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a b s t r a c t 

Data gathering is a basic requirement in many applications of Wireless Sensor Networks (WSNs). In tree 

based data gathering, Data Aggregation Tree (DAT) is constructed by the sink or by the nodes in a dis- 

tributed manner. In this paper, we study the problem of enhancing Network Lifetime (NL) using hybrid 

DAT construction methods. In hybrid methods of DAT construction, the sink and the nodes collaboratively 

construct the DAT. We propose three algorithms for Scheduling DATs using Local Heuristics with Ordering 

(SDLHO), with Randomization (SDLHR) and with Tree factor (SDLHT) techniques.These techniques avoid 

disparity in energy levels of the nodes and increase the survivability of the network. In addition, to ad- 

dress imperfect link quality, we propose an algorithm for Scheduling DATs using Local Heuristics with 

Ordering based on Link Quality (SDLHO-LQ). Rigorous simulation results demonstrate the efficacy of the 

proposed algorithms; and their ability to scaleup to suit deployment of applications in harsh regions. Fur- 

ther, their performances evaluated to quantify the amount of enhancements of NL with the existing state 

of art is propitious to suit the distributed environments. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In WSNs, the sensors gather and send data to the sink. In ap-

lications like environmental monitoring, battlefield surveillance,

tructural health monitoring, pipeline monitoring and precision

griculture, the sensor nodes are typically randomly deployed and

eft unattended. Transmission of packets between sensors con-

umes energy. In terms of power consumption, transmitting a sin-

le bit of data is equivalent to 800 instructions [1] . In such situ-

tions, employing data gathering mechanisms that judiciously uti-

ize battery power of sensor nodes is essential. By combining data

ackets from different sensor nodes, the number of packet trans-

issions is reduced. This technique of combining data so that cru-

ial data is made available at the sink is termed as in-network data

ggregation DA. 

In-network DA using tree based routing structure saves the cost

f maintaining a routing table at each node and is suitable in

nergy constrained WSNs. Tree based DA reduces the number of

acket transmissions, decreases energy consumption and improves

L. However, reducing packet transmissions is a challenging prob-
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em as it depends on the amount of data generated at each node

nd the structure of the DAT. 

In tree based DA, the DAT can be constructed in two ways.

1) In centralized DAT construction, the sink gathers information

f the entire network and then constructs a DAT using a suit-

ble tree construction algorithm [2–7] . (2) In distributed method of

AT construction, the nodes communicate with their neighboring

odes and select appropriate parent and child nodes to construct a

AT [1,5,8–10] . In this case, the sink does not require information

bout the entire network however this method adds communica-

ion overhead. In a DAT, each leaf node senses data and transmits it

o its parent node while an intermediate node senses data, receives

ata from its child nodes, aggregates data and then transmits data

o its parent node. Data generated by all nodes reaches the sink

er unit time and is considered as one round of data collection.

L is measured in terms of maximum number of rounds of data

ollection in the network until the network partitions. 

For example, Fig. 1 (a) represents a sensor network with eight

ensor nodes and a sink. Let Fig. 1 (b) and Fig. 1 (c) represent two

ifferent DAT structures T 1 and T 2 for the network. Let each node

ransmit a data packet in each data collection round and let data

acket be of fixed size. Let the energy consumption for transmit-

ing and receiving one data packet at a node be 1 unit. If the initial

nergy ε of each node is assumed to be 10 units, then the maxi-
um number of rounds of data collection for T 1 are 3 and denotes 
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Fig. 1. Example: (a) A wireless sensor network with eight nodes and a sink (b) DAT T 1 (c) DAT T 2. 
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NL. Similarly for T 2, NL is 3. However let us assume that T 1 works

for 2 rounds after which the DAT is reconstructed to T 2. T 2 then

works for another 2 rounds resulting in a total of 4 rounds of data

collection. Scheduling T 1 for 2 rounds followed by T 2 for 2 rounds

is better than using only T 1 or only T 2 in terms of NL. 

This motivates us to investigate the problem of scheduling a

sequence of DATs in distributed environments. The sequence of

DATs work in different data collection rounds so that the NL is

maximized. We term this problem as Tree Reconstruction based

Scheduling to improve network Lifetime (TRSL). 

Following are the major contributions 

• TRSL problem is addressed using heuristics that employ NL-

improving strategies. 

• NL is enhanced using hybrid DAM model in which both the

sink and the individual sensor nodes collaboratively construct

the DAT.(Ref Section 2.2 ) 

• Algorithms for the TRSL problem in idealistic scenarios are pro-

posed and compared. The emphasis is on the suitability of the

algorithm to cater to application needs. 

• The uncertainty in realistic scenarios posed by environmen-

tal and hardware based factors is tackled by using appropriate

heuristics. 

The algorithms are evaluated and compared with rigorous sim-

ulations. Results show that they balance energy consumption of

the nodes and significantly improve NL. 

1.1. Related work 

Maximizing network lifetime and minimizing energy consump-

tion cost are extensively researched problems in sensor networks.

The two problems are related since network lifetime can be en-

hanced by reducing energy consumption cost. In energy minimiza-

tion problems, the objective is to consume minimum energy in

each data collection round while in network lifetime maximization

problems, the objective is to extend the number of data collection

rounds for which the network can survive. 

In these problems the network is modelled as a graph and en-

ergy efficiency is achieved by constructing DATs. DAT with mini-

mum energy cost is a minimum spanning tree if all incoming data

at each node is aggregated into a single packet [3] . However, when

networks have nodes with different capabilities and incoming data

is aggregated into multiple packets, the minimum energy cost DAT

is modelled as a Minimum Steiner Tree problem. This problem is

proven to be NPComplete in [11] . In [12] , Minimum Fusion Steiner

Tree (MFST) is proposed for energy efficient data gathering and

in [2] , MECAT_RN, an approximate tree construction algorithm is

devised. In [13] , correlation aware DAT is constructed. Heuristics

based approximation algorithm called as Balanced SPT/TSP and

Leaves Deletion algorithms are proposed in [14] . Adaptive Fusion
teiner Tree in [15] constructs DAT by adapting routing tree us-

ng single packet and multiple packet based aggregation. In [16] ,

inimum energy cost data aggregation scheduling aggregates fixed

umber of data into a packet. 

DATs constructed by energy minimization algorithms tend to

eplete the energy of certain nodes that lie on the optimal com-

unication path and eventually results in partitioned network.

rolonging the number of data collection rounds of the network

he objective of the proposed work and aims at maximizing NL. 

DAT with maximum NL is a Minimum Degree Spanning Tree

nown to be NP Complete [17] . Several techniques in [3–5,8–10,18–

0] maximize NL using DATs in which intermediate nodes aggre-

ate incoming data into a single packet. Assuming that each node

an aggregate all incoming data into a single packet is not suitable

n practical conditions. Hence in [17,21,22] DATs are constructed

ith intermediate nodes aggregating incoming data into multiple

ackets. In these cases a fixed number of data are allowed to

e aggregated into one packet as fixed size packets avoid addi-

ional overhead and resource management costs involved in vari-

ble packet sizes [23,24] . In [17] , each node produces single unit

f data whereas in [21,22] data size is of variable units. Energy

onserving Routing Tree and Local Optimization are heuristic al-

orithms discussed in [17] that improve NL. In [21] routing metric

f rate of energy increase is considered. In [22] , Local Tree Recon-

truction Based Scheduling Algorithm (LTRBSA) improves NL using

euristics. Tree reconstruction with path reestablishment is dis-

ussed in [25] . These algorithms require knowledge about network

opology and have robustness and scalability limitations. 

