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a b s t r a c t 

Heterogeneous Cloud Radio Access Network (H-CRAN) is a promising network architecture for the fu- 

ture 5G mobile communication system to address the increasing demand for mobile data traffic. In this 

work, we consider the design of efficient joint beamforming and user clustering (user-to-Remote Radio 

Head (RRH) association) in the downlink of a H-CRAN where users have different mobility profiles. Given 

the rapidly time-varying nature of such wireless environment, it becomes very challenging to enable op- 

timized beamforming and user clustering without incurring large Channel State Information (CSI) and 

signaling overheads. The main objective of this work is to investigate and evaluate the trade-off between 

system throughput and the incurred costs in terms of complexity and signaling overhead, including the 

impact of different CSI feedback strategies given different user mobility profiles. We propose the Adap- 

tive Beamforming and User Clustering (ABUC) algorithm which adapts its feedback parameters, namely 

the period of dynamic user clustering and the type of CSI feedback, in function of user mobility. Further- 

more, we design a reinforcement-learning framework which enables the proposed ABUC algorithm to 

optimize its scheduling parameters on-the-fly, given each user mobility profile. Based on computer simu- 

lations, an analysis of the effect of mobility on system performance metrics is presented and conclusions 

are drawn regarding the algorithm’s adequate parameter tuning for different mobility scenarios. 1 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Next generation of mobile and wireless communications system

(5G) will revolutionize the way people communicate and extend

the boundaries of the wireless industry. 5G will move beyond net-

works that are purpose-built for mobile broadband alone, toward

systems that connect far more different types of devices at differ-

ent speeds. The Internet of Things (IoT) is one of the primary con-

tributors to global mobile traffic growth and this progression will

lead to a huge mobile and wireless traffic volume predicted to in-

crease a thousand-fold over the next decade [2] . Besides sustain-

ing the tremendous growth of the traffic load, 5G system will be

designed to fulfill diverse application requirements: far more strin-

gent latency and reliability levels are expected to be necessary to
∗ Corresponding author. 

E-mail addresses: duc-thang.ha@u-psud.fr , duc_thang.ha@lri.fr (D.T. Ha), 

lila.boukhatem@lri.fr (L. Boukhatem), megkaneko@nii.ac.jp (M. Kaneko), 

nhan.nguyen@lri.fr (N. Nguyen-Thanh), steven.martin@lri.fr (S. Martin). 
1 This is an extended version of the conference paper presented at IEEE PIMRC 

2017 [1]. 
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upport applications related to healthcare, security, logistics, auto-

otive applications, or mission-critical control; Network scalability

nd flexibility are required to support a large number of devices

ith very low complexity and to enable long battery lifetimes [3] . 

5G system is envisioned to meet such challenges thanks to

he combination of several breakthroughs and technological ad-

ances such as ultra-dense small-cell deployments, intelligent

ulti-antenna, full duplex radios, millimeter wave transmissions,

nd cloud computing abilities. Particularly, the Cloud Radio Access

etwork (CRAN) is a network architecture based on cloud comput-

ng and centralized processing. It has been shown to provide high

pectral and energy efficiencies while reducing both capital and

perating expenditures [4] . At the same time, Heterogeneous Net-

orks (HetNets) have emerged as another core feature for 5G net-

ork to enhance the capacity/coverage while saving energy con-

umption. HetNets are constituted by conventional macro cells and

verlaying small cells. With small cells deployment, wireless links

o end-users become shorter, thereby improving the link quality in

erms of spectrum efficiency as well as energy efficiency. There-

ore, combining both cloud computing and HetNet advantages re-

ults in the so-called Heterogeneous-Cloud Radio Access Networks
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Fig. 1. H-CRAN system model. 
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H-CRAN) depicted in Fig. 1 and which is regarded as one of the

ossible network architectures to meet 5G system requirements

5] . 

The technical challenges of 5G H-CRAN have been pointed out

n a number of works, in particular regarding resource alloca-

ion, interference management and fronthaul constraint alleviation

6–8] . Particularly, the heterogeneous feature of access points in

-CRAN generalizes the problem of beamforming and user-to-RRH

ssociation compared to its CRAN counterpart. Many studies solved

he scheduling problem by jointly optimizing the beamforming and

ser clustering in order to maximize network performance such as

um-rate, spectral efficiency and energy efficiency, etc. [9–11,11,12] .

owever, these solutions generate a large amount of control sig-

aling and Channel State Information (CSI) overhead. Furthermore,

ost of these works did not consider the influence of user mobil-

ty and resulting time-varying wireless environment over the long-

erm scheduling performance. 

To alleviate the problem of control signaling and CSI over-

ead costs, we have proposed in [1] a hybrid user clustering and

eamforming algorithm aiming at weighted sum-rate maximiza-

ion. This hybrid scheme is able to leverage the advantages of both

ynamic and static user clusterings in CRAN, where the dynamic

lustering performs optimally at the expense of maximum signal-

ng overhead, while static clustering performs worse but drastically

educes the amount of overhead. The proposed hybrid algorithm

as shown to achieve a good performance compared to dynamic

lustering, while greatly reducing the required computational com-

lexity, amount of CSI feedback and re-association signaling over-

ead over the long-term allocation process. However, in [1] we did

ot consider any user mobility issues. 

In [13] , we have considered the impact of more realistic channel

ariations due to different user velocities, but for a different opti-

ization problem. Namely, we proposed a heuristic algorithm for

inimizing a cost function in terms of computational complexity

nd CSI overhead for a given targeted sum-rate (minimum Quality-

f-Service (QoS) requirement). However, the proposed algorithm

equired an initial empirical analysis for its feedback parameters’

election, and all users were assumed to have a homogeneous mo-

ility profile. 
Therefore in this paper, we investigate cost-efficient joint beam-

orming and user clustering methods for weighted sum-rate maxi-

ization in the downlink of a H-CRAN serving mobile users. More

pecifically, we investigate and evaluate the trade-off between net-

ork sum-rate and incurred costs in terms of complexity and sig-

aling overhead, including the impact of different Channel State In-

ormation (CSI) feedback strategies. We propose an Adaptive Beam-

orming and User Clustering (ABUC) algorithm which extends the

lgorithm in [1] to cope with different types of user mobilities. The

roposed algorithm is shown to be able to balance between the

ptimality of the beamforming and association solutions while be-

ng aware of practical system constraints, namely complexity and

ignaling overhead as well as the mobility behavior of users. More-

ver, we identify the best feedback parameters such as type of CSI

eedback and clustering period T, depending on the class of user

obility. Furthermore, we propose a reinforcement learning frame-

ork based on the Q-learning method for optimizing these feed-

ack parameters on-the-fly, according to each user mobility pro-

le. Indeed, reinforcement learning is especially suited for dealing

ith such intricate long-term resource allocation optimization, un-

er dynamically varying wireless environments. Simulation results

how the effectiveness of our proposed algorithm and approach, as

t enables to select the best feedback parameters tailored to each

ser mobility profile, even in the difficult case where each user has

 different mobility profile. 

The rest of this paper is structured as follows: Section II

resents the state of the art of CRAN, H-CRAN and most relevant

orks related to the beamforming and user scheduling issue. Sec-

ion III describes the system model and Section IV gives the prob-

em formulation and reference schemes. Next, we describe in Sec-

ion V our proposed ABUC scheme and conduct its cost analysis

n section VI. Section VII presents the Q-learning based clustering

nd beamforming framework. The simulation results are shown in

ection VIII. Finally, Section IX concludes the paper. 

. State of the art 

To achieve the expected high performance, 5G system will rely

n several advanced technologies such as heterogeneous small
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cell deployment, millimeter wave communications, massive Mul-

tiple Input Multiple Output (MIMO), Network Function Virtualiza-

tion (NFV), Software-Defined Networking (SDN), Device-to-Device

(D2D) communications, and cloud computing concept [14] . 

The concept of CRAN was first proposed in [15] and described

in details in [16] . In a CRAN system, all Baseband Units (BBUs)

are shifted into the cloud to constitute a centralized processing

pool. The radio frequency signals from geographically distributed

users are collected by Remote Radio Heads (RRHs) and transmit-

ted to the cloud platform through fronthaul links. This means that

the system is able to adapt to non-uniform traffic and utilizes the

resources more efficiently. Due to that fact that fewer BBUs are

needed in CRAN compared to the traditional architecture, CRAN

has also the potential to decrease the cost of network operation by

reducing power and energy consumption. New BBUs can be added

and upgraded easily, thereby improving scalability and easing net-

work maintenance [17] . 

Different from CRANs, H-CRANs are proposed as a cost-efficient

solution by incorporating the cloud computing into HetNets. The

motivation behind H-CRANs is to enhance the capabilities of High

Power Nodes (HPN, e.g., macro or micro base stations) with mas-

sive multiple antenna techniques and simplify the Low Power

Nodes (LPN, e.g., small cells such as pico or femto cells) while con-

necting them to a “baseband signal processing cloud” with high

speed optical fibers or RF (Radio Frequency) links [18] . As such,

the baseband data processing as well as the radio resource control

for LPNs are moved to the cloud server so as to take advantage of

the cloud computing capabilities [6] . Similarly with the traditional

CRAN, H-CRANs include a large number of RRHs with low energy

consumption and which are coordinated with each other through

the centralized BBU pool to achieve high cooperative gains. 

