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a b s t r a c t 

The use of enhanced clustering techniques and multiple mobile sinks can improve the data-collection effi- 

ciency and reduce the energy consumption of wireless sensor networks. Most of the existing approaches 

use static sinks and multihop routing, which can cause data loss and the early death of sensor nodes, 

leading to energy-hole problems and inefficient data collection. Nowadays, sensors produce time-sensitive 

data, and hence, lossy data-collection approaches must be avoided. In order to overcome the aforemen- 

tioned issues and improve the network lifetime, we propose an enhanced clustering methodology with 

multiple mobile sinks for efficient data collection. The performance of the proposed method is tested and 

compared with that of the existing algorithms LEACH, GA, and PSO. The simulation results show that the 

proposed approach improves the network lifetime significantly and reduces data loss. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Sensors are small electronic devices used to monitor or mea-

ure changes in real-time environments [1] . They are usually in-

xpensive and low-power-consuming devices, which are capable

f processing and transferring data to a base station. After suc-

essful deployment, the sensor nodes form a network, by self-

rganization, which is called the wireless sensor network (WSN).

he primary work of a sensor node is to log the analog informa-

ion of environmental changes and convert it into digital informa-

ion with the help of analog-to-digital converters. In addition to

ogging information, the sensor nodes also act as repeaters to for-

ard the data from other sensor nodes to the base station through

ingle or multihop communication. Generally, the nodes are oper-

ted with limited battery resources, and the process of recharging

r replacing the battery after deployment is tedious. Thus, the lim-

ted lifetime of battery is one of the fundamental issues in WSNs

2–4] . Sensor technology has various applications, which include

ndustries, automated homes, military applications, modern health

are, environmental monitoring, and security, to name a few [5–9] .

In WSNs, information from the sensor nodes is usually trans-

erred to the sink through multihop communication, in order to

educe the energy consumption of the nodes. Though such a data-
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orwarding approach improves the overall lifetime of the network,

t also causes energy-hole problems and the premature death of

ensor nodes [10,11] . In particular, with this approach, the sensor

odes close to the sink forward not only their own data to the sink

ut also the data from their neighboring nodes. Hence, the nodes

ear the sink will lose their energy sooner and die. This makes

orwarding the data of other nodes to the base station highly chal-

enging, and leads to network-partition problems, degradation of

he quality of service, and decreases the network lifetime [12] . In

rder to minimize the aforementioned issues, a number of tech-

iques such as clustering and routing have been proposed in the

iterature; a few of them are discussed below. 

Clustering is one of the most important approaches to improve

he network lifetime in WSNs. Clustering is the process of par-

itioning the entire region into a number of subregions, called

lusters [13–16] . Each cluster has a bunch of sensors, called clus-

er members, and one among them acts as a cluster head. Clus-

er members are responsible for sensing the environment and the

luster head collects the data from the cluster members. The ad-

antages of clustering are as follows. (i) Data fusion: The amount

f data to be transmitted to the base station can be reduced by

using data together; consequently, the energy consumption dur-

ng transmission is reduced. (ii) Energy balance: During network

peration, periodically changing the cluster head prevents the pre-

ature death of sensors and minimizes data loss [6,17] . 

https://doi.org/10.1016/j.comnet.2019.05.019
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Recently, mobile sinks (MSs) were introduced to reduce the

number of hops traveled by a data packet in a network. Instead

of nodes forwarding data to a static sink in a multihop fashion,

MSs travel to all cluster heads to collect data directly in a single

hop and supply all the data to the base station when they reach

the base station. Existing literature show that MSs improve the

network lifetime and performance of WSNs significantly [18–21] .

In general, MSs are moving objects that are capable of collecting

data, and are equipped with powerful transceivers and unlimited

battery power. They are robots or unmanned aerial vehicles, which

can travel all over the field to collect the data of interest gener-

ated by the sensors in their trajectories. A mobile sink starts the

data-collection process by touring each cluster head periodically.

The traversing route for an MS is supplied by the base station. As

this approach collects data packets directly from the cluster heads

without using any data-forwarding mechanism, it avoids data col-

lisions and improves the lifetime of the sensor network [22] . 