An approximation algorithm to balance the number of child

odes and prolong NL is proposed in [26] . In [27] , NL is maxi-

ized using genetic algorithms. A fuzzy logic based routing for NL

nhancement is demonstrated in [28] and technique for maximum

L DAT using transmission power levels is developed in [29] . An

xhaustive survey in [30] studies NL maximization techniques. 

Most of the studies mentioned above consider idealistic com-

unication links in the network. In idealistic scenario, nodes that

re within each other’s communication range, always communi-

ate successfully. However in reality, environmental and hardware

elated factors induce uncertainty in communication, hamper the

ink quality and affect network performance. 

The uncertainty in communication links is due to imperfect

adio connectivity caused by interference, multipath propagation

nd distortion in radio signals [8,31–39] . In real deployments, the

ransmission range has three regions as connected, disconnected

nd transitional region [31,40] . The links in the transitional region

nduce link uncertainty, since the extent and significance of these

inks shows large variation as observed in [36] . 

A detailed survey to understand the fundamentals associated

ith Link Quality Estimation(LQE) and its classification is pre-

ented in [36,37] . Link Quality Estimators (LQEs) are broadly
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lassified into two categories as hardware-based and software-

ased LQEs [36,37] . The software-based LQEs are classified into

hree categories as Packet Reception Ratio (PRR) based, Required

umber of Packet Transmissions (RNP) based and score based. The

oftware-based LQEs provide a fine grain link quality estimation

ut need additional computation [36] . In hardware-based LQEs, the

ink quality is estimated by using Received Signal Strength Indica-

or (RSSI) and Link Quality Indicator (LQI) value which is provided

y the radio chips. The hardware-based LQEs are directly read from

he radio transceiver and they do not require any additional com-

utation [36] . 

In [38] , methods to estimate link quality using RSSI, LQI and

RR are analysed for large scale indoor settings. The impact of dif-

erent environmental conditions and hardware settings on the RSSI,

QI and PRR values is described in [41] . Data driven prediction

odels to estimate link quality using RSSI, LQI and PRR are anal-

sed in [42] . In [8,43] , a probabilistic network model is incorpo-

ated to address lossy link behavior and a DAT based NL maximiza-

ion algorithm is devised. In [44] , an energy efficient link quality

ased DAT is presented. 

In [35,36,38] , it is reported that LQI classifies link quality more

ccurately as compared to RSSI. In addition, LQI has a greater cor-

elation with link delivery ratio and packet error ratio as compared

o RSSI [36,37] . Hence, to handle uncertainty in communication

inks in realistic scenarios, link quality is modelled using LQI in the

roposed work. 

The proposed work enhances NL by scheduling a sequence of

ATs using centralized as well as distributed DAT construction

echniques that are scalable and where each intermediate node ag-

regates incoming data into multiple packets. In addition, the pro-

osed work uses LQI to address link uncertainty. 

.2. Outline of the paper 

The remainder of this paper is organized as follows. In

ection 2 the required notations and models are presented fol-

owed by TRSL problem statement and contributions. The pro-

osed algorithms Scheduling DATs using Local Heuristics with Or-

ering SDLHO algorithm and Scheduling DATs using Local Heuris-

ics with Randomization SDLHR are discussed and presented in

ection 3 . To address uncertainty in WSNs, Scheduling DATs us-

ng Local Heuristics with Link Quality algorithm is devised in

ection 3.7 . In Section 4 , the proposed Scheduling DATs using Lo-

al Heuristics with Tree factor SDLHT algorithm is presented. Using

imulations the performance of the proposed algorithms is evalu-

ted in Section 5 . Finally, Section 6 concludes the paper. 

. Proposed work 

In this section, the network model and data aggregation mod-

ls are described and representation for scheduling a sequence of

ATs is discussed. The problem statement is enumerated and con-

ributions are mentioned. 

.1. Network model 

The WSN has N sensor nodes randomly deployed in the area

f interest. Node s in the network represents a sink node. The

ink node has sufficient resources required for communication and

omputation. It initiates communication in the network and re-

eives data from N sensor nodes. 

The network is modelled as a Graph G = (V, A ) , such that V
epresents N sensor nodes and a sink node s given as | V | = N + 1 .

t is assumed that all nodes have equal transmission range g . Each

ode u can communicate with the sink s either through single or

ultihop communication and each node is in the communication
ange of at least one node. NB ( u ) denotes the set of neighboring

odes of a node u . 

A is the set of communication links in the network. The com-

unication links are modelled such that each edge (u, v ) ∈ A has

n associated link weight w ( u, v ) that determines successful com-

unication between nodes u and v . The two approaches used for

odelling links, represent idealistic and realistic communication

inks as follows. 

For each edge (u, v ) ∈ A 

 (u, v ) = 

{
1 perfect links in idealistic scenario 

wl imperfect links in realistic scenario 

(1) 

In idealistic scenario, link weight value of one denotes perfect

ink quality. In this case, no node failure due to environmental fac-

ors are considered and packet collisions and transmission conges-

ion do not affect the proposed work. 

In realistic scenario, the uncertainty in communication links is

odelled as imperfect links. In this case, w ( u, v ) denotes the esti-

ated link quality for communication between nodes u and v . In

he proposed work, weight wl indicates the LQI value of the link.

QI values are obtained from experiments conducted in open con-

rete field in [35] . 

Sensor nodes in the network are either relay nodes or source

odes. Let S be a set of source nodes and R be a set of re-

ay nodes then N = | S | + | R | and V = { S ∪ R ∪ s } . For any sen-

or node u ∈ { S ∪ R }, δu is data bits generated, I u is incoming

ata, Z u is total incoming and generated data given as Z u = I u +
u and O u is outgoing data. A node u is a source node if it

enerates GN ( δu ), receives RC ( I u ), aggregates AG ( Z u ) and trans-

its TR ( O u ) data and this functionality is given as f (u | u ∈ S) =
(GN(δu ) , RC(I u ) , AG (Z u ) , T R (O u )) , where δu > 0. A relay node u per-

orms all functions of a source node except for generation of data

nd has δu = 0 . Functionality of relay node u is represented as

f (u | u ∈ R ) = (RC(I u ) , AG (I u ) , T R (O u )) . 

.1.1. Data Aggregation Tree 

DAT is modelled as a spanning tree T = (V T , E T ) of G such that

 T = V, E T ⊆ A for a network G = (V, A ) . Root node of T represents

he sink node s . In the proposed work, T is constructed such that

ach node u can communicate with the sink in minimum number

f hops given by hop count h u . Sink has hopcount 0. Hop count

epresents the depth of a node in T . Nodes v ∈ V T �s at depth dp

ave parent nodes at depth dp − 1 . Let nodes u and v be two nodes

uch that h v = h u − 1 ∧ v ∈ NB (u ) then v is a valid parent node of

ode u . The set of valid parent nodes of a node u is represented as

P ( u ). 