Many scientific challenges ahead for H-CRANs may be listed

as resource allocation optimization, interference management and

fronthaul constraint alleviation. In [7] , resource allocation solu-

tions for H-CRAN are investigated, and different schemes are

proposed, namely, coordinated scheduling and multicloud associ-

ation. In the coordinated scheduling, the main issue is to max-

imize the network-wide utility subject to user connectivity con-

straints. The search space is exponentially large and makes such

exhaustive search clearly infeasible. Then, the authors proposed a

graph-theoretical-based approach to solve the problem. In addi-

tion, multicloud H-CRAN is proposed to overcome the main lim-

itations of single cloud RAN such as the distance separating BSs

in the network and also the computation burden when connect-

ing multiple BSs to the same cloud. In [8] , the authors provided

a framework for downlink resource allocation for D2D communi-

cations underlaying H-CRAN to maximize the system performance

while guaranteeing the QoS requirements. The resource allocation

problem is formulated into a many-to-one matching game and is

solved by constrained Deterministic Annealing (DA) algorithm to

achieve low computational complexity. Another critical challenge

in H-CRAN that may prevent the RRHs from fully utilizing available

radio resources is the insufficient backhaul capacity. Therefore, effi-

cient planning of the H-CRAN is important for its RRH deployment.

Load balancing has been noticed as an efficient way to optimize

factors such as resource utilization, fairness, waiting/processing de-

lays, or throughput [19] . In [20] , the authors proposed a novel

method that allocates almost equal traffic load to each access point

to minimize the number of activated RRHs and reduce the burden

of backhauls in the C-RAN. The RRHs deployment strategy is able

to minimize the system-wide power consumption while providing

QoS-guaranteed performance with relative low capital expenditure

(CAPEX) and operating expenditure (OPEX). 

In H-CRANs architecture, users can benefit from the coverage

diversity provided by several heterogeneous nodes leading to a

user-centric architecture [7] . Determining the optimal user-to-RRH
ssociation that offers the best performance becomes a combinato-

ial optimization problem of high complexity. Exhaustive search is

nfeasible for any reasonably sized network, even with very pow-

rful processors at the cloud. Consequently, this problem has been

ddressed in many research works [21–23] . The problem is equiva-

ent to the joint beamforming and user-to-RRH clustering problem

hich by solving the sparse beamforming issue indirectly decides

hich users should be served by which RRHs. 

In [24] , the authors studied the user clustering problem and

valuated the appropriate number of associated RRHs per user to

alance throughput gain and implementation cost. In [9] , the ad-

antages of small cells clustering are evaluated in a dense het-

rogeneous network for downlink MIMO. It is shown that by giv-

ng reasonable cluster sizes, each cluster can form a virtual MIMO

etwork wherein users are separated via spatial multiplexing us-

ng jointly designed downlink beamforming vectors. In [10,11] , a

eighted Minimum Mean Square Error (WMMSE) method is used

or solving joint beamforming and user clustering problems for

um-rate maximization. In [10] , the authors implemented a greedy

RH clustering algorithm and compared it to two transmit precod-

ng schemes, Zero-Forcing Beamforming (ZFBF) and WMMSE-based

oordinated beamforming. They showed that WMMSE outperforms

ther reference beamforming approaches. In [11] , the Weighted

um-Rate (WSR) maximization problem is solved using similar

MMSE approach under dynamic and static user clusterings. It is

hown that dynamic clustering significantly improves the system

erformance over other naive clustering schemes, while static clus-

ering also achieves substantial performance gain. Due to the lack

f convergence guarantee for the algorithm in [11] , the same au-

hors propose a new algorithm in [25] which is proved to converge

o a local optimum. Different to previous works, whose aim is to

olve the weighted sum rate maximization problem with back-

aul constraints in CRANs, the paper [12] applies the generalized

MMSE approach to solve the average weighted energy efficiency

EE) utility objective function with each RRH’s transmit power, in-

ividual fronthaul capacity, and inter-tier interference constraints.

he majority of these previous works did not fully consider the re-

uired computational complexity and the incurred signaling costs

ver a long-term scheduling process. In particular, such beamform-

ng techniques rely on accurate CSI feedback for all user-to-RRH

inks, which may create excessive burden on fronthaul links. More-

ver, most of these works did not consider the cost in terms of

omputational complexity at the BBU side and user-to-RRH re-

ssociation cost during successive scheduling frames. To the best of

ur knowledge, there are very limited works considering the time-

imension and the induced complexity and signaling costs in their

ser clustering and beamforming design problems. 

Unlike the above-mentioned works that presented algorithms

ptimizing a certain objective, such as power consumption and

um-rate, for the current time frame, some recent works began

o consider the scheduling process in the long-term. Moreover, the

cheduling in mobility environment is a substantial problem due to

ts strong stochastic characteristic and the non-deterministic vari-

bles. Therefore, machine learning is known as an effective solu-

ion for resource allocation in time-variant dynamic systems, such

s wireless networks and cloud computing systems [26] . 

Reinforcement learning is an important branch of machine

earning, in which an agent makes interactions with an environ-

ent trying to control the environment to its optimal states that

eceive the maximal rewards. Usually in reinforcement learning,

he problem to resolve can be described as a Markov Decision Pro-

ess (MDP) without mandatory requirement of state space, explicit

ransition probability and reward function [27] . Therefore, rein-

orcement learning is expected to handle tough situations that ap-

roach real-world complexity [28] . In [29] , a reinforcement learn-

ng technique is applied to dynamic resource allocation in CRAN.
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Fig. 2. System model. 
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he authors present a Deep Reinforcement Learning (DRL) frame-

ork which is able to reach the objective of minimizing power

onsumption and meeting demands of wireless users over a long

perational period. The model defines the state space, action space,

nd reward function for the DRL agent. The proposed frame-

ork not only achieves significant power savings while satisfy-

ng user demands but also well handles highly dynamic cases.

he authors of AlQerm and Shihada [30] propose a centralized re-

ource allocation scheme using online Q-learning, which guaran-

ees interference mitigation and maximizes energy efficiency while

aintaining QoS requirements for all users in 5G H-CRAN. Their

imulation results confirm that the proposed Q-learning solution

an mitigate interference, increase energy and spectral efficien-

ies significantly, and maintain users’ QoS requirements. In [26] ,

he authors consider the problem of cache-enabled opportunistic

nterference alignment (IA) in wireless networks. The finite-state

arkov channel is used instead of block-fading channel or invari-

nt channel which are not realistic in high mobility environments.

o reduce the system complexity of finite-state Markov channel,

he authors formulated the system as a DRL problem. Simulation

esults show that DRL is an effective approach to solve the opti-

ization problem in cache-enabled opportunistic IA wireless net-

orks. In [31] , a DRL based algorithm is proposed for the joint

ode selection and resource management problem in Fog Radio

ccess Network (Fog-RAN). Each user can operate either in C-

AN mode or in device-to-device mode, and the resource managed

ncludes both radio and computation resources. The DRL agent

akes smart decisions on user communication modes and proces-

ors’ on-off states to minimize long-term system power consump-

ion while considering the varying states of edge caches. 

. System model 

We consider a H-CRAN model which consists of a BBU Pool, L

acro and pico RRHs and K users (see Fig. 1 ). Each RRH and user

re equipped with M and N antennas, respectively, and users are

andomly located in the network area. 

Let L = { 1 , 2 , . . . , L } and K = { 1 , 2 , . . . , K} be the sets of RRHs

nd of users, respectively. The propagation channel from all RRHs

o the k th user is represented by matrix H k ∈ C 

N×ML , ∀ k ∈ K which

ncludes the impacts of path loss and Rayleigh fading. We denote

y h nq , the ( n, q )th element of matrix H k , where q = (l − 1) M +
, where l ∈ [1, L ] and m ∈ [1, M ]. Hence, h nq is the channel gain

etween the m th antenna of the l th RRH and the n th antenna of

ser k . Given the user mobility profile, channel correlations will be

ssumed between the consecutive scheduling frames, as detailed

ater in Section 5 . 

Let w k ∈ C 

ML ×1 be the transmit beamforming vector from all

RHs to the k th user, 

 k = 

[
w 

H 
1 k , · · · , w 

H 
lk , · · · , w 

H 
Lk 

]H 
, 

here w lk ∈ C 

M×1 . 

Let s k ∈ C be the encoded information symbol for user k with

 

[| s k | 2 ] = 1 . 

The received signal at user k , y k ∈ C 

N×1 , is expressed as 

 k = H k w k s k + H k 

K ∑ 

j =1 , j � = k 
w j s j + n k , 

here n k ∼ CN (0 , σ 2 
k 

I N ) is the additive white Gaussian noise and

 N is the identity matrix of size N × N . 

