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The growth of cyber-attacks that are carried out with malware have become more sophisticated on al- 

most all networks. Furthermore, attacks with advanced malware have the greatest complexity which 

makes them very hard to detect. Advanced malware is able to obfuscate much of their traces through 

many mechanisms, such as metamorphic engines. Therefore, predictions and detections of such malware 

have become significant challenge for malware analyses mechanisms. In this paper, we propose a multi- 

dimensional machine learning approach to predict Stuxnet like malware from a dataset that consists of 

malware samples by using five distinguishing features of advanced malware. We define the features by 

analyzing advanced malware samples in the wild. Our approach uses regression models to predict ad- 

vanced malware. We create a malware dataset from existing datasets that contain real samples for ex- 

perimental purposes. Analyses results show that there are high correlations among some features of ad- 

vanced malware. These provide better predictions scores, such as R 2 = 0 . 8203 score for Stuxnet closeness 

feature. Experimental analyses show that our approach is able to predict Stuxnet like advanced malware 

if prediction features defined. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The amount and variety of attacks on computing systems in-

cluding all types of networks increase in an enormous speed. This

trend is driven by a rich volume of different malware. The richness

has a huge impact on the cost of computing systems. Actually, the

cost depends on the success of attacks. Advanced malware has be-

come an effective tool to accomplish such attacks. 

Advanced malware is a complex malicious software which has

very effective properties. The main purpose of such malware is to

accomplish targeted attacks with high success ratio. Specifically,

critical systems are main targets of advanced malware. This type of

malware uses different attack vectors to accomplish its goal and it

has exceptionally complex structure [1] . Moreover, advanced mal-

ware may use conventional malware to increase the success ratio,

such as using ransomware [2] . Therefore, many systems and net-

works have suffered from advanced malware considerably. For in-

stance, financial systems and critical networks are the targets of

such malware [3,4] . 

Recently, malware is used in many complex targeted attacks.

Existing anti-malware systems and intrusion detection systems are
∗ Corresponding author. 
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ble to detect some traces of attacks if they are carried out with

onventional malware. In this paper, we distinguish malware in

wo categories, namely conventional and advanced malware as in

5] . Conventional malware is malicious software that are already

ategorized in literature, such as virus, worm, and etc. [6] . More-

ver, this type of malware is almost always detectable with ade-

uate anti-malware systems [7] . On the other hand, advanced mal-

are has been undetectable until the attack is completed [5] . 

The grand challenge is to predict and detect advanced mal-

are before it completes its tasks. New detection and prediction

echanisms are needed for these purposes since existing anti-

alware systems have not detected such malware yet. In this pa-

er, machine learning algorithms are used to extract information

or predicting and detecting advanced malware based on features

f conventional and advanced malware instances seen in the wild.

tuxnet is the first advanced malware known in the wild. In this

aper, we only consider Stuxnet like malware as advanced ones.

ur main contributions are as follows. 

• We analyze and find distinguishing properties of Stuxnet like

advanced malware by using malware samples seen in the wild.

We expect that the properties may be used with machine

learning algorithms to identify the type of malware. We pro-

pose an approach to predict advanced malware by using these

properties. 

https://doi.org/10.1016/j.comnet.2019.06.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.06.015&domain=pdf
mailto:bahtiyars@itu.edu.tr
https://doi.org/10.1016/j.comnet.2019.06.015
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Table 1 

Comparison of malware categories. 

Properties Advanced malware Combo malware Conventional malware 

Stealth Use of stolen signature and others Use methods of conventional malware Depends on the type of malware 

Creation Codes from existing and unknown malware Borrowing codes from existing malware Generating code from known malware 

Size Generally bigger size Sum of components size Smaller size 

Propagation Many methods such as fragmentation Conventional malware components Depends on the type of malware 
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• Advanced malware uses conventional malware during an at-

tack. We extract correlations between features of conventional

malware and advanced malware. Additionally, we use the cor-

relations to predict the type of malware namely, conventional

or advanced. We believe that the predictions will be used to

counter against attacks with advanced malware. 

• We analyze a dataset with our approach for predicting the

type of malware. The dataset contains only malware samples

that are represented with API calls. Our analyses results on the

dataset show that machine learning algorithms will be used to

predict the type of malware by investigating the correlations

among features. 

To the best of our knowledge, this is the first work to pre-

ict Stuxnet like advanced malware by using only malware dataset,

hich does not contain benign samples. 

The rest of the paper is organized as follows. Section 2 con-

ains the evaluation of malware and the state of art about machine

earning based malware detection and prediction. Next section is

evoted to our model for the prediction of advanced malware.

ection 4 is about analysis of malware with machine learning al-

orithms. We conclude the paper in the last section. 

. Malware and machine learning 

In this section, we briefly explain malware types and machine

earning approaches to detect and predict malware. We categorize

alware according to its properties for extracting distinguishing

eatures of advanced malware as in [5] , which may be used with

achine learning mechanisms for prediction and detection pur-

oses. Table 1 contains a comparison of malware categories. Addi-

ionally, we present the state of art about machine learning based

alware detection and prediction. 