The structure of DAT determines I u , Z u , O u values at each node

 . For node u in T , let C ( T, u ) denote the set of child nodes of u and

 u be parent node of u . Each node receives data from child nodes

nd forwards to its parent node. Then the values of I u and Z u are

omputed as follows 

 u = I u + δu (2) 

 u = 

∑ 

v ∈ C(T,u ) 

Z v (3) 

Amount of outgoing data O u at a node u depends on the ap-

lication. If application requirement is to generate and send data

ontinuously to the sink then aggregation of data at intermediate

odes is not performed. In this case, each node u transmits its to-

al received and generated data to its parent node c u and O u = Z u .

f the application requires that data from all nodes be sent to sink

er unit time t , then each node senses and accumulates data and

he accumulated data is combined and sent per time t . 
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Combining data is based on the aggregation ratio α which is

the ratio of the amount of outgoing data to that of incoming data

given as α = 

O u 
Z u 

. Lower values of α indicate that more amount of

data is combined at the node and results in reduced number of

transmissions. Aggregation ratio α is also defined as the number of

data units that can be combined into one packet [2,21,22,45] and

is given as 

P u = 

⌈ 

Z u 

α

⌉ 

(4)

where P u is number of unit size packets forwarded by node u . In

this case, higher values of α indicate that less number of packet

transmissions are required. In the proposed work aggregation ratio

computation is based on Eq. (4) . 

2.1.2. Data aggregation round 

Each node u generates data δu per epoch and reports it to the

sink where epoch represents a time interval. To facilitate data re-

porting, each node in DAT T decides the duration of interval during

which it will report data. In the proposed work, this duration of

interval is based on maximum hopcount in T . Let hx represent the

maximum hopcount in T , given as hx = max { h 1 , h 2 , . . . , h N } . Nodes

at depth hx are leaf nodes and forward data to nodes at depth

hx − 1 . These nodes in turn forward data to nodes at depth hx − 2

and this process continues until data from all nodes reaches the

sink. 

Let interval [0, t n ] represent one epoch of t n seconds. Using hx ,

the duration of interval i for data reporting is set to i = � t n 
hx 

� . Then

the duration of interval for reporting data for any node at depth dp

other than sink is given by [ t n − (dp × i ) , t n − (dp × i ) + i ] . In this

way all nodes report data to the sink in an epoch of [0, t n ] seconds.

Data from all nodes being reported to the sink per epoch is a data

aggregation round. 

2.1.3. Energy consumption cost estimation 

Initial energy of all nodes u ∈ V \ { s } in the network is the

same and is represented as ε units. The residual energy at a

node u is the energy available at that node given by εu . Initially

εu = ε for all nodes. In each data aggregation round, each node

u consumes energy for communication, computation and sensing

given by E cn u , E cp u , E sn u . Total energy consumed per data aggrega-

tion round for a node u is E u such that E u = E cn u + E cp u + E sn u . 

The energy cost of computation is proportional to the amount

of data α aggregated at a node, as this data needs to be scanned

at least once before any computation [46] . Larger values of α im-

ply more number of instructions required to be executed at the

node and hence involves higher energy cost of computation. Let

f ( α) be an increasing function bounded by α that determines E cp u 

such that 

E cp u = f (α) (5)

When α = 1 , E cp u = �(1) is the best case for E cp u . For α =
Z u , E cp u = O (α) is the worst case for E cp u . Let the energy cost of

communication E cn u be y times the energy cost of computation

E cp u . Then, 

E cn u = y × E cp u (6)

The value of y depends on the underlying platform. Based on lit-

erature survey study, it is observed that for TinyOS motes, y ≈ 800

[1] , for Tmote Sky, y ≈ 10 0 0 [47] , for WINS NG 2.0 nodes y ≈ 1400

[48] and for mica2 motes y ≈ 10 0 0 [49] . Let y ≈ 800. 

In the proposed work, it is assumed that α 
 800. Using

Eqs. (5) and (6) , it is inferred that E cp u 
 E cn u . Hence the energy

cost of computation is considered as insignificant and the energy

consumption cost is estimated based on energy required for com-

munication given as E u = E cn u [2,4,6,22,50] . 
In a DAT, the energy E u consumed by each node u is based

n number of packets received from its child nodes and number

f packets transmitted to its parent node. Let Tx represent en-

rgy required for transmitting a data packet to its parent node and

x represent energy required for receiving a data packet from a

hild node. Because the transmission energy cost is about double

he reception energy cost, it is assumed that T x = 2 and Rx = 1

2,4,6,22,50] . As a result, E u is given as. 

 u = Rx 
∑ 

v ∈ C(T,u ) 

P v + T x.P u (7)

As E u is the energy required by node u for one DA round, the

aximum number of DA rounds for which u can survive is calcu-

ated as 

 u = 

⌊ 

ε

E u 

⌋ 

(8)

 u is the lifetime of node u in terms of DA rounds. The residual

nergy at node u after L u rounds is given by 

u = ε − (L u × E u ) (9)

fter L u rounds, εu < E u and u does not have enough residual en-

rgy to report its data. Such nodes that cannot report data are

ermed as low residual energy node in the DAT. The estimation of

nergy consumption cost of all nodes in the network determines

L. Let L be set of lifetimes of N nodes given by L = { L 1 , L 2 . . . L N }
hen the lifetime of the network is the lifetime of the minimum

ifetime node in the network represented as D such that 

 = min { L 1 , L 2 , . . . , L N } (10)

In the proposed work, if a DAT is denoted as T k , then the life-

ime of T k is represented by D k . The minimum lifetime node is

ermed as the bottleneck node bn in the proposed work. Using

q. (10) , 

 bn = D (11)

.2. Data Aggregation Models 

Data Aggregation Models (DAM) investigate the role of individ-

al nodes and sink in DAT construction. 

.2.1. Centralized DAM 

In this model the sink node has knowledge about all the sen-

ors in the network and computes DAT using algorithms like short-

st path tree. After formation of DAT T at sink node, the sink sends

arent and child node data of each node u , to the respective node

 in the network. Accordingly, u starts receiving data from C ( T, u )

nd transmitting to c u . Sink node knows all paths in the network

nd we call sink as the decision maker in the network. 

.2.2. Distributed DAM 

In this model the sink broadcasts a message asking nodes to or-

anize into a routing tree. The message includes the sending node

n and hop count hc and is represented as ( sn, hc ). As hop count

f the sink is zero, it sends message (sn = s, hc = 0) . Each node v

eceiving this message sets its own hop count h v = hc + 1 and sets

ts parent node c v as the sending node in the message. Node v

hen sends acknowledgement message (sn = v ) to its parent node

 v so that c v updates its set of child nodes C with v . The node then

ebroadcasts the message with its data (sn = v , hc = h v ) . The pro-

ess continues until all nodes receive the message and a DAT T is

onstructed. Each node u in T decides its C ( T, u ) and c u . Each node

 is a decision maker as it computes E u to decide the path along

hich data is sent. Sink node only knows its neighboring nodes in

he network. 
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.2.3. Hybrid DAM 

In Hybrid DAMs both the sink and the individual sensor nodes

ollaboratively construct the DAT. In Hybrid DAM I, DAT T is ini-

ially constructed in a distributed manner as in Distributed DAM.

t is assumed that sink has knowledge of its k-hop neighborhood

hich are nodes within k-hop distance from the sink represented

y G = (V, E) . DAT T k termed as k -hop subtree is computed by the

ink such that T k = (V T , E T ) , V T = V, E T ⊆ E. For each node u ∈ V T ,

he sink sends updated parent and child node data C ( T k , u ) and

 u to the respective node u in the network to facilitate communi-

ation. In this DAM, each node u decides its communication path

ased on its value of E u . As sink knows its k-hop neighborhood, it

valuates if reconstructing T k improves L bn for the network. In this

AM, both the sink and the nodes decide the path for sending data

nd is termed as hybrid DAM I. 