The Signal-to-Interference-plus-Noise Ratio (SINR) at user k can

e expressed as 
INR k = 

| u 

H 
k 

H k w k | 2 ∑ K 
j =1 , j � = k | u 

H 
k 

H j w j | 2 + σ 2 
k 
‖ u k ‖ 

2 
2 

, (1) 

here u k ∈ C 

N×1 is the receive beamforming vector of user k . 

Then, the achievable rate of user k under MMSE criterion can

e expressed as [25] 

 k = log 2 

⎛ 

⎝ 1 + w 

H 
k H 

H 
k 

( 

K ∑ 

j =1 , j � = k 
H k w j w 

H 
j H 

H 
k + σ 2 

k I N 

) −1 

H k w k 

⎞ 

⎠ . (2) 

Fig. 2 illustrates an example of a user k clustering configura-

ion with user-to-RRH associations determined by the derived w lk 

eamforming vector variables. 

. Problem formulation and reference schemes 

We focus on the following WSR maximization problem [25] , i.e.,

aximize the WSR of all users in the network under the fronthaul

ink capacity contraints and per-RRH power constraints. This prob-

em is formulated as, 

max 
{ w lk ,l∈ L ,k ∈ K } 

K ∑ 

k =1 

αk r k (1 a ) 

s.t. P l = 

K ∑ 

k =1 

‖ w lk ‖ 

2 
2 ≤ P max 

l (1 b) (P1) 

K ∑ 

k =1 

1 {‖ w lk ‖ 

2 
2 } r k ≤ C max 

l (1 c) 

here αk is the scheduling priority weight associated with user k .

n (P1) , the first constraint (1 b ) corresponds to the transmit power

onstraint of RRH l , i.e., P l should be smaller than the maximum

ransmit power P max 
l 

. The second constraint (1 c ) expresses that the

um-rate of users connected to RRH l should be smaller than its

ronthaul link capacity C max 
l 

. Problem (P1) is a non-convex Mixed-

nteger Non-Linear Programming (MINLP) proven to be NP-hard

25] , and hence cannot be solved in polynomial time. 

It was shown in [10,11] that this WSR optimization problem is

quivalent to a WMMSE problem with variables w k , u k and ρk de-

ned below while being convex with respect to each of the vari-

bles. This enables to resolve the WMMSE problem through the

lock coordinate descent method by iteratively optimizing over
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each variable [32] while keeping the others fixed. For finding the

optimal beamformer w k under fixed u k and ρk , the following

Quadratically Constrained Quadratic Programming (QCQP) problem

is considered, 

min 

{ w lk ,l∈ L ,k ∈ K } 
∑ 

k w 

H 
k 

(∑ 

j α j ρ j H 

H 
j 
u j u 

H 
j 
H j 

)
w k 

−2 

∑ 

k 

αk ρk Re { u 

H 
k H k w k } (2 a ) 

s.t. 

K ∑ 

k =1 

‖ w lk ‖ 

2 
2 ≤ P max 

l (2 b) (P2)

K ∑ 

k =1 

βlk ̂  r k ‖ w lk ‖ 

2 
2 ≤ C max 

l (2 c) 

In QCQP problem (P2) , ˆ r k is the achievable rate from the previ-

ous iteration and β lk is a constant weight associated to RRH l and

user k and is updated iteratively according to 

βlk = 

1 

‖ w lk ‖ 

2 
2 

+ τ
, ∀ k, l, (3)

where τ is a small constant regularization factor. e k is the corre-

sponding Mean Square Error (MSE), 

e k = u 

H 
k 

( 

K ∑ 

j =1 , j � = k 
H k w j w 

H 
j H 

H 
k + σ 2 

k I N 

) 

u k − 2 Re 
{

u 

H 
k H k w k 

}
+ 1 , (4)

and ρk is the MSE weight for user k , 

ρk = e −1 
k 

. (5)

u k is the optimal receive beamforming vector under fixed w k and

ρk , 

u k = 

( 

K ∑ 

j =1 , j � = k 
H k w j w 

H 
j H 

H 
k + σ 2 

k I N 

) −1 

H k w k . (6)

Finally, the derived problem (P2) can be resolved using the

Algorithm 1 given below [32] . 

Algorithm 1: Dynamic Algorithm. 

initialize frame βlk , ̂  r k , w k , ∀ l, k 

repeat 
1) Fix w k and compute the MMSE receiver u k and the 

corresponding MSE e k according to (8) and (6) 

2) Update MSE weight ρk according to (7) 

3) Find the optimal transmit beamformer w k under fixed 

u k and ρk , by solving problem (P2) 

4) Compute the achievable rate r k 
5) Update ˆ r k = r k and βkl according to (5) 

until convergence 

To achieve the optimal performance, Algorithm 1 solves the

beamforming problem by considering all possible user to RRH

links, i.e., w k is of size LM in each scheduling frame, for each

user k . The beamforming solution implicitly resolves the clustering

problem since the user to RRH associations are updated according

to the solution w k , i.e., the assignment of each link is identified by

a non-zero element of the beamforming vector. This case, where

w k is of size LM , is referred as the dynamic clustering algorithm.

However, this global optimization requires intractable computa-

tional complexity and tremendous amounts of signaling and CSI

overheads. Therefore, an alternative approach is to limit the com-

putational burden by reducing the considered user to RRH links,
.e., w k would be of size L k where L k ≤ L for each user k , at the ex-

ense of reduced sum-rate performance. This approach is referred

s the static clustering algorithm. 

Different to dynamic algorithm, in static scheduling, we con-

ider only a fixed subset of RRHs in each cluster, i.e. l ∈ L k , where

 k is the fixed cluster of RRHs serving user k . Likewise, we define

 l as the subset of users associated with RRH l . The WSR maxi-

ization problem (P1) can now be re-formulated as 

max 
 w lk ,l∈ L k ,k ∈ K } 

∑ K 
k =1 αk r k (3 a ) 

s.t. P l = 

∑ 

k ∈ K l 
‖ w lk ‖ 

2 
2 ≤ P max 

l (3 b) (P3)

∑ 

k ∈ K l 
r k ≤ C max 

l (3 c) 

We can see that problem (P3) is much simplified as compared

o problem (P1) , as the constraints (3b) and (3c) consider only a

xed subset of users K l , while the variable w lk covers only the

eamforming vectors from a subset of RRHs to each user since

 lk = 0 for l �∈ L k . Therefore, problem (P3) can be solved by ap-

lying a method similar to that of dynamic algorithm but under

xed L k instead of L . 

The WSR problem under static clustering can be resolved by

lgorithm 2 given below [32] . The variables w 

L k 

k 
and H 

L k 

k 
denote

he beamforming vector and the channel matrix to user k from the

RHs of its fixed cluster L k , respectively. They have the same sizes

s w k and H k , respectively, but only their elements corresponding

o RRHs within their cluster L k are non-zeros. 

Algorithm 2: Static Algorithm. 

initialize frame L k , βk , ̂  r k , w k , ∀ k 

repeat 

1) Compute (6), (7), (8) by replacing w k and H k by w 

L k 

k 

and H 

L k 

k 
, respectively 

2) Fix L k during the whole process 

3) Call Dynamic Algorithm to solve (P3) under fixed L k 

until convergence 

. Proposed adaptive beamforming and user clustering (ABUC) 

lgorithm 

ABUC is based on the hybrid clustering concept that we intro-

uced in [1] and in which we proposed to alternate dynamic and

tatic clustering approaches in a periodic way. We define a period

 and apply the dynamic algorithm at each T scheduled frames as

llustrated in Fig. 3 , while in the intermediate frames, a static al-

orithm is executed using the cluster subsets obtained from the

revious dynamic frame. By doing so, we can narrow down the

erformance gap with the optimal dynamic solution, while reduc-

ng the required computational complexity, CSI feedback and re-

ssociation signaling overhead over the long-term allocation pro-

ess. It is worth noting here that in the static intermediate frames

he optimal beamforming vectors are updated upon receiving new

SI feedback information. 

Our approach has the benefit to consider the temporal dimen-

ion of the allocation process, while being aware of the practi-

al feasibility of the solution in terms of complexity and signal-

ng costs. The motivation behind this approach lies in the fact

hat performing the optimal dynamic algorithm in each frame is

ot only computationally expensive but also unnecessary when-

ver the channel, user and network states stay more or less stable

ver few successive frames. 
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Fig. 3. ABUC clustering scheme with T = 3 . 
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The goal of ABUC algorithm is to enable a high weighted sum-

ate performance, while reducing the induced costs in terms of CSI

eedback and signaling overhead, given channel time-variations.

ompared to Thang et al. [1] , in this paper we extend our algo-

ithm to cope with different types of user mobility profiles. In con-

equence, the CSI estimation method is also improved such that it

s tailored to time-varying channels reflecting user mobility. 

