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a b s t r a c t 

Cloud infrastructures are becoming a common platform for storage and workload operations for indus- 

tries. With increasing rate of data generation, the cloud storage industry has already grown into a multi- 

billion dollar industry. This industry offers services with very strict service level agreements (SLAs) to 

insure a high Quality of Service (QoS) for its clients. A breach of these SLAs results in a heavy economic 

loss for the service provider. 

We study a queueing model of data backup systems with a focus on the age of data. The age of data is 

roughly defined as the time for which data has not been backed up and is therefore a measure of uncer- 

tainty for the user. We precisely define the performance measure and compute the generating function 

of its distribution. It is critical to ensure that the tail probabilities are small so that the system stays 

within SLAs with a high probability. Therefore, we also analyze the tail distribution of the age of data 

by performing dominant singularity analysis of its generating function. Our formulas can help the service 

providers to set the system parameters adequately. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In the past few years, cloud data services have become one of

he important pillars of the Information and Technology (IT) indus-

ry. Companies such as Amazon, Microsoft and IBM started offer-

ng computing services as IaaS ( I nfrastructure A s A S ervice) which

nables smaller businesses to enter market and generate revenue

ore quickly (see Deloitte [1] ). By outsourcing the requirement of

nfrastructure setup and management to cloud service providers,

he cost and difficulty of setup significantly reduces. Moreover, un-

ike local storage, these platforms offer remarkable features such as

eliability, availability of data, protection from geographical calami-

ies, etc (see Chang and Wills [2] for more details). 

Cloud storage industry was worth US$25.171 billion in 2017 and

s expected to be worth US$92.488 billion in 2022 [3] . This growth

as been driven by the huge volume of data that is being gener-

ted every day (Shadroo and Rahmani [4] ). Recently, studies have

hown that this amount is continuing to grow exponentially. A

tudy by the international data corporation (Reinsel et al. [5] ) has
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stimated that the amount of data generated would reach 163ZB

y 2025 which is approximately 10 times the data generated in

016. Industries have started adopting public clouds for storage

nd operations. Arul Elumalai and Tandon [6] estimate that about

7% of the companies will be using public IaaS for at least one

orkload by 2018. Therefore, it is important to study and analyze

loud infrastructure systems and processes. 

In this paper, we focus primarily on the data backup process

o the cloud. Backup service providers use the infrastructure of

ata centers offered by companies such as Amazon, Google and

rovide the services of backup operations. Since cloud service

roviders charge the user to run these processes (see for example

mazon [7] ), some studies have been done to optimize different

omponents of these processes. For example, Gonalves et al. [8] in-

estigate the workload of cloud storage services using Dropbox

orkloads. Huang et al. [9] study a model to minimize the data

edundancy in cloud storage system which reduces the amount of

ata stored. Boullery et al. [10] optimize the utilization of network

andwidth, and Xia et al. [11] use Markov decision process to

ecide the storage schedule. In Saxena et al. [12] , we model data

ackup processes as an exhaustive batch service queueing model

ith vacations. This model helps us to numerically compute the

oS of backup systems. In particular we compute the generating

unction of backlog size, the probability that a server is busy in a
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Fig. 1. Components of data backup mechanism. 
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random slot, the probability of a new connection at a random slot

and the first moment of the age of data. 

In this paper, we study a similar discrete-time queueing model

described in Saxena et al. [12] with the aim to calculate the dis-

tribution of the age of data just before a backup starts ( Age ν ). In a

real backup system, the backup service provider decides the con-

figuration and schedule of backup operations as well as the com-

munication with the cloud. The backup server alternates between

backup-on and backup-off periods where the backup-on periods

are much smaller than the backup-off periods. And because the

age of data is insensitive to the batch server capacity, in the anal-

ysis we will assume that the batch server has an unlimited capac-

ity. The age of the data is defined as the waiting time of the oldest

packet in the system for the restart of the backup service. We fo-

cus on the age of the data ( Age ν ) because it is closely related to

the Recovery Point Objective (RPO). RPO is defined as the elapsed

time since the closest time point in the history up to which the

system is completely recoverable. It is one of the most critical per-

formance measure of backup systems. The distribution of this age

is important for various reasons. In addition to the mean value, the

higher moments of a performance measure such as variance de-

termine the performance of the system. For instance, a user may

prefer lower variance of a performance measure over lower mean

value. In Saxena et al. [12] we were successful in computing only

the first moment of Age ν . In this paper, we compute the generat-

ing function of the distribution of Age ν using recursive relations.

Using this generating function, one can then compute all moments

of Age ν . 

Moreover, the tail probabilities represent the exceptional sit-

uations in which Age ν can attain really large values. Backup

service providers guarantee high QoS and even promise very

heavy compensation in case of breach of SLA. For instance,

Microsoft [13] gives 100% service credits if the RPO is more

than 4 hours. Similarly, TEKLINKS [14] , an IT solutions provider,

gives similar guarantees of RPO between 15mins-24hrs for dif-

ferent service costs. Therefore, the probability that such ex-

treme situations occur is an important performance metric. We

analyze the tail of the distribution of Age ν and scenarios in

which a user might see such a breach. In our analysis, we

use the recursive relations and the dominant singularity of the

generating function of Age ν to compute the asymptotic be-

havior of the distribution of the age of data in the backup

system. 