.1. Malware 

Malware is a malicious software used to deliberately harm com-

uter systems, harvest critical data and system resources, manipu-

ate network transactions and access private information of indi-

iduals [8] . Worm, virus, Trojan horse, spyware, botnet, and rootkit

re instances of conventional malware. We define conventional

alware as malicious software that is detectable by some anti-

alware systems and all properties of it are well defined. 

Malware has become more complex than ever that sometimes

akes the categorization difficult. For instance, there are malware

hat may fall into different categories. For instance, Stuxnet is cat-

gorized as either worm or advanced malware. Therefore, we in-

entionally explain conventional malware types and advanced mal-

are. 

Viruses are malicious software that can replicate themselves

henever they are active. Virus needs a host to survive so it is

rimitive malicious software. On the other hand, worm like mal-

are is a stand-alone malicious software [9] . Each malware has a

oal, but virus may have a simple goal. For example, virus infected

oftware may give rise errors to the system [6] . 

There are malware types that provides stealthy property for

ther malware types, such as Trojan horse. This malware is used to
elp infection mechanisms of other malware or it is used to steal

nformation from infected host. Specifically, Trojan horse provides

emote access to the infected systems. Unlike worm and virus, Tro-

an horse does not replicate itself [9] . This type of malware is

ometimes considered as an espionage malware. 

Key-loggers monitor information from the targeted system by

ecording keystrokes on the infected machine. There many types

f key-loggers. Spyware affects the system or machine to monitor

 wide range of critical information [10] . Backdoor or trapdoor may

ettle as a part of the system. Moreover, this type of malware may

ain access to the system by providing authentication controls to

he owner of malware. 

One of the most effective malware to provide stealthy property

s rootkit. It inserts a set of software codes to the targeted system

or gaining administrators privileges for a remote control purpose

hile hiding its existence [11] . 

Similar to rootkit, a botnet has remote control facility. Botnets

re remotely controlled computer network systems. These net-

orks may be used for different purposes, such as sending spam

-mails or carrying out denial of service attacks [12] . 

Combo malware is a combination of many conventional mal-

are. For instance, combo malware may consist of virus and worm.

his type of malware is created by borrowing code from existing

onventional malware [13] . For example, Lion and Bugbear.B mal-

are may be categorized as combo malware. Lion malware is com-

osed of Linux worm and rootkit. On the other hand, Bugbear.B is

 combination of worm, virus, and backdoor [13] . Thus, their pay-

oad, size, and propagation depend on the components accordingly.

ll these malware types are detectable with some anti-malware

echanisms that are already running in the wild. 

Advanced malware is sophisticated malicious software that has

xceptionally different structure than conventional malware. The

ajor properties of advanced malware are complexity, goal ori-

ntation, modular, stealth, being written in multi-languages, use

f cryptography, and use of multiple vulnerabilities [5] . Advanced

alware has dynamic nature therefore its components, infection

echanisms, and payload properties may change over time. More-

ver, initial instances of advanced malware have greater size than

onventional malware. These make the detection of advanced mal-

are almost always impossible with conventional malware detec-

ion tools. On the other hand, advanced malware and conventional

alware has some common properties that may be used to detect

he presence of advanced malware on a specific host. 

Stuxnet, Duqu, Flame, and Red October are the most com-

on examples of advanced malware seen in the wild [14] . They

hare some common properties but they also have some differ-

nces. For example, Stuxnet is the one which infects removable

rivers, local area networks, programmable logic controllers(PLC).

t exploits vulnerabilities of systems that do not provide secure

essage verification and source authentication [15] . Additionally,

tuxnet has rootkit functionality, self-replication property over the

etwork and it infects programs and uses encryption methods. The

ain purpose of Stuxnet is sabotage [14] . 

Duqu was found in September 2011 by CrySys. It has Com-

and and Control servers. Moreover, Duqu has an auto destruc-

ion component that is based on time triggering mechanism. Duqu

easures time taken after the infection. In some resources, it is
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considered as stealthy spyware [16] . Interestingly, it has only man-

ual replication property. Additionally, Duqu uses AES algorithm for

encryption operations. The main goal of Duqu is information gath-

ering [14] . In other words, its goal is espionage. 

Flame was discovered in May 2012 and it is different than the

other advanced malware in terms of the size, which is approxi-

mately 20 megabytes [17] . Like Duqu, Flame replicates itself man-

ually. It uses encryption mechanisms for different purposes, such

as to provide stealthy property. The main design purpose of Flame

is information gathering [14] . 

Red October was discovered in October 2012 in the wild and it

is considered as active since May 2007. Initially, Red October in-

fected Microsoft Office programs and Java. Similar to Flame, this

malware is replicated manually. It has also keylogging module and

encryption property. It is used for espionage purpose [14] . These

properties give rise to thought that Red October and Flame were

designed by same developers. Additionally, Red October is consid-

ered as a cyber weapon since it has additional properties than con-

ventional malware. 