User mobility causing inevitably CSI imperfectness at the cloud,

e make use of a CSI estimation model which is aware of user

obility. The proposed approach is based on [33] for modeling the

stimated CSI matrix ˆ H k ∈ C 

N×ML , ∀ k ∈ K . We denote by ˆ h nq , the

 n, q )th element of matrix ˆ H k , where q = (l − 1) M + m . Hence, ˆ h nq 

s the estimated channel gain between the m th antenna of the l th

RH and the n th antenna of user k , which is estimated as 

ˆ 
 nq = λh nq + 

(√ 

1 − λ2 

)
v nq . (7)

In (7) , v nq ∼ CN (0 , F lk ) where F lk is the large-scale fading gain

f the downlink channel from RRH l to user k , and λ is the corre-

ation coefficient between 

ˆ h nq and h nq which is expressed as 

= J 0 
(
2 π f d,lk T dl 

)
(8) 

here J 0 (.) is the (zero)th order Bessel function, T dl is the fronthaul

elay of the RRH l and f d,lk is the maximum Doppler frequency of

he channel between the RRH l and user k . If the user moves at

peed v (m/s), then the maximum Doppler frequency is calculated

s f d = 

v f 
c , where f is the carrier frequency in Hertz and c is the

peed of light. Therefore, we can express λ as function of v , 

v = J 0 

(
2 π f T dl 

c 
v 
)

. (9) 

In ABUC, we consider different CSI feedback strategies during

he scheduling process, namely: Full CSI, Partial CSI and Estimated

SI which are defined as follows: 

• Full CSI: CSIs are assumed to be perfect at each frame and

can be fully used in all scheduling frames. 

• Partial CSI: CSIs are only known and perfect at dynamic

frames (each period T ), while at intermediate frames the

channel gains are set equal to the last Full CSI received in

the previous dynamic frame. 

• Estimated CSI: CSIs are only known and perfect at dynamic

frames (each period T ) and at each intermediate frame CSIs

are estimated according to the model given by Eq. (7) . 

Note that unlike Partial and Estimated CSI approaches, the Full

SI assumption is impractical in real systems due to the fronthaul

elays and the signaling burden, which justifies our assumption of

mperfect CSI knowledge at the BBU pool. 

Combining these CSI feedback strategies and the periodicity T

esults into the following variants of the proposed ABUC algorithm:
• (T, Full CSI) : Full CSI fedback every frame for beamforming;

dynamic clustering optimisation every T frames, 

• (T, Partial CSI) : CSI fedback every T frames, reused in all in-

termediate frames for beamforming; dynamic clustering op-

timisation every T frames, 

• (T, Estimated CSI) : CSI fedback every T frames, estimated for

all intermediate frames for beamforming; dynamic cluster-

ing optimisation every T frames. 

The detailed description of the proposed ABUC algorithm is

iven in Algorithm 3 . 

Algorithm 3: Proposed ABUC Scheme with different types of 

CSI. 

initialize frame t = 0, user velocity v 
repeat 

if t mod T = 0 then 

Get perfect CSI H k (t) for all users k 

Call Dynamic Algorithm 

else 

if Full CSI then 

Get perfect CSI H k (t) for all users k 

else if Partial CSI then 

Use imperfect CSI ˆ H k (t) = H k (t − mod (t, T )) , for 

all users k 

else 

Estimate CSI ˆ H k (t) following (12) for all users k 

Call Static Algorithm 

Set clustering solution as the initial clusters for frame t+1 

Move to next frame 

until convergence 

. Cost analysis of the proposed ABUC algorithm 

In this section, we elaborate a cost analysis of ABUC algorithm

n terms of the previously mentioned cost parameters. 

.1. Signaling costs 

.1.1. CSI overhead 

As aforementioned, we consider three cases for CSI feedback for

he proposed ABUC algorithm. In the Full CSI case, the CSI is fed

ack by every user to each of their serving RRH for every frame.

n the Partial CSI case, CSIs are returned only for dynamic frames,

.e., every T frames, and used for all successive intermediate static

rames. In Estimated CSI case, CSIs are estimated from the Full CSIs

y a correlation coefficient presented in Eq. (7) . Based on these



136 D.T. Ha, L. Boukhatem and M. Kaneko et al. / Computer Networks 160 (2019) 130–143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

i  

a  

f  

u  

p  

e  

T

 

t  

d  

r  

r  

m  

t  

s  

t  

p  

c

 

a  

p  

c  

t  

f

Q

 

w  

a  

α  

r

 

t

 

m  

r  

c  

q  

a  

q  

a

s

 

c  

t  

t

T

F

w  

f

a

w  

a

 

o  

c  

s

considerations, we can easily derive the amount of CSI overhead

for each period T in each of the following cases to be considered

in the numerical evaluations: 

• dynamic algorithm with Full CSI: 

O 

f 

dyn 
= KLMNT , (10)

• ABUC algorithm with Full CSI: 

O 

f 
ABUC 

= 

∑ 

k 

(L + (T − 1) L k ) MN, (11)

• ABUC algorithm with Partial CSI and Estimated CSI: 

O 

p,e 
ABUC 

= KLMN. (12)

6.1.2. User-to-RRH re-association overhead 

Signaling overhead is generally neglected in most of the re-

lated works, although it may be a serious issue in practical sys-

tems, especially for the dynamic clustering strategy as it contin-

uously updates the user-to-RRH associations for each scheduling

frame. In this work, we consider the total number of signaling

messages generated by the re-association process following the de-

rived beamforming and clustering solutions. More specifically, we

denote by S this signaling cost. Re-associations are counted for all

newly established user-to-RRH links, or for released links between

two successive frames. A simple calculation of the re-association

cost S averaged over all frames I is given as follows: 

S = 

1 

I 

∑ 

i 

∑ 

k 

S i k (13)

where S i 
k 

is the re-association cost of user k at frame i and which

can be formulated as 

S i k = 

(| {L i k ∪ L i −1 
k 

}| − | {L i k ∩ L i −1 
k 

}| ), (14)

where L i 
k 

is the number of RRHs serving user k at frame i . 

6.2. Computational complexity cost analysis 

As in [11] , we assume a typical network model where

K > L > M > N . In the proposed hybrid algorithm, the complexity re-

quired for dynamic frames is given as O ( K 

4 L 3 M 

3 ) [11] . For static

frames, the complexity of the algorithm is dominated by problem

(P2) . By solving the problem via interior point method, the com-

plexity of this problem will be similar to that of a linear program.

The complexity in practice is in order of n 2 m (assuming m ≥ n ),

in which n is the dimension of the solution and m is the dimen-

sion of the constraint. In our problem, the total number of vari-

ables w k and R k is ( 
∑ K 

k =1 L k M + K) , while the largest dimension of

constraints is given by (2c), i.e., K 

∑ K 
k =1 L k M. Thus, the complexity

of static frames may be expressed as 

O 

⎛ 

⎝ 

( 

K ∑ 

k =1 

L k M + K 

) 2 ( 

K 

K ∑ 

k =1 

L k M 

) 

⎞ 

⎠ , (15)

whose dominating term is given by 

O 

( 

K 

3 
K ∑ 

k =1 

L k M 

) 

. (16)

7. Optimizing ABUC’s feedback parameters using Q-learning 

In this section, we design a reinforcement learning frame-

work which enables the proposed ABUC algorithm to optimize its

scheduling parameters on-the-fly, given each user mobility profile.

Different to the initial ABUC presented above where the algorithm
arameters, i.e. period T and CSI feedback strategy, are fixed dur-

ng the whole scheduling process, this Q-learning framework en-

bles to activate dynamic and static clustering schemes under dif-

erent CSI feedback strategies adaptively depending on the individ-

al user mobility profile. To do that, we formulate the optimization

roblem as a Q-learning model in which an agent learns from the

nvironment to manage it-self the feedback parameters, i.e. period

 and CSI feeedback type. 

Q-learning is a reinforcement learning technique which goal is

o learn a policy that informs an agent what action to take un-

er what circumstances. It does not require a model of the envi-

onment and can handle problems with stochastic transitions and

ewards, without requiring adaptations. The learning agent maxi-

ize its total (future) reward by adding the maximum reward at-

ainable from future states to the reward for achieving its current

tate, effectively influencing the current action by the potential fu-

ure reward. This potential reward is a weighted sum of the ex-

ected values of the rewards of all future steps starting from the

urrent state. 

In each decision epoch, the agent decides to make an action

nd observes the results from this action. Each action-state pair

roduces a Q-value that will be updated in a table in which the

olumns and the rows represent the actions and the states, respec-

ively. The updated value of Q 

∗( s t , a t ) is computed by the Bellman

unction as presented in [34] : 

 

∗(s t , a t ) = Q(s t , a t ) + α[ Rwd t (s t , a t ) 

+ γ max 
s t+1 

Q 

t+1 (s t+1 , a t+1 ) − Q(s t , a t ) 
] 

(17)

here Q ( s t , a t ) denotes Q-value at state s t when executing action

 t in time slot t, Rwd t is the system reward at state s t and action a t .

and γ are learning rate and discount rate of the future expected

eward, respectively. 

In order to obtain the optimal policy, it is necessary to identify

he actions, states and reward functions in the Q-learning model. 