In Hybrid DAM II, after the initial distributed DAT construction,

et of nodes within k-hop distance from the sink V k reorganize the

ree in a distributed manner. Each node u ∈ V k analyses its neigh-

oring nodes and refines and reconstructs the initial paths depend-

ng on the application. In this case all nodes are path establishment

ecision makers for initial DAT while nodes within k-hop distance

rom the sink refine decisions for path establishment without the

ink knowing about it. 

The proposed work considers Hybrid DAM I and II 

.3. Scheduling data aggregation trees 

Different DATs are established in turns at different time peri-

ds in the network. Time period is measured in terms of data

ggregation rounds. A schedule refers to planning which DAT T

ill work for how many rounds d and is based on heuristics ap-

lied at each node in T . In the proposed work, heuristics depends

n the neighboring node information only and we call it Local

euristics. Schedule U is a composite variable with two compo-

ents List 1 and List 2 and represented as U = { List 1 } , { List 2 }; { List 1 } =
 T 1 , T 2 , . . . , T t } , { List 2 } = { d 1 , d 2 , . . . , d t } . Here { T 1 , T 2 , . . . , T t } is a se-

uence of DATs and { d 1 , d 2 , . . . , d t } a list of their respective number

f DA rounds. The schedule represents that DAT T 1 works for d 1 DA

ounds followed by DAT T 2 working for d 2 DA rounds, respectively.

For example, consider the graph in Fig. 1 (a) which represents

 network of 8 sensor nodes and a sink node. It is assumed that

ource nodes sense temperature values and forward to the sink.

AX temperature value is required at the sink every minute and

an be gathered in following two ways 

.3.1. Scenario 1 

In this scenario, the structure of DAT T 1 in Fig. 1 (b) determines

ow data is gathered from the network. Each intermediate node u

n T 1 computes MAX of its received and generated data and sends

o c u . The process continues until node _ 1 , node _ 2 , node _ 3 transmit

AX values from their respective subtrees to the sink. Sink then

omputes the MAX of the 3 received values. The process of com-

uting MAX temperature in the network continues as long as all

odes have enough energy to report data. The maximum number

f data reporting DA rounds determines NL. 

.3.2. Scenario 2 

In this scenario, DAT T 1 may be reconstructed to T 2 as shown in

ig. 1 (c) and these trees together determine how data is gathered

rom the network. For example, T 1 computes MAX temperature in

he network for first few rounds. Based on energy consumed by

he nodes, T 1 is reconstructed to say T 2. Using T 2, MAX tempera-

ure is determined in the next few rounds. 

The proposed work determines how data can be gathered from

he network using a sequence of DATs so that the network lifetime

s improved. 
.4. TRSL problem statement 

Given 

1) a graph G = (V, A ) representing the network 

2) V = { S ∪ R ∪ s } . S is set of sources, R is set of relay nodes and

s is sink. | V | = | S | + | R | + 1 = N + 1 . 

3) δv ∈ Z + for each source v ∈ S and δv = 0 for v ∈ R . 

4) εv ∈ Z ∗ is residual energy, 

5) an aggregation ratio α ∈ Z + , 
6) energy for transmitting a packet T x ∈ R + and for receiving a

packet Rx ∈ R + , 

The objective of Tree Reconstruction based Scheduling to im-

rove network Lifetime TRSL problem is to find a schedule U =
 T 1 , T 2 , . . . T t } , { d 1 , d 2 , . . . , d t } that maximizes the network lifetime

iven as 

ax 

t ∑ 

i =1 

d i (12) 

uch that { D 1 , D 2 , . . . , D t } represent network lifetime for DATs

 T 1 , T 2 , . . . T t } and d 1 ≤ D 1 , d 2 ≤ D 2 . . . d k ≤ D t 

Further, this problem statement is extended to suit two cases I

nd II for scenario 1 and 2 (Refer Sections 2.3.1 and 2.3.2 ), respec-

ively 

Case I: d 1 = D 1 , d 2 = D 2 . . . d t = D t 

Case II: d 1 ≤ D 1 , d 2 ≤ D 2 . . . d t ≤ D t 

.5. Contributions 

The following are the contributions. 

1) Proposed Local Heuristics based on the residual energy of

neighboring nodes for DAT construction. This heuristics for

TRSL is implemented and demonstrated using the proposed

algorithm Scheduling DATs using Local Heuristics with Or-

dering (SDLHO). SDLHO is implemented using hybrid DAM

I (Ref. Section 2.2.3 ). Performance of SDLHO is evaluated

with rigorous experiments and results show that SDLHO is

efficient when scaled up and improves NL by 50%. (Ref.

Section 5.4 ). 

2) Proposed lightweight, randomization based Local Heuris- 

tics for DAT construction. This heuristics for TRSL is im-

plemented and demonstrated in Scheduling DATs using Lo-

cal Heuristics with Randomization (SDLHR) algorithm. This

technique reduces computation overhead at a node and en-

hances NL by 40%, as shown by rigorous experimentation re-

sults. (Ref. Section 5.4 ). 

3) To address the concerns regarding uncertainty in commu-

nication links in practical and realistic situations, Schedul-

ing DATs using Local Heuristics with Ordering based on

Link Quality (SDLHO-LQ) algorithm is proposed. SDLHO-LQ

assures best possible link quality using LQI values. Rigor-

ous simulation results show Network Liftime (NL) values

observed due to uncertainty in communication links (Ref.

Section 3.7 ). 

4) A new basis for tree reconstruction termed tree factor is in-

vestigated and proposed to overcome the challenges associ-

ated with hybrid DAM I. Tree factor based TRSL technique

is implemented and demonstrated by Scheduling DATs using

Local Heuristics with Tree factor (SDLHT) algorithm. SDLHT

employs hybrid DAM II (Ref. Section 2.2.3 ) and is computa-

tionally efficient. (Ref. Section 5.7 ). 

5) The proposed algorithms SDLHO, SDLHO-LQ, SDLHR and

SDLHT are scalable and improve NL as compared to existing

state of art by 5 − 50% for deployment of 100 − 10 0 0 nodes,

respectively in common platform settings. Performance is
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evaluated with 30 simulation runs and results show consis-

tent performance. (Ref. Table 2 ). 

3. Algorithm SDLHO: Scheduling DATs using Local Heuristics 

with Ordering 

SDLHO algorithm is discussed and proposed in Sections 3.1 to

3.4 . SDLHO with example is discussed in Sections 3.5 and

3.6 presents its computational complexity. In Section 3.8 , SDLHR

algorithm is proposed. 

SDLHO algorithm ( Algorithm 1 ) employs hybrid DAM I. In

SDLHO ( Fig. 2 ), the initial DAT is constructed in a distributed man-

ner while all other steps are executed at the sink node. 