2.2. Malware analysis with machine learning 

The traditional approaches of security mechanisms are unable

to prevent advanced cyber-attacks because of the complex nature

of new generation malware [18] . One of the challenges to prevent

such attacks is a lack of intelligences about advanced malware. On

the other hand, there is an awareness for the need of Technical

Threat Intelligence (TTI) about advanced malware and correspond-

ing attacks [19] . Thus, predicting and detecting malware has be-

come a significant challenge to prevent advanced attacks. 

Cyber-attacks with malware have taken attentions of nation

states and some organizations. They have used the attacks for

either sabotage or espionage purposes. These kinds of attacks

are sometimes referred as Advanced Persistent Threat (APT) [20] .

Moreover, there are classification or detection solutions to cope

with such malware that are based on machine learning [21] and

data mining [22] . However, each of them considers only specific

features or environments, such as self-organizing feature [23] and

malicious URL [24] . 

The vast number of different computing platforms and their

interconnections make malware detections with machine learn-

ing more challenging than ever. There are many machine learn-

ing based researches to classify and detect malware [23,25] . The

researches take into account only some features of malware [26] .

They do not consider the detection of all the types with a com-

mon approach or machine learning algorithm. For example, some

researches considers only Android platforms [27] whereas some

others take into account Windows platform [25] . 

There are researches that use multiple features to detect mal-

ware with specific machine learning approaches. For instance, a

deep learning based method to detect Android malware uses many

features, such as similarity based ones [28] . Another approach uses

deep learning to classify malware features for the identification

[29] . Layton et al. considers API calls that identifies and predict

banking malware [30] . Moreover, machine learning approaches are

designed to predict APTs by using a correlation framework [31] . To

the best of our knowledge, there is no research that distinguish

type of malware as either conventional or advanced based on a

dataset that consists only of malware instances. The goal of our ap-

proach is to predict Stuxnet like advanced malware based on mul-

tiple features that are represented with API calls. 

3. A model to predict advanced malware 

In this paper, our goal is to predict advanced malware that is

similar to Stuxnet. The prediction model is based on distinguish-
ng properties of Stuxnet. We intentionally selected the properties

hat are related to specific conventional malware to be able to use

xisting malware datasets. After careful analysis of advanced mal-

are, we define five features that are represented with API calls.

onventional malware arsenal, behavior instability, stealthy prop-

rty, metamorphic engine, and closeness to Stuxnet are our fea-

ures. We use them to distinguish advanced and conventional mal-

are by extracting relationships among features. 

We use regression algorithms to show correlations among fea-

ures of advanced malware for predictions. Fig. 1 shows the high-

evel algorithm for the prediction. The features are also expected

o be used for the detection purpose of advanced malware in anti-

alware systems. Advanced malware may have both new features

nd features of conventional malware. Since we have a limited

umber of advanced malware known in the wild, we have en-

iched our features with conventional malware features to increase

he prediction accuracy. For instance, conventional malware arse-

al represents many activities of malware in the wild. Therefore,

e have considered both distinguishing features of advanced mal-

are and properties of conventional malware. 

.1. Machine learning models 

We use regression algorithms to extract relationships among

eatures of malware. In this paper, linear, polynomial, and random

orest regression models are used to determine the relationships.

oreover, we use relationships among malware features for pre-

iction purposes. Here are brief explanations of the models. 

• Linear regression model: This type is used to model the rela-

tionship between two variables by fitting a linear equation to

observed data. One variable is considered to be an explanatory

variable. Other one is a dependent variable. Relationships be-

tween two variables are modeled using a linear predictor func-

tion. In this model, unknown parameters are estimated by using

data from which some features are extracted. 

The regression model considers a dataset that consists of ex-

planatory variable namely, independent variable, x and a de-

pendent variable y . The relationship between y and x depends

on x and constant β , which is called the intercept . 

y i = β0 + β1 x 1 + β2 x 2 + . . . + + βn x n + εi (1)

In real life, there is always a disturbance between x i and y i that

is called error variable. Most of the time error is represented

with ε i as in Eq. (1) . 

• Polynomial regression model: In this model, the relationship

between independent variable x and dependent variable y is

modeled as an n th degree polynomial in x . The regression fits

a nonlinear relationship between x and the corresponding con-

ditional mean of y . Formal representation of polynomial regres-

sion model is as follows. 

y = β0 + β1 x + β2 x 
2 + . . . + βn x 

n + ε (2)

Similar to linear regression model, ε represents an unobserved

random error. 