1) System State: The current system state s t is jointly deter-

ined by the states of all K users. Due to the relationship of the

eceived SINR and the channel coefficient, we model the channel

oefficient, | h lk | 
2 , as a Markov random variable. We partition and

uantize the range of | h lk | 
2 into N levels. Each level corresponds to

 state of the Markov channel. Each user k state is defined as the

uantized CSI level n t 
k 
, where 1 ≤ n t 

k 
≤ N, n t 

k 
∈ N . The system state

t time slot t is defined as, 

 t = 

{
n 

t 
1 , n 

t 
2 , . . . , n 

t 
k 

}
2) System Action : In the system, the central scheduler has to de-

ide which feedback parameters to be selected. Let T and F denote

he set of possible values of T and CSI feedback schemes, respec-

ively. 

 = { T 1 , . . . , T p , . . . , T P } 

 = { f 1 , . . . , f q , . . . , f Q } 
here P ∈ N and Q represents the set dimension of all possible CSI

eedback strategies. 

The current composite action a t is denoted by 

 t = 

{
a t 1 , a 

t 
2 , . . . , a 

t 
k 

}
here a t 

k 
= (T t 

k 
, f t 

k 
) represents the feedback parameters of user k

t time slot t , where period T t 
k 

∈ T and CSI feedback type f t 
k 

∈ F . 

3) Reward Function : The system reward needs to represent the

ptimization objective, that is to simultaneously reduce the system

ost and satisfy the sum-rate demands. Here, we define the overall

ystem reward at state s t and action a t as 
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Table 1 

Parameter settings for simulation. 

Simulation parameters 

Cellular layout Hexagonal 7-cell wrapped-around 

two-tier model 

Channel bandwidth 10 MHz 

Intercell distance 0.8 km 

TX power for macro/pico RRH (43, 30) dBm 

Antenna gain 15 dBi 

Background noise −169 dBm/Hz 

Path-loss from macro RRH to user 128.1 + 37.6 log10(d) 

Path-loss from pico RRH to user 140.7 + 36.7 log10(d) 

Log-normal shadowing 8 dB 

CSI error variance -20 dB 

User priority weights αk 1 ∀ k 
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wd t (s t , a t ) = ρ1 

K ∑ 

k =1 

r k (s t , a t ) − ρ2 

K ∑ 

k =1 

C k (s t , a t ) (18)

here the first term is the system achieved sum-rate at state s t 
nd action a t , and the second one denotes the CSI signaling over-

ead induced by the same state and action, ρ1 and ρ2 are weight-

ng parameters representing the trade-off between the sum-rate

nd the cost, and ρ1 + ρ2 = 1 . 

The CSI overhead cost C k ( T k , f k ) of each user k is computed over

 k frames and can be expressed as follows: 

- If Full CSI: C k (T k , f ) = 

1 
T k 

[ [
L + (T k − 1) L k 

]
MN 

] 
- If partial or Estimated CSI : C k (T k , p) = C k (T k , e ) = 

LMN 
T k 

The Q-learning based framework uses an ε-greedy strategy

35] in which the amount of exploration is globally controlled by

he parameter ε, that determines the randomness in action selec-

ions. In the ε-greedy method, the agent selects a random action

ith a fixed probability ε, 0 ≤ ε ≤ 1. At first, this rate must be ini-

iated to its highest value, i.e. ε = 1 , as we don’t have any knowl-

dge about the values in the Q-table. At each time step, a uniform

andom number ξ is drawn, where ξ ∈ [0, 1]. If ξ > ε, the action

hat gives the greatest value in the Q-table will be chosen, other-

ise we select greedily one of the learned actions set. We reduce

progressively as the agent becomes more confident at estimating

-values. The Q-learning framework is detailed in Algorithm 4 . 

Algorithm 4: Proposed ABUC’s Q-learning framework. 

initialize user mobility profile set U 

F max : number of learning episodes 

F 0 : number of frames for each learning episode 

ε: exploration rate, ε ← 1 

for episode i = 1: F max do 

if i = 1 then 

With probability ε, randomly select an action 

else 

Randomly generate a probability ξ
if ξ ≤ ε then 

randomly select an action 

else 
choose action a i = arg max Q(s i , a i ) 

end 

end 

for frame t=1:F 0 do 

Execute ABUC with a i 
k 

parameter 

Obtain beamforming and clustering solutions for each 

frame t 

Compute average sum-rate of episode i over all F 0 
frames 

end 

Compute the reward Rwd i using (23) and observe the new 

state s i +1 

Update entry (s i , a i ) of Q-table using (22) 

Update CSI quantization state { n i 
k 
} 

Reduce exploration rate ε by 0.1% 

end 

. Simulation results 

In this section, we numerically evaluate the performance of the

roposed ABUC algorithm. We consider a 7-cell wrapped around

wo-tier H-CRAN. Each cell has a single macro-RRH and 3 pico-

RHs equally separated in space. The number of mobile users is

aried between 5 and 30, uniformly distributed per macro-cell.
e assume a Random Waypoint model to represent users’ move-

ents. The fronthaul constraints for macro-RRH and pico-RRH are

83.1 Mbps and 106.5 Mbps, respectively [25] . All channels un-

ergo Rayleigh small scale fading and log-normal shadowing. The

ther parameter settings are presented in Table 1 . 

To evaluate the performance of the proposed ABUC algorithm

nd its behavior with regards to user mobility, we consider differ-

nt mobility profiles represented by the parameter λ which is a

unction of velocity. In (9) , we set the carrier frequency f and the

ronthaul delay T dl for all RRH l as 900 MHz and 2 ms [36] , respec-

ively. 

.1. ABUC Algorithm performance 

The performance of ABUC algorithm is compared to two base-

ine schemes, namely dynamic and static algorithms with Full CSI

s in [11,25] . Note that considering Full CSI for static and dynamic

lgorithms guarantees their best sum-rate performance. For ABUC

cheme, we varied both CSI feedback strategy and the period value

 . We focus on three representative types of mobility profiles: low,

edium and high with velocities 6 km/h, 36 km/h and 72 km/h, re-

pectively. 

In Fig. 4 , we show the average sum-rate convergence of refer-

nce dynamic and static algorithms for K = 10 users per macrocell,

nd the proposed ABUC algorithm with periods T = 2 and T = 3

or all CSI feedback strategies. It is worth noting that ABUC with

 = 1 is equivalent to the dynamic algorithm with Full CSI, and

etting T ≥ 4 induced excessive sum-rate degradation compared to

aseline algorithms. This justifies our choice of limiting the appro-

riate period values to T = 2 and T = 3 . As we can observe, the dy-

amic algorithm outperforms the static one, while ABUC algorithm

ith Full CSI is closer to the optimal sum-rate performance of the

ynamic algorithm. As expected, the larger the period, the lower

he performance of our proposed solution since it uses a more

utdated clustering solution (derived in the last dynamic frame).

n addition, ABUC scheme with Estimated CSI shows a very close

erformance to ABUC with Full CSI case under low mobility (see

ig. 4 (a)). However, its performance degrades with higher velocities

s the Estimated CSI quality looses accuracy as shown in Figs. 4 (b)

nd (c). Under high mobility, Fig. 4 (c) shows that the Estimated CSI

trategy degrades even below the Partial CSI scheme. This behavior

ill be further discussed in the next subsection. 

Fig. 5 evaluates the sum-rate performance as a function of

he number of users and their mobility profile. We can observe

he same tendency in performance with the increasing number

f users. ABUC algorithm with Full CSI offers a close performance

o the dynamic optimal solution for all mobility scenarios. Again,

BUC with Estimated CSI exhibits a good performance for lower

obility while Partial CSI outperforms it for high mobility. From

hese figures, we can also observe the effect of period T on the
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Fig. 4. Average sum-rate convergence against number of iterations. 
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sum-rate: ABUC with T = 3 and Full CSI behaves better than with

T = 2 and Partial CSI. With T = 3 and Partial CSI, the proposed

method is outperformed by the static algorithm with full (perfect)

CSI, showing the importance of accurate CSIs. 

In Fig. 6 , we plot the cumulative distribution function (CDF) of

per user data rates for proposed ABUC variants and baseline dy-

namic and static algorithms. The figure emphasizes the fairness

among users in terms of instantaneous rate distribution. We no-

tice that the ABUC algorithm shows a near performance to the

dynamic algorithm in case of Full CSI, i.e. it reaches up to 91.3%

and 86.8% of the optimal performance with T = 2 and T = 3 at the

50th percentile, respectively, for low mobility scenario. We can also

point out the behavior of the proposed ABUC with Full CSI which

tends to allocate more resources to low CSI quality users unlike

the dynamic algorithm which concentrates the allocation towards

best CSI users to maximize the global sum-rate. Therefore, ABUC

scheme provides a better fairness for all users while approaching

the optimal sum-rate. 

Another important analysis concerns the costs induced by all

the compared schemes. We first plot in Fig. 7 the amount of gen-
erated CSI feedback overhead as a function of the number of users. s  
e can see that all variants of ABUC algorithm provide an impor-

ant reduction in CSI overhead compared to the dynamic scheme

43-48% for T = 2 and 63–66% for T = 3 ). For the ABUC Full CSI

ase, this gain comes from smaller cluster sizes ( L k ≤ L (11) ) in in-

ermediate static frames. Moreover, the performance in terms of

SI overhead can be significantly improved by employing Partial

SI or Estimated CSI instead of Full CSI. Note that the amount

f CSI feedback for partial and Estimated CSI is equal as shown

n (12) . 