Some storage systems utilize a time timer mechanism to avoid

the backup-off period to become very long. We study a system

without timer mechanism but our analysis can be used to mea-

sure the performance of such systems in terms of Age of data

and the backup frequency. More details about this are presented

in Section 8 . The analysis of these measures can then be used to

find the optimal timer length. 

We start with an overview of the results proved in our previ-

ous paper and necessary background to explain the analysis of this

work. It is followed by computation of generating function of Age ν
and the analysis of its tail distribution. In the last sections we ana-

lyze the storage systems with time trigger mechanism and present

a numerical example. 
Table 1 

List of notations used in the analysis. 

l the restarting threshold of the backlog size. 

T the random variable which denotes the length of any ra

A ( z ) the generating function of the number of arrivals in a si

αi the probability of restart of the batch service at the end
. Model description 

From the perspective of data backups, cloud infrastructure con-

ists of 3 major components illustrated in Fig. 1 . The local backup

erver provides service to the incoming data packets by upload-

ng them to cloud data storage nodes. The backup service provider

anages the operations of the local backup server which performs

ll the backup operations. To perform these operations, when the

ackup server needs to start the service, it sends a request to the

amenode, the central node of the cloud infrastructure. The na-

enode then provides the IP addresses of the data nodes where

he packets can be uploaded. The backup server then uploads its

ata to the data nodes. 

We model the backup server as a batch server with unlimited

ervice capacity. This server employs an exhaustive service policy

.e. the server continues to serve until its backlog is empty. When

he backlog becomes empty, the server goes into a vacation. When

he vacation ends, the system checks the backlog of the system

nd decides whether to restart batch service or go into another

acation. Enough data packets should be present to make back-up

peration efficient. Therefore, if the backlog is more than l packets

t the end of a vacation, the batch service is resumed. Otherwise, if

he backlog is i packets, where i < l , the batch service is restarted

ith probability αi while with probability 1 − αi it goes into an-

ther vacation. The lengths of vacations are independent and iden-

ically distributed (i.i.d.) with a common random variable denoted

y T . 

.1. Definitions and parameters 

In the further sections, we will compute the generating function

f the distribution of the age of data. For this analysis, we need the

efinitions of parameters and terminologies in Table 1 . 

. Prior results 

We start with a summary of previous results from Saxena et al.

12] which is necessary to continue the analysis in this paper as

ell as give some background on what we were able to compute

arlier. 
ndom vacation, its generating function is denoted by T ( z ). 

ngle slot. 

 of a vacation if there are i packets backlogged. 
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Fig. 2. Illustration of evolution of age of data in a backup system. 

Fig. 3. Illustration of delay of packet ν . 
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A backup cycle is defined as a vacation period followed by a

ervice period. We defined packet ν as the first packet arriving in

 randomly selected backup cycle. Since a backup cycle starts at

 backup completion and the batch server follows an exhaustive

ervice policy, the system is empty when packet ν arrives. Further,

efine Age ν as the waiting time of packet ν , i.e., the time until the

ackup service is restarted. Fig. 2 illustrates the evolution of the

ge of data in a backup system. Therefore, 

ge ν = 

N ∑ 

i =1 

T i + R (1) 

here N is the number of vacations after the arrival of packet ν
nd until restart of backup service and R is the number of remain-

ng slots of the vacation in which ν arrived. The length of the va-
ation in which ν arrives is denoted as T 0 . The vacations which

ollow T 0 until the backup is restarted have lengths T i (see Fig. 3 ). 

Due to Wald’s equation the first moment of Age ν can be com-

uted as 

(Age ν ) = E(N) × E(T ) + E(R ) . (2) 

he joint distribution of R and T 0 is given by 

 (T 0 = t, R = r) = 

A (0) t−r−1 [1 − A (0)] 

1 − T (A (0)) 
P (T = t) (3) 

hich can be used to compute E ( R ). 

We proved that N has a phase-type distribution with ini-

ial probability vector ( β, β l ), and with transition probability

atrix M . Hence the generating function of N, N ( z ) is given

y 

(z) = z · β · (I − zM) −1 · M 

0 + βl 
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β = 

(
(1 −α1 ) t A (1) 

1 −t A (0) 
, 

(1 −α2 ) t A (2) 
1 −t A (0) 

, 
(1 −α3 ) t A (3) 

1 −t A (0) 
, . . . , 

(1 −αl−1 ) t A (l−1) 
1 −t A (0) 

)
, 

βl = 1 −
l−1 ∑ 

i =1 

βi 

M = 

⎡ 

⎢ ⎢ ⎣ 

(1 −α1 ) t A (0) (1 −α2 ) t A (1) (1 −α3 ) t A (2) . . . (1 −αl−1 ) t A (l−2) 

0 (1 −α2 ) t A (0) (1 −α3 ) t A (1) . . . (1 −αl−1 ) t A (l−3) 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 . . . (1 −αl−1 ) t A (0) 

⎤ 

⎥ ⎥ ⎦ 

M 

0 can be computed using the fact that row sums of P =[
M M 

0 

0 1 

]
are equal to 1. 

To compute higher moments of Age ν , Wald’s equation is of no

use. Therefore, in the following sections, we construct recursive re-

lations that will enable us to compute the probability generating

function of Age ν . From the generating function, higher order mo-

ments as well as tail probabilities of Age ν can be computed. 

4. Some useful generating functions 

The computation of the generating function of Age ν requires a

few results to be established first. In particular we compute R ( z ),

the generating function of the remaining service time, S ( y, z ), the

joint generating function of the length of remaining vacation time

and the number of arrivals in T 0 , and W ( y, z ), the joint generating

function of the length of a random vacation and the number of

arrivals in it. 