• Random forest regression model: This model has a good be-

havior to handle more complex relationships among features

of data. Random forest models capture non-linear interaction

between the known features and the targeted one, which dif-

fers this model from linear regression models. This model is an

additive model that makes predictions by combining decisions

from base models. Formal representation of the model is as fol-

lows. 

g(x ) = f 0 (x ) + f 1 (x ) + f 2 (x ) + . . . (3)

In Eq. (3) , g(x) is the sum of simple base models f i ( x ). Each base

classifier is a simple decision tree. In random forest models,
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Fig. 1. The high level algorithm to predict advanced malware with machine learning. 
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all base models are constructed independently using a different

subsample of data. 

.2. Prediction model 

We use relationships among five features of malware for the

rediction of malware type namely, conventional or advanced. Our

rediction model is based on correlations among these five proper-

ies of advanced malware. We represent malware with set M that

s related to features X i as follow: 

 = { X 1 , X 2 , X 3 , X 4 , X 5 } (4) 

The first feature is conventional malware arsenal that repre-

ents many activities of traditional malware, such as screen cap-

ure, anti-debugging, downloader, DLL injection and dropper [32] .

dvanced malware uses conventional malware for many different

urposes, therefore, the arsenal is one of the five features. We use

his feature to predict advanced malware because Stuxnet contains

hese kind of properties. 

Behavior instability is a significant feature to distinguish ad-

anced malware. In our model, we take into account read/write

les, search file for an infection purpose, load a register, modify

le attributes, get file information, distribute global/virtual mem-

ry, copy/delete files, and access to files as in [33,34] . We ana-

yzed this feature to show its correlations with other features since

ll features of advanced malware are somehow dependent to each

ther. Thus, behavioral instability is our second feature in the pro-

osed model. 

Stealthy property is one of the key characteristics of advanced

alware. It has seen from many instances of advanced malware

n the wild. For instance, Stuxnet has lots of propagation mecha-

isms and anti-malware systems are unable to detect it because

f stealthy property in propagation mechanisms. Advanced mal-

are uses many hiding techniques, such as rootkit hiding mech-

nisms [35,36] . Most of the time, stealthy property increases the

uccess ratio of attacks for advanced malware. In our model, we

se stealthy property to distinguishing the type of malware. There-

ore, this the third feature of our model. 

Next feature is metamorphic or polymorphic engine. Having a

etamorphic engine helps to hide the traces of advanced malware

37] . Therefore, this property is directly related to stealthy prop-

rty. Malware uses this feature to make detections difficult by anti-

alware systems. Therefore, extracting correlations among these
ngines are a key to design prediction and detection mechanisms

or advanced malware. 

In this work, we consider advanced malware that is similar to

tuxnet therefore our last feature is Stuxnet closeness. Actually,

any instances of advanced malware share similar features with

tuxnet. Therefore, we observed that if malware is close to Stuxnet,

his malware is also close to be advanced. For instance, Stuxnet

as some rootkit functionality, XOR encryption, DLL PE excitability,

nd self-replication over the network. Moreover, it uses removable

evices [14] . This feature is directly related to properties of ad-

anced malware since Stuxnet is probably the first advanced mal-

are known in the wild. Furthermore, there are evidences that re-

ent advanced malware contains some modules of Stuxnet. 

Advanced malware may be designed for multi platforms. The

roposed model is for Windows platforms and the five properties

re represented with Windows API calls. Fig. 1 shows the high-

evel algorithm to predict advanced malware. We compute the pre-

iction of advanced malware with Eq. (7) . Specifically, there are

wo metrics related to each malware in the computation, S i ( X i , P )

nd D i ( X i , P ). Particularly, S i ( X i , P ) is the ratio of number of API calls

rom class X i related to malware P to total number of API calls in

lass X i . In our model, malware P consists of API calls. 

 i (X i , P ) = 

∑ 

∀ j ∈ P∧ j ∈ X i x i, j ∑ 

∀ k ∈ X i x i,k 
(5)

In Eq. (7) , x i, j = 1 if corresponding API call exists, otherwise

 i, j = 0 . D i ( X i , P ) is the ratio of number of API calls from class X i 

elated to malware P to total number of API calls of P as shown in

q. (6) . 

 i (X i , P ) = 

∑ 

∀ j ∈ P∧ j ∈ X i x i, j ∑ 

∀ k ∈ P x i,k 
(6)

 (X i , P ) = 

∏ 

∀ X i ,X i ∈ M 

S i (X i , P ) D i (X i , P ) (7)

A ( X i , P ) is the closeness score for malware P and property X i to

tuxnet like malware according to predicted feature. For instance,

 ( X 3 , P ) represents malware P closeness to stealthy property. In

hese equations, all values are between zero and one. The value

f one represents maximum closeness whereas the value of zero

epresents no correlation. Moreover, if A (X 3 , P ) = 0 . 3 , we can say

hat stealthy property score of malware P is 0.3. 
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Our analysis of Stuxnet and related advanced malware show

that this type of malware has high closeness score among the

five features. Therefore, our prediction model is based on close-

ness scores between two or more than two features. Specifically,

we compute a closeness score with the regression models related

to a specific feature. If the score has a values above the thresh-

old, we classify malware as advanced, otherwise as conventional.

