imilar applications for a 30 node and 25 node taskflow. For a sin-

le robot application, all tasks are allocated between the robot and

loud VM. The mobility indicates the location choice for each task,

hereas AP selection points to the gateway towards cloud com-

unication for allocated tasks. The comparison between single and

ulti-robot cloud based approach in this section would help iden-

ify/verify the benefits of the multi-robot aspect/dimension in task

ffloading. More precisely, this would point out how additional

obots may help out in local computation sharing of tasks as well

s in offloading to cloud. 

In addition to that, we also compare the results with a GA

cheme for multi-robot (GAMRB) on-board approach where only

–R communication has been used for task completion. This

pproach doesn’t consider cloud infrastructure as a possible source

f allocation. Through this comparison of results, the impact of

loud in such applications may be recognized. Both benchmark ap-

roaches (GASRC and GAMRB) are calculated via genetic algorithm

ased method as well. Hence the results from these methods are

ear-optimal. As for authentication of these benchmarks, these

esults have been previously evaluated properly for different DAGs

ia comparison with exhaustive search [20] , All-on-Robot (AoR)

pproach [24] , greedy algorithm [34] as well as a single robot
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Table 2 

Simulation parameter setup. 

Parameter Value (Min: E total ) 

Task nodes 40 

Deadline ( T Deadline ) Time (150 s) 

Population 500 

Stopping 1500 generations without change in fitness score 

Obstacle cells Cell 9,18,20,33,36 

AP & users 4 APs and each AP is associated with 3 users 

Performance parameters of 

each robot 

Robot No. R 1 R 2 R 3 
Processor Core i5-4460 Core i5-7600 Core i5-7600K 

S R r 3.2 GHz 3.5 GHz 3.8 GHz 

P r ( R r ) 55 W 40 W 25 W 

P u ( R r ) 80 W 60 W 40 W 

P cc ( R r ) 20 W 15 W 10 W 

P LO ( R r ) 11 W 12 W 13 W 

P m ( R r ) 50 W 35 W 20 W 

CPI ( R r ) 10 8 6 

BPI ( R r ) 4 3 2 

Allocation and location 

constraint 

Task Zone Task Zone Allocation 

1 1 25,26 5 Robot R 1 
7 31 27 5 

12 35 37 24 
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ffloading method with fixed movement and bandwidth [20] .

herefore, the comparison of our GAMRC scheme in this paper

ith such credible reference methods would help validate our

ndings. 

.1. Simulation setup and parameter selection 

In this section, we provide a detailed explanation of two types

f parameters that are related to this problem. One is application-

riented and the other is GA-oriented. 

(i) At first, Table 2 describes the application parameters for

simulation purposes. One such key parameters is workspace

model and the setup design. The 36 cell workspace consid-

ered in this work is motivated from industrial warehouse

presented in Fig. 3 . The obstacle cells are marked black

( Fig. 5 c) and points to cells that are off limits for movement

selection. The design of the workspace and the correspond-

ing obstacles resemble the proposed application in Fig. 3 .

The details of the obstacles are presented in Table 2 . An-

other important parameter is the taskflow, that is motivated

from the application task graph in Fig. 4 . The 40 node task-

flow defines tasks that need to completed in the constrained

scenario, where selected tasks ( P 1 − P 5 ) must be completed

by robot R 1 . Hence the location constraints for these tasks

are also presented in the table. The constraints here comple-

ment the requirements of our proposed application (ware-

house management). For the multi-robot approach, total 3

robots are considered and the performance parameters (e.g.,

power rating, constraints, processor details etc.) for each

robot is presented in Table 2 . The detailed description and

objective of each robot is thoroughly presented to highlight

their abilities that match the type of tasks required to be

completed by them. Furthermore, details of their hardware

components are also presented to explain the collaboration

of these heterogeneous components in the context of this

application. Another important relationship is between the

primary robot processor and cloud VM processor. In com-

parison to the robot processor, the cloud VM is considered

to be minimum M times faster than the fastest robot pro-

cessor ( S c = M × S R r ) . This is motivated from the knowledge

that cloud VMs are generally much faster than the on-board

robots. Finally, for communication modeling, an infrastruc-

ture using the standardized design of IEEE 802.11 WLANs

is presented with a maximum bit rate of 54 Mbit/s and 8
available stream bit rate (6,9,12,18,24,36,48,54 Mbit/s). Based