Lemma 4.1. The generating function of the length of the remaining

vacation R is given by 

R (z) = 

[
1 − A (0) 

][
T (A (0)) − T (z) 

][
1 − T (A (0)) 

][
A (0) − z 

] . (4)

Proof. Using formula (3) , this generating function can be written

as the following sum 

R (z) = 

∞ ∑ 

t=1 

t−1 ∑ 

r=0 

z r P r(T 0 = t, R = r) 

= 

∞ ∑ 

t=1 

A (0) t−1 [1 − A (0)] P r(T = t) 

1 − T (A (0)) 

t−1 ∑ 

r=0 

z r 

A (0) r 

= 

[
1 − A (0) 

][
T (A (0)) − T (z) 

][
1 − T (A (0)) 

][
A (0) − z 

] . 

�

Lemma 4.2. The joint generating function of the length of the re-

maining vacation R and the number of arrivals in T 0 , n T 0 , is given

by 

S(y, z) = E(y n T 0 z R ) = 

[
A (y ) − A (0) 

][
T (zA (y )) − T (A (0)) 

][
zA (y ) − A (0) 

][
1 − T (A (0)) 

] . (5)

Proof. Note that the slot in which ν arrives is not considered as

part of R and can have more than one arrival. The generation func-

tion S ( y, z ) can be written as the following sum 

S(y, z) = 

∞ ∑ 

i =1 

∞ ∑ 

r=0 

y i z r P r( i arrivals in r + 1 slots 
∣∣ at 

least one arrival in slot 1 ) P r(R = r) 

= 

∞ ∑ 

r=0 

A (y ) r 
A (y ) − A (0) 

1 − A (0) 
z r P r( R = r) 

= 

A (y ) − A (0) 

1 − A (0) 
R (zA (y )) . 
sing the results of Lemma 4.1 , we arrive at the following expres-

ion, 

(y, z) = 

[
A (y ) − A (0) 

][
T (zA (y )) − T (A (0)) 

][
zA (y ) − A (0) 

][
1 − T (A (0)) 

] . 

�

We can write the series expansion of S ( y, z ) in its radius of con-

ergence as 

(y, z) = 

∞ ∑ 

i =1 

r i (z) y i . (6)

he coefficients r i ( z ) give us the partial generating functions of the

ength of the remaining vacation slots R with total of i arrivals in

he whole vacation T 0 . We will use r i ( z ) in our analysis in the fur-

her sections. 

emma 4.3. The joint generating function of the length of the vaca-

ion T i , i ≥ 1, and the number of arrivals in it n T is given by 

 (y, z) = E(y n T z T ) = T (zA (y )) . (7)

roof. This generating function can be written as the following

um 

 (y, z) = 

∞ ∑ 

t=1 

∞ ∑ 

j=0 

y j z t P r( j arrivals in t slots ) P r(T = t) 

= 

∞ ∑ 

t=1 

A (y ) t z t P r(T = t) = T (zA (y )) . 

�

We can write the series expansion of W ( y, z ) in its radius of

onvergence as 

 (y, z) = 

∞ ∑ 

i =0 

t i (z) y i . (8)

he coefficients t i ( z ) are the partial generating functions of a vaca-

ion length with i arrivals. 

. Generating function of Age ν

In this section we compute the generating function of Age ν .

herefore, define 

• h (t) = P r(Age ν = t) : the probability mass function of Age ν . 

• g i ( t ): Given the backlog size equals i at the beginning of a va-

cation, g i ( t ) is the probability mass function of the remaining

time until the restart of the batch service. 

The end of each vacation gives the system a service initiation

pportunity . The backup server then decides to either restart the

atch service or enter a new vacation. To find the distribution of

ge ν , we first condition on the action chosen by the backup server

t the end of vacation T 0 . That is, we write 

 (t) = P r(Age ν = t ∩ backup service restarts after vacation T 0 ) 

+ P r(Age ν = t ∩ backup service does not 

restarts after vacation T 0 ) 

= 

l−1 ∑ 

i =1 

αi P r( i arrivals in t + 1 slots 
∣∣ at 

least 1 arrival in slot 1 ) P r(R = t) 

+ 

∞ ∑ 

i = l 
P r( i arrivals in t + 1 slots 

∣∣ at 

least 1 arrival in slot 1x ) P r(R = t) 
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T  
+ 

t−1 ∑ 

k =0 

l−1 ∑ 

i =1 

(1 − αi ) P r( i arrivals in k + 1 slots 
∣∣ at 

least 1 arrival in slot 1 ) 

× P r(R = k ) g i (t − k ) . (9) 

imilarly, g i ( t ) can be written recursively as 

 i (t) = 

l−1 ∑ 

j= i 
α j P r( j − i arrivals in t slots ) P r(T = t) 

+ 

∞ ∑ 

j= l 
P r( j − i arrivals in t slots ) P r(T = t) 

+ 

t−1 ∑ 

k =1 

l−1 ∑ 

j= i 
(1 − α j ) P r( j − i arrivals in k slots ) 

P r(T = k ) g j (t − k ) . (10) 

e will now transform Eqs. (9) and (10) to generating functions.

efine therefore 

(z) = 

∞ ∑ 

t=0 

z t h (t) , G i (z) = 

∞ ∑ 

t=1 

z t g i (t) , i = 1 . . . l − 1 . 