Since we do have limited amount of advanced malware instances

known in the wild, we have not specified a certain threshold in

this paper. Actually, the most significant challenge for the predic-

tion of advanced malware is the find closeness scores therefore in

this paper, we consider the computation of scores. 

4. Analysis of malware features with machine learning 

Malware analysis has never been done with an exact approach

because of the everlasting evaluation of malware types and its

capabilities. Moreover, there is little information about advanced

malware that makes it impossible for an anti-malware system to

predict and then detect such malware. On the other hand, there

are prediction mechanisms whether a code is malicious or benign

[38] in which case predicting the type of malware has become a

significant challenge. Analyses of this paper are devoted to pre-

dict Stuxnet like advanced malware from a dataset that contain

only malware samples. We consider Stuxnet like advanced mal-

ware for predictions which may leave traces like conventional mal-

ware since there is a lack of information for their exact detections.

We analyzed malware instances by extracting correlations

among features of malware to predict potential advanced malware.

Our analysis is based on five distinguishing features of Stuxnet and

the goal of this analysis is to predict Stuxnet like advanced mal-

ware since it is the first advanced malware known in the wild.

Additionally, conventional malware detection systems are unable

to detect advanced malware and there is no dataset with enough

advanced malware samples. Thus, we used malware datasets that

contain traces of advanced malware similar to Stuxnet. 

We analyzed the most common features of Stuxnet like ad-

vanced malware and then define the five features. We consider

Windows API calls to defines malware features that we used to

analyze malware. We used regression algorithms to test the pro-

posed model on malware dataset. We applied linear, polynomial,

and random forest regressions with 3 estimators. We also used R 2 

score, Root mean square error (RMSE), Mean square error (MSE)

and Mean absolute error (MAE) as error metrics in our analyses.

In the experiments, accuracies of the training and test sets for lin-

ear and polynomial regression models are very close to each other

therefore there is no need for hyper-parameters. Additionally, we

do not consider effects of time and memory constraints in this pa-

per. Briefly, we use correlations among the five features that we

define to predict the type of malware. 

We use Pearson correlation test to observe the linear relation-

ship between five different malware properties in the property set.

The value range of the correlation coefficient is between −1 and

1. Correlation equal to 1 implies that a linear equation shows the

relationship between X and Y perfectly. On the other hand, correla-

tion equal to −1 implies that all data points lie on a line for which

Y decreases as X increases. A value of zero means that there is no

linear correlation between variables. 

4.1. Dataset 

We prepare a dataset from two datasets to be able to increase

the number of malware instances and the accuracy of predictions.

We use malware samples to show correlations among malware

features. The first dataset from which we collected malware in-

stances was created during a data mining competition at the In-
ernational Conference on Neural Information Processing in 2010.

his dataset contains API calls and a label for each software. The

abel indicates the type of software, namely malware or benign.

he dataset may be found in servers of Artificial Intelligence Lab-

ratory at University of Arizona [39] . The second dataset consists

f labeled software, where malware is defined with a name, API

alls, and an SHA256 value [40] . Since our goal with this analyses

s to predict Stuxnet like advanced malware, we removed benign

oftware from our dataset. 

We intentionally do not specify types of malware on the dataset

o be able to test our approach for the prediction of Stuxnet like

dvanced malware. 

Our dataset consists of 23,759 malware instances. In the

ataset, each line contains API calls that represents malware sam-

le. The proposed approach needs training and test sets for the

rediction of advanced malware. Therefore, at the beginning of

nalyses, we determine the outlier, training and test sets. 

In experiments, we discovered that there are correlations

mong the five features. Moreover, we found that there is much

ore correlation between Stuxnet Clossness and Stealthiness fea-

ures than correlations between other features. Specifically, we

ound that A (Stealthiness, P ) = 0 . 4 and there is a correlation be-

ween A ( Stealthiness, P ) and A ( StuxnetCloseness, P ) as in Fig. 2 . In

he region where A ( Stealthiness, P ) > 0.4, there are only 9 malware

nstances. We treated them as outliers and then removed from our

ataset. 

We used %75 of the remaining malware instances as a train-

ng set and %25 of instances as a test set in the dataset. We used

egression algorithms to model the correlations. We observe that

here are statistically high linear correlations between two fea-

ures. Therefore, we concentrated on simple models like linear re-

ression. These models also prevent over fitting in our analyses. 

.2. Features 

We determine five significant features of advanced malware

hat will be used to identify them after careful analyses of such

alware samples in the wild. Moreover, we have concentrated on

eatures of Stuxnet like advanced malware to have more precise

redictions. Starting with features of specific advanced malware

elps us to design more effective models for malware predictions

nd detections since there is a continuous race between malware

reators and defenders. 