However, a proper path should be provided for each MS to col-

lect the data from the cluster heads with acceptable energy con-

sumption. Simulating the biological behavior of insects has been

found to be useful for finding an optimal path [23,24] . The ant

colony optimization (ACO) algorithm is inspired by the natural be-

havior of ants, and is classified as an artificial-intelligence tech-

nique [25,26] . ACO finds a solution based on the food-searching

behavior of ants using a special chemical called pheromone. In the

early stages of search, ants move randomly in search of food, and

along the way, they deposit a certain amount of pheromone. Af-

ter the discovery phase, a set of paths are available with differ-

ent pheromone intensities. The rest of the ants choose the path

with the highest pheromone intensity to reach the food, deposit-

ing pheromones along the way. Finally, the path with the highest

pheromone intensity is considered as the best path. 

Deployment, clustering, and routing in WSNs require the con-

sideration of additional constraints such as storage capacity, data

collection, efficient usage of battery power, and communication

[27–31] . In this paper, an energy-efficient ACO-based routing al-

gorithm with multiple MSs is proposed for WSNs. First, the low-

energy adaptive clustering hierarchy (LEACH) algorithm is used to

cluster the network into several subregions. Then, a routing algo-

rithm finds an optimal path for each MS to visit all cluster heads

and return to the starting point. In the case of multiple MSs, the

cluster heads are divided into a finite number of disjoint subsets

and each subset is assigned to one MS. Every MS starts its travel

from its initial position, traverses all the cluster heads in the as-

signed subset, and ends the tour at the same initial position. 

The main objective of this work is to improve the network life-

time while ensuring that all data are collected efficiently. In this

work, we consider that all the MSs begin and end their travel at

the same location. The main contributions of this work are sum-

marized below: 

• A modified-LEACH algorithm is proposed to cluster the sensor

nodes. 

• Multiple MSs are introduced for efficient data collection, and

the proposed algorithm substantially increases the network life-

time. 

• The ACO technique is employed with multiple MSs to reduce

data loss and enhance the network lifetime of WSNs. 

• Simulation results are compared with those of existing tech-

niques (LEACH, GA, and PSO) for several scenarios to affirm the

effectiveness of the proposed approach. 

The remainder of this paper is organized as follows:

Section 2 explains the system model with preliminaries, defi-

nitions, energy model, and network model. Section 3 explains the

proposed algorithm with clustering, route formation, ACO, and
oute optimization. Section 4 highlights the obtained simulation

esults for various scenarios, and Section 5 concludes the paper. 

. System model 

.1. Definitions and preliminaries 

• S : Set of sensor nodes deployed in a region, S =
{ s 1 , s 2 , s 3 , . . . , s n } . 

• P : Set of cluster heads, P = { C H 1 , C H 2 , C H 3 , . . . , C H p } , p ≤ n . 

• εfs : Energy consumption in the free-space model. 

• εmp : Energy consumption in the multipath model. 

• E lx : Energy required for the radio unit. 

• E tx , E rx : Energy required for transmission and reception. 

• x : Number of bits transferred or received per second. 

• d : Data transfer distance over a wireless medium 

• dis ( CH, MS ): Distance between the cluster head CH and mobile

sink MS . 

• E r ( i ): Residual energy of the sensor node s i . 

• E i : Initial energy of the sensor node s i . 

• E t : Total energy of the network. 

• T h : Threshold energy for a sensor to be selected as a cluster

head. 

• p : Number of cluster heads. 

• q : Number of mobile sinks. 

• Lnd : Last node that dies. 

• p i : i th subset of P . 

• l i : Number of CH in p i . 

• V : Set of vertices. 

• A : Set of arcs. 

• p il i : Number of cluster head assigned to the mobile sink MS i . 

• R i,k : k th route of the mobile sink MS i . 

• rD ( R i,k ): Total distance traveled by MS i . 

• r D : Route distance of the mobile sink MS . 