he generating functions of the distributions h ( t ) and g i ( t ). We can

hen use Eq. (9) to write 

(z) = 

∞ ∑ 

t=0 

l−1 ∑ 

i =1 

(αi − 1) z t P r( i arrivals in t + 1 slots 
∣∣

at least 1 arrival in slot 1 ) P r(R = t) + R (z) 

+ 

∞ ∑ 

t=1 

t−1 ∑ 

k =0 

l−1 ∑ 

i =1 

z t (1 − αi ) P r( i arrivals in k + 1 slots 
∣∣

at least 1 arrival in slot 1 ) P r(R = k ) g i (t − k ) 

= 

l−1 ∑ 

i =1 

(αi − 1) r i (z) + R (z) + 

l−1 ∑ 

i =1 

× (1 − αi ) 
∞ ∑ 

k =0 

P r( i arrivals in k + 1 slots with at 

least 1 arrival in slot 1 ) × P r(R = k ) 
∞ ∑ 

t= k +1 

z t g i (t − k ) 

= 

l−1 ∑ 

i =1 

(αi − 1) r i (z) + R (z) + 

l−1 ∑ 

i =1 

(1 − αi ) G i (z) 
∞ ∑ 

k =0 

z k P r 

× ( i arrivals in k + 1 slots with at 

least 1 arrival in slot 1 ) P r(R = k ) 

= 

l−1 ∑ 

i =1 

(αi − 1) r i (z) + R (z) + 

l−1 ∑ 

i =1 

(1 − αi ) G i (z) r i (z) . 

imilar calculations using Eq. (10) are possible. We end up with

he following recursion: 

 i (z) = T (z) + 

l−1 ∑ 

j= i 
(1 − α j ) 

(
G j (z) − 1 

)
t j−i (z) , ∀ 1 ≤ i ≤ l − 1 . 

(11) 

e summarize our results in the following theorem. 

heorem 5.1. The generating function of Age ν , H ( z ), is given by 

(z) = R (z) + 

l−1 ∑ 

i =1 

(1 − αi ) r i (z) ( G i (z) − 1 ) (12) 
a

 i (z) = 

1 

1 − (1 − αi ) t 0 (z) 

(
T (z) − (1 − αi ) t 0 (z) 

+ 

l−1 ∑ 

j= i +1 

(1 − α j ) t j−i (z) 
(
G j (z) − 1 

))
, 

∀ 1 ≤ i ≤ l − 1 . (13) 

here r i ( z ) and t i ( z ) can be computed from ( Eqs. (5) –(8) ). Note that

he functions G i ( z ) can be computed recursively starting from G l−1 (z) .

. Mean and variance of Age ν

Using Eqs. (12) and (13) one can compute moments of Age ν .

irst, the mean value is given by 

(Age ν ) = H 

′ (1) = R ′ (1) + 

l−1 ∑ 

i =1 

(1 − αi ) r i (1) G 

′ 
i (1) 

G 

′ 
i (1) = 

1 

1 − (1 − αi ) t 0 (1) 

( 

T ′ (1) + 

l−1 ∑ 

j= i +1 

(1 −α j ) G 

′ 
j (1) t j−i (1) 

) 

, 

∀ 1 ≤ i ≤ l − 1 (14) 

e verified that the mean of Age ν obtained using Eq. (14) is ex-

ctly the same as obtained in Saxena et al. [12] where Wald’s equa-

ion was used to obtain the mean value. Similarly, we can use the

econd derivatives of H ( z ) and G i ( z ) to compute the variance of

ge ν . 

H 

′′ (1) R 

′′ (1) + 

l−1 ∑ 

i =1 

(1 − αi )(2 r ′ i (1) G 

′ 
i (1) + G 

′′ 
i (1) r i (1)) 

G 

′′ 
i (1)(1 − (1 − αi ) t 0 (1)) = T ′′ (1) + 2 G 

′ 
i (1)(1 − αi ) t 

′ 
0 (1) 

+ 

l−1 ∑ 

j= i +1 

(1 − α j )(t j−i (1) G 

′′ 
j (1) + 2 G 

′ 
j (1) t ′ j−i (1)) 

V ar(Age ν ) = H 

′′ (1) + H 

′ (1) − H 

′ (1) 2 (15) 

Computing r (n ) 
i 

(1) , t (n ) 
i 

(1) , the n th derivatives of the partial

enerating functions, involves inversion of derivatives of the joint

enerating functions in Eq. (6) and Eq. (8) . This is a non trivial task

or a general distribution function. However, for well behaved func-

ions such as rational functions, we can compute the derivatives to

et r (n ) 
i 

(1) , t (n ) 
i 

(1) . One can also use a numerical inversion algo-

ithms, such as Fourier series method in Abate and Whitt [15] , to

ompute these values. 

For a Poisson arrival process and vacation lengths distribution

ith support in [ a, b ] (i.e. P r(a ≤ T ≤ b) = 1 ), the coefficients and

heir derivatives can be directly computed and have a closed form

xpression given below. 

t i (1) = 

b ∑ 

t= a 
e −λt (λt) i 

P r(T = t) 

i ! 

 

′ 
i (1) = 

b ∑ 

t= a 
te −λt (λt) i 

P r(T = t) 

i ! 

r i (1) = 

t i (1) 

1 − T (A (0)) 

 

′ 
i (1) = 

t ′ 
i 
(1) 

1 − T (A (0)) 
− 1 

1 − T (A (0)) 

b ∑ 

t= a 
e −λt λi P r(T = t) 

i ! 

t ∑ 

s =1 

s i 

hese constants can then be used to compute the mean and vari-

nce of Age ν . 