3.1. SDLHO: Initial distributed DAT construction 

Sink node initiates communication in the sensor network by

broadcasting messages to form a DAT. Broadcast message is rep-

resented as ( sn, hc ) where sn represents the node sending the

message and hc is the number of hops required by the send-

ing node to reach the sink. Initial message broadcasted by s is

(sn = s, hc = 0) . Neighboring nodes NB ( s ) receive the message. Each

v ∈ NB ( s ) sets its own hopcount value h v = hc + 1 , sets its parent

node c v = sn and adds sn to its NB ( v ). Node v then updates mes-

sage to (sn = v , hc = h v ) and broadcasts to its neighboring nodes

NB ( v ). If a node v receives multiple messages, then the message

with minimum value of hc is considered by the node for setting
Fig. 2. Flowchart for SDLHO. 
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ts h v and c v values. This process is repeated until all nodes v in

he network receive a message and set their h v , c v and NB ( v ) val-

es. 

Each node v checks its NB ( v ) to find maximum hopcount value

mongst its neighbors given as hm = max { h u 1 , h u 2 . . . h u k } , u i ∈
B (v ) , i = 1 .k . If h v ≥ hm then v is identified as a leaf node. Each

eaf node v sends an acknowledgement message represented as

(sn = v ) to its parent node c v . On receiving the message, c v adds

 to its child node set C . This process is repeated by all nodes until

he message reaches the sink and the DAT T isp is constructed. T isp is

 shortest path tree as each node can reach the sink in minimum

umber of hops. 

.2. SDLHO: Local Heuristics 

In the proposed work, the initial DAT is reconstructed by using

euristics. Each node applies heuristics using information about

eighboring nodes only and is termed as Local Heuristics. Each

ode assesses its parent node to explore suitability of changing the

arent node. Changing parent node termed as parent switching is

erformed only if it improves the lifetime of its parent node. 

The steps are described in the function Local_Heuristics as fol-

ows. Each node u checks its valid parent list VP ( u ). The nodes in

P ( u ) are ordered in decreasing order of their lifetimes. Higher life-

ime nodes demonstrating more residual energy are checked first

or a possible parent switch. Node u switches its current parent

ode c u if parent switching improves lifetime L c u . 

.3. SDLHO: Extending lifetime of bottleneck node 

In the proposed work, the sink node identifies the bottleneck

ode in k -hop subtree T using Eq. (11 ). Extending lifetime of the

n improves NL. 

The lifetime L bn of the bottleneck node bn is improved by ap-

lying two strategies. First strategy is based on examining if the

umber of child nodes of bn can be reduced. Reducing number

f child nodes saves energy required to receive packets and ex-

ends lifetime of bn . If this strategy fails to improve L bn then a sec-

nd strategy is applied. In this case, the minimum lifetime node m

mongst child nodes of bn is identified as the new bottleneck node

nd the first strategy is reapplied. The process continues until node

ith distance k from the sink is reached. 

.4. SDLHO Algorithm 

Algorithm 1 . 

.5. SDLHO Example 

A randomly deployed sensor network G = (V, E) of 60 nodes

ith node 61 as sink node is shown in Fig. 3 . It is assumed that

= 3 , Rx = 1 , T x = 2 and k = 3 . 

Steps 

1) DAT T isp ( Fig. 4 ) is constructed and each node computes

Z u , P u , E u , L u from Eqs. (2) , (4), (7) and Eq. (8), respectively. 

2) A k-hop subtree T ( Fig. 5 ) is constructed. The nodes in T and

their δu values are shown in first and second columns of

Table 1 . Column E u [ T ] in the table represents the computed

E u values for T . Using Eq. (10 ), value of D is computed to be

12 rounds. 

3) Fig. 6 shows the reconstructed tree T ho . nodes _ 6 , 25 , 30 , 34 ,

41 , 43 , 44 and node _ 49 switch to new parent nodes

nodes _ 52 , 45 , 18 , 19 , 34 , 45 , 18 and node _ 18 , respectively as

shown. Fourth column in Table 1 represents E u for new DAT

T . From Eq. (10) , D = 28 rounds. 
ho ho 
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Algorithm 1 SDLHO. 

Input : A randomly deployed WSN as graph G = (V, A ) with N sensor nodes and a sink node s . For each node u ∈ V , δu and εu represent data generated by the node and its initial 

energy. T x, Rx is energy required for transmitting and receiving a packet respectively. k represents distance in terms of number of hops from sink s . 

Output : A schedule U = { T 1 , T 2 , ...T t } , { D 1 , D 2 , ..D t } 
Steps 

1. Construct Distributed DAT T isp (V isp , E isp ) such that V isp = V, E isp ⊆ A . Each node u ∈ V isp computes Z u , P u , E u , L u using Eq. (2),(4),(8) (10) respectively. 

2. Identify nodes within k -hop distance from s . Represent these nodes and their connecting edges as graph G = (V, E) . Construct a spanning tree T = (V T , E T ) termed as k -hop 

subtree of T isp such that V T = V, E T ⊆ E. Compute D of T using Eq. (10). 

3. Reconstruct T to T ho by executing Local_Heuristics 

4. Find bottleneck node bn in T ho . Reconstruct T ho to T ex by executing Extend_L_bn . Extend_L_bn extends the lifetime of subtree rooted at bn . Repeat this step for T ex until T ex cannot 

be reconstructed. 

5. Update schedule U by adding T ex , D ex . Update εu for all nodes using Eq.(9). 

6. Execute Tree_with_Y_leafnodes to construct T l such that low residual energy nodes are leaf nodes. If T l is constructed successfully then repeat steps 3 to 6 for T l else return 

schedule U . 

function Local_Heuristics 

Input: T, D, G (V, E) 

Output: T ho , D ho 

1. for each node u ∈ V do 

2. [ P, T p ] = Parent_Switching (u, T ) 

3. if P == 1 // T updated to T p 
4. T ho = T p 
5. Compute D ho 

6. return (T ho , D ho ) 

7. else continue 

8. end for 

9. return (T ho , D ho ) 

function Extend_L_bn 

Input: bn, T ho , D ho , G (V, E) 

Output: P, T ex , D ex 

1. P = 0 

2. for each node u i ∈ C(T ho , bn ) do 

3. [ P, T p ] = Parent_Switching (u i , T ho ) 

4. if P == 1 // T ho updated to T p 
5. T ex = T p 
6. Calculate D ex 

7. return (P, T ex , D ex ) ; 

8. else continue; 

9. end for; 

10. Identify node m with minimum lifetime in C(T ho , bn ) 

11. if h m > = k 

12. return (P, T ho , D ho ) 

13. else 

14. Extend_L_bn (m, T ho , D ho , G (V, E)) 

15. end if 

function Tree_with_Y_leafnodes 

Input: G (V, E) 

Output: W, T l 

1. W = 0 ; 

2. Find set Y of low residual energy nodes in G such that for each node y ∈ Y , εy < E y 
3. Let G ′ = (V ′ , E ′ ) such that V ′ = V − Y and E ′ ∈ E 
4. Construct tree T ′ for G ′ 
5. Update T ′ to T l such that for each y ∈ Y, C(T l , y ) = 0 

6. if T l is constructed successfully 

7. W = 1 

8. else T l = 0 

9. end if 

10. return (W, T l ) 

function Parent_Switching 

Input: u, T 

Output: P, T p 

1. P = 0 ; 

2. Let V P(u ) = { v 1 , v 2 ... v un } such that L v 1 > = L v 2 > = ... > = L v un 

3. for each node v i ∈ V P(u ) do 

4. Z v i = Z v i + Z u 
5. Compute P v i , E v i , L v i 
6. if L v i > L c u 
7. Add edge (u, v i ) to T 
8. Remove edge (u, c u ) from T 

9. Update Z u i P u i , E u i , L u i for nodes on path to s 

10. P = 1 ; 

11. return ( P, T ) 

12. else continue 

13. end for 

14. return( P, T ) 
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Fig. 3. An example connectivity graph G = (V, E) representing initial random de- 

ployment of 60 nodes placed in a 10 × 10 area with transmission range g = 2 . En- 

circled node 61 is the sink s . 