.2. Energy model 

The basic radio model was used as an energy model for sending

nd receiving the data [32] . The energy consumption can be cate-

orized as (i) the energy consumption of the transmitter for oper-

ting the radio unit and (ii) the energy consumption of the power

mplifier. The energy consumption for sending (transmission radio

nit) x bits of data over a distance d can be calculated as 

 tx (x, d) = 

{
E lx · x + ε f s · x · d 2 , for d ≤ d 0 , 

E lx · x + εmp · x · d 4 , for d > d 0 , 
(1)

here E lx is the energy required to transmit data over the wireless

edium and εfs and εmp represent the energy consumptions in the

ree-space model and multi-path model, respectively. To receive x

its of data, the energy required by the receiver is given by: 

 rx (n ) = E lx · x. (2)

.3. Network model 

Sensor nodes are randomly deployed in a region, and they have

he following features: (a) They are static and not mobile. (b) Ini-

ially, all nodes have equal amounts of energy and their batteries

re neither replaceable nor rechargeable during operation. (c) Ev-

ry sensor has sensing, processing, and communication capabili-

ies. In order to reduce the energy consumption of a node, the net-

ork is clustered with the help of an enhanced LEACH algorithm.

hen, MSs are introduced in the network to collect data from the

luster heads and deliver them to the data-collection unit. Single

r multiple MSs perform the data-collection activity and they have

nlimited energy. The locations of the cluster heads are available at
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Fig. 1. Network model for multiple mobile sinks. 
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he base station, and the base station is responsible for providing

he route information to the MSs. Usually, the MSs are controlled

y the base station. Fig. 1 shows the network model for multiple

obile sinks. In Fig. 1 , the gray dots represent sensor nodes, the

lack dots represent cluster heads, the flight symbols denote MSs,

nd solid lines represent the trajectory of the MSs. 

We consider a WSN with multiple MSs; its description is given

elow: The given undirected graph G = (V, A ) consists of a set of

ertices V and a set of edges A . In the undirected graph G , every

dge in A is assumed to have a positive cost, which is the distance

etween the vertices incident at each edge. If q denotes the total

umber of MSs, each MS travels a subset of cluster heads (CHs) to

ollect data. For that purpose, let { P i } q i =1 
be a partition of the entire

et of CHs where P i has l i CHs, such as P i = { p i 1 , · · · , p il i } . Our aim

s to minimize the sum of the distances over which the MSs travel

o all the vertices of the assigned subset P i of V exactly once to

ollect data from CHs. 

. Proposed algorithm 

.1. Clustering 

The LEACH algorithm is modified and implemented in the pro-

osed clustering approach. Sensors are deployed in the given re-

ion to be monitored and are partitioned into a number of clus-

ers through the following steps. The total residual energy of the

etwork E t is calculated as 

 t = 

n ∑ 

i =1 

E r (i ) , (3)

here E r ( i ) denotes the residual energy of the node i . Then, to find

 threshold value, the average residual energy of the sensors is cal-

ulated by 

 h = 

{
p ch 

1 −p ch (r no mod 1 /p ch ) 
· E t 

E i 
if h ∈ H, 

0 otherwise, 
(4) 

here p ch is the required percentage of cluster heads, H is the set

f nodes that are not selected as a cluster head in the most recent

/ p ch rounds, E i denotes the total initial energy of all the nodes in

, and r no is the present round number. 

In each round, all the sensors generate a random value between

 and 1. The generated value of each sensor is compared with the

redefined threshold T h . If the obtained value of a sensor s i is less

han T h , s i will be selected as a cluster head. In contrast, when two

r more sensors generate the same random value, the sensor node
ith the highest residual energy is selected as the cluster head for

hat particular cluster. 

Once cluster heads are selected, they send a broadcast message

o all other sensor nodes. Based on the signal strength or commu-

ication range of the sensors, the rest of the sensor nodes join a

luster head. Finally, the cluster heads send a time-division mul-

iple access (TDMA) broadcast message to their members, with

cheduling information for data transmission and reception to

void data collisions in the network. 

.2. Route formation 

Nowadays, multiple mobile sinks (MMS) solutions are receiving

ide attention from researchers of WSN, owing to their potential

o help achieve effective network lifetime and efficient data collec-

ion. We consider an MMS network with p cluster heads and q MSs

n a WSN environment. Each MS is assigned to a subset of clus-

er heads having a single starting point. At each round, all cluster

eads should be visited at least once by one of the MSs and each

S should visit at least one cluster head. One of the main objec-

ives of the proposed approach is to reduce the travel distance of

he MSs without any data loss. 