on these selections, the whole workspace is designed with 4

APs where each AP has 3 users. The reason to choose mul-

tiple APs and users is to provide context of a real-world ap-

plication, where multiple users may use the network and

hence bandwidth may need to be shared. Following that

model, each of the locations in the workspace correspond

to bandwidth value for a selected robot based on AP selec-

tion, as seen in Eq. (6) . All this information is available to

robots at the time of operation and are taken into consider-

ation for parameter (i.e., energy, time, distance) calculation

and overall decision-making. 

(ii) Another important part of the simulation is the selection of

parameters for the development of GA based scheme. There

are three key parameters considered that significantly influ-

ence the performance of our genetic algorithm method. They

are: population size, mutation rate and no. of generation se-

lected as the self-stopping criteria. In order to highlight the

reasoning for our selection, Fig. 8 provides the performance

of GA (value of minimum energy) with respect to these pa-

rameters, individually. 

As seen in Fig. 8 a, the minimum energy drops with the increase

n population size, however it plateaus after a certain point (pop-

lation size 40 0–70 0). Therefore, all these values within the range

s a reasonable choice as the population size. As we have selected

opulation size of 500, it results in minimum energy of 2836.50 J,

hich is close to the point where the saturation occurs. Hence

opulation size is chosen as 500 (as indicated by � in the figure). 

The same thing can be seen in case of varying mutation rate

 Fig. 8 b) where we present the performance of GA (Min. Energy)

ith mutation rate being changed from 0.1 (too low) to 0.7 (too

igh). Similar to previous figure, the performance suggests that GA

esults become saturated after a certain point, even with variance

n mutation rate. Since the results don’t vary too much for the lat-

er values of mutation rate, we have considered the traditionally

sed value of 0.5 as the mutation rate (as indicated by � in the

gure). 

Finally, we have run simulation by varying the generation no.

as stopping criteria) from 300 to 2100. As seen in the figure, the

maller generation numbers provide a higher value of minimum

nergy (poor results). At around 1500 the minimum energy drops

ignificantly and then saturates. Hence, we have chosen our stop-

ing criteria as 1500 generation for our problem ( Table 2 ), which
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Fig. 8. (a). Performance of GA (Min. Energy) with respect to varying population size. (b). Performance of GA (Min. Energy) with respect to varying mutation rate. (c). 

Performance of GA (Min. Energy) with respect to varying generation no. as stopping criteria. 
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means GA is self-maintained and stops running when no changes

in results can be found for 1500 generations. 

6.2. Simulation results 

6.2.1. Performance analysis of GA scheme 

The results from GA based scheme is presented in Table 3 . As

seen in the table, the four-layers present the 4 sets of decisions.

Layer-1 presents the task allocation decisions where ‘1 ′ , ‘2 ′ , ‘3 ′ 
indicates the robot assigned to the task, whereas ‘0 ′ indicates the

task has been offloaded to cloud. Layer-2 points to the selection

of robot for offloading the tasks to the cloud. Therefore this is
 subset of the allocation decisions, where tasks have only been

ffloaded ( I t i = ‘0 ′ ). Tasks that are completed on robot cannot

e offloaded and hence are defined by in layer 2 as ‘ ✗ ’. Layer-3

oints to the location decision. For tasks completing on robot,

he location points to the cell in the workspace where the corre-

ponding robot has completed the task. For instance, [3 ✗ 27 ✗ ]

or task 4 means that the task is completed by robot R 3 at cell

7. In contrast, for tasks that are offloaded, location points to the

ells the task was offloaded from by the corresponding robot. For

xample, results for task 30 is presented as: [0 2 17 4]. It means

ask 30 is offloaded to cloud VM by robot R 2 from cell 17. Finally,

ayer-4 of results indicate AP selection, which along with location,
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Table 3 

Analysis of GA based decision-making scheme. 

Table 4 

Performance of each robot for GAMRC approach. 