Fig. 4. SDLHO, N = 60 , Step 1 :Initial DAT T isp . 

Fig. 5. SDLHO, N = 60 , Step 2 : T a k-hop subtree of T isp , D = 12 . 

 

 

 

 

Table 1 

Energy units required at each node for DATs T, T ho , T ex for SDLHO is represented 

by columns E u [ T ] , E u [ T ho ] and E u [ T ex ] , respectively. Initial energy at all nodes is ε = 

20 0 0 units . 

I II III IV V 

Node u δu E u [ T ] E u [ T ho ] E u [ T ex ] 

1 0 0 0 0 

3 4 155 71 62 

6 10 8 8 8 

8 10 9 9 9 

16 2 2 2 2 

17 0 0 0 0 

18 4 4 70 61 

19 5 4 13 31 

23 4 5 5 5 

25 6 16 16 16 

29 10 8 8 8 

30 9 84 51 51 

34 9 31 6 24 

35 2 2 2 2 

36 0 0 0 0 

41 7 6 6 6 

43 0 35 35 35 

44 9 6 6 6 

45 4 8 59 41 

49 3 2 2 2 

52 6 17 29 29 

54 0 0 9 9 

57 0 0 0 0 

58 9 43 43 43 

60 3 14 14 14 

D 12 28 32 

Fig. 6. SDLHO, N = 60 , Step 3 : DAT T ho . All ∗ marked nodes 6,25,30,34,43,49 have 

switched to new parent nodes, D ho = 28 . 

Fig. 7. SDLHO, N = 60 , Step 4 : DAT T ex with bottleneck nodes node_3 and node_18. 

D ex = 32 . 
4) node _ 3 and node _ 18 are identified as the bottleneck nodes

and these nodes execute Extend_L_bn to get reconstructed

DAT T ex , Fig. 7 . Fifth column in Table 1 represents E u for T ex 

and D ex = 32 rounds. 

5) Schedule U is updated to U = { T 1 = T ex } , { D 1 = D ex = 32 } . 
6) The set of low residual energy nodes Y = { node _ 3 , node _ 8 }

is identified and tree T ( Fig. 8 ) is constructed by executing
l 
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Fig. 8. SDLHO, N = 60 , Step 6 : T l with low residual energy nodes node _ 3 and 

node _ 18 as leaf nodes, D l = 4 . 
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Tree_with_Y_leafnodes . Leaf nodes node _ 3 , node _ 8 consume

less energy as they do not receive data from child nodes.

Steps 3 to 6 of SDLHO are reiterated and T l , D l is added to

schedule U . 

Final schedule is represented by U = { T 1 , T 2 }, {32, 4} and DATs

re given in Fig. 7 and 8 respectively. The maximum lifetime D is

iven by 32+4 = 36 rounds. As seen from Table 1 , the maximum en-

rgy required by a node is reduced by reconstructing the tree so

hat energy consumed by all nodes is balanced improving NL. 

.6. Complexity analysis for SDLHO 

It is assumed that the network G = (V, A ) has N nodes. Let n

e the number of nodes in G ( V, E ) such that | V | = | V T | = n . H is

he maximum number of hops required to reach the sink in DAT

 ( V T , E T ) and Q is the maximum number of neighboring nodes of

ny node in G, n > Q . 

Stepwise computation and communication complexity 

1) The communication complexity of initial DAT construction

is given by the number of single hop messages. Each node

broadcasts a message to its maximum Q neighbors resulting

in communication complexity of O ( N · Q ). 

2) The sink constructs DAT T ( V T , E T ) by using parent and child

information of nodes at distance k from itself. This requires

| V T | = n message transmissions to sink, resulting in commu-

nication complexity of O ( n ) 

3) In Local_Heuristics , the for loop in line 1 is executed n times,

once for each node. Inside for loop, Parent_Switching is ex-

ecuted. The computational complexity of Parent_Switching 

is determined by the number of valid parents O ( Q ) of

a node and the path length H . Hence, the complexity

of Parent_Switching is O ( H · Q ) and the complexity of Lo-

cal_Heuristics is O ( n · H · Q ) 

4) Extend_L_bn is executed for each bottleneck node. Maximum

number of bottleneck nodes is O( Q ). Hence the computa-

tional complexity of this step is O ( Q ) × complexity of Ex-

tend_L_bn . 

In Extend_L_bn , the for loop in line 1 is executed O ( Q ) times.

Inside for loop, Parent_Switching is called. The recursive Ex-

tend_L_bn function executes at most H times. Thus, the com-

putational complexity of Extend_L_bn is O ( H 

2 · Q 

2 ) and the

complexity of step 4 is O ( H 

2 · Q 

3 ) 

5) Constant time O (1) is required to add T ex and D ex to U . Eval-

uating remaining energy of all nodes has O ( n ) complexity. 

6) Tree_with_Y_leafnodes constructs T l with complexity O ( n 2 ). It

is observed that steps 3 to 6 are executed constant c number
of times.  
The total computational complexity of SDLHO is 

(O (n · H · Q ) + O (H 

2 · Q 

3 ) + O (n ) + O (n 

2 )) = O (n 

2 + H 

2 · Q 

3 ) 

.7. SDLHO Heuristics for imperfect links 

SDLHO models perfect communication links with no associated

ncertainty. However, in reality, environmental factors cause mul-

ipath propagation and distortion of signals and lead to radio link

uality deterioration in WSNs [33,34] . A key technique for model-

ng imperfect links is based on using Link Quality Indicator (LQI)

alues offered by the corresponding radio chips [37] . 

In the proposed work, Scheduling DATs using Local Heuristics

ith Ordering based on Link Quality (SDLHO-LQ) algorithm is pre-

ented. 

.7.1. Algorithm SDLHO-LQ 

SDLHO-LQ extends SDLHO Local Heuristics to assure best pos-

ible communication links between the nodes and suits practi-

al scenarios. In SDLHO-LQ, each node u analyses its valid parent

odes VP ( u ) to check if changing parent node c u improves L c u while

aintaining assured link quality. The Parent_Switching function for

DLHO-LQ selects a valid parent v i with maximum link weight.

his strategy assures that the nodes always communicate over the

est possible link to address the challenges of uncertain communi-

ation links. 

.8. Algorithm SDLHR: Scheduling DATs using Local Heuristics with 

andomization 

The proposed SDLHR algorithm uses randomization to find a

chedule of DATs. SDLHR employs Local Heuristics at each node.

ach node u analyses its valid parent nodes VP ( u ) to check if

hanging parent node c u improves L c u . SDLHR differs from SDLHO

n its parent switching mechanism. 

In SDLHO, line 1–2 of Parent_Switching function select a valid

arent v i in decreasing order of its lifetime L v i . Ordering induces

omputational overhead at the node. Therefore with the objective

f proposing Local Heuristics which is lightweight with less com-

utational overhead, SDLHR is proposed. SDLHR uses randomiza-

ion in Parent_Switching and the ordering complexity is eliminated.