Data collection using MS is similar to the traveling salesman

roblem (TSP). It is an NP-hard problem and near-optimal solu-

ions can be reached by applying a heuristic algorithm. The pro-

osed routing approach involves the following steps: (i) Assigning

ach disjoint subset of cluster heads to each MS. (ii) Finding the

rder of visit (path) for each MS. For achieving efficient energy uti-

ization and for obtaining an optimal route for each MS, an average

umber of cluster heads is assigned to each MS, which is obtained

s follows: 

 CH (MS) = n (CH) /n (MS) (5)

here N CH ( MS ) denotes the average number of cluster heads as-

igned to an MS, n ( CH ) represents the number of cluster heads,

nd n ( MS ) represents the number of MSs. 

For each MS, the MS members (cluster heads) are assigned

ased on a distance matrix, whose entries consist of the distances

etween the cluster heads and MSs in the network. The distance

atrix is presented as 

is (MS, CH) = 

⎡ 

⎢ ⎣ 

d 11 d 12 · · · d 1 p 
d 21 d 22 · · · d 2 p 
· · · · · · · · · · · ·
d q 1 d q 2 · · · d qp 

⎤ 

⎥ ⎦ 

(6) 

here the row index represents the MS number and the column

ndex represents the cluster head number. The assignment of clus-

er heads to each MS is determined by the minimum value in the

orresponding column of the distance matrix. A more detailed ex-

lanation is given below. 

The members of the i th MS MS i can be represented as a subset

f P , i.e., 

 i ⊂ P (7) 

here i is the index of the MS and i = 1 , 2 , 3 , · · · , q . Based on the

onditions given below, a subset of cluster heads ( P i ) is formed and

ssigned to MS i . The distances between the cluster heads and MSs

is ( MS i , CH j ) in the network are compared. CH j is assigned to the

ubset of MS i , if dis ( MS i , CH j ) value is minimal in i = 1 , 2 , 3 , · · · , q .

or example, if the distance between MS 3 and CH 1 is less than that

f the other mobile sinks, CH 1 will be assigned to MS 3 . Similarly,

ll the cluster heads are assigned to their corresponding MSs. If a

luster head has the minimal distance with multiple mobile sinks,

hen the cluster head is randomly assigned to any one of those

obile sinks. 

min 

 =1 , ··· ,q 
dis (MS i , CH 1 ) , · · · , min 

i =1 , ··· ,q 
dis (MS i , CH p ) (8)
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Fig. 2. Work flow. 
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By using (8) , a finite number of disjoint subsets of cluster heads

CH j are formed for all the MSs MS i . As described in Section 2.3 ,

P is partitioned into a number of disjoint subsets P i , i = 1 , · · · , q,

where P i = { p i 1 , · · · , p il i } . 
The k th route of the i -th MS MS i is represented as 

R i,k = { Pos init (MS i ) , Pos (P i ) , Pos init (MS i ) } (9)

where Pos init ( MS i ) denotes the initial position of MS i and Pos( P i )

represents the cluster head positions in P i . 

To find the total route distance rD traveled by MS i , we compute

the following: 

rD (R i,k ) = dis (MS i , p i 1 ) + 

l i −1 ∑ 

j=1 

dis (p i j , p i, j+1 ) 

+ dis (p il i , MS i ) (10)

Here, dis ( · , · ) denotes the distance between CHs or between a CH

and an MS. The MS MS i starts from the initial position, visits all

CHs in P i in the increasing order of indices, and finally returns to

the initial position. 

The best ordering of p ij in P i is the one with the least tour

length rD ( R i,k ). Thus, to decide the ordering of p ij in P i for each

k , we have the following optimization problem: 

min 

R i,k 
rD (R i,k ) (11)

It is TSP, which is NP-hard. To bypass this difficulty, we adapt ACO,

which is given in Section 3.3 . Algorithm 1 explains the multiple

Algorithm 1 MMS Route Formation. 

Input: MS and CH coordinates 

Output: Routing path for multiple MSs 

1: % Calculate avg. no. of CHs assigned to MS: 

2: N CH (MS) = n (CH) /n (MS) 

3: Construct the distance matrix disMat(·, ·) for MSs and CHs us-

ing (11) . 
4: % Assign CH to the closest MS: 

5: loop j := 1 to q 

6: I = argmin d isMat(: , j ) 

7: end loop 

8: if | I| == 1 then 

9: Assign CH j to MS I 
10: else 

11: Assign CH j to MS i , i ∈ I randomly. 

12: end if 

13: Call ACO for routing 

14: Perform data collection 

15: Repeat process until Lnd 

mobile sinks route formation and Fig. 2 illustrates the overall flow

of the proposed algorithm. 