Furthermore, the ABUC algorithm enables a large reduction of

he number of user-to-RRH association messages. We plot in Fig. 8

he re-association cost of proposed ABUC algorithm compared to

he dynamic one for the three mobility profiles and different user

oads (10 and 20 users per macro cell). In this figure, we observe a

ignificant reduction of re-association messages for ABUC scheme

ompared to the dynamic one, which is even more under high user

oad. Note that as shown in Section 6.1.2 , the re-association cost of

he proposed algorithm depends only on period T and is unaffected

y the CSI feedback strategy. With T = 2 and T = 3 ABUC achieves

4.3% and 74% reduction compared to the dynamic scheme, re-

pectively. In addition, the results show that the mobility acts on
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Fig. 5. Sum-rate performance as function of the number of users per macro cell. 
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he generated re-association cost as high user mobility requires

ore frequent changes of serving RRHs over successive scheduling

rames. However, this increase in re-association cost is marginal

roving the robustness of the proposed schemes against varying

ser loads and velocities. 

.2. Performance-cost tradeoff analysis: a mobility perspective 

In this section, we discuss the performance-cost tradeoff under

ifferent mobility conditions. To characterize the different variants

f ABUC algorithm, we define the parameters ( T, f ), where T is the

eriod of dynamic frames, and f is the CSI feedback strategy used

or intermediate frames, i.e., T ∈ {2, 3} and f may be chosen among

ull CSI, Partial CSI and Estimated CSI. 

Fig. 9 summarizes the sum-rate behavior of all algorithms

gainst users velocities represented by the correlation coefficient

. As we can see, λ approaching 1 corresponds to the static case

nd hence the Estimated CSI is very close to the real channel state,

xplaining why our ABUC scheme with Estimated CSI closely ap-
roaches its performance with Full CSI. On the other end, when

tends to 0, the user velocity is very high leading to very dy-

amic channel variations. This can be observed on the performance

f ABUC with Estimated CSI which degrades even lower than the

ase with Partial CSI given the poor quality of the CSI estimation.

n addition, we observe that unlike ABUC with full and Partial CSI

trategies, the performance of ABUC with Estimated CSI is strongly

ependent on user mobility. In light of these considerations and

he performance tendencies noticeable in Fig. 9 , we identify three

obility regions: low mobility, medium mobility and high mo-

ility corresponding to the velocity and λ ranges (0–18 km/h ;

.96 ≤λ≤ 1), (18–54 km/h ; 0.7 ≤λ≤ 0.96), ( v ≥ 54 km/h ; λ≤ 0.6),

espectively. For each range of velocity, we can find the most suit-

ble algorithm with its parameters ( T, f ) that can balance the trade-

ff between sum-rate performance and the incurred costs. 

• Low mobility scenario : from Fig. 9 , ABUC scheme with

Estimated CSI for both values of T ( T = 2 and T = 3 )

closely approaches ABUC sum-rate performance with Full

CSI, while largely reducing the CSI feedback overhead and
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Fig. 6. Cumulative distribution function of user data rate. 

Table 2 

Computational complexity as function of the number of users per macro cell. 

Number of users/macro cell 10 20 30 

Dynamic algo 4.2 × 10 12 6.7 × 10 13 3.4 × 10 14 

ABUC algo T = 2 5.4 × 10 7 4.7 × 10 8 1.8 × 10 9 

ABUC algo T = 3 5.1 × 10 7 4.4 × 10 8 1.7 × 10 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

re-association costs compared to the baseline dynamic algo-

rithm (as shown in Figs. 7 and 8 ). In addition, Fig. 6 a re-

veals that ABUC with estimated and Full CSI achieve simi-

lar user fairness levels for each T . Moreover, regarding the

computational complexity, we can see in Table 2 that ABUC

with both values of T drastically decreases the computation

complexity owing mainly to the smaller cluster sizes L k used

in intermediate static frames. Note that we can also observe

that the reduction in complexity for ABUC is proportional

to the period T . Therefore, we can conclude that ABUC with
( T = 3 ; Estimated CSI) provides the best trade-off for low

mobility users. 

• Medium mobility scenario : for medium velocities, ABUC with

Estimated CSI looses some performance compared to Full CSI

but still outperforms Partial CSI case and performs close to

baseline static algorithm with Full CSI. Here again, consider-

ing the balance between the loss of sum-rate performance

and the gain in complexity and signaling costs ( Figs. 7 and

8 ), we can infer that ABUC with ( T = 2 ; Estimated CSI) pro-

vides the best trade-off performance for medium mobility.

However, if the system can afford a higher overhead con-

sumption, ABUC with ( T = 2 ; Full CSI) offers the best sum-

rate performance. 

• High mobility scenario : In high mobility environments, it is

clear that the Estimated CSI becomes obsolete and hence

ABUC with Estimated CSI has no more benefits. As a con-

sequence, ABUC with ( T = 2 ; Partial CSI) is preferred as the

best option to realize the sum-rate and cost trade-off. 
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Fig. 7. CSI overhead as function of the number of users per macro cell. 
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Fig. 9. Sumrate performance against lambda. 
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From the above discussion, given that the set of parameters

hich provide the best performance-cost trade-off are highly de-

endent on the mobility profile of users, a Q-learning based

ethod enabling the dynamic selection of parameters ( T, f ) is in-

estigated in the next section. 

.3. Performance of ABUC with Q-learning 

Our goal in this section is to derive some preliminary perfor-

ance results of the proposed ABUC’s Q-learning based feedback

arameter selection framework on a simple network which con-

ists of 1 macro-RRH and 3 pico-RRHs and 3 users. The agent will

earn over 1200 episodes for a state space of 64 states, correspond-

ng to 4 states of CSI quantization for each user. The action set

or each user consists of 4 actions: T = 1 with Full CSI and T = 2

ith Full CSI, Partial CSI and Estimated CSI, resulting in a Q-table

f size 6 4 × 6 4. The value of channel coefficients | h lk | 
2 are quan-

ized into 4 ranges which are bounded by the following values:

 × 10 −6 , 1 . 8 × 10 −5 and 8 × 10 −5 . The other simulation parameters

re the same as in Table 1 . 
Fig. 8. Re-association cost as function o
We consider two different scenarios: in the first one, all users

ave the same velocity while in the second, each user has its own

ndividual velocity. 

Firstly, we evaluated the proposed algorithm in the first sce-

ario where all users undergo the same velocity which is var-

ed over the three mobility profiles, namely: low, medium and

igh mobility corresponding respectively to 6 km/h, 36 km/h and

2 km/h. We plot in Fig. 10 converged value of the reward against

ifferent values of sum-rate weight ρ1 which varies between 0 and

. We observe that when ρ1 approaches 1, the reward tends toward

he sum-rate and all users whatever their velocity converge to take

he same optimal action ( T = 1 , Full CSI). Inversely, when ρ1 ap-

roaches 0, the CSI cost factor becomes more dominating on the

eward value, then the users choose the optimal action that mini-

izes the CSI cost, i.e. ( T = 2 , Estimated CSI) for low and medium

elocities, and ( T = 2 , Partial CSI) for high velocities. In addition,

e also observe that the reward slightly decreases as the mobility

ecome higher due to the CSI degradation. We varied the value of

eights ( ρ1 , ρ2 ) to three cases (0.3, 0.7), (0.7, 0.3) and (0.9, 0.1)

epresenting different situations of tradeoff between the sum-rate

nd the induced costs. We can see in Fig. 11 that the three users
f number of users per macro cell. 
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Fig. 10. Converged reward as function of weight ρ1 . 

Fig. 11. Reward convergence over the learning episodes Individual velocities: user 

1 = 6 km/h, user 2 = 36 km/h, user 3 = 72 km/h. 
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having different velocity converge individually to different optimal

actions which are highly dependant on their respective velocities.

We observe that for weight ρ1 = 0 . 3 or ρ1 = 0 . 7 , the users with

low and medium velocity take the action ( T = 2 , Estimated CSI),

while the user with high mobility converges to ( T = 2 , Partial CSI).