46 A. Saxena, D. Claeys and H. Bruneel et al. / Computer Networks 160 (2019) 41–50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

α
2  

G{

w  

E

G  

H  

a  

g{

L

∏
 

w

t  

M

P  

G  

l  

t  

3

 

p  

r

 

k  

n  

i  

S

m

a

M  

u  

l

α

7. Tail asymptotics 

As mentioned in Section 1 , computing the tail probabilities is of

equal importance, since extreme events result in a high financial

loss. Therefore, it is important to analyze the cases in which this

age can take high values and compute the probability of their oc-

currence. Therefore, in this section we compute the tail asymptotic

of Age ν using the generating function H ( z ). For this analysis we

carry out dominant singularity analysis of H ( z ). For the ease of pre-

sentation we make some naturally applicable assumptions stated

below. It is important to note that this analysis is valid even when

these assumptions are not met but would complicate the presen-

tation. 

Assumptions: 

1. Intuitively, an efficient data backup policy should restart the

backup service with higher probability if there are more pack-

ets in the backlog. This is because when more packets are wait-

ing for service, there are more packets at risk. Therefore, we

assume that αi is non decreasing, i.e., i < j implies αi ≤αj . 

2. The first s restarting probabilities are equal, i.e., α1 = α2 = . . . =
αs . This is not a restriction as any value of s between 1 and

l − 1 is allowed. However, the value of s has an impact on tail

probabilities. 

3. T ( z ), the generating function of the vacation period is defined

by the user. Since it is a user defined function, it is reasonable

to expect it to be analytic everywhere. Therefore, we assume

that T ( z ) does not have any singularities. This implies that R ( z ),

t i ( z ) and r i ( z ) also do not have any singularities. 

A function f ( z ) is said to have a singularity at a point z 0 if it is

not analytic at this point. Further, a dominant singularity of a func-

tion is a singularity with smallest absolute value among all singu-

larities. In this work, we make extensive use of the following result

(see Flajolet and Sedgewick [16] for details). 

Theorem 7.1 (Darboux theorem) . Suppose the power series X(z) =∑ ∞ 

n =0 x (n ) z n with positive real coefficients x ( n ) is analytic near 0 and

has only algebraic singularities σ k on its circle of convergence | z| =
	 X , in other words, in a neighborhood of σ k we have 

X (z) ∼
(

1 − z 

σk 

)
−w k Y k (z) , 

where w k ∈ C \{ 0 , −1 , −2 , . . . , } and Y k ( z ) denotes a nonzero analytic

function near σ k . Let w = max k Re (w k ) denote the maximum of the

real parts of the w k . Then we have 

x (n ) = 

∑ 

k 

Y k (σk ) 

�(w k ) 
n 

w k −1 σ−n 
k 

+ o(n 

w −1 	 

−n ) 

with the sum taken over all k with Re (w k ) = w and �( w ) the

Gamma-function of w (with �(n ) = (n − 1)! for n discrete). 

Therefore, if the dominant singularities, σk ∈ C , of the generat-

ing function X ( z ) and the behavior of the generating function in

the neighborhood of these dominant singularities ( w k and Y k ( σ k ))

are identified, this theorem expresses an approximation for the tail

of the corresponding distribution ( x ( n ) for large n ). 

From Eq. (12) , H ( z ) contains the generating functions G i ( z ).

Therefore, we start with the analysis of G i ( z ) to compute the sin-

gularities of H ( z ). 

Lemma 7.2. The singularities of G i ( z ) are given by { 

z : 

l−1 ∏ 

j= i 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 

} 

. 

Proof. From Eq. (13) , we can compute 

G l−1 (z) = 

T (z) − (1 − αl−1 ) t 0 (z) 

1 − (1 − αl−1 ) t 0 (z) 
learly, G l−1 (z) has a singularity of order 1 at the zeros of 1 − (1 −
l−1 ) t 0 (z) , which proves the lemma for i = l − 1 . For i = 1 , . . . , l −
 we will prove this result by induction, i.e., for all m > i assume

 m 

( z ) has singularities at 
 

z : 

l−1 ∏ 

j= m 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 

} 

, 

e will show that the result holds for G i ( z ). We can rewrite

q. (13) as, 

 i (z) = 

1 

1 − (1 − αi ) t 0 (z) 

(
T (z) − (1 − αi ) t 0 (z) − (1 − αi +1 ) t 1 (z)

+ 

l−1 ∑ 

j= i +2 

(1 − α j ) t j−i (z) 
(
G j (z) − 1 

))

+ (1 − αi +1 ) t 1 (z) 
G i +1 (z) 

1 − (1 − αi ) t 0 (z) 
. 

ence, the singularities of G i ( z ) are the singularities of G i +1 (z)

nd the zeros of 1 − (1 − αi ) t 0 (z) . Therefore, these singularities are

iven by 
 

z : 

l−1 ∏ 

j= i 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 

} 

. 

�

emma 7.3. The singularities of H ( z ) are given by zeros of 

l−1 
 

i =1 

(
1 − (1 − αi ) t 0 (z) 

)
= 0 (16)

here the dominant singularities are the solutions of 

 0 (z) = 

1 

1 − α1 

. (17)

oreover, the order of these singularities is equal to s. 

roof. From Eqs. (12) and (13) , H ( z ) is a linear combination of

 1 (z) , . . . , G l−1 (z) . Therefore, H ( z ) has a singularity at every singu-

arity of G i ( z ), 1 ≤ i < l . Note that there are no additional singulari-

ies of H ( z ) which come from T ( z ) and R ( z ) because of assumption

. This proves the first part of the lemma. 