3.3. Ant Colony Optimization (ACO) 

ACO is a metaheuristic algorithm, which is used in many do-

mains to solve optimization problems. One such problem is finding

the shortest path between two points. In general, ACO consists

of a group of ants, called the ant system. They work in a group

to perform a complex task in an optimal manner to find food for

their survival (solution). It is well known that the metaheuristic

approach is robust and adaptable for managing a broad range

of combinatorial optimization problems. According to the survey

[33–35] , ACO can produce better results than other algorithms.

Thus, we apply an ACO algorithm to find an optimal path from the
et of available cluster heads with efficient routing and effective

ata collection. 

In ACO-based algorithms, artificial ants are designed to mimic

eal ant behaviors, to find an optimal path. After the initial de-

loyment, each ant travels from one cluster head to another and

eposits its pheromone. Solution paths are constructed based on

heir travel and the pheromones are stored and updated. After suc-

essful completion of their travel, the solutions are evaluated. The

est solution is the one that has the most pheromone. Other ants

ay follow and deposit pheromones on the same path during their

isit to construct solutions. Based on the amount of pheromone,

he path for the next iteration or visit is chosen. 

The concept of MS was introduced to avoid the hot-spot prob-

em and data loss and to increase the lifetime of WSNs. MS can

ynamically adapt the best routing path with the help of the ACO

lgorithm and can traverse and acquire data from all the cluster

eads. Initially, the base station collects the positions of the cluster

eads and decides a route for MSs using ACO. The first MS travels

 set of cluster heads, and the second MS travels another set of

nvisited cluster heads. In a similar manner, all the cluster heads

re visited by a group of MSs. The number of MSs is varied from 1

o q , to evaluate the performance of the MS approach. 

The routing process turns extremely complex when more than

ne MS is deployed. The increased complexity is due to the need

o find the appropriate MS for a cluster head and to solve the or-

inary shortest path algorithm repeatedly for all MSs. The main

bjective of MMS is to minimize the total routing distance, which

an increase the network lifetime. The ACO algorithm computes

nd assigns a unique route list to each MS. The MS starts traveling

rom the nearest cluster head in the list and it visits all the clus-

er heads in the list. The cluster heads visited are recorded in the

oute list until all the cluster heads are visited by one of MSs. In



M. Krishnan, S. Yun and Y.M. Jung / Computer Networks 160 (2019) 33–40 37 

t  

w  

3

 

c  

a  

c

P

w  

i  

t  

t  

d  

n  

c  

o  

c

 

t  

p  

p  

a  

s  

u

τ  

w  

t  

i  

p  

t

�

T  

h

�

w  

t

 

r  

T  

t  

t

4

 

l  

T  

t  

w  

l  

p  

(  

r  

Table 1 

Simulation details. 

Parameters Value 

Network area 20 0. 20 0 m 

2 

Number of sensors 10 0–50 0 

Type of sensors Static 

Sensor energy 0.5 J 

Number of rounds 20 0 0–50 0 0 

Clustering method Dynamic 

Cluster head probability 0.05 

Data collection MMS 

Number of MS 1–3 

E Tx 4.602 μJ/bit 

E Rx 2.34 μJ/bit 

E fs 1.0 e 11 

E mp 1.3 e 15 

Fig. 3. First node dead. 
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n  
his manner, an effective solution is constructed. In the algorithm,

e use k number of ants; therefore, k solutions can be constructed.

.4. Route optimization 

For ACO-based route optimization, each ant selects the next

luster head independently. The following probabilistic formula is

pplied for the probability P r(t) k 
i j 

of the k th ant moving from the

luster head i to the cluster head j : 

 r(t) k i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

[
τi j (t) 

]α ·
[
ηi j 

]β

∑ 

l∈ allowed k 

[ τil (t) ] 
α · [ ηil ] 

β
, if j ∈ allowed k 

0 , otherwise, 

(12) 

here τ ij ( t ) is the pheromone information on the path from the

 th cluster head to the j th cluster head, which can be expressed by

he intensity of the pheromone between the i th cluster head and

he j th cluster head. ηij ( t ) is obtained from 1/ d ij , where d ij is the

istance from the cluster head i to the cluster head j . allowed k de-

otes the cluster heads that are not visited by ant k. α and β are

onstant parameters, whose values are used to adjust the influence

f pheromones. These parameters also assist the ants in their de-

ision making. 