The selection of these actions confirms the effectiveness of the

learning algorithm. Indeed, in case of low and medium mobility,

the CSI estimation is accurate enough to be used when ρ1 = 0 . 3

and ρ1 = 0 . 7 for a balanced trade-off between sum-rate and cost,

while the high mobility user no longer maintains an acceptable

CSI estimation and then prefers selecting Partial CSI. Moreover,

coupled with the fact that T = 2 is very effective for cost reduc-

tion, the users converge to T = 2 instead of T = 1 . Finally, in case

of ρ1 = 0 . 9 which corresponds to a predominant sum-rate perfor-

mance, the learning algorithm wisely converges to ( T = 1 , Full CSI)

action regardless the user velocity as Full CSI and dynamic cluster-

ing at all frame presents the best action for sum-rate maximiza-

tion. 
. Conclusion 

In this paper, we investigated the trade-off between throughput

ain and complexity/signaling overhead costs of the joint beam-

orming and user clustering problem in the downlink of a H-CRAN.

e proposed ABUC, an algorithm that periodically activates dy-

amic and static clustering strategies for leveraging both the op-

imality of the dynamic solution and the low-complexity of its

tatic counterpart. The key benefit of the proposed ABUC algorithm

s to take into account the temporal dimension of the allocation

rocess while being aware of practical system operation metrics,

amely CSI feedback overhead, re-association cost, and computa-

ion complexity. We also propose to use a mobility-aware channel

stimation model to better predict the channel variations when CSI

eedback reduction is applied. The numerical results show that the

roposed solution narrows significantly the performance gap with

he optimal dynamic solution, while considerably reducing the re-

uired computational complexity, CSI feedback and re-association

ignaling overhead over the long-term allocation process. More-

ver, we have identified the best parameter sets for different mo-

ility scenarios. Furthermore, we designed a Q-learning frame-

ork which enables the proposed ABUC algorithm to optimize its

cheduling parameters on-the-fly, given each user mobility profile.

ur proposed framework is able to learn about the system dynam-

cs and predict the best parameter set to apply for each user de-

ending on its mobility behavior. 

As a future work direction, the dynamic selection of algorithm

arameters for a large scale H-CRAN network can be optimized

hrough a more sophisticated machine learning techniques, e.g.,

eep reinforcement learning. The resource allocation and schedul-

ng problem in Fog-RAN will be also considered. 

onflicts of Interest 

None. 

cknowledgements 

This work is supported by the CNRS PICS bilateral research fund

etween France and Japan, and by the Grant-in-Aid for Scientific

esearch (Kakenhi) no. 17K06453 from the Ministry of Education,

cience, Sports and Culture of Japan. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.comnet.2019.05.005 . 

eferences 

[1] H.D. Thang, L. Boukhatem, M. Kaneko, S. Martin, Performance-cost trade-off
of joint beamforming and user clustering in cloud radio access networks, in:

2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mo-
bile Radio Communications (PIMRC), 2017, pp. 1–5, doi: 10.1109/PIMRC.2017.

8292411 . 
[2] A. Gupta, R.K. Jha, A survey of 5G network: architecture and emerging tech-

nologies, IEEE Access 3 (2015) 1206–1232, doi: 10.1109/ACCESS.2015.2461602 . 

[3] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Que-
seth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M.A. Uusitalo, B. Timus,

M. Fallgren, Scenarios for 5G mobile and wireless communications: the vision
of the metis project, IEEE Commun. Mag. 52 (5) (2014) 26–35, doi: 10.1109/

MCOM.2014.6815890 . 
[4] M. Peng, H. Xiang, Y. Cheng, S. Yan, H.V. Poor, Inter-tier interference suppres-

sion in heterogeneous cloud radio access networks, IEEE Access 3 (2015) 2441–
2455, doi: 10.1109/ACCESS.2015.24 9726 8 . 

[5] M. Peng, Y. Li, Z. Zhao, C. Wang, System architecture and key technologies for

5G heterogeneous cloud radio access networks, IEEE Netw. 29 (2) (2015) 6–14,
doi: 10.1109/MNET.2015.7064897 . 

[6] M. Peng, Y. Li, J. Jiang, J. Li, C. Wang, Heterogeneous cloud radio access net-
works: a new perspective for enhancing spectral and energy efficiencies, IEEE

Wirel. Commun. 21 (6) (2014) 126–135, doi: 10.1109/MWC.2014.70 0 0980 . 

https://doi.org/10.13039/501100004794
https://doi.org/10.1016/j.comnet.2019.05.005
https://doi.org/10.1109/PIMRC.2017.8292411
https://doi.org/10.1109/ACCESS.2015.2461602
https://doi.org/10.1109/MCOM.2014.6815890
https://doi.org/10.1109/ACCESS.2015.2497268
https://doi.org/10.1109/MNET.2015.7064897
https://doi.org/10.1109/MWC.2014.7000980


D.T. Ha, L. Boukhatem and M. Kaneko et al. / Computer Networks 160 (2019) 130–143 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

 

 

[  

 

 

 

[  

 

 

[  

 

 

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

v  

i  

I  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

P  

A  

t

 

 

 

 

 

 

 

 

[7] H. Dahrouj, A. Douik, O. Dhifallah, T.Y. Al-Naffouri, M.S. Alouini, Resource allo-
cation in heterogeneous cloud radio access networks: advances and challenges,

IEEE Wirel. Commun. 22 (3) (2015) 66–73, doi: 10.1109/MWC.2015.7143328 . 
[8] X. Mao, B. Zhang, Y. Chen, J. Yu, Z. Han, Matching game based resource al-

location for 5G H-CRAN networks with device-to-device communication, in:
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mo-

bile Radio Communications (PIMRC), 2017, pp. 1–6, doi: 10.1109/PIMRC.2017.
8292250 . 

[9] K. Hosseini, W. Yu, R.S. Adve, Cluster based coordinated beamforming and

power allocation for mimo heterogeneous networks, in: 2013 13th Canadian
Workshop on Information Theory, 2013, pp. 96–101, doi: 10.1109/CWIT.2013.

6621600 . 
[10] M.M.U. Rahman, H. Ghauch, S. Imtiaz, J. Gross, RRH clustering and transmit

precoding for interference-limited 5G CRAN downlink, in: 2015 IEEE Globecom
Workshops (GC Wkshps), 2015, pp. 1–7, doi: 10.1109/GLOCOMW.2015.7414198 . 

[11] B. Dai, W. Yu, Sparse beamforming and user-centric clustering for downlink

cloud radio access network, IEEE Access 2 (2014) 1326–1339, doi: 10.1109/
ACCESS.2014.2362860 . 

[12] M. Peng, Y. Yu, H. Xiang, H.V. Poor, Energy-efficient resource allocation op-
timization for multimedia heterogeneous cloud radio access networks, IEEE

Trans. Multimed. 18 (5) (2016) 879–892, doi: 10.1109/TMM.2016.2535722 . 
[13] D.T. Ha, L. Boukhatem, M. Kaneko, S. Martin, An advanced mobility-aware

algorithm for joint beamforming and clustering in heterogeneous cloud ra-

dio access network, in: Proceedings of the 21st ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, in:

MSWIM ’18, ACM, New York, NY, USA, 2018, pp. 199–206, doi: 10.1145/3242102.
3242120 . 

[14] Z. Guizani , N. Hamdi , CRAN, H-CRAN, And F-RAN for 5G systems: key capabil-
ities and recent advances, Int. J. Netw. Manage. 27 (2017) . 

[15] Y. Lin, L. Shao, Z. Zhu, Q. Wang, R.K. Sabhikhi, Wireless network cloud: ar-

chitecture and system requirements, IBM J. Res. Dev. 54 (1) (2010) 4:1–4:12,
doi: 10.1147/JRD.2009.2037680 . 

[16] C. Mobile , C-RAN: The Road Towards Green RAN, White Paper, ver 2 (2011) . 
[17] A. Checko, H.L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M.S. Berger,

L. Dittmann, Cloud RAN for mobile networks - a technology overview, IEEE
Communications Surveys Tutorials 17 (1) (2015) 405–426, doi: 10.1109/COMST.

2014.2355255 . 

[18] H. Dahrouj, A. Douik, F. Rayal, T.Y. Al-Naffouri, M. Alouini, Cost-effective hybrid
RF/FSO backhaul solution for next generation wireless systems, IEEE Wirel.

Commun. 22 (5) (2015) 98–104, doi: 10.1109/MWC.2015.7306543 . 
[19] C. Ran, S. Wang, C. Wang, Balancing backhaul load in heterogeneous cloud ra-

dio access networks, IEEE Wirel. Commun. 22 (3) (2015) 42–48, doi: 10.1109/
MWC.2015.7143325 . 

20] Q. Shen, Z. Ma, S. Wang, Deploying C-RAN in cellular radio networks: an ef-

ficient way to meet future traffic demands, IEEE Trans. Veh. Technol. 67 (8)
(2018) 7887–7891, doi: 10.1109/TVT.2018.2838133 . 

[21] Y. Shi , J. Zhang , K.B. Letaief , Group sparse beamforming for green cloud-RAN,
CoRR abs/1310.0234 (2013) . 

22] H. Dahrouj, W. Yu, T. Tang, S. Beaudin, Power spectrum optimization for in-
terference mitigation via iterative function evaluation, in: 2011 IEEE GLOBE-

COM Workshops (GC Wkshps), 2011, pp. 162–166, doi: 10.1109/GLOCOMW.2011.
6162428 . 

23] S.H. Park, O. Simeone, O. Sahin, S. Shamai, Joint precoding and multivariate

backhaul compression for the downlink of cloud radio access networks, IEEE
Trans. Signal Process. 61 (22) (2013) 5646–5658, doi: 10.1109/TSP.2013.2280111 .