In this paper, we only consider advanced malware traces on

indows platforms. Our features for malware predictions are

ased on Windows API calls. Specifically, the five features are

tealth, conventional malware arsenal, Stuxnet closeness, behav-

oral instability, and metamorphic engine. We omit other prop-

rties and corresponding Windows API calls, which may be used

y other malware detection approaches. Features and their related

indows API calls are as follows. 

• Stealthiness: FindFirstFileA, FindNextFileA, GetProcAddress,

LoadLibraryA, OpenProcess, Sleep [41] . 

• Conventional malware arsenal: ShowWindow, GetWindow,

WriteFile, WinExec, ShellExecuteA, OpenProcess, VirtualAlloc

[32] . 

• Stuxnet closeness: LoadLibraryW, LoadLibraryA, GetModuleHan-

dle, GetProcAddress, VirtualAlloc, VirtualFree [42] . 

• Behavioral instability: WriteFile, CreateFileA, CreateFileW,

CloseServiceHandle, FindFirstFileA, FindNextFileA, FindClose,

SearchPathA, SearchPathW, RegOpenKeyA, RegCreateKeyA,

RegCreateKeyExa, RegCreateKeyExw, RegCreateKeyW, RegSet-

ValueExa, RegSetValueExw, RegCloseKey, DeleteFileA, Delete-

FileW, GetFileAttributesA, GetFileAttributesW, GetFileAttribute-

sExA, GetFileAttributesExW, GetFileInformationByHandle,
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Fig. 2. The correlation between of Stuxnet closeness and stealthiness. 

Fig. 3. Regression models on stealthiness & Stuxnet closeness. 
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GetFileSize, GetFileType, GetFullPathNameA, GetFullPath- 

NameW, GetLongPathNameW, GetShortPathNameA, GetShort- 

PathNameW, GetTempFileNameA , GetTempPathA , GetTemp-

PathW, GlobalAlloc, GlobalFree, VirtualAlloc, VirtualFree, 

CopyFileA, DeleteFileA, DeleteFileW, GetFileSize, GetFileType, 

ReadFile [33,34] . 

• Metamorphic engine: HeapAlloc, LocalFree, HeapCreate, Get- 

StartupInfoA , GetCommandLineA , GetEnvironmentStringsW, 

FreeEnvironmentStringsW, GetModuleFileNameA, GetCur- 

rentProcess, CloseServiceHandle, GetCurrentProcessId, Get- 

ProcessHeap, HeapReAlloc, SetFilePointer, SetFileAttributesA, 

GetFileAttributesW, FindFirstFileA, FindClose, SetThreadPrior- 

ity, GetCurrentThreadId, GetProcAddress, GetModuleHandleA, 

ResumeThread, GetEnvironmentVariableA, ExitThread [43] . 

Advanced malware has become more complex and it may have

sed new API calls related to the five features in new samples. In

his paper, we focus on Stuxnet like advanced malware traces only

n Windows platforms. 
.3. Evaluation of malware data with two features 

We analyzed the correlations between any two features by us-

ng machine learning algorithms to extract potential relationships

etween the features to distinguish advanced malware and con-

entional malware. We applied three machine learning algorithms

amely, linear regression, polynomial regression, and random for-

st regression on the dataset we constructed to extract correla-

ions among the properties of malware. These correlations helps

s to predict Stuxnet like advanced malware. The distribution of

ata in our dataset according to stealthiness and Stuxnet closeness

eatures is shown in Fig. 2 . 

The results of selected machine learning algorithms that con-

ider stealthy and closeness to Stuxnet features are shown Fig. 3 .

e use an outlier that filters the traces having more than 0.4

tealthy property to be able to handle correlations properly. The

inear regression R 2 score is 0.7109 for the test data. R 2 scores for

olynomial regressions with degree 4 and 7 are 0.7539 and 0.7759

espectively. On the other hand, Random forest regression with
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Fig. 4. Correlations between two properties of malware. 

Table 2 

Scores of regression algorithms. 

Algorithm R 2 scores RMSE MSE MAE 

Polynomial Regression (d = 7) 0.7759 0.0102 0.0 0 01 0.0057 

Polynomial Regression (d = 4) 0.7539 0.0107 0.0 0 01 0.0059 

Linear Regression 0.7109 0.0116 0.0 0 01 0.0077 

Random Forest Regression (tree = 3) 0.8208 0.0092 0.0 0 01 0.0041 
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three estimators has 0.8208 R 2 score, which is greater than lin-

ear and polynomial regression scores. Table 2 contains scores of all

machine learning algorithms applied to the dataset. Interestingly,

MSE scores for all machine learning algorithms are smaller than

other types of scores while error measures with R 2 score seems

more meaningful in these experiments. 

The experimental results show that stealthy and Stuxnet close-

ness properties are easily represented with linear and polyno-

mial regressions. This means that there is no need for more

complex machine learning algorithms to extract correlations be-

tween stealthy and Stuxnet closeness features. Less complex ma-

chine learning algorithms require smaller computation power with

higher performance. The smallest number of Stuxnet like advanced

malware instances and API calls related to them makes also the

two features suitable for regression algorithms. 