In order to achieve better results, the pheromone trail values of

he ants are updated in each iteration. It helps showcase the ants

erformance and evaluate the quality of the solution. The update

rocess is considered as a key factor of the self-learning mech-

nism of ACO and helps ensure improvement of the subsequent

olutions. The trail updating mechanism includes local and global

pdates. The local update is done with the following equation: 

i j (t + 1) = (1 − ρ) · τi j (t) + �τi j , (13)

here ρ denotes the pheromone evaporation rate, which controls

he speed of evaporation, t denotes the iteration counter, ρ ∈ [0, 1]

s the parameter that regulates the reduction of τ ij , and �τ ij is the

heromone value in the current iteration, which is deposited on all

he edges. �τ ij can be expressed as follows: 

τi j = 

M ∑ 

k =1 

�τ k 
i j . (14) 

he amount of pheromone left by each ant k leaving the i th cluster

ead and arriving at the j th cluster head is computed by 

τ k 
i j = 

Q 

L i j 

, (15) 

here Q is a constant and L ij is the distance the ant k travels from

he cluster head CH i to the cluster head CH j . 

This update mechanism encourages it to find a shorter path

outing and increases the probability of achieving an optimal route.

his process is repeated until the predetermined number of itera-

ions is reached or an appropriate solution is found. The final solu-

ion can be considered as an optimal solution for an MS to travel. 

. Results 

The proposed approach is designed to increase the network

ifetime through efficient routing and data collection using MMS.

here are a number of definitions available for the network life-

ime in the WSN literature [36] . As we implement MSs in this

ork, we define the network lifetime as the time at which the

ast node dies in the network. To prove the efficiency of the pro-

osed approach, the following scenarios are considered: Scenario

1) demonstrates the conventional clustering with the proposed

outing algorithm for data collection. Scenario (2) demonstrates
he proposed enhanced clustering with the ACO-based routing ap-

roach for data collection. In addition, we also analyze the packet

oss ratio and performance of the approaches, by varying the num-

er of MSs. We also compare the network lifetime measured at the

rst node death, last node death, and the number of nodes alive in

ach round. Furthermore, the proposed approach is compared with

he existing methods such as LEACH, genetic algorithm (GA), and

article-swarm optimization (PSO). Simulations are carried out us-

ng Matlab 2017Ra with different network sizes (10 0–50 0 nodes)

nd the simulation details are given in Table 1 . 

.1. Scenario 1 

The network lifetime comparisons measured at the first and

ast node deaths are shown in Figs. 3 and 4 , respectively. With

he implementation of MS in the proposed approach, the data-

orwarding mechanism can be avoided for data collection, and

ence, the energy consumption for data forwarding can be ne-

lected. It helps the proposed approach achieve the best network

ifetime, as is clearly observable from these figures; the pro-

osed method achieves longer network lifetime than the existing

ethods. 

Fig. 6 shows the average energy consumption of nodes until the

rst node dies. It can be observed that the energy consumption of

he proposed method is less than that of the existing methods. 

.2. Scenario 2 

The network lifetime comparisons measured at the first and last

ode deaths are shown in Figs. 7 and 8 , respectively. The similar
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Fig. 4. Last node dead. 

Fig. 5. Number of nodes alive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Average energy consumption till first node dead. 

Fig. 7. First node dead. 

Table 2 

Average packet loss in %. 

No. of Sen. LEACH GA PSO Prop. 

100 0.0307 0.0297 0.0291 0.0290 

200 0.0312 0.0310 0.0294 0.0295 

300 0.0318 0.0306 0.0308 0.0302 

400 0.0319 0.0310 0.0313 0.0310 

500 0.0325 0.0317 0.0316 0.0315 

4

 

s  

o  

i  

p  

t  

d

 

n  

M  

t  

p  

t  
results are observed as scenario 1 but with slightly extended net-

work lifetime. Figs. 5 and 10 show comparisons of the number

of nodes remaining alive along with the number of rounds. As

the number of rounds increases, the number of alive nodes de-

creases gradually. We can notice from these figures that the pro-

posed method maintains a larger number of alive nodes in each

round, compared to the existing methods. From Fig. 5 , it can be

clearly noticed that the number of dead nodes increases along with

the number of rounds. In Fig. 5 , the sensor nodes drain their en-

ergy between 300 and 2100 iteration rounds. Similarly, in Fig. 10 ,

the nodes start draining their energy completely between 400 and

2700 iteration rounds. The proposed method maintains a more bal-

anced curve in both scenarios. Therefore, the energy consumption

of the proposed approach is more balanced than that of the exist-

ing methods. It also achieves a longer network lifetime and avoids

the energy-hole problem. 