24] M. Peng, S. Yan, H.V. Poor, Ergodic capacity analysis of remote radio head asso-
ciations in cloud radio access networks, IEEE Wirel. Commun. Lett. 3 (4) (2014)

365–368, doi: 10.1109/LWC.2014.2317476 . 
25] B. Dai, W. Yu, Backhaul-aware multicell beamforming for downlink cloud ra-

dio access network, in: 2015 IEEE International Conference on Communication

Workshop (ICCW), 2015, pp. 2689–2694, doi: 10.1109/ICCW.2015.7247585 . 
26] Y. He, Z. Zhang, F.R. Yu, N. Zhao, H. Yin, V.C.M. Leung, Y. Zhang, Deep-

reinforcement-learning-based optimization for cache-enabled opportunistic in-
terference alignment wireless networks, IEEE Trans. Veh. Technol. 66 (11)

(2017) 10433–10445, doi: 10.1109/TVT.2017.2751641 . 
[27] H.Y. Ong , K. Chavez , A. Hong , Distributed deep q-learning, CoRR

abs/1508.04186 (2015) . 

28] V. Mnih , K. Kavukcuoglu , D. Silver , A .A . Rusu , J. Veness , M.G. Bellemare ,
A. Graves , M. Riedmiller , A.K. Fidjeland , G. Ostrovski , S. Petersen , C. Beattie ,

A. Sadik , I. Antonoglou , H. King , D. Kumaran , D. Wierstra , S. Legg , D. Hassabis ,
Human-level control through deep reinforcement learning, Nature 518 (7540)

(2015) 529–533 . 
29] Z. Xu, Y. Wang, J. Tang, J. Wang, M.C. Gursoy, A deep reinforcement learn-

ing based framework for power-efficient resource allocation in cloud RANs, in:

2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6,
doi: 10.1109/ICC.2017.7997286 . 

30] I. AlQerm, B. Shihada, Enhanced machine learning scheme for energy effi-
cient resource allocation in 5G heterogeneous cloud radio access networks,

in: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2017, pp. 1–7, doi: 10.1109/PIMRC.2017.

8292227 . 

[31] Y. Sun, M. Peng, S. Mao, Deep reinforcement learning based mode selection
and resource management for Green Fog Radio Access networks, IEEE Internet

Things J. (2019), doi: 10.1109/JIOT.2018.2871020 . 1–1 
32] M. Razaviyayn, M. Hong, Z.-Q. Luo, A unified convergence analysis of block
successive minimization methods for nonsmooth optimization, SIAM J. Optim.
23 (2) (2013) 1126–1153, doi: 10.1137/120891009 . 

33] D.S. Michalopoulos, H.A. Suraweera, G.K. Karagiannidis, R. Schober, Amplify-
and-forward relay selection with outdated channel estimates, IEEE Trans. Com-

mun. 60 (5) (2012) 1278–1290, doi: 10.1109/TCOMM.2012.032012.110430 . 
34] V. Mnih , K. Kavukcuoglu , D. Silver , A. Graves , I. Antonoglou , D. Wier-

stra , M.A. Riedmiller , Playing Atari with deep reinforcement learning, CoRR
abs/1312.5602 (2013) . 

35] M. Rovcanin , E.D. Poorter , I. Moerman , P. Demeester , A reinforcement learning

based solution for cognitive network cooperation between co-located, hetero-
geneous wireless sensor networks, Ad Hoc Netw. 17 (2014) 98–113 . 

36] 3GPP , Technical Specification Group Services and System Aspects, Quality of
Service (QoS) Concept and Architecture (Release 12), Report TS 23.107, V12.0.0

(2014) . 

Duc Thang Ha received the B.E. degree in electrical engi-

neering from Hanoi University of Science and Technology,
Hanoi, Vietnam, in 2014, and the MSc. degree in com-

puter science from the University of Paris-Sud, Orsay, Ile-
de-France, France, in 2015, where he is currently pursu-

ing the Ph.D. degree with the Computer Science Depart-

ment. His research interests include wireless communica-
tions and convex optimization. 

Lila Boukhatem is associate professor in the ROCS (Net-

works and combinatorial and stochastic optimization)

team of LRI laboratory (CNRS - University of Paris Saclay
- University of Paris-Sud). She received a computer sci-

ence engineering degree in 1997 from INI Institute, Al-
geria, MsC degree in 1998 from the University of Ver-

sailles Saint Quentin-en-Yvelines, France, and Ph.D. de-
gree in 2001 from the University of Pierre et Marie Curie

(Paris 6), France. In 2009, she obtained her HDR degree
from Paris-Sud University, France. She joined the LRI lab-

oratory in 2002 where she is developing various research

works in mobile and wireless networks including: Cross-
layer design, modeling and performance evaluation, radio

esource allocation and optimization, mobility management, routing and energy in
ehicular networks. She has lead and actively participated to several national and

nternational projects and programs such as PHC Sakura, FP7 - NoE NEWCOM#, EIT
CT-Labs Digital Cities. Her current research interests are radio and energy resource

llocation for edge computing enabled 5G systems. 

Megumi Kaneko received her B.S. and MSc. degrees in
communication engineering in 2003 and 2004 from Insti-

tut National des Télécommunications (Télécom SudParis),
France, jointly with a MSc. from Aalborg University, Den-

mark, where she received her Ph.D. degree in 2007. In
May 2017, she obtained her HDR degree (French Doctoral

Habilitation for Directing Researches at Professor posi-

tion) from Paris-Sud University, France. From September
2010 to March 2016, she was an Assistant Professor in

the Graduate School of Informatics, Kyoto University. She
is currently an Associate Professor at the National Insti-

tute of Informatics, Tokyo, Japan. Her research interests
include wireless communications, radio resource and in-

erference management, wireless sensing and cross-layer network protocols. She

eceived the 2009 Ericsson Young Scientist Award, the IEEE Globecom 2009 Best
aper Award, the 2011 Funai Young Researcher’s Award, the WPMC 2011 Best Paper

ward, the 2012 Telecom System Technology Award and the 2016 Inamori Founda-
ion Research Grant. 

Nhan Nguyen-Thanh received the B.E. and M.Eng. de-

grees in electrical engineering from the Ho Chi Minh City
University of Technology in 2003 and 2007, respectively,

and the Ph.D. degree in electrical engineering from the
University of Ulsan, South Korea, in 2012. He is currently

with the LRI Laboratory, University of Paris Sud, France, as
a Post-Doctoral Researcher. His current research interests

include deep learning, game theory, IoT, and the next-

generation wireless communication systems. 

https://doi.org/10.1109/MWC.2015.7143328
https://doi.org/10.1109/PIMRC.2017.8292250
https://doi.org/10.1109/CWIT.2013.6621600
https://doi.org/10.1109/GLOCOMW.2015.7414198
https://doi.org/10.1109/ACCESS.2014.2362860
https://doi.org/10.1109/TMM.2016.2535722
https://doi.org/10.1145/3242102.3242120
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0014
https://doi.org/10.1147/JRD.2009.2037680
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0016
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0016
https://doi.org/10.1109/COMST.2014.2355255
https://doi.org/10.1109/MWC.2015.7306543
https://doi.org/10.1109/MWC.2015.7143325
https://doi.org/10.1109/TVT.2018.2838133
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0021
https://doi.org/10.1109/GLOCOMW.2011.6162428
https://doi.org/10.1109/TSP.2013.2280111
https://doi.org/10.1109/LWC.2014.2317476
https://doi.org/10.1109/ICCW.2015.7247585
https://doi.org/10.1109/TVT.2017.2751641
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0028
https://doi.org/10.1109/ICC.2017.7997286
https://doi.org/10.1109/PIMRC.2017.8292227
https://doi.org/10.1109/JIOT.2018.2871020
https://doi.org/10.1137/120891009
https://doi.org/10.1109/TCOMM.2012.032012.110430
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0034
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0035
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0035
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0035
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0035
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0035
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0036
http://refhub.elsevier.com/S1389-1286(18)30714-X/sbref0036

	Adaptive beamforming and user association in heterogeneous cloud radio access networks: A mobility-aware performance-cost trade-off
	\numberline {1}Introduction
	\numberline {2}State of the art
	\numberline {3}System model
	\numberline {4}Problem formulation and reference schemes
	\numberline {5}Proposed adaptive beamforming and user clustering (ABUC) algorithm
	\numberline {6}Cost analysis of the proposed ABUC algorithm
	\numberline {6.1}Signaling costs
	\numberline {6.1.1}CSI overhead
	\numberline {6.1.2}User-to-RRH re-association overhead

	\numberline {6.2}Computational complexity cost analysis

	\numberline {7}Optimizing ABUC&#x2019;s feedback parameters using Q-learning
	\numberline {8}Simulation results
	\numberline {8.1}ABUC Algorithm performance
	\numberline {8.2}Performance-cost tradeoff analysis: a mobility perspective
	\numberline {8.3}Performance of ABUC with Q-learning

	\numberline {9}Conclusion
	Conflicts of Interest
	Acknowledgements
	Supplementary material
	References