From Eqs. (7) and (8) , we find t 0 (z) = T (zA (0)) , i.e. t 0 ( z ) is the

artial generating function of the length of a vacation with 0 ar-

ivals. 

From Pringsheims Theorem, Flajolet and Sedgewick [16] , we

now that for probability generating functions, at least one domi-

ant singularity lies on the real axis. Moreover, for x ∈ R , T ( x ) is an

ncreasing function of x as it is a probability generating function.

ince αi are non decreasing in i , 

in 

i 

(
1 

1 − αi 

)
= 

1 

1 − α1 

nd dominant singularities on the real axis are given by 

min 

{ 

z : t 0 (z) = 

1 

1 − αi 

, 0 < i < l, z ∈ R 

} 

= min 

{ 

z : t 0 (z) = 

1 

1 − α1 

, z ∈ R 

} 

oreover, since all the dominant singularities have the same mod-

lus (equal to the radius of convergence), all the dominant singu-

arities are given by the solutions of (1 − α1 ) t 0 (z) = 1 . 

From assumption 2, we know that 

1 = α2 = . . . = αs < αs +1 ≤ αs +2 ≤ . . . αl−2 ≤ αl−1 
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= T (σk A (0)) σk A (0) . 
sing this relation, the singularities of H ( z ) can be rewritten as 

1 − (1 − α1 ) t 0 (z) 
)

s 
l−1 ∏ 

i = s +1 

(
1 − (1 − αi ) t 0 (z) 

)
= 0 

herefore, the order of each dominant singularity equals s . �

Note that if we did not have assumption 1, Eq. (17) would still

e valid with α1 replaced by αmin = min i αi . 

emma 7.4. For 1 ≤ i ≤ s, G i ( z ) has a singularity at σ k of the order of

 − i + 1 where σ k is the k th dominant singularity of H ( z ) . 

roof. From Lemma 7.2 , singularities of G i ( z ) are solutions of 

l−1 
 

j= i 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 

hich can be rewritten as 

s 
 

j= i 

(
1 − (1 − α j ) t 0 (z) 

) l−1 ∏ 

j= s +1 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 (18) 

e know that α1 = α2 . . . = αs . Therefore Eq. (18) can be rewritten

s 

1 − (1 − α1 ) t 0 (z) 
)

s −i +1 
l−1 ∏ 

j= s +1 

(
1 − (1 − α j ) t 0 (z) 

)
= 0 

oreover, from Lemma 7.3 , if σ k is a dominant singularity of H ( z ),

 − (1 − α1 ) t 0 (σk ) = 0 . Therefore, G i ( z ) also has a singularity at σ k 

f the order of s − i + 1 . �

We now compute the coefficient Y k ( σ k ) which defines the be-

avior of the generating function H ( z ) around the k th dominant sin-

ularity σ k . 

heorem 7.5. The tail distribution of Age ν is given by 

 r(Age ν = n ) ∼
M ∑ 

k =1 

Y k (σk ) 
n 

s −1 

(s − 1)! σ n 
k 

(19) 

here M is the total number of zeros of t 0 (z) = 

1 
1 −α1 

with smallest

orm and 

 k (σk ) = 

r 1 (σk )[ t 1 (σk )] s −1 

[ T ′ (σk A (0)) A (0)] s 

( 

T (σk ) − 1 −
l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (σk ) 

+ 

l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (σk ) G j (σk ) 

) 

. (20) 

roof. Since σ k is a dominant singularity of H ( z ) of order s, Y k ( σ k )

see Theorem 7.1 ) is given by 

 k (σk ) = lim 

z→ σk 

(σk − z) s H(z) 

= lim 

z→ σk 

(σk − z) s 

( 

R (z) + 

l−1 ∑ 

i =1 

(1 − αi ) r i (z)(G i (z) − 1) 

) 

rom Lemma 7.4 , we know that for 1 ≤ i ≤ s, G i ( z ) has a singularity

f order s − i + 1 at σ k . Moreover, G i ( z ), i > s , does not have a sin-

ularity at σ k . Therefore, the expression for Y k ( σ k ) simplifies to 

 k (σk ) = lim 

z→ σk 

(σk − z) s (1 − α1 ) r 1 (z) G 1 (z) 

= (1 − α1 ) r 1 (σk ) lim 

z→ σk 

(σk − z) s G 1 (z) (21) 

herefore, to compute Y k ( σ k ), we need to compute the c G 1 , the

onstant which defines the behavior of G 1 ( z ) around the dominant

ingularity σ k . 