Robot R 1 Robot R 2 Robot R 3 

Energy constraint (limit) 50 0 0 J 10 0 0 J 30 0 0 J 

Energy consumption 936.18 J 410.78 J 1489.53 J 

Path planning results 1–27 –31–35–5–24 1–31–21–17 –4 1–7 –21 –27 –30–35–21 –16–8 –15–21 –10–4 –11 –4 –16–17–24–17–15 

Total distance covered 204.84 m 132.42 m 335.54 m 
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orresponds to available bandwidth utilized by robot. Similar to

ayer-2, this is a subset of allocation decisions where tasks have

een offloaded. For tasks that are completed on robot, they do not

equire any association with AP, hence denoted by ‘ ✗ ’ in the results.

.2.1.1. Analysis of fitness score and offloading performance. Fig. 9

hows performance of our proposed GA scheme (GAMRC) where

ey indicator is fitness. According to Fig. 9 a, average fitness graph

hows a declining trend, which signifies that our GA scheme is

orking properly. Since the objective is to find the minimum en-

rgy, the falling graph suggests that overtime results go from initial

ndings towards lower and more precise values of fitness/ energy.

imilar findings can be seen for best fitness graph ( Fig. 9 b). As

entioned before, in the context of the application, the term “best

tness” indicates lowest value of robot energy. From the initial 

eneration, GA results are evaluated based on their fitness scores.

ver the course of the complete algorithm run, each time a lower

tness is found, it replaces the previo us value and becomes the

ew best fitness score. When the best fitness score doesn’t change

or a pre-defined number of generation, then the result is assumed

o be near-optimal. Hence the best fitness score finishes as a con-

tant line in the graph. Fig. 8 c is a representation of the allocation

istogram that indicates the well-distributed nature of the alloca-

ion results. Even though, around 14 tasks were completed by the

rimary robot R 1 , however robot R 2 and R 3 provided aid through

ocal offloading along with the support from cloud infrastructure.

ore specifically, R 3 was the biggest contributor in terms of task

llocation. But, it is reasonable since R 3 is the most powerful robot

n this scenario, therefore takes the majority of the workload. 

.2.1.2. Analysis of individual robot performance. We present the

erformance of individual robots in Table 4 . As seen, each robot

as an energy limit, which also influences the offloading decisions.

he near-optimal decision-set requires each robot to be within
heir energy constraint. As seen from the results, energy con-

umption of robot R 1 (936.18 J), R 2 (410.78 J) and R 3 (1489.53 J) are

ll within their respective energy constraints of 50 0 0 J, 10 0 0 J and

0 0 0 J. This proves that the algorithm can identify the near-optimal

ecision-set while meeting energy constraint condition of indi-

idual robot. It also highlights that R 3 carries most of the work-

oad, which results in highest energy consumption among them,

hereas R 2 is the least utilized robot. All these results are clear

ndication that robot R 1 offloaded tasks to the cloud VM as well to

ocal robots ( R 2 and R 3 ) for computation support as well as easier

ommunication with cloud. 

.2.1.3. Analysis of path planning performance. As for the path plan-

ing results from Table 4 , it shows the cells each robot has vis-

ted as well as the order in which it has visited the cells. The

nderlined cells in the results mean that offloading took place

n these cells/locations in workspace. These results help prepare

he path plan for individual robot. Additionally it also highlights

he total distance covered by each robot. According to the results,

obot R 3 covers more area through movement and hence has a

igher distance coverage (335.54 m) than R 1 (204.84 m) as well as

 2 (132.42 m). The underlined cells in the path planning results

oint to the cells that the robots have visited for the purpose of

ask offloading. It is further evident from Fig. 10 , which shows the

ath plan of each robot for our proposed GAMRC scheme. In these

raphs, the continuous directed lines helps trace the path of each

obot. The dotted lines mean that the robot communicated with

he cloud for offloading during its stay in these cells. Finally the

on-directed continuous lines means an intermediate path while

t was moving towards a selected cell. 

The overall path planning results highlights a clear view of

ach of the robot’s movement for the duration of the application.

hese results also help relate to the access point (AP) selection
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Fig. 9. Fitness performance and offloading decisions of GA scheme. 
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and therefore the overall task offloading performance, since move-

ment has impact on the available bandwidth each robot gains at

different locations for cloud-based communication. 