From Fig. 9 , it is clearly observable that the energy consumption

of the proposed method is minimal, compared to that of existing

methods. Moreover, the energy consumption is marginally reduced

when compared to that of the conventional routing method. This

can be clearly seen in Fig. 9 because of the implementation of MSs.
.3. Packet loss ratio 

The average packet loss ratios for several network sizes are

hown in Table 2 . Table 2 also proves that the packet loss ratio

f the proposed approach is minimal, compared to that of the ex-

sting approaches. The general data-forwarding mechanism is re-

laced by MS i.e., multihop data routing is avoided. Moreover, in

his experiment, we have implemented MMS to perform efficient

ata collection. 

Table 3 illustrates the average packet loss ratio for different

umbers of MMS. We also observe that, with a larger number of

Ss, the packet loss ratio is less. For example, in Table 3 , when

he number of MSs is 1, the packet loss ratio of the proposed ap-

roach is 0.0285 and when the number of MSs is increased to 3,

he packet loss ratio decreases to 0.0073. Therefore, it is clear that
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Fig. 8. Last node dead. 

Fig. 9. Average energy consumption till first node dead. 

Fig. 10. Number of nodes alive. 

Table 3 

Average packet loss in %. 

No. of MS LEACH GA PSO Prop. 

1 0.0289 0.0288 0.0286 0.0285 

2 0.0205 0.0199 0.0197 0.0193 

3 0.0083 0.0081 0.0078 0.0073 

Table 4 

Comparison table. 

No. of CH Alg. M = 1 M = 2 M = 3 

10 LEACH 695.3201 696.7107 712.5994 

GA 640.1803 645.7826 652.6086 

PSO 567.2219 565.7812 598.1218 

Prop. 540.4212 540.4212 544.1588 

20 LEACH 976.1456 970.8788 970.8788 

GA 924.1587 924.1587 912.4044 

PSO 892.3862 891.2813 891.1049 

Prop. 840.2244 846.1592 853.8613 

30 LEACH 1133.7891 1137.1888 1119.8383 

GA 1070.1621 1088.4103 1096.5366 

PSO 1010.3861 1013.9038 1017.4618 

Prop. 0988.7075 0996.1931 0997.9895 

t  

t  

c
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he data-collection efficiency of the proposed method is greater

han that of the existing approaches, and that it improves with in-

rease in the number of MSs. 

.4. Performance of MSs 

From Table 4 , we can conclude that our proposed method and

he employment of ACO algorithm for routing can solve the MMS

roblem. The proposed approach produces a high-quality solution.

he comparison of numerical simulations are shown in Table 4 , for

arious sizes of cluster heads and MSs. The result of ACO-based

outing is superior to that of the existing algorithms and closer to

n optimal solution. 

Based on the experimental results, we can prove the superior

erformance of the proposed method. The network lifetimes mea-

ured by the first node death and the last node death, the number

f alive nodes, and the average energy consumption of the pro-

osed method outperform those of LEACH, GA, and PSO. 

. Conclusion 

We proposed a novel MMS approach to improve the data-

ollection efficiency and network lifetime of WSNs. A modified

EACH-based clustering technique was implemented to group the

ensor nodes and to elect cluster heads. In this case, MS worked

imilar to a robot and collected data from the cluster heads of the

etwork. With the ACO-based MS approach, routing became more

uitable and adaptable to dynamic changes in the WSN topology.

MS shortened the time taken to gather the data from all clusters,

ncreased the network lifetime, and helped avoid data losses. The

imulation results confirmed that the proposed routing scheme

reatly reduced the total traveling distance when compared to the

xisting algorithms. Furthermore, it could prolong the network life-

ime significantly, compared to the existing schemes using only a

tatic sink. In the future, MS can be implemented with other bio-

nspired algorithms to find the effectiveness of the algorithms and

he mobility of the sensor nodes will be considered. 
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