 G 1 = lim 

z→ σk 

(σk − z) s G 1 (z) 
sing Eq. (13) , we can write 

 i (z) = 

T (z) − ∑ l−1 
j= i (1 − α j ) t j−1 (z) + 

∑ l−1 
j= s +1 (1 − α j ) t j−1 (z) G j (z)

1 − (1 − αs ) t 0 (z) 

+ 

(1 − αs ) 
∑ s 

j= i +1 t j−1 (z) G j (z) 

1 − (1 − αs ) t 0 (z) 
. (22) 

o compute c G 1 , we first compute the coefficient of 1 
[1 −(1 −αs ) t 0 (z)] s 

n Eq. (22) recursively with result 

(1 − αs ) 
s −1 t 1 (z) s −1 

(
T (z) −

l−1 ∑ 

j= s 
(1 − α j ) t j−s (z) 

+ 

l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (z) G j (z) 

)

Note that while computing c G 1 the terms other than the co-

fficient of 1 
[1 −(1 −αs ) t 0 (z)] s 

will become 0 under the limits z → σ k . 

herefore, the coefficient c G 1 is given by 

 G 1 = lim 

z→ σk 

(σk − z) s G 1 (z) 

= lim 

z→ σk 

(σk − z) s 
(1 − αs ) s −1 [ t 1 (z)] s −1 

[1 − (1 − αs ) t 0 (z)] s 

(
T (z) 

−
l−1 ∑ 

j= s 
(1 − α j ) t j−s (z) + 

l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (z) G j (z) 

)

sing L’Hôpital’s rule s times in the above expression and using

he relation (1 − αs ) t 0 (σk ) = 1 we get 

 G 1 = 

[ t 1 (σk )] s −1 

(1 − αs )[ T ′ (σk A (0)) A (0)] s 

×
( 

T (σk ) − 1 + 

l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (σk ) 
(
G k (σk ) − 1 

)) 

, (23) 

here we also used t 0 (z) = T (zA (0)) . Therefore, from Eq. (21) 

 k (σk ) = (1 − α1 ) r 1 (σk ) c G 1 

= 

r 1 (σk )[ t 1 (σk )] s −1 

[ T ′ (σk A (0)) A (0)] s 

×
( 

T (σk ) − 1 + 

l−1 ∑ 

j= s +1 

(1 − α j ) t j−s (σk ) 
(
G j (σk ) − 1 

)) 

. 

Therefore, from Theorem 7.1 , for large n , we can approximate

he tail of Age ν as 

 r(Age ν = n ) ∼
M ∑ 

k =1 

Y k (σk ) 
n 

s −1 

(s − 1)! σ n 
k 

�

Note that, to compute the tail distribution, we need to compute

 1 ( σ k ), t 1 ( σ k ), . . . t l−1 −s (σk ) , G s +1 (σk ) , . . . , G l−1 (σk ) . Using Eq. (13) ,

ne can recursively compute G s +1 (σk ) , . . . , G l−1 ( σk ) starting from

 l−1 (σk ) . Moreover, from Eq. (6) we have, 

 1 (σk ) = 

∂S(y, z) 

∂y 

∣∣∣
{ y =0 ,z= σk } 

= 

A 

′ (0) 
(
T (σk A (0)) − T (A (0)) 

)
1 − T (A (0)) 

. 

imilarly, to compute t 1 (σk ) , . . . , t l−1 −s (σk ) use Eq. (8) , for exam-

le, 

 1 (σk ) = 

∂W (y, z) 

∂y 

∣∣∣
{ y =0 ,z= σk } 

′ ′ 
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Fig. 4. Impact of restarting probability α1 on tail of Age ν , Arrival rate = 0.1, l = 20 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Tail of Age ν with increasing n , Arrival rate = 0.1, l = 20 . 

Fig. 6. Tail of Age ν with increasing n , Arrival rate = 0.1, s = 1 . 
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8. Backup systems with time trigger mechanism 

Some backup systems have a time trigger mechanism to initiate

a backup period if the backup-off period becomes too long. Let us

assume this timer is of length ψ , then the maximum age of data

is given by 

Age = min (Age ν , ψ) (24)

Therefore, the age of data for such backup systems can be com-

puted from our analysis using Eq. (24) . 

Note: We assume that the timer starts when the first packet

arrives during the vacation period. It can be defined from begin-

ning of the off-period or start of the vacation in which the packet

arrived. In those cases, Eq. (24) would have to be modified accord-

ingly. Similarly, we assume that ψ is a constant; however, it can

be a stochastic variable. 

It is important to note that, for such backup systems to work

efficiently, ψ has to be chosen wisely. On one hand, a small value

of ψ would result in backup operations being triggered too often.

While on the other hand, a large value of ψ defeats the whole pur-

pose of a time trigger mechanism, which is to avoid long backup

off periods. Therefore, it is important for such backup systems to

choose an optimal timer length ψ . To measure this efficiency, we

define a new performance measure, the frequency of backups. 

8.1. Frequency of backups 

For any general event repeating at a period of P , its frequency

is defined as F = 

1 
P . Since the backup time itself is typically very

short as compared to backup-off periods, we define the frequency

of backup operations as 

F req = 

1 

E(Age ) 
= 

1 

E( min (Age ν , ψ)) 
(25)

To be able to select the optimal trigger parameter, it is impor-

tant to study the effect of ψ on both the frequency and Age of

data. The QoS of backup processes is defined in terms of the RPO.

That is, a service provider would guarantee an RPO to its user, such

as 15min-24hrs guaranteed by TEKLINKS [14] for different costs, as

mentioned in Section 1 . Using Eqs. (24) and (25) , we can compute
he moments of Age and the frequency for such backup mecha-

isms. 