6.2.1.4. Analysis of AP usage. Depending on the task allocation and

path plan results, the robots are allotted to different locations for

task completion as well as for offloading during the course of the

operation. Based on those decisions, each robot has different avail-

ability of bandwidth, which also influences the AP selection de-

cisions. Fig. 11 depicts the AP selection for each task. The results

show that total 4 tasks are offloaded using AP 4 and total 3 tasks

are offloaded using AP 3, while 3 tasks are also offloaded via se-

lection of AP 2. Finally total 4 tasks are offloaded via selection

of AP 1. This attains to total 14 usage of APs, meaning total 14

tasks have been offloaded to the cloud. We can further realize from

Table 3 that total 11 of these tasks have been offloaded by robot

t  
 3 , which makes it the dominant robot in the case of offloading

o cloud. In comparison, the performance of R 1 and R 2 are mere as

he offload only 1 and 2 tasks respectfully. Therefore the findings

rom this section suggest that the ability of robot R 3 to cover more

istance resulted in better access to available bandwidth (through

P selection), which resulted in robot R 1 getting aid from R 3 for

ajority of task offloading during application, which ultimately in-

reased the potential of improving system performance. 

.2.2. Performance evaluation of GA scheme 

In Table 5 , we evaluate performance of our GA scheme for

ulti-robot and cloud (GAMRC) with results from GA scheme for

ingle robot and cloud (GASRC) and GA scheme for multi-robot on-

oard (GAMRB). The results clearly highlight that GAMRC entails

uch lower energy (2836.50 J) than GASRC (4778.80 J) and GAMRB

7057.19 J). In terms of time/delay, GAMRB doesn’t finish within

he time constraint. As GASRC, even though the tasks are finished
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Fig. 10. Path planning performance of each robot for GAMRC scheme. 

Table 5 

Task offloading performance comparison (Min: E total ). 

Result parameters GA (multi-robot with 

cloud), GAMRC 

GA (single robot with 

cloud), GASRC 

GA (Multi-robot 

on-board), GAMRB 

Generation No 11,524 8399 N/A 

Offloaded Task (cloud) 14 21 0 

Minimal Energy 2836.50 J 4778.80 J 7057.19 J 

Total Time 80.31 s 109.45 s 413.16 s 

Total Distance 672.8 m 297.98 m 1161.96 m 
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ithin the delay constraint, it still is higher than the GAMRC pro-

ess, which is the fastest to complete the applications. The reason

or better performance by GASRC and GAMRC can be identified via

eeper analysis. 

.2.2.1. Offloading performance comparison. According to Table 5 ,

ASRC and GAMRC entail lower energy because of their ability to

ffload tasks to the cloud. Here the benefit of GASRC is evident,

ince the single robot R 1 allows for most offloading of tasks (21) to

he cloud. Despite the fact that 14 tasks are offloaded to cloud for

AMRC, the added trait of local R–R communication means that

obot R 1 can utilize nearby robots R 2 and R 3 for local completion

f tasks or help with offloading of tasks to the cloud. Thus, results
n better access to resources (cloud VM and local robot), more ex-

cution of parallel tasks and faster completion of tasks for cloud

etworked multi-robot systems. 

.2.2.2. Path planning comparison. According to Table 5 , the to-

al distance covered by GAMRC (672.8 m) is higher than GASRC

297.98 m). Even though, more movement causes higher energy

onsumption, but for GAMRC there are three active robots that are

oving in tandem to get access of better bandwidth for easier of-

oading. Moreover, the robots are also utilizing their local commu-

ication to cover more area effectively. Hence the primary robot R 1 
an get assistance from robot R 2 and robot R 3 for completing local

asks or to help with communication for cloud-based offloading.
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Table 6 

Comparison of robots performance among the three methods (Min: E total ). 