. Algorithm SDLHT: Scheduling DATs using Local Heuristics 

ith Tree factor 

The maximum number of rounds for which a given DAT T can

e scheduled is its lifetime D . Whether a new DAT should be con-

tructed after D rounds or before D rounds is a challenging prob-

em. If the DAT is reconstructed after every DA round then the life-

ime of the network can be improved. This motivates us to inves-

igate a new basis for tree reconstruction termed as tree factor tf .

n this section, tree factor is described and Scheduling DATs using

ocal Heuristics with Tree factor (SDLHT) algorithm is proposed. 

.1. Tree factor 

Tree factor tf such that t f ∈ Z + controls the number of data col-

ection rounds for a given tree. Let U = { T 1 , T 2 , . . . T t } , { D 1 , D 2 , .D t }
epresent a tree schedule with t trees. The parameter tf is appli-

ation dependent and is used to control the number of data ag-

regation rounds for each T i . Let D i be the lifetime of T i then after

 i rounds some nodes in the network cannot relay data and the

ree has to be reconstructed. With tf , the tree is checked earlier for

ossible tree reconstruction when p percentage of nodes’ energy

s depleted. The value of p is determined by tf and is denoted as

p = 100 /t f . For example, for a given value of tf , if the current tree
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Fig. 10. SDLHT, N = 70 , step 4, i = 1 : T 1 of schedule U , d 1 = 2 . 

Fig. 11. SDLHT, N = 70 , step 4, i = 2 : T 2 of schedule U , d 2 = 2 . 

Fig. 12. SDLHT, N = 70 , step 4, i = 3 : T 3 of schedule U , d 3 = 10 . 
is T i with lifetime D i , then T i is checked for reconstruction after d i 
rounds, d i ≤ D i such that 

d i = � D i /t f� (13)

In case of SDLHO and SDLHR t f = 1 and d i = D i . 

4.2. SDLHT Algorithm 

The proposed SDLHT employs hybrid DAM II (Ref. Section 2.2.3 ).

After the initial DAT construction, the k-hop nodes reconstruct the

tree using Local Heuristics and tf ( Algorithm 2 ). 

Algorithm 2 SDLHT. 

Input : A randomly deployed WSN as graph G = (V, E) with N sen-

sor nodes and a sink node s . δu and εu for each node u ∈ V 

representing data generated by the node and its initial energy.

T x, Rx is energy required for transmitting and receiving a packet

respectively. t f is tree factor. 

Output : A schedule U = { T 1 , T 2 , ...T t } , { d 1 , d 2 , ..d t } 
Steps 

1. Construct DAT in a distributed manner to get T isp =
(V isp , E isp ) such that V isp = V, E isp ⊆ E. Each node computes

Z u , P u , E u , L u . 
2. Nodes within k-hop distance in T isp form T . Each node in T 

forwards the value of L u on the path towards the sink and

sink computes D . 

3. T is reconstructed to T ho by each node u executing Par-

ent_Switching function. Each node then forwards L u to sink. 

4. Sink computes D ho and d ho using Eq.(10) and Eq. (13) respec-

tively. Initially i = 0 . Schedule U is updated in each iteration

by adding T ho , d ho to U such that i = i + 1 , T i = T ho , d i = d ho .

Sink then communicates value of d ho to all nodes in T ho .

Nodes in T ho receive d ho and update εu accordingly. if εu < E u 
then tree cannot be constructed and U is returned, other-

wise steps 3 and 4 are repeated. 

4.3. SDLHT example 

A randomly deployed sensor network of 70 nodes with node 71

as sink node is shown in Fig. 9 . Let t f = 6 . A schedule of heuristic
Fig. 9. G(V,E) representing initial random deployment of 70 nodes placed in a 

10 × 10 area with transmission range g = 2 . Encircled node 71 is the sink. 
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rees constructed with SDLHT is given in Figs. 10 , 11 and 12 . Final

chedule is represented as U = { T 1 , T 2 , T 3 } , { 2 , 2 , 10 } . 

.4. Complexity analysis of SDLHT 

In SDLHT, the initial DAT is constructed in a distributed man-

er as in SDLHO and SDLHR algorithms. Hence the communication

omplexity is O ( N · Q ). In steps 2,3 and 4, n messages are trans-

itted adding communication complexity given by O ( n ). Compu-

ational complexity is given by O ( n · H · Q ) as each node executes

arent_Switching with computational complexity O ( H · Q ). 

. Performance evaluation 

.1. Simulation setup and parameters 

In the simulation setup, WSNs are generated by deploying relay

nd source sensor nodes in the are of interest. To facilitate per-

ormance comparison, the simulation setup is similar to that of

TRBSA [22] . 

N sensors are randomly deployed where | N | varies between 10–

00 with step of 10 and 10 0–10 0 0 nodes with step of 100. De-

loyment is in a 10 × 10 sq.units field with transmission range at
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ach node g = 2 . The number of relay nodes | R | = 50 . Initial en-

rgy, ε = 10 5 units, energy required to transmit a packet is T x = 2

nd energy required to receive a packet is Rx = 1 . The data bits

enerated by source nodes is randomly selected from the interval

 to B where B = 10 units. Data aggregation ratio α = 3 ( Eq. (4) ).

alue of k for k-hop information is set to k = 3 . Perfect and im-

erfect links are considered (Refer Section 2.1 ). Thirty networks

re generated for each value of | N | and the values of NL are ob-

erved. Mean and standard deviation values of energy consumed

y all nodes in a DA round are also observed. 

.2. Observations for network lifetime 

Network lifetime values for number of sensors ranging from 10

o 100 and 10 0–10 0 0 are given in Figs. 13 and 14 , respectively. For

 N | between 10–100 and | R | = 0, the NL values for SDLHO, SDLHR

nd LTRBSA [22] algorithms are similar. However, when | N | ranges

etween 100–1000 and | R | = 50, NL values reported by SDLHO and

DLHR show significant improvement compared to LTRBSA [22] . 

Simulations were also performed to compare SDLHO and SDLHR

lgorithms with state-of-art. Results for NL values of SDLHO and

DLHR are compared with RaSMaLai [50] and MITT [51] . To facili-

ate performance comparison, the simulation setup in this case is
Fig. 13. The lifetime of networks with number of sensors ranging from 10 to 100. 

ig. 14. The lifetime of networks with number of sensors ranging from 100 to 10 0 0. 

F

r

F

s

imilar to RaSMaLai and MITT. Deployment is in a 100 × 100 sq.

nits field with transmission range at each node g = 25 . The sink

s placed at the centre of the deployment area. The number of

ensors are between 10 0–40 0 with a step of 100. Simulation re-

ults given in Fig. 17 show that SDLHO improves NL as compared

o state-of-art. 

.3. Observations for energy depleted in a DA round 

The mean and standard deviation of energy depleted by the

odes per DA round is shown in Fig. 15 and Fig. 16 , respectively.

t is observed that the mean energy depleted is similar for SDLHO,

DLHR and LTRBSA [22] . However SDLHO has lower values for

tandard deviation compared to SDLHR. Standard deviation values

or LTRBSA [22] are highest. Lower standard deviation values sig-

ify balanced energy consumption that leads to improved network

ifetime in SDLHO. 
ig. 15. Mean energy depleted in each round for networks with number of sensors 

anging from 100 to 10 0 0. 

ig. 16. Standard deviation of energy depleted for networks with number of sen- 

ors ranging from 100 to 10 0 0. 
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Table 2 

Comparison of algorithms LTRBSA [22] , SDLHO, SDLHR and SDLHT. 