(Age ) = E(min (Age ν , ψ)) 

= ψ × P r(Age ν > ψ) + E(Age ν | Age ν ≤ ψ) P r(Age ν ≤ ψ) 

= ψP r(Age ν > ψ) + 

ψ ∑ 

n =1 

nP r(Age ν = n ) 

= ψP r(Age ν > ψ) + E(Age ν ) −
∞ ∑ 

n = ψ+1 

nP r(Age ν = n ) 

= E(Age ν ) + 

∞ ∑ 

n = ψ+1 

(ψ − n ) P r(Age ν = n ) 
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Fig. 7. Maximum age of data and frequency of backup with change in timer length. λ = 0 . 07 , slot length = 5 second, αi = 

i 
30 

, and l = 20 . 
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 ( Age ν ) can be computed from Eq. (14) . Assuming ψ is reasonably

arge, using the Theorem 7.5 , we can approximate the E ( Age ) as 

(Age ) ≈ E(Age ν ) + 

∞ ∑ 

n = ψ+1 

(ψ − n ) 
M ∑ 

k =1 

Y k (σk ) 
n 

s −1 

(s − 1)! σ n 
k 

= E(Age ν ) + 

M ∑ 

k =1 

Y k (σk ) 
∞ ∑ 

n = ψ+1 

(ψ − n ) 
n 

s −1 

(s − 1)! σ n 
k 

sing Eq. (25) , the frequency is therefore given by 

 ≈
[ 

E(Age ν ) + 

M ∑ 

k =1 

Y k (σk ) 
∞ ∑ 

n = ψ+1 

(ψ − n ) 
n 

s −1 

(s − 1)! σ n 
k 

] 
−1 (26) 

. Numerical evaluation 

In this section, we analyze the performance of the system using

he numerical example used in Saxena et al. [12] . Since it is well

nown that the arrival distribution can have a heavy tail (see eg.

iebeherr et al. [17] ) we assume that the number of arrivals in a

lot follows a Mixed distribution of Poisson and Power Law. The

acation lengths have a discrete uniform distribution. 

A (z) = pe λ(z−1) + (1 − p) 
L γ (z) 

L γ (1) 
, p = 0 . 999 

 γ (z) = 

∞ ∑ 

k = a 

z γ

k γ
, a = 25 , γ = 2 . 5 

T (z) = 

1 

5 

(
z v −2 + z v −1 + z v + z v +1 + z v +2 

)
(27) 

Using Maple , we find the solutions of the Eq. (17) . We find that

he generating function H ( z ) has only 1 dominant singularity and

lot Age ν (n ) = P r(Age ν = n ) with varying system parameters 1 . 

Using the tail distribution of Age ν , F and E ( Age ) can be com-

uted easily using Eq. (26) . Therefore, analyzing the tail distribu-

ion of Age ν is sufficient. To do this analysis with different restart-

ng probabilities, we vary αs between 0 and 0.5, for values of s
1 The code used for tail distribution analysis is available at https://github.com/ 

axe405/tail _ distribution . 

 

 

 

etween 1 and 5, while keeping the remaining αi for i > s fixed.

hat is, 

1 = α2 = . . . = αs = α

αi = 0 . 6 + 0 . 4 × i 

l 
, ∀ i > s. 

.1. Observations and key insights 

A system administrator would desire to keep the age of data

s low as possible. However, increasing the frequency of backups

ould come with an increased economic cost. We are able to ex-

ctly compute the generating function of Age ν as well as the tail

istribution. We observe that the tail distribution is sensitive to

he change in model parameters. 

In the Figs. 4 –6 , we plot the tail probabilities of Age ν with re-

pect to the change in the model parameters α1 , s and l . In Fig. 7 ,

e compute the expected maximum age, E ( Age ) and frequency ( F )

or backup operations with time trigger mechanism. 

• Choice of the smallest restarting probability α1 needs to be

smart. A smaller value of α1 would give a dominant singularity

of smaller modulus from Eq. (17) . Since σ n 
k 

is in the denomina-

tor of Eq. (19) , it would lead to larger tail probabilities. This is

also observed in Fig. 4 . 

• The order of dominant singularities s is directly determined by

the choice of restarting probabilities αj , 0 < j < l . Since in the

Eq. (19) of tail probability distribution, n s appears in the nu-

merator, a smaller value of s leads to smaller tail probabilities.

This is also observed in Fig. 4 and 5 . 

• A larger restarting threshold l results in a higher value of Y k ( σ k )

from Eq. (20) . Therefore, tail probabilities are higher for higher

restarting threshold. This is also observed in Fig. 6 . 

• For backup operations with time trigger mechanism, increasing

the timer length drastically decreases the backup frequency. As

shown in example in Fig. 7 , selecting timer length of 45min in-

stead of 40min reduces the backup frequency by approximately

15%. Users can define their cost functions based on E ( Age ), F

and other performance measures computed in Saxena et al.

[12] . Minimizing this cost function would give the optimal pa-
rameters, including the optimal trigger length. 

https://github.com/saxe405/tail_distribution
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10. Conclusions 

In our previous paper, we modeled data backup systems as a

batch service queueing model with vacations and restarting prob-

abilities. We obtained various performance measures such as the

moments of the backlog size and the mean value of the age of

data at the beginning of a backup. The age of data is one of the

most important quantities in backup systems because it captures

the risk of data loss in case of a disaster. In this paper we have

computed the generating function of the age of data at the be-

ginning of the backup. As a consequence, we can now compute

higher order moments and analyze the tail of this distribution by

computing the dominant singularities of the generating function.

The choice of restarting probabilities determines the value of these

singularities as well as their order. We have analyzed the behavior

of the tail of the distribution of Age ν for different values of model

parameters. We are able to precisely compute the tail distribution

characterized by the model parameters. We also use this analysis

to compute and analyze the performance measures of backup sys-

tems with time trigger mechanism. 
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