GA (Multi-robot with cloud), GAMRC GA (Single robot with cloud),GASRC GA (Multi-robot on-board), GAMRB 

Robots R 1 R 2 R 3 R 1 R 1 R 2 R 3 

Energy constraint 50 0 0 J 10 0 0 J 30 0 0 J 50 0 0 J 50 0 0 J 10 0 0 J 30 0 0 J 

Energy consumption 936.18 J 410.78 J 1489.53 J 4778.80 J 2532.2 J 1610.78 J 2914.21 J 

Fig. 11. Visual representation of access point (AP) selection for the offloaded tasks. 
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Unfortunately for GAMRB, the lack of cloud availability hampers

the system performance, even though the robots cover the most

distance (1161.96 m), but it doesn’t provide much benefit as some
Fig. 12. Path planning performance compariso
asks are too latent and consumes high energy in the local proces-

or. Here the additional movement may utilize the robots more,

ut robot’s local processors can’t compensate for the high com-

utational requirements of these tasks. In comparison to that, for

AMRC, the robots can offload such tasks to cloud and even move

ccordingly to help with offloading. This saves valuable time and

nergy, as reflected in the performance. Finally, analysis of move-

ent performance for robot R 1 ( Fig. 12 ) also help reach the same

onclusion, where additional robots and cloud assistance means R 1 
oves much lesser (204.84 m) in GAMRC than other two validated

ethods of GASRC (297.98 m) and GAMRB (582.7 m). 

.2.2.3. Performance comparison of robot. Given that each robot has

ts own energy constraint, proper utilization of energy is a top pri-

rity in such applications. Due to the involvement of cloud, the en-

rgy used for each robot was within the energy limitation (as seen

n Table 6 ) for our GAMRC approach. In comparison to that, the

ASRC process that runs the operation with robot R , entails an
1 

n of robot R 1 among all three methods. 
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nergy of 4778.80 J, which is significantly higher for a single robot,

ven though it is slightly under the energy bounds of 50 0 0 J. The

ame can be said about GAMRB process, that results in a higher

alue of overall energy as well as higher energy consumption for

ach of the robot (2532.2 J, 1610.78 J and 2914.21 J for R 1 , R 2 and

 3 respectively). Among all three methods, the lowest energy con-

umption for the principle robot R 1 is for the GAMRC method

936.18 J). It indicates that even though all the methods manage to

eet individual robot’s energy constraint, the performance of the

A based scheme for cloud networked multi-robot system results

n the lowest energy consumption for each of the robots (including

he primary robot R 1 ). 

. Conclusion 

Task offloading based decision-making is a critical issue for

loud computing in networked robotic applications. Contrary

o single robot applications, the offloading for cloud networked

ulti-robot system is further complicated by the addition of local

–R communication along with the cloud based R–C offloading.

herefore a proper balance of workload between local and cloud

ased offloading is required. Moreover, the offloading performance

s greatly influenced by the ability of robot to move on-demand

nd gain access to better gateways (communication links) for con-

ecting to the cloud. Therefore, in this paper we have merged all

his aspects and proposed a novel 4-layer decision-making scheme

o identify all the near-optimal solutions by leveraging the com-

lementary strength of network connectivity, motion planning and

ocal robot–robot interaction. Initially, we present a framework for

ask offloading in a cloud networked multi-robot system so that

he robots can communicate with each other and offload tasks by

tilizing its motion and connectivity features. We formulate a joint

ptimization problem for offloading where the 36 cell workspace

nd 40 node taskflow is derived from the motivational application

f parcel sorting and distribution in an automated warehouse.

ased on the scenario, the optimization problem for offloading is

ackled by a GA based scheme that proposes 4-layers of decision-

aking: (i) task allocation, (ii) robot selection for offloading, (iii)

ovement decision and (iv) AP selection. After running the simu-

ation, results are acquired and verified through comparison with

wo validated benchmarks, one that considers GA based offloading

or a single robot [24] and the other that implements a method for

ulti-robot systems without any inclusion of cloud. The outcome

mplies that the performance of our approach is superior in terms

f energy usage as well as completion time/latency. We also con-

lude from further investigation that the addition of cloud helps

omplete the computation-heavy tasks much faster. Moreover,

he local R–R sharing utilizes the available resources to offload

asks in a more efficient way. Overall, all these factors combine

ogether to attain a system performance that is more enhanced in

very way than the other implemented procedures considered as

enchmarks. For future work, we hope to modify our scheme by

mplementing a real-time formation of networked robots, perform

imulations on our developing hardware [44] and further validate

ur work by tackling more complicated applications in different

mart city and smart factory environment. 
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