Fig. 4 shows all correlations between any two features. Analy-

ses results show that correlations of Conventional Malware Arse-

nal (CMA) property with any other property differs from the cor-

relation between stealthy and Stuxnet closeness properties. For ex-

ample, the average score of stealthy feature of malware dataset is

greater than the average score of CMA feature. Moreover, a similar

distribution of closeness scores is between CMA and Stuxnet fea-

tures. These experimental results show that if we know closeness

of two features, we will use it to predict the type of malware, ad-

vanced or conventional. Moreover, if we know closeness for more

than two features, such as Stuxnet closeness-stealthy and CMA-

stealthy, we may predict the type of malware more accurately. 
The number of API calls related to a feature affects the close-

ess score. CMA closeness score is relatively small than scores of

ther features. The main reason for this difference is that there are

imited number of API calls related to this feature. On the other

and, there are much more API calls related to behavioral insta-

ility and metamorphic engine features. Therefore, features with

ore API calls may need more complex machine learning algo-

ithms to have better closeness scores. 

We extracted all one to one correlation scores of five features in

he dataset as in Fig. 5 . These scores show that there is a high lin-

ar correlation between stealthy score and Stuxnet closeness score

ince the correlation coefficient is 0.829, which is compatible with

ur previous analyses. Additionally, Stuxnet closeness and meta-

orphic engine score is the second higher score of Stuxnet close-

ess measures, which is 0.558. In malware literature, metamorphic

ngine is usually used to deceive anti-malware systems therefore

t is related to stealthy property. The correlation score between

etamorphic engine and stealthy features is a proof for this re-

ationship. Thus, Stuxnet closeness, stealthy, and metamorphic en-

ine features may be used to increase prediction accuracy of ad-

anced malware. 

All other correlation scores are below 0.5 in Fig. 5 . These scores

mply that there are low linear relationships between most of

he properties. Correlations among stealthy, Stuxnet closeness, and

etamorphic engine properties are notable for this dataset. These

esults show that extracting the correlations among features of ad-

anced malware may help to predict specific types of advanced

alware like Stuxnet. 

Analyses results with two features show that there are differ-

nt correlations between properties of malware. Therefore, specific

achine learning algorithms should be applied to particular pairs

f malware properties to predict advanced malware. Since there

re a limited number of advanced malware instances in the wild,

t is almost impossible to have enough data about all features of

dvanced malware. Thus, some correlations may be used to pre-

ict other correlations, so that correlations may be used to feed

achine learning algorithms to predict advanced malware. 
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Fig. 5. All one to one correlations between features in the dataset. 
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Fig. 6. Correlations among Stealthy, CMA, and Stuxnet Closeness features in the 

dataset. 
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.4. Evaluation of malware data with three features 

We analyzed all correlations between two features for the data

et. We found that some features are more correlated than oth-

rs. Moreover, analysis results with two features may be used to

redict the correlations with other features, such as correlations

ith a third feature. Here, we analyzed correlations among three

eatures to extract relationships among the properties more pre-

isely. We concentrated on correlations among Stuxnet closeness

nd stealthy features with others since these two properties pos-

ess maximum similarity score in experiments of malware with

wo features. 

The analyses results show that all features are somewhat de-

endent to other features. For instance, stealthy property affects

lmost all features considerably while we consider any other fea-

ure simultaneously. Particularly, Figs. 6 and 7 shows the effect of

tealth feature on CMA, Stuxnet closeness, and behavioral instabil-

ty features. In this case, the stealthy feature seems relatively dom-

nant. On the other hand, the same feature has less effects on other

eatures as in Figs. 8–10 . 

Some features have small effects on correlations in malware

atasets. For example, CMA feature has less correlations with a

hird feature, such as the correlations among CMA, Behavioral In-

tability, and Metamorphic properties as shown in Figs. 11 and 12 .

hese results are consistent with two feature analysis of malware. 

Correlations among features show that advanced malware is

reated with a care. This means that API calls and properties are

ntentionally dependent to each other. Additionally, features and

PI calls have different level of dependencies. Therefore, corre-
ations among the features should be extracted in more details.

hese correlations present the structure and the behavior of ad-

anced malware, which may be used with machine learning algo-

ithms to predict the type of malware. 
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Fig. 7. Correlations among Stealthy, CMA, and Behavioral Instability features in the 

dataset. 

Fig. 8. Correlations among stealthy, CMA, and metamorphic features in the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Correlations among stealthy, Stuxnet closeness, and behavioral instability 

features in the dataset. 

Fig. 10. Correlations among stealthy, Stuxnet closeness, and metamorphic features 

in the dataset. 
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4.5. Advanced malware prediction 

We go into details to analyze the correlations among the five

features. Since our goal in this paper is to predict Stuxnet like ad-

vanced malware and our dataset has the highest score for the cor-

relation between stealthy and Stuxnet closeness features, here we

used Random Forest Regressor models to predict the correlation of

the two features of malware using other four properties. Specifi-

cally, we predict advanced malware if it has high similarity score

to the correlations between stealthy and Stuxnet closeness by us-

ing other four features. 