Parameters LTRBSA [22] SDLHO SDLHR SDLHT 

Local Heuristics Selects neighboring node 

ordered by residual energy 

Selects neighboring node 

with maximum residual 

energy 

Selects neighboring node 

randomly 

Selects neighboring node 

with maximum residual 

energy 

DAT reconstruction 

condition 

εu < E u for some node u in 

the network 

εu < E u for some node u in 

the network 

εu < E u for some node u in 

the network. 

Depends on tree factor tf and 

εu . 

DAM model employed. — Hybrid DAM I Hybrid DAM I Hybrid DAM II 

Computational complexity. O (n 2 + n · H 2 · Q 2 ) O (n 2 + H 2 · Q 3 ) O (n 2 + H 2 · Q 3 ) O ( n · H · Q ) 

NL in terms of DA rounds, 

εu = 10 5 
1171 rounds for N = 100 360 

rounds for N = 500 224 

rounds for N = 10 0 0 

1234 rounds for N = 100 521 

rounds for N = 500 352 

rounds for N = 10 0 0 

1193 rounds for N = 100 443 

rounds for N = 500 319 

rounds for N = 10 0 0 

1154 rounds for N = 100 490 

rounds for N = 500 337 

rounds for N = 10 0 0 

Percentage improvement in 

NL 

Compared to SPTBSA: 32.4% 

for N = 200; 44.3% for 

N = 500; 50.1% for N = 1000 

(Ref. Fig 5 in [22] ) 

Compared to LTRBSA: 15.9% 

for N = 200; 44.8% for 

N = 500; 57.1% for N = 1000 

Compared to LTRBSA: 6.21% 

for N = 200; 23.0% for 

N = 500; 42.0% for N = 1000. 

Compared to LTRBSA: 12.1% 

for N = 200; 36.0% for 

N = 500; 50.0% for N = 1000 
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5.4. Observations for scalability 

NL values of the proposed algorithms are compared in Fig. 14 .

LTRBSA has better NL values compared to SPTBSA [22] . The pro-

posed algorithms are compared with LTRBSA [22] . Fig. 14 and

Table 2 present experimental results and show that the SDLHO,

SDLHT and SDLHR are highly scalable and achieve more than 50%

performance improvement as the number of nodes in the network

increases. 

5.5. Observations with imperfect links 

NL values for sensor networks with imperfect links, using

SDLHO-LQ, is given in Fig. 18 . Each data point in the simulations

was averaged over thirty networks and scaled between 0 to 1. The

results show the impact of link quality on the observed NL values.

SDLHO-LQ trades NL for improved link quality and suits realistic

deployment scenarios. 

The link weights can be modified to suit the deployment envi-

ronment and the devices used [38,52,53] . 

5.6. Observations for tree factor tf 

Simulation results presented in Fig. 14 have tf set to 6 for

SDLHT algorithm. This value is obtained empirically. Fig. 19 shows

NL values for tf ranging from 2 to 14 and | N | between 100–1000

nodes. It is observed that for t f = 2 , NL is less as compared to
Fig. 17. The lifetime of networks with number of sensors ranging from 100 to 400. 

F

i

igher values of tf . Increasing tf increases the frequency at which

he DAT is checked for possible reconstruction and results in im-

roved chances for nodes to find parent nodes with better life-

ime and effectively increases the NL. However increasing tf also

ncreases tree reconstruction overhead. Fig. 19 shows that increas-

ng tf above 6 does not achieve significant NL improvement. Hence

f is set to 6 for SDLHT. 

.7. Comparison of algorithms 

Comparison of the proposed algorithms and state of art is de-

cribed in Table 2 . It is seen that Local Heuristics based on resid-

al energy of neighboring nodes can be tuned to application needs

o achieve desired NL improvement. In SDLHO and SDLHR, DAT

s reconstructed if residual energy at a node is insufficient. In

DLHT, DAT is reconstructed if residual energy is less than a cer-

ain threshold value. This value is controlled by using tree factor.

DLHT employs hybrid DAM II model. Hybrid DAM II is distributed

nd overcomes the challenges of Hybrid DAM I. SDLHT is computa-

ionally most efficient as described in Table 2 . Improvement in NL

alues of the proposed algorithms as the network size grows make

hem suitable for applications that require scalability. 

To tackle uncertainty in communication in real world sensor

etworks, the heuristics is adapted so that it caters to realistic sce-

arios. SDLHO heuristics for imperfect links is extended to accomo-

ate good quality links in SDLHO-LQ. The capability of SDLHO-LQ
ig. 18. The lifetime of networks with imperfect links for number of sensors rang- 

ng from 100 to 10 0 0. 
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Fig. 19. The lifetime of networks with SDLHT that have tree factor ranging between 

2 to 14 and number of sensors ranging from 100 to 10 0 0. 
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euristics is suitable in practical scenarios where shorter NL can

e traded for achieving assured communication over good quality

inks. 

. Conclusion 

In WSNs, the structure of the DAT and the number of packet

ransmissions influences the energy requirements and affects NL

alues. Data is gathered in an energy efficient way by constructing

ATs. 

In this paper, the problem of enhancing Network Lifetime (NL)

sing hybrid DAT construction methods is investigated and three

lgorithms for Scheduling DATs using Local Heuristics with Order-

ng (SDLHO), with Randomization (SDLHR) and with Tree factor

SDLHT) techniques are proposed. 

SDLHO schedules a sequence of DATs and employs hybrid DAM

 (Ref. Section 2.2.3 ). Local heuristics implemented in SDLHO is

ased on the residual energy of neighboring nodes and requires

rdering at node level. To eliminate this computational overhead,

 lightweight, randomization based Local Heuristics for DAT con-

truction is proposed and implemented in SDLHR Scheduling DATs

sing Local Heuristics with Randomization algorithm. Both, SDLHO

nd SDLHR employ hybrid DAM I in which the sink requires partial

nowledge of the network. 

To address the concerns regarding behavior of wireless links in

ractical situations, the heuristics of SDLHO is modified in the pro-

osed Scheduling DATs using Local Heuristics with Ordering based

n Link quality (SDLHO-LQ) algorithm. Results demonstrate the ap-

licability of the proposed SDLHO-LQ to suit the uncertainty in real

orld application scenarios. 

To overcome requirements of awareness at sink node, a new ba-

is for tree reconstruction termed tree factor is investigated and

roposed. Tree factor based technique constructs the DAT in a dis-

ributed manner as implemented and demonstrated by Scheduling

ATs using Local Heuristics with Tree factor (SDLHT) algorithm. 

Rigorous simulation results demonstrate the efficacy of the pro-

osed algorithms. SDLHO, SDLHR and SDLHT are scalable and im-

rove NL as compared to existing state of art by 5 − 50% for the

andom deployment of 100 − 10 0 0 nodes, respectively in common

latform settings. (Ref. Table 2 ) Their ability to scaleup to suit de-

loyment of applications in harsh regions is promising and suits

istributed environments. 
Enhancing network lifetime in dynamic environments with mo-

ile nodes impose challenges for future work. 
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