A potential method to distinguish conventional malware and

advanced malware by using the score defined in this paper is to

use a threshold. Let assume that the threshold is 0.8. If the score

is above 0.8, then malware will be considered as advanced. Other-

wise, it will be considered as conventional malware. Note that the
xact value of the threshold for prediction of advanced malware

epends on dataset and it is beyond the scope of this paper. 

We found some promising predictions only for stealthy and

tuxnet closeness scores using other four properties. Moreover,

nalysis results show that Linear and Polynomial Regressions are

nefficient this case. Therefore, we proceeded with Random Forest

egressions. 

We used Random Forest Regression, where the number of trees

s 3. The experimental result has R 2 = 0 . 8203 score for Stuxnet

loseness property to predict advanced malware. This score is

igher than scores of other four models, where we only use two

r three features to predict advanced malware. Specifically, experi-

ental analysis with four features provide better scores to predict

dvanced malware. This means that the number of features used

ith Random Forest Regression is a significant issue to have more

recise predications. Fig. 13 shows the prediction of Stuxnet Close-
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Fig. 11. Correlations among CMA, Stuxnet closeness, and behavioral instability fea- 

tures in the dataset. 

Fig. 12. Correlations among CMA, Behavioral instability, and metamorphic features 

in the dataset. 

Fig. 13. Prediction of Stuxnet closeness scores using random forest regressor with four properties as features. 
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ness using Random Forest Regression with the four features. In the

figure, PC means a principle component. For the sake of brevity,

we reduced the 4-dimensional data to 2-dimensional. Then, we vi-

sualized the predictions in 3-dimensional. In this analysis, our goal

is to predict Stuxnet closeness score by using other four features. If

the score is greater than the threshold, which is used to distinguish

conventional malware and Stuxnet like advanced malware, then

malware is advanced. If we consider experimental results given in

Fig. 13 , the value of 0.3 for the threshold will be meaningful to pre-

dict advanced malware, where there are three real malware with

two acceptable predictions. 

Analyses results of analysis have two important consequences.

Some machine learning models provide better prediction results

for features while the complexity of predictions increases, such

as Random Forest Regression model then linear regression and

polynomial regression models. Second significant result observed

is that properties of malware have dependencies to each other

with different scores. Thus, specific machine learning algorithms

should be used with particular features to predict advanced mal-

ware. Another significant issue is to determine acceptable thresh-

old to identify advanced malware, which is beyond the scope of

this paper. 

5. Conclusion and future work 

The volume and complexity of cyber-attacks that are carried out

with malware become prevalent on almost all computing systems.

Existing intrusion detection and anti-malware systems are unable

to detect all attacks and malware on networks. Specifically, attacks

with advanced malware are still undetectable with existing mech-

anisms. This brings a huge amount of additional cost to computing

systems. There is an urgent need for mechanisms to predict ad-

vanced malware that will be used to detect the attacks. 

This paper contains a brief explanation of conventional mal-

ware types to make clear their tasks. We analyzed Stuxnet like ad-

vanced malware instances in the wild since it has distinguishing

properties than conventional malware. We found that some fea-

tures of advanced malware are more correlated with some others,

which may be used to identify such malware and corresponding

attacks. Additionally, the paper contains an overview about ma-

chine learning based malware predictions and detections. We pro-

pose a multi-dimensional machine learning approach to predict

Stuxnet like advanced malware by using five features. This paper

contains three main contributions. 

• After careful analyses of Stuxnet like advanced malware in the

wild, we define five features for prediction purposes. These

consist of API calls and features are defined only for Windows

platforms. 

• We present a machine learning approach to predict advanced

malware. The proposed approach uses correlations among five

features to predict such malware. 

• The proposed approach is able to predict Stuxnet like advanced

malware by using four regression algorithms with different

number of features on a malware dataset. To date this is the

first approach to predict Stuxnet like advanced malware by a

dataset that consists of only malware samples. 

Through our experimental results we have shown that features

depend on each other with different correlation scores. The highest

correlation is between stealthy and Stuxnet closeness features with

a value 0.829. Stuxnet closeness and metamorphic engine score is

0.558. These results show that stealthy feature is highly related to

metamorphic feature. On the other hand, some features have less

correlations with others, such as CMA feature. For example, the

correlation among CMA, behavioral instability, and metamorphic

engine features has a minimum score. We observed that linear and
olynomial regression algorithms are inefficient with four features

hile random forest regressions provide better scores with more

eatures. 

Since there are limited information about advanced malware

nstances in the wild, we have been working to tune our ma-

hine learning approach based on newly found advanced malware

nstances. For example, we arbitrarily selected the value of the

hreshold for predicting advanced malware. We are working to find

 meaningful threshold with newly found malware samples